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ARTICLE INFO ABSTRACT

Keywords: COSINE-100 is a dark matter direct detection experiment with 106kg NalI(Tl) as the target material. 21°Pb

gzl(gl) and daughter isotopes are a dominant background in the WIMP region of interest and are detected via g
P

decay and a decay. Analysis of the a channel complements the background model as observed in the g/y

22;: channel. We present the measurement of the quenching factors and Monte Carlo simulation results and activity
216, quantification of the « decay components of the COSINE-100 Nal(Tl) crystals. The data strongly indicate that
Halflife the « decays probabilistically undergo two possible quenching factors but require further investigation. The
Alpha fitted results are consistent with independent measurements and improve the overall understanding of the
Quenching COSINE-100 backgrounds. Furthermore, the half-life of 21°Po has been measured to be 143.4 + 1.2ms, which

is consistent with and more precise than most current measurements.
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Fig. 1. COSINE-100 detector geometry implemented in Geant4 (Section 4).

1. Introduction

The COSINE-100 detector consists of an array of eight ultra-pure
Nal(Tl) crystals with a combined mass of 106 kg. The experiment was
operated at the Yangyang Underground Laboratory (Y2L) from Septem-
ber 2016 until March 2023. Its primary goal is the direct detection of
dark matter via the annual modulation of WIMP scattering from I or Na
nuclei. The crystal array is immersed in 2200 liters of liquid scintillator
for background tagging.

A good understanding and precise measurement of the background
sources contributing events in the 1-10 electron-equivalentkeV (keV,,)
region of interest (ROI) is critical to Nal(Tl) direct detection WIMP
searches. Bulk and surface 219Pb are the dominant background sources
in this region and are observed in the f/y channel, as well as in the
a channel. Certain characteristics (gain calibration, energy resolution,
light yield, etc.) of the Nal crystals have been measured in situ [1].
The quenching factors for a particles are important inputs to the
simulation, as well as the analysis of the « background. Analysis of the
a channel can improve the accuracy of the background model in the
ROL Analysis of the a backgrounds using 2.7 yr data is presented in this
work, intended to quantify the activity of the different components by
fitting data using Monte Carlo simulations and a direct determination
of quenching factors for alpha particles.

2. COSINE-100 experimental setup

The experimental setup and data acquisition are described in detail
in Ref. [1,2]. The detector geometry used for simulations is shown in
Fig. 1. Eight NalI(Tl) crystals (denoted C1-C8), arranged in two layers,
are located in the middle of a four-layer shielding structure. From
outside inward, the four shielding layers are plastic scintillator panels,
a lead-brick castle, a copper box, and a scintillating liquid. The eight
Nal(T1) crystal assemblies and their support table are immersed in the
scintillating liquid that serves both as an active veto and a passive
shield [3,4].

The eight NaI(Tl) crystals were grown out of batches of powder
provided by Alpha Spectra Inc. with successive improvements. The first
crystals labeled AS-B and AS-C were produced with a reduction of
40K by an order of magnitude compared to crystals grown with AS-
A powder. Then, crystals labeled WIMPScint-II (AS-WSII) reduced the
contamination of 210Pb. Finally, the crystals labeled WIMPScint-III (AS-
WSIII) were produced with an additional reduction of 4°K by a factor of
two. The crystal properties are summarized in Table 1, and a detailed
description is given in Ref. [1].
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Table 1
COSINE-100 crystal properties. The total « rates were independently measured as part
of the crystal commissioning effort. Details of the measurements are described in Ref.

[1].

Nal (T1) Mass Size (inches) Powder Total « rate 40K
Crystal (kg) (diam. xlength) Type (mBq/kg) (ppb)

C1 8.3 5.0x 7.0 AS-B 3.20 + 0.08 347 + 4.7
c2 9.2 4.2 x11.0 AS-C 2.06 + 0.06 60.6 + 4.7
C3 9.2 4.2 x 11.0 AS-WSII 0.76 + 0.02 343 + 3.1
c4 18.0 5.0 x 15.3 AS-WSII 0.74 + 0.02 333 + 35
C5 18.3 5.0 x 15.5 AS-C 2.06 + 0.05 82.3 + 5.5
C6 12.5 4.8 x 11.8 AS-WSIIT 1.52 + 0.04 16.8 + 2.5
c7 12.5 4.8 x 11.8 AS-WSIIT 1.54 + 0.04 18.7 + 2.8
Cc8 18.3 5.0 x 15.5 AS-C 2.05 + 0.05 54.3 + 3.8

