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We study the distribution of complex eigenvalues z1, . . . , zN of random
Hermitian N × N block band matrices with a complex deformation of a
finite rank. Assuming that the width of the band W grows faster than√
N , we proved that the limiting density of =z1, . . . ,=zN in a sigma-model
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method follows the techniques of [16].
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1. Introduction

The complex eigenvalues of non-Hermitian random matrices have attracted
much research interest due to their relevance to several branches of theoretical
physics, and in particular to the study of scattering chaotic systems. According
to the works [18, 20], universal properties of the poles of the scattering matrix
S(E) in the complex plane can be modelled by N complex eigenvalues zn, =zn ≤
0 of so-called “effective non-Hermitian Hamiltonian”

Heff = H − iΓ, (1.1)

where H is a random matrix ensemble with an appropriate symmetry (e.g., Her-
mitian or real symmetric), and Γ is a positive deformation of a rank M � N .
More details of the approach can be found, e.g., in reviews [9,11,14] and references
therein.

One of the most interesting questions about the spectral statistics of Heff is
the distribution of =zi (i.e. “resonance widths”). In contrast to the classical non-
Hermitian models such as Ginibre ensemble (random matrices with iid entries),
if M is fixed and N → ∞, matrices Heff are weakly non-Hermitian, and so =zi
are of order of the typical spacing ω between eigenvalues of H, i.e., O(1/N). It is
also expected that the spectral fluctuations on the ω-scale is universal, i.e., inde-
pendent of the particular form of the distribution of H or the energy dependence
of ω.
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For the case H taken from Gaussian Unitary Ensemble (GUE) the probabil-
ity density of the scaled =zi was obtained in [6, 10] for any finite M (for some
related models see review [11] and references therein). Let us mention also that
the cases of non-Hermitian symmetry, and in particular real symmetric case, are
much more involved, and is not well-enough studied even for H taken from Gaus-
sian Orthogonal Ensemble (there are only some partial results for M = 1, see
physical papers [8,19] for GOE; let us also mention the paper [13] that gives joint
probability distribution of zi for rank-one perturbation of general β-ensembles).

In this paper we consider H to be a one-dimensional Hermitian block band
matrix (block RBM). The 1d block RBM are the special class of Wegner’s orbital
models (see [21]), i.e., Hermitian N × N matrices HN with complex zero-mean
random Gaussian entries Hjk,αβ , where j, k = 1, . . . , n (they parametrize the
lattice sites) and α, γ = 1, . . . ,W (they parametrize the orbitals on each site),
N = nW , such that

〈Hj1k1,α1γ1Hj2k2,α2γ2〉 = δj1k2δj2k1δα1γ2δγ1α2
Jj1k1 (1.2)

with

J = 1/W + β̃∆/W, (1.3)

where W � 1 and ∆ is the discrete Laplacian on {1, 2, .., n}. The probability
law of HN can be written in the form

PN (dHN ) = exp



−1

2

n∑

j,k=1

W∑

α,γ=1

|Hjk,αγ |2
Jjk



 dHN . (1.4)

The density of states ρ of a general class of RBM with W � 1 is given by the
well-known Wigner semicircle law (see [2, 15]):

ρ(E) = (2π)−1
√
4− E2, E ∈ [−2, 2]. (1.5)

The main feature of RBM is that their local spectral statistics is conjectured to
exhibit the crossover at W =

√
N : for W �

√
N the eigenvectors are expected

to be delocalized and the local spectral statistics is governed by the Wigner-
Dyson (GUE/GOE) statistics, and for W �

√
N the eigenvectors are localized

and the local spectral statistics is Poisson. The conjecture is supported by the
physical derivation due to Fyodorov and Mirlin (see [7]) based on supersymmetric
formalism, but is not proved in the full generality yet. For the general RBM
the delocalization is proved for W � N3/4 (see the review [3] and references
therein). For the more specific Gaussian model (1.2)–(1.3), the Wigner–Dyson
local statistics is proved up to the optimal regime W �

√
N first in the so-

called sigma-model approximation [16], and then in the full model [17] by the
application of the supersymmetric transfer matrix approach.

The main advantage of the SUSY techniques here is that the main spectral
characteristics of the model (1.2)–(1.3) such as a density of states, spectral cor-
relation functions, E{|Gjk(E + iε)|2}, etc. can be expressed via SUSY as the
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averages of certain observables in nearest-neighbour statistical mechanics models
on a box in Z, which allows to combine the SUSY techniques with a transfer ma-
trix approach. However, the rigorous application of the techniques to the main
spectral characteristics of RBM is quite difficult due to the complicated structure
and non self-adjointness of the corresponding transfer operator. So it is easier to
apply it first to the so-called sigma-model approximation, which is often used by
physicists to study complicated statistical mechanics systems. In such approxi-
mation spins of the statistical mechanics model take values in some symmetric
space (±1 for Ising model, S1 for the rotator, S2 for the classical Heisenberg
model, etc.). It is expected that sigma-models have all the qualitative physics
of more complicated models with the same symmetry. The sigma-model approx-
imation for RBM was introduced by Fyodorov and Mirlin in [7], where it was
demonstrated that the corresponding non-linear sigma-model is equivalent, upon
the correct identification of parameters, to one studied in the paper [4] (the spins
in this model are 4×4 matrices with both complex and Grassmann entries). The
rigorous application of the techniques to the correlation functions of (1.2)–(1.3)
was developed in [16].