The final crystals are cylindrically shaped and hermetically encased
in OFE copper tubes with wall thickness of 1.5 mm and quartz windows
(12.0 mm thick) at each end. Each crystal’s lateral surface is wrapped
in roughly 10 layers of 250 pm thick PTFE reflective sheets. The
quartz windows are optically coupled to each end of the crystal via
1.5 mm thick optical pads. These, in turn, are optically coupled to 3-
inch Hamamatsu R12669SEL photomultiplier tubes (PMTs) with a thin
layer of high-viscosity optical gel. The PMTs are sealed from the liquid
scintillator by a housing made of copper and PTFE.

It should be noted that Crystal-5 and Crystal-8 are excluded from
this work due to significant degradation of the light collection.

The scintillation signals are digitized and integrated to determine
the charge in arbitrary units. Special calibration runs and prominent
peaks from in situ data are used to define the calibration function [2]
that converts the digitized charge into units of electron-volts (eV). The
calibration function is determined from the f/y scintillation signals and
is referred to as the electron-equivalent energy (eV,,).

3. Alpha quenching measurements

The a events are selected from data using the meantime variable
as discussed in Section 3.1. The observed energy of the a events is
used to build the energy spectra. The energy spectra are in units of
electron-equivalent energy and do not represent the true a energy. Only
a fraction of the « decay energy is converted to light. The ratio of the
observed energy to the decay energy is referred to as the a quenching
factor (QF). To determine the crystal quenching factors, known « peaks
are identified in data as described in Section 3.2. The quenching factor
is also « energy dependent so ideally multiple known « peaks are
required to determine the energy dependent quenching factor function
as summarized in Section 3.3.

3.1. Alpha event selection and energy spectra

The scintillation signal from « particles in Nal(T1) differs from the
one generated by f/y particles. The decay time of the scintillation
pulse by « is faster than the one from f/y particles. The scintillation
decay time of the incident particles can be identified from the charge-
weighted duration time, called the meantime. The meantime () is
defined as

AL
()= A @
where A; and ¢; are the charge and time of the i-th digitized bin of a
signal waveform, respectively. The meantime is estimated in COSINE-
100 data within 1.5 ps from the pulse start time. As a result, the
populations of f/y events and « events are clearly separated due to
the faster decay times of the a-induced events as shown in Fig. 2.

Using the meantime selection criteria, the a events are selected from
data. We obtain the « energy spectra in units of electron-equivalent
energy (keV,,) as shown in Fig. 3. The half-lives of the two prominent
peaks are consistent with 210Po. The ANAIS experiment observed two
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Fig. 2. Typical crystal scatter plot of the meantime versus the energy for COSINE-100
background data shown for crystal C6 as an example. The a events (red dots) and the
p/y events (black dots) are clearly identified by the meantime as defined by Eq. (1).
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Fig. 3. Characteristic electron-equivalent energy spectrum of « events shown for crystal
C6 as an example. 21°Po makes up the two prominent peaks suggesting two quenching
factors.

prominent peaks in their alpha spectra [5] and cautiously proposes
surface 219Po as an explanation. Discussed in detail in Section 4, MC
simulation of surface 2'°Po was insufficient to explain the two peak
structure observed in our data. A recent preliminary study by the COS-
INUS experiment [6] may provide stronger evidence of QF dependence
on Tl doping concentration once the study matures. In principle, the
Nal(Tl) crystal growing processes can cause spatial dependence of the
Tl doping concentration within the crystal. The spatial dependence of
the QF could be a continuum, distinctly different, or a combination
of both. In this work, we consider two different quenching factors
for a events. The high QF and low QF are referred to as Q; and Q,
respectively.

3.2. Alpha-alpha time-correlated events

The high energy region (> 3.3 MeV,,) of the a distribution, as shown
in Fig. 3, is from the 228Th-group a decays and more specifically from
220Rn and 216Po. The 228Th-group activity can be measured by selecting
the time-delayed a-a events from 220Rn and 2'°Po decays. The a decay
of 216Po has a short half-life of 0.145 s following its production via the
a decay of 22°Rn.

The 228Th-group activity can be calculated from a single exponential
fit to the a-a time-delay (4T) distribution. Events with AT greater than
5 s are rejected. A typical AT distribution and fitted function is shown in
Fig. 4 and the fitted half-lives of all crystals are summarized in Table 2.