The aim of the current paper is to derive the sigma-model approximation for
the limiting density of the imaginary parts of the eigenvalues of Heff of (1.1) with
H of (1.2), and, following the techniques of [16], prove that its limiting behavior
in the delocalized regime W �

√
N coincides with that for H = GUE.

Define
H = HN + iΓM , (1.6)

with HN of (1.2)–(1.3), where ΓM is a N ×N matrix

ΓM =




γ1 0 . . . . . . 0 . . . 0
0 γ2 0 . . . 0 . . . 0
...

...
. . .

...
...

...
...

0 . . . 0 γM 0 . . . 0
0 . . . . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 0 . . . 0




(1.7)

with some fixed γi > 0 and fixedM . Notice that for convenience we have changed
the sign of ΓM in order to get positive =zi.

In order to access the density ρ(x, y) of complex eigenvalues zj = xj + iyj one
can use the formula (see [10] and reference therein)

ρN (x, y) = − 1

4πN
lim
κ→0

∂2Φ(x, y, κ)

with

Φ(x, y, κ) = − 1

N
log det

(
(H− x− iy)(H− x− iy)∗ +

κ2

N2

)

where ∂2 stands for the two-dimensional Laplacian and a positive parameter κis
added to regularize the logarithm.
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Introduce the generating function

ZβnW (κ, z1, z2) = E



det

{
(H− z1)(H− z1)

∗ +
κ2

N2

}

det

{
(H− z2)(H− z2)∗ +

κ2

N2

}


 , (1.8)

where z1 and z2 are auxiliary spectral parameters in the vicinity of E + iy/N :

zl = El +
iyl
N
, El = E +

xl
N
, l = 1, 2. (1.9)

Given ZβnW , the density can be obtained using the following identity (see [10]
and references therein):

ρN (E, y/N) =
1

4π
lim
κ→0

(
∂

∂y1

(
lim
y2→y1

∂Zn,W
∂y2

)
+

∂

∂x1

(
lim

x2→x1

∂Zn,W
∂x2

)) ∣∣∣∣∣y1=y
x1=0

Following [16], to derive sigma-model approximation of ZβnW for the model(1.2)–
(1.3), we take β in (1.3) of order 1/W , i.e., put

J = 1/W + β∆/W 2. (1.10)

The first main result states that in the model (1.10) with fixed β and n, and with
W → ∞, the function ZβnW (κ, z1, z2) of (1.8) converges to the value given by
the sigma-model approximation. More precisely, we get

Theorem 1.1. Given ZβnW (κ, z1, z2) of (1.6)–(1.8), and (1.10), any fixed
β, n, κ > 0, z1, z2 of (1.9), and |E| ≤

√
2, we have, as W → ∞:

ZβnW (κ, z1, z2) → Zβn(κ, z1, z2),

where

Zβn(κ, z1, z2) = eE(x1−x2)
∫

exp

{
− β̃
4

∑
StrQjQj−1 +

c0
2n

∑
StrQjΛκ,y1,y2

}

×
M∏

a=1

Sdet−1
(
Q1 −

iE

2πρ(E)
+

iγa
πρ(E)

LΣ
)
dQ, (1.11)

β̃ = (2πρ(E))2β, c0 = 2πρ(E) with ρ of (1.5), Uj ∈ Ů(2), Sj ∈ Ů(1, 1) (see
notation (1.16) below), and Qj are 4× 4 supermatrices with commuting diagonal
and anticommuting off-diagonal 2× 2 blocks

Qj =

(
U∗
j 0

0 S−1
j

)(
(I + 2ρ̂j τ̂j)L 2τ̂j

2ρ̂j −(I − 2ρ̂j τ̂j)L

)(
Uj 0
0 Sj

)
,

dQ =
∏

dQj , dQj = (1− 2nj,1nj,2) dρj,1dτj,1 dρj,2dτj,2 dUj dSj
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with

nj,1 = ρj,1τj,1, nj,2 = ρj,2τj,2,

ρ̂j = diag{ρj1, ρj2}, τ̂j = diag{τj1, τj2}, L = diag{1,−1}.

Here ρj,l, τj,l, l = 1, 2 are anticommuting Grassmann variables,

Str

(
A χ
η B

)
= TrB − TrA, Sdet

(
A χ
η B

)
=

det(B − ηA−1χ)

detA
, (1.12)

and

Λκ,y1,y2 =




κ −iy1 0 0
iy1 −κ 0 0
0 0 κ −iy2
0 0 iy2 −κ


 , L =

(
I2 0
0 −I2

)
, Σ =

(
σ 0
0 σ

)
.

Notice that the conjectured crossover W ∼
√
N for the RBM is equivalent to

β ∼ n in the sigma-model approximation Zβn (see, e.g., [10]). The next theorem
gives asymptotic behavior of Zβn in the delocalized regime β � n as n, β → ∞:

Theorem 1.2. Given Zβn(κ, z1, z2) of (1.11), we have in the limit β → ∞,
n→ ∞ with β > n log3 n:

Zβn(κ, z1, z2) → eE(x1−x2)
∫

exp
{
πρ(E) StrQΛκ,y1,y2

}
∏M
a=1 Sdet

(
Q− iE

2πρ(E) +
iγa
πρ(E)LΣ

)dQ, (1.13)

which coincides with Z(κ, z1, z2) for the GUE. Therefore, the limiting distribution
of the imaginary parts of the eigenvalues of H of (1.6) with HN of (1.2)–(1.3)
in the sigma-model approximation coincides with that for HN = GUE obtained
in [10].

We would like to mention also that the localized regime β � n was studied
in the recent physical paper [12].

The paper is organized as follows. We are going to give a detailed proof for the
case M = 1 and explain some minor correction that should be done to prove the
general case. In Section 2 we obtain the SUSY integral representation of ZβnW
of (1.8). Section 3 is devoted to the derivation of sigma-model approximation,
i.e., to the proof of Theorem 1.1. In Section 4 we prove Theorem 1.2 relying on
the similar study in [16].

1.1. Notation. We denote by C, C1, etc. various n, β, W -independent
quantities below, which can be different in different formulas. Integrals without
limits denote the integration (or the multiple integration) over the whole real
axis, or over the Grassmann variables.

Moreover,

• N =Wn;
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• indices i, j, k vary from 1 to n and correspond to the number of block in HN ,
index l is always 1 or 2 (this is the field index), and Greek indices α, γ vary
from 1 to W and correspond to the position of the element in the block;

• variables φ and Φ with different indices are complex variables or vectors corre-
spondingly; if xj means some variable (vector or matrix) which corresponds to
the site j = 1, .., n, then x means vector {xj}nj=1, dx =

∏
dxj , and dxj means

the product of the differentials which correspond to functionally independent
coefficients of xj ;

• variables ψ, Ψ, ρ, and τ with different indices are Grassmann variables or
vectors or matrices correspondingly; if ρj corresponds to the site j = 1, .., n,
then ρ means vector {ρj}nj=1, dρ =

∏
dρj , and dρj means the product of

the differentials which correspond the components (for vectors) or entries (for
matrices) taken into the lexicographic order;

• a± =
−iE ±

√
4− E2

2
, c± = 1 + a−2

± , c0 =
√

4− E2 = 2πρ(E); (1.14)

L = diag {1,−1}, L± = diag {a+, a−}; (1.15)

• Ů(2) = U(2)/U(1)× U(1), Ů(1, 1) = U(1, 1)/U(1)× U(1), (1.16)

where U(p) is a group of p× p unitary matrices, and U(1, 1) is a group of 2×
2 hyperbolic matrices S such that S∗LS = L;

• L±(E) =
{
r
(
− iE/2±

√
4− E2/2

)
|r ∈ [0,+∞)

}
; (1.17)

• β̃ = c20 β; (1.18)

• Z1 = E1I +
1

N
Λκ,y1 , Z2 = E2I +

1

N
Λκ,y2 , (1.19)

Λκ,y =

(
−iκ −y
y iκ

)
, σ =

(
0 1
−1 0

)
.

2. Integral representations

In this section we obtain an integral representation for ZβnW (κ, z1, z2) of (1.8).

Proposition 2.1. The determinant ratio ZβnW (κ, z1, z2) of (1.8) can be writ-
ten as follows:

ZβnW (κ, z1, z2) = Cn,W

∫
exp



−i

n∑

j=1

Tr(LYj + δj1

M∑

a=1

LQa)Z2





× exp



−i

M∑

a=1

γaTr(LQa)σ − 1

2

n∑

j,k=1

(J−1)jk TrXjXk





× exp



−1

2

n∑

j,k=1

Jjk Tr(LYj + δj1

M∑

a=1

LQa)(LYk + δk1

M∑

a=1

LQa)



 det D̃
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×
n∏

j=1

detW (Xj − iZ1) det
W Yj

det2 Yj

M∏

a=1

det(X1 − iZ1 + iγaσ)

det(X1 − iZ1) detY1
dX dY dQ, (2.1)

where

D̃ = J−1
jk 14 − δjk

(
(Xj − iZ1)

−1 ⊗ (LYj) + δj1

M∑

a=1

(Xj − iZ1 + iγaσ)
−1 ⊗ (LQa)

)
,

Qa =

(
φ̄11aφ11a φ̄11aφ21a
φ̄21aφ11a φ̄21aφ21a

)
, dQ =

M∏

a=1

2∏

l=1

d<φl1a d=φl1a
π

,

for complex φl1a. {Xj}nj=1 are Hermitian 2 × 2 matrices with standard dXj ,
{Yj}nj=1 are 2 × 2 positive Hermitian matrices with dYj of Proposition 5.1, and
Z1,2 are defined in (1.19), and

Cn,W =
det2 J(−1)nW

(2π3)n
(
(W − 1)!(W − 2)!