It should be noted that our measured average 21°Po half-life of
143.4 + 1.2 ms is very competitive with the leading measurements [7-
11]. This measurement is more precise than previous measurements
with the exception of [8]. Previous 216Po half-life measurements are
listed in Table 3 for comparison.
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Fig. 4. A typical AT distribution of total a events and exponential fitted function shown
for crystal C6 as an example.

Table 2

Measured ?'°Po half-lives (in ms)
from exponential fit to a-a time
distribution.

Half-lives of 2'°Po (ms)

C1 150.8 + 4.7

Cc2 141.3 + 1.5

Cc3 133.8 + 5.1

C4 152.8 + 2.6

Cc6 132.4 + 4.7

Cc7 148.1 + 6.8
Table 3

Measured 219Po half-lives (in ms) from other
sources.

Half-lives of 21°Po (ms)

this work 143.4 + 1.2
[71 144 + 8

[8] 144.0 + 0.6
[91 143.3 + 2.8
[10] 145 + 2
[11] 145.3 + 18.9
global average  143.9 + 0.5

3.3. Quenching factor calculation

The 229Rn and 216Po events that have been selected are shown in
Fig. 5. These events were estimated using the time-delayed method out-
lined in Section 3.2. They are used to determine the energy-dependent
quenching functions. The observed « energy and standard deviation
of 220Rn and 216Po events are initially estimated by Gaussian fits to
the identified spectral features in data. The fitted parameters are used
to define the energy window applied to the a-a event selection. The
energy window is set by the a energy mean plus or minus three stan-
dard deviations. A time constraint is also applied to mitigate random
coincident events from 210Po. From the half-life of 216Po, 0.145s, we
apply a 1s AT constraint.

The energy-dependent a quenching is approximated by

0, (E))=a+b- E,[MeV], 2

and each data point for fitting is obtained from the ratio between the
Q-value and the electron-equivalent energy of a from 219Po, 220Rn,
and 216Po. Characteristic data points and energy-dependent quenching
factor functions for Q; and Q, are shown in Fig. 6. The fitted a and b
parameters for each crystal are summarized in Tables 4 and 5.
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Fig. 5. Characteristic a-a electron-equivalent energy distributions of the selected 2°Po
and ??°Rn events for O, and Q, shown for crystal C6 as an example.
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Fig. 6. Characteristic data points and energy-dependent quenching factor functions for
Q, and Q, shown for crystal C6 as an example.

4. Alpha decay Monte Carlo simulation and activity determination

Radioactive background components are simulated using Geant4
(v10.4.2) [12-14]. The physics list classes of G4EmLivermorePhysics
for low-energy electromagnetic processes and G4RadioactiveDecay for
radioactive decay processes are used. Details of the simulation are
described in Refs. [15,16].

The a events are challenging to reproduce with simulation. Two
quenching factors are required to describe the two dominant a peaks
from 210Po as well as the higher energy features from 220Rn and 216Po.
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Fig. 7. Internal '°Po data approximated by simulation of two quenching factors with
normal-inverse Gaussian energy distributions shown for crystal C6 as an example.

Table 4
Energy-dependent Q, parameters as defined by Eq. (2)
obtained for each crystal.

(e}
a b

Cl 0.437 + 0.008 0.0218 + 0.0014
Cc2 0.465 + 0.008 0.0210 + 0.0013
C3 0.419 + 0.008 0.0242 + 0.0014
C4 0.458 + 0.008 0.0214 + 0.0013
C6 0.468 + 0.008 0.0161 + 0.0013
Cc7 0.493 + 0.007 0.0114 + 0.0012
Table 5

Energy-dependent Q, parameters as defined by Eq. (2)
obtained for each crystal.

&)
a b
Cl 0.274 + 0.011 0.0425 + 0.0018
Cc2 0.415 + 0.009 0.0216 + 0.0014
C3 0.394 + 0.009 0.0238 + 0.0015
C4 0.425 + 0.008 0.0223 + 0.0014
Cc6 0.383 + 0.009 0.0165 + 0.0015
Cc7 0.399 + 0.009 0.0135 + 0.0015

Furthermore, the 219Po spectral shapes are highly asymmetric, and an
asymmetric probability density function (PDF) is required for the sim-
ulation energy smearing. One hypothesis is that the asymmetric shape
is caused by spatial QF transitioning regions in the NalI(Tl) crystal.
Lacking a physics explanation for the asymmetric energy distribution, a
PDF was selected that closely approximated the spectral shape observed
in data. In this work, the spectral shapes were approximated by the
normal-inverse Gaussian [17] as demonstrated in Fig. 7.