)n−1
((W −M − 1)!(W −M − 2)!)

,

Proof. To simplify computation, we are going to present the detailed deriva-
tion for the case M = 1. General case can be obtained similarly with minor
modifications.

To obtain SUSY integral representation, it is useful to rewrite ZβnW in the
more convenient form. Notice that if we set

P := P (E, κ, y) =



κ

N
− i(HN − E) −i(Γ− y

N
)

−i(Γ− y

N
)

κ

N
+ i(HN − E)


 , (2.2)

T =
1√
2

(
1 i
i 1

)
⊗ IN ,

then

det(TPT ) = det

{(
HN + iΓ− E − iy

N

)(
HN − iΓ− E +

iy

N

)
+
κ2

N2

}
.

Hence

ZβnW (κ, z1, z2) = E

[
det P1

det P2

]
,

where

P1 = P (E1, κ, y1), P2 = P (E2, κ, y2). (2.3)

Such transformation is needed since we want P1, P2 to have positive real part.

Introduce complex and Grassmann fields:

Φl = ({φlj}nj=1)
t, φlj = (φlj1, φlj2, . . . , φljW ), l = 1, 2, are complex,

Ψl = ({ψlj}nj=1)
t, ψlj = (ψlj1, ψlj2, . . . , ψljW ), l = 1, 2, are Grassmann.
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Since P1, P2 have positive real part, using (5.3)–(5.4) (see Appendix) we can
rewrite det P1 and det P2 of (2.2)–(2.3) and get

ZβnW (κ, z1, z2) = π−2WnE

{∫
exp

{
−Ψ+

1

( κ
N

+ iE1 − iHN

)
Ψ1

}

× exp
{
−Ψ+

2

( κ
N

− iE1 + iHN

)
Ψ2 − Φ+

1

( κ
N

+ iE2 − iHN

)
Φ1

}

× exp
{
−Φ+

2

( κ
N

− iE2 + iHN

)
Φ2 + iΨ+

1

(
Γ +

y1
N

)
Ψ2

}

× exp
{
iΨ+

2

(
Γ +

y1
N

)
Ψ1 + iΦ+

1

(
Γ +

y2
N

)
Φ2 + iΦ+

2

(
Γ +

y2
N

)
Φ1

}
dΦ dΨ

}

=

∫
exp

{
−
( κ
N

+ iE1

)
Ψ+

1 Ψ1 −
( κ
N

− iE1

)
Ψ+

2 Ψ2 −
( κ
N

+ iE2

)
Φ+
1 Φ1

}

× exp

{
−
( κ
N

− iE1

)
Φ+
2 Φ2 +

iy1
N

(
Ψ+

1 Ψ2 +Ψ+
1 Ψ2

)
+
iy2
N

(
Φ+
1 Φ2 +Φ+

1 Φ2

)}

× exp
{
iγ
(
ψ̄111ψ211 + ψ̄211ψ111 + φ̄111φ211 + φ̄211φ111

)}

×E



exp




∑

j≤k

∑

α,γ

(
i<Hjk,αγχ

+
jk,αγ −=Hjk,αγχ

−
jk,αγ

)






 dΦdΨ,

where

χ±
jk,αγ = ηjk,αγ ± ηkj,γα,

ηjk,αγ = ψ1jαψ1kγ − ψ2jαψ2kγ + φ1jαφ1kγ − φ2jαφ2kγ ,

ηjj,αα = (ψ1jαψ1jα − ψ2jαψ2jα + φ1jαφ1jα − φ2jαφ2jα)/2.

Averaging over (1.4), we get

ZβnW (κ, z1, z2) = π−2Wn

∫
dΦ dΨ exp

{
iy1
N

(
Ψ+

1 Ψ2 +Ψ+
1 Ψ2

)}

× exp

{
iy2
N

(
Φ+
1 Φ2 +Φ+

1 Φ2

)
−
( κ
N

+ iE1

)
Ψ+

1 Ψ1

}

× exp
{
−
( κ
N

− iE1

)
Ψ+

2 Ψ2 −
( κ
N

+ iE2

)
Φ+
1 Φ1 −

( κ
N

− iE1

)
Φ+
2 Φ2

}

× exp
{
iγ(ψ̄111ψ211 + ψ̄211ψ111 + φ̄111φ211 + φ̄211φ111)

}

× exp



−

∑

j<k

∑

α,γ

Jjk ηjk,αγηkj,γα − 1

2

∑

j,α

Jjj η
2
jj,αα



 .

Define

Q =

(
φ̄111φ111 φ̄111φ211
φ̄211φ111 φ̄211φ211

)

and set

Ỹj =

(
φ+1jφ1j φ+1jφ2j
φ+2jφ1j φ+2jφ2j

)
, j 6= 1, Ỹ1 =




W∑
α=2

φ̄11αφ11α
W∑
α=2

φ̄11αφ21α

W∑
α=2

φ̄21αφ11α
W∑
α=2

φ̄21αφ21α



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X̃j =

(
ψ+
1jψ1j ψ+

1jψ2j

ψ+
2jψ1j ψ+

2jψ2j

)
.

Thus,

ZβnW (κ, z1, z2) = π−2Wn

∫
dΦ dΨ exp

{
iγ(ψ̄111ψ211 + ψ̄211ψ111)

}

× exp



−i

n∑

j=1

Tr X̃jLZ1 − i

n∑

j=1

Tr
(
LỸj + δj1LQ

)
Z2





× exp



−iγ Tr(LQ)σ +

1

2

n∑

j,k=1

Jjk Tr
(
X̃jL

)(
X̃kL

)




× exp



−1

2

n∑

j,k=1

Jjk Tr
(
LỸj + δj1LQ

)(
LỸk + δk1LQ

)




× exp



−

n∑

j,k=1

Jjk

(
ψ1jψ1k

(
φ1kφ1j − φ2kφ2j

)

+ ψ2jψ2k

(
φ2kφ2j − φ1kφ1j

) )


 , (2.4)

where L, Z1,2, σ are defined in (1.15) and (1.19).

Using the standard Hubbard–Stratonovich transformation, we obtain

(
2π2
)n

det2 J exp




1

2

n∑

j,k=1

Jjk Tr(X̃jL)(X̃kL)





=

∫
exp



−1

2

n∑

j,k=1

(
J−1

)
jk
TrXjXk +

n∑

j=1

TrXj

(
X̃jL

)


 dX, (2.5)

where Xj are 2× 2 Hermitian matrices with the standard measure dXj .

Substituting (2.5) to (2.4) and integrating over dΨ (see (5.4)), we get

Z(κ, z1, z2) =
det−2 J(

2π2(1+W )
)n
∫

exp



−1

2

n∑

j,k=1

(
J−1

)
jk
TrXjXk − iγ Tr(LQ)σ





× exp



−i

n∑

j=1

Tr
(
LỸj + δj1LQ

)
Z2



 detM

× exp



−1

2

n∑

j,k=1

Jjk Tr
(
LỸj + δj1LQ

)(
LỸk + δk1LQ

)


 dΦ dX (2.6)
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with M = M (1) −M (2). Here M (1) and M (2) are 2Wn × 2Wn matrices with
entries

M
(1)
ljα,l′kγ = δjkδαγ(Cjα)ll′Lll, j, k = 1, . . . , n, α, γ = 1, . . . ,W, l, l′ = 1, 2,

M
(2)
ljα,l′kγ = Jjkδll′Lll

2∑

ν=1

φνjαφνkγLνν (2.7)

with

Cjα =

{
X1 − iZ1 + iγσ, j = α = 1

Xj − iZ1, otherwise
. (2.8)

We can rewrite

detM = detM (1) · det
(
1−

(
M (1)

)−1
M (2)

)
=: detM (1) det

(
1−M

)

with

Mljα,l′kγ = Jjk(Cjα)
−1
ll′

2∑

ν=1

φνjαφνkγLνν . (2.9)

Note that M = AB, where

Aljα,l′kσ = Jjk(Cjα)
−1
ll′ φσjα, j, k ∈ Λ, α, γ = 1, . . . ,W, l, l′, σ = 1, 2,

Bljσ,l′kα = δjkδll′Lσσ φσkα. (2.10)

Therefore, using that det(1−AB) = det(1−BA), (2.9), and (2.10), we get

det
(
1−M

)
= det

(
1−BA

)
=: det

(
1− M̃

)
, (2.11)

where

M̃ljσ,l′kσ′ =
∑

p,α,ν

Bljσ,νpαAνpα,l′kσ′ = Jjk

W∑

α=1

(Cjα)
−1
ll′ φσjαφσ′jαLσσ

=

{
Jjk
(
Xj − iZ1

)−1

ll′

(
LỸj

)
σσ′
, j > 1

J1k
(
X1 − iZ1

)−1

ll′

(
LỸ1

)
σσ′

+ J1k
(
X1 − iZ1 + iγσ

)−1

ll′

(
LQ
)
σσ′
, j = 1

.

Here we substituted (2.8).
This yields

det
(
1− M̃

)
= det

{
δjk − JjkDj

}
= det4 J · det

{
J−1
jk 14 − δjkDj

}

with
Dj = (Xj − iZ1)

−1 ⊗ (LỸj) + δj1 (X1 − iZ1 + iγσ)−1 ⊗ (LQ).