The two prominent peaks with asymmetric spectral shape are also
observed by the ANAIS experiment [5], which uses NalI(Tl) crystals
produced by Alpha Spectra Inc., the same vendor that produced the
crystals for COSINE-100. The ANAIS experiment cautiously proposes
the lower energy peak could be due to surface 21°Po. We did investigate
Nal(Tl) surface 21%Po at depths ranging from 10 ym to 10nm using
Geant4 MC simulation but could not demonstrate the large energy
difference (300 — 500 keV,,) observed in data. We also investigated the
effects of a scintillation dead layer [18] but could not demonstrate
large energy differences. At most, energy differences while considering
surface 219Po and/or a dead layer were 50— 100 keV,,. We hypothesized
in Section 3.1 the double peak structure could be explained by the
spatial dependence of Tl doping concentration causing two quenching
factors, but further investigation is needed.

The energy dependent a quenching functions determined in Sec-
tion 3.3 are separately applied to the simulated « decay events to create
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Table 6

Fitted fractional activities of 2'°Po and ?*Th for each crystal.
For other fitted isotopes, poor statistics does not allow to
distinguish Q, and Q,, so the fractional activities are assumed

to be equal.

2|0P0 228Th

(mBq/kg) (uBq/kg)

Q] Qz Ql QZ
Cl 1.55 1.38 1.84 5.63
C2 0.48 1.38 2.10 2.46
c3 0.22 0.41 0.75 1.16
C4 0.27 0.41 1.41 1.52
C6 0.82 0.81 0.34 1.76
Cc7 1.01 0.62 0.41 1.73

Q, and Q, quenched energy distributions. The quenched energies are
then smeared asymmetrically. The resulting simulated « spectra are in
units of electron-equivalent energy and make up the templates that are
fit to data. The fractional activities of the O, and Q, templates are left
as free parameters of the fit. The fitted fractional activities for 2! Po
and 22T h are listed in Table 6. For other fitted isotopes, poor statistics
does not allow to distinguish O, and Q,, so the fractional activities are
assumed to be equal.

4.1. Data fitting

Data are fitted by analytically maximizing the binned likelihood of
two or more MC background templates as described in Ref. [19]. For
each o component, MC templates are created for two quenching func-
tions and allowed to be independently scaled by the fitting algorithm.
The resulting fits to the COSINE-100 crystals are shown in Fig. 8.

The activities of less significant components of PTFE bulk 219Po and
Nal surface 219Po are determined from analysis of the f/y channel as
presented in Ref. [16]. These background sources are included in the «
background model but their activities are fixed for this work.

4.2. Spectral components

The a spectra are dominated by three distinct components. They
include internal 21°Po (2.2-3.2MeV,,), internal 2?8Th-group (3.2-4.2
MeV,,), and PTFE surface 219Po (1.0-2.2MeV,,). PTFE bulk 21°Po
and Nal surface 219Po are included in the background model but do
not contribute significantly to the a spectrum. The activities of these
components are measured in the f/y channel and a detailed analysis
is presented in Ref. [16]. The fitted activities of Nal surface 21°Po in
the B/y channel in crystals C1 and C4 were consistent with the null
hypothesis, so this component is not included in the « spectra of C1
and C4.

4.2.1. Internal ?1°Po

The a spectra are dominated by internal 21°Po at 2.2-3.2MeV,,.
It is not understood why the 21°Po a energy distribution is highly
asymmetric. For the purpose of this @ modeling, the 219Po spectral
shape is parameterized by normal-inverse Gaussian distributions as this
approach best approximates the shape of the 219Po spectrum observed
in data. Internal 2!°Po is the dominant a background and Table 7
compares the fitted activities to measurements of the total « rates [1].

4.2.2. Internal 2?6 Th-group

The features visible at higher energies (> 3.2MeV,,) are dominated
by internal 232Th and particularly the 228Th-group consisting of 228Th,
224Ra, 22ORn, and 216Po a decays. The two quenching factors (Sec-
tion 3.3) are simulated and independently fit to data to determine the
activity of the 228Th-group. The fitted results are compared to the time-
correlated a-a measurements in Table 8. The discrepancies are not well
understood. It is possible an « decay isotope is not accounted for in the
background model and has an energy in the region of the 228Th-group
causing the fit to overestimate the 228Th-group activity.