Besides,

det M (1) = (−1)nW
det(X1 − iZ1 + iγσ)

det(X1 − iZ1)

n∏

j=1

detW (Xj − iZ1). (2.12)

Now substituting (2.7)–(2.9) and (2.11)–(2.12) to (2.6) and applying the bosoniza-
tion formula (see Proposition 5.1), we obtain (2.1) which finishes the proof for
the case M = 1.
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3. Derivation of the sigma-model approximation

3.1. Proof of Theorem 1.1. Again we are going to concentrate on the case
M = 1.

Let β and n be fixed, and W → ∞. Defining n× n matrix R as

J−1 =W

(
1− β

W
4+

β2

W 2
42 − · · ·

)
=:W

(
1− β

W
4+

1

W 2
R

)
,

putting Bj = W−1LYj , and shifting Xj − iZ1 → Xj , we can rewrite (2.1) of
Proposition 2.1 as

ZβnW (κ, z1, z2) = C
(1)
W,n

∫
dX dB dQ detD

n∏

j=1

detW Xj det
W Bj

det2Bj

× exp



−Tr(LQ)(iZ2 + iγσ)− W

2

n∑

j=1

(
Tr(Bj + iZ2)

2 +Tr(Xj + iZ1)
2
)




× exp

{
− 1

2W
Tr(LQ)2 − TrB1(LQ) +

β

W
Tr(B1 −B2)(LQ)

}

× exp




β

2

n−1∑

j=1

(
Tr(Bj −Bj+1)

2 − Tr(Xj −Xj+1)
2
)




det(X1 + iγσ)

detX1 detB1

× exp





1

2W

∑

j,k

Rjk Tr(Xj + iZ1)(Xk + iZ1) +
β

2W 2
Tr(LQ)2



 , (3.1)

where

D =

{(
1− β

W
4+

1

W 2
R

)

jk

14

− δjk

(
X−1
j ⊗Bj +

δj1
W

(X1 + iγσ)−1 ⊗ (LQ)

)}n

j,k=1

and

C
(1)
W,n =

det2 J W 8nW 2(W−2)(n−1)W 2(W−3) e−WnTrZ2
2
/2

(2π3)n
(
(W − 1)!(W − 2)!

)n−1
((W − 2)!(W − 3)!)

=
W 4n e2nW−WnTrZ2

2
/2

(2π2)2n

(
1 +O

(
W−1

))
.

Change the variables to

Xj = U∗
j X̂jUj , X̂j = diag{xj,1, xj,2}, Uj ∈ Ů(2), xj,1, xj,2 ∈ R,

Bj = S−1
j B̂jSj , B̂j = diag{bj,1, bj,2}, Sj ∈ Ů(1, 1), bj,1 ∈ R

+, bj,2 ∈ R
−.
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The Jacobian of such a change is

2n(π/2)2n
n∏

j=1

(xj,1 − xj,2)
2

n∏

j=1

(bj,1 − bj,2)
2.

This and (3.1) yield

ZβnW (κ, z1, z2) = C
(2)
W,n

∫
dS dU dQ

∫
dx

∫

Rn
+
×Rn

−

db detD (3.2)

×
n∏

j=1

(xj,1 − xj,2)
2(bj,1 − bj,2)

2

b2j,1b
2
j,2

det(X̂1 + iγU1σU
∗
1 )

x1,1x1,2 · b1,1b1,2

× exp



−W

n∑

j=1

2∑

l=1

(
f(xj,l) + f(bj,l)

)




× exp

{
−Tr(LQ)(iZ2 + iγσ)− TrS−1

1 B̂1S1(LQ) +
β

2W 2
Tr(LQ)2

}
(3.3)

× exp

{
− 1

2W
Tr(LQ)2 +

β

W
Tr
(
S−1
1 B̂1S1 − S−1

2 B̂2S2

)
(LQ)

}

× exp




β

2

n∑

j=2

Tr
(
S−1
j B̂jSj − S−1

j−1B̂j−1Sj−1

)2


 (3.4)

× exp



−β

2

n∑

j=2

Tr
(
U∗
j X̂jUj − U∗

j−1X̂j−1Uj−1)
2
)




× exp





1

2W

∑

j,k

Rjk Tr
(
U∗
j X̂jUj + iZ1

)(
U∗
k X̂kUk + iZ1

)




× exp



− 1

n

n∑

j=1

(
TrU∗

j X̂jUjΛ1 +TrS−1
j B̂jSjΛ2

)


 , (3.5)

where

detD = det

{
δjk

(
14 − X̂−1

j ⊗ B̂j

)
− δjkδj1

W

(
X̂1 + iγU1σU

∗
1

)−1
⊗
(
S1(LQ)S−1

1

)

+
1

W

(
−β4+

1

W
R

)

jk

UjU
∗
k ⊗ SjS

−1
k

}n

j,k=1

, (3.6)

Λl =

(
κ+ ixl −iyl
iyl −κ+ ixl

)
, l = 1, 2,

and

C
(2)
W,n = 2n(π/2)2n eWn(TrZ2

1
+TrZ2

2
)/2−Wn(2+E2)C

(1)
W,n

=
W 4ne2Ex1

23nπ2n

(
1 +O

(
W−1

))
,
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f(x) = x2/2 + iEx− log x− (2 + E2)/4.

The constant in f(x) is chosen in such a way that <f(a±) = 0. Measures dUj ,
dSj in (3.2) are the Haar measures over Ů(2) and Ů(1, 1) correspondingly.

Also it is easy to see that for |E| ≤
√
2 we can deform the contours of inte-

gration as

• for xj,1, xj,2 to −iE/2 + R;

• for bj,1 to L+(E) of (1.17);

• for bj,2 to L−(E) of (1.17).

To prove Theorem 1.1, we are going to integrate (3.2) over the “fast” variables:
{xj,l}, {bj,l}, l = 1, 2, j = 1, .., n. The first step is the following lemma:

Lemma 3.1. The integral (3.2) over {xj,l}, {bj,l}, l = 1, 2, j = 1, . . . , n can
be restricted to the integral over the W−(1−κ)/2-neighbourhoods (with a small κ >
0) of the points

I. xj,1 = a+, xj,2 = a− or xj,1 = a−, xj,2 = a+, bj,1 = a+, bj,2 = a− for any
j = 1, . . . , n;

II. xj,1 = xj,2 = a+, bj,1 = a+, bj,2 = a− for any j = 1, . . . , n;

III. xj,1 = xj,2 = a−, bj,1 = a+, bj,2 = a− for any j = 1, . . . , n.

Moreover, the contributions of the points II and III are o(1), as W → ∞.

Proof. The proof of the first part of the lemma is straightforward and based
on the fact that <f(z) for z = x− iE/2, x ∈ R has two global minimums at z =
a±, and for z ∈ L±(E) has one global minimum at z = a±.

To prove the second part of the lemma, consider the neighbourhood of the
point II (the point III can be treated in a similar way). Change the variables as

xj,1 = a+ + x̃j,1/
√
W, xj,2 = a+ + x̃j,2/

√
W,

bj,1 = a+
(
1 + b̃j,1/

√
W
)
, bj,2 = a−

(
1 + b̃j,2/

√
W
)
.

This gives the Jacobian (−1)nW−2n and also the additional W−n since

xj,1 − xj,2 = (x̃j,1 − x̃j,2)/
√
W.

Together with C
(2)
W,n this gives Wn in front of the integral (3.2). In addition,

expanding f into the series, we get

f(xj,l) = f(a+) +
c+
2

x̃2j,l
W

− 1

2a3+

x̃3j,l

W 3/2
+O

(
x̃4j,l
W 2

)
, l = 1, 2, (3.7)

f(bj,1) = f(a+) +
a2+c+
2

b̃2j,1
W

− 1

2

b̃3j,1

W 3/2
+O

(
b̃4j,1
W 2

)
,

f(bj,2) = f(a−) +
a2−c−
2

b̃2j,2
W

− 1

2
·
b̃3j,2

W 3/2
+O

(
b̃4j,2
W 2

)
,
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where

c± = 1 + a−2
± , f(a+) = −f(a−) ∈ iR. (3.8)

We are going to compute the leading order of the integral over {x̃j,l}, {b̃j,l},
l = 1, 2, j = 1, . . . , n. To this end, we leave the quadratic part of f (see (3.7)) in
the exponent, expand everything else into the series of x̃j,l/

√
W , b̃j,l/

√
W around

the saddle-point x̃j,l = b̃j,l = 0, and compute the Gaussian integral of each term
of this expansion. We are going to prove that all this terms are o(1).

Indeed, consider the expansion of the diagonal elements of D of (3.6):

dj,l1 = 1− x−1
j,l bj,1 = (x̃j,l/a+ − b̃j,1)/

√
W +O

(
W−1+2κ

)
,

dj,l2 = 1− x−1
j,l bj,2

= c− − (x̃j,l/a+ − b̃j,2)/a
2
−
√
W +O

(
W−1+2κ

)
, l = 1, 2. (3.9)

If we rewrite the determinant of D in a standard way, then each summand has
strictly one element from each row and column. Because of (3.9), each element
in the rows (j, 11) and (j, 21) has at least W−1/2, and so the expansion of det D
starts from W−n. Moreover, to obtain W−n (i.e., non-zero contribution) we
must consider the summands of the determinant expansion that have only diag-
onal elements dj,ls (since non-diagonal elements of D are O(W−1) or less), and
furthermore only the first terms in the expansions (3.9) and all other function in
(3.2). Thus we get

C

〈
n∏

j=1

x̃j,1/a+ − b̃j,1√
W

x̃j,2/a+ − b̃j,1√
W

(x̃j,1 − x̃j,2)
2

〉

++

+ o(1), (3.10)

where

〈
·
〉
++

=

∫ (
·
)
exp



−1

2

∑

j=1,...,n

(
c+(x̃

2
j,1 + x̃2j,2) + a2+c+b̃

2
j,1 + a2−c−b̃

2
j,2

)


 dx̃ db̃.

But it is easy to see that the Gaussian integral in (3.10) is zero, which completes
the proof of the lemma.