Astroparticle Physics 158 (2024) 102945

Table 7
Comparison of MC fitted activity of inter-
nal 21%Po to the total « rate measured in Ref.

[1].

Fitted MC Total

210po a Rate

(mBg/kg) (mBq/kg)
c1 2.93 + 0.17 3.20 + 0.08
C2 1.86 + 0.17 2.06 + 0.06
C3 0.65 + 0.10 0.76 + 0.02
C4 0.68 + 0.11 0.74 + 0.02
C6 1.62 + 0.14 1.52 + 0.04
Cc7 1.63 + 0.14 1.54 + 0.04

Table 8

Comparison of 2?8Th-group activity measured
by fitting MC to data and by a-a coincidence
as described in Section 3.2.

Fitted MC a-a coinc.

228Th-group 228Th-group

(uBg/kg) (uBq/kg)
c1 7.47 + 0.84 3.34 + 0.94
C2 4.56 + 0.49 3.29 + 0.06
C3 1.91 + 0.20 1.69 + 0.04
C4 3.93 + 0.21 2.25 + 0.04
C6 2.10 + 0.12 0.54 + 0.02
Cc7 2.14 + 0.12 0.58 + 0.02

Table 9

PTFE surface 21°Po activity
measured by fitting MC to

data.

PTFE Surf.

210p,

(HBg/cm?)
C1 0.77 = 0.11
c2 1.25 + 0.13
C3 1.10 = 0.16
Cc4 1.08 + 0.12
C6 1.61 + 0.20
Cc7 1.14 + 0.13

4.2.3. PTFE surface ?1%Po

Different a source locations and their resulting spectral shapes were
studied with Geant4 simulations. From these studies, it was determined
that the low-energy tail (<2.2MeV,,) of the a distribution (Fig. 3) is
caused by 210Po on the surface of the PTFE reflector that surrounds
Nal crystals. Furthermore, the depth profile of the 21°Po in the PTFE
correlates to the slope of the low energy tail of the « distribution. A
shallower depth profile causes a steeper low-energy tail. The contami-
nation depth profiles differ among crystals and range from 2-5 pm. The
fitted results are summarized in Table 9.

Using MC, we investigated the Nal surface 21°Pb at various depth
profiles. We also investigated the effects of a scintillation dead layer
[18] extending to various depths in combination with Nal surface
210pb, These scenarios did not describe the low-energy tail observed
in the data.

Measurements of internal 210Pb and PTFE surface 21Pb half-lives
were made. The measured half-life of internal 21°Pb was consistent with
the known value of 22.3 yr while the measured half-life of PTFE surface
210ph was a much longer 33.8 +8.0yr. One possible explanation is
that the surface is continuously contaminated by something radioac-
tive from outside (?22Rn for example) which artificially increases the
observed half-life of PTFE surface21°Pb.
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Fig. 8. Results of fitting internal 2!°Po, internal ?28Th-group, and PTFE surface ?!°Po a components to data for each COSINE-100 crystal.

5. Conclusion

Two quenching factors for alpha particles are required to describe
the features in COSINE-100 data. The relative contribution of Q; and
0, is not consistent among fitted isotopes. Normal-inverse Gaussian
PDFs are applied to the simulation to approximate the spectral shapes
observed in a data. The two quenching factors is hypothesized by
the spatial dependence of Tl concentration within the crystal effecting
the quenching factor. The asymmetric spectral shape could be due
to non-uniform transitions between the two quenching factors. More
investigation is needed to understand these phenomena.

The COSINE-100 « spectra are well described by dominant compo-
nents of internal 21%Po, internal 228 Th-group, and PTFE surface 21°Po.
Nal surface 2'°Po and PTFE bulk 21°Po activities are determined from
the #/y channel as described in Ref. [16] because their spectral features
are more prominent in the #/y channel. The a isotope activities were
measured in this work by fitting Geant4 MC to data. The dominant
210pg fitted a rates are consistent (<1.1 o) with the total a rates
(Table 7), as measured during commissioning of the crystals.

Furthermore, the half-life of 216Po has been measured to be 143.4 +
1.2 ms which is consistent with and more precise than most current
measurements.
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