According to Lemma 3.1 the main contribution to (3.2) is given by the neigh-
bourhoods of the saddle points xj,1 = a+, xj,2 = a− or xj,1 = a−, xj,2 = a+.
All such points can be obtained from each other by rotations of Uj , so we can
consider only xj,1 = a+, xj,2 = a− for all j = 1, . . . , n. Similarly to the proof of
Lemma 3.1, change variables as

xj,1 = a+ + x̃j,1/
√
W, xj,2 = a− + x̃j,2/

√
W,

bj,1 = a+
(
1 + b̃j,1/

√
W
)
, bj,2 = a−

(
1 + b̃j,2/

√
W
)
. (3.11)
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That slightly change the expansions (3.7) and (3.9). We get

f(xj,2) = f(a−) +
c−
2

x̃2j,2
W

− 1

2a3−

x̃3j,2

W 3/2
+O

(
x̃4j,2
W 2

)
, (3.12)

and

dj,11 = 1− x−1
j,1bj,1

=
x̃j,1/a+ − b̃j,1√

W
+
a+x̃j,1b̃j,1 − x̃2j,1

a2+W
+
δj1
W
T11,11 +O

(
W−3(1−κ)/2

)
,

dj,22 = 1− x−1
j,2bj,2

=
x̃j,2/a− − b̃j,2√

W
+
a−x̃j,2b̃j,2 − x̃2j,2

a2−W
+
δj1
W
T22,22 +O

(
W−3(1−κ)/2

)
,

dj,12 = 1− x−1
j,1bj,2

= c+ − x̃j,1/a+ − b̃j,2

a2+
√
W

−
a+x̃j,1b̃j,2 − x̃2j,1

a4+W
+
δj1
W
T11,22 +O

(
W−3(1−κ)/2

)
,

dj,21 = 1− x−1
j,2bj,1

= c− − x̃j,2/a− − b̃j,1

a2−
√
W

−
a−x̃j,2b̃j,1 − x̃2j,2

a4−W
+
δj1
W
T22,11 +O

(
W−3(1−κ)/2

)
,

(3.13)

where

T =
(
X̂1 + iγU1σU

∗
1

)−1
⊗
(
S1(LQ)S−1

1

)

=

(
A−1 − 1√

W
A−1

(
x̃1,1 0
0 x̃1,2

)
A−1

)
⊗
(
S1(LQ)S−1

1

)

+O
(
W−1+2κ

)
(3.14)

with

A =
(
X̂1 + iγU1σU

∗
1

) ∣∣∣
x̃1,1=x̃1,2=0

= − iE
2

+
c0
2
L+ iγU1σU

∗
1 . (3.15)

The change (3.11) gives the JacobianW−2n, which together with C
(2)
W,n givesW 2n

in front of the integral (3.2). Similarly to the proof of Lemma 3.1 we are going
to compute the leading order of the integral (3.2) over {x̃j,l}, {b̃j,l}, l = 1, 2, j =
1, . . . , n, and so we leave the quadratic part of f (see (3.7) and (3.12)) in the
exponent, expand everything else into the series of x̃j,l/

√
W , b̃j,l/

√
W around the

saddle-point x̃j,l = b̃j,l = 0, and compute the Gaussian integral of each term of
this expansion. We are going to prove, that the non-zero contribution is given by
the terms having at least W−2n.
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Lemma 3.2. Formula (3.2) can be rewritten as

ZβnW (κ, z1, z2) = (c0/2π)
2n eE(x1−x2)

∫
dz dρ̃ dτ̃ dU dS dQ

× exp

{
−1

2
(Mz, z) +W 1/2(z, h0) +W−1/2(z, h+ ζ/n)

}

× exp
{
−Tr(LQ)(iE/2 + iγσ)− c0

2
TrS−1

1 LS1(LQ)
}

× exp
{
−TrA−1ρ̃1S1(LQ)S−1

1 τ̃1
}
detA

× exp
{
β
∑

Tr
(
U∗
j ρ̃jSj − U∗

j−1ρ̃j−1Sj−1

)(
S−1
j τ̃jUj − S−1

j−1τ̃j−1Uj−1

)}

× exp
{∑(

c+nj,12 + c−nj,21 − nj,1/c0a+ + nj,2/c0a−
)
− βc20

∑(
v2j + t2j

)}

× exp



− c0

2n

n∑

j=1

(
TrU∗

j LUj

(
κ −iy1
iy1 −κ

)
+TrS−1

j LSj

(
κ −iy2
iy2 −κ

))


+ o(1), (3.16)

where A is defined in (3.15),

ρ̃j =

(
ρj,11 ρj,12/

√
W

ρj,21/
√
W ρj,22

)
, τ̃j =

(
τj,11 τj,12/

√
W

τj,21/
√
W τj,22

)
, (3.17)

nj,12 = ρj,12τj,12, nj,21 = ρj,21τj,21, nj,1 = ρj,11τj,11, nj,2 = ρj,22τj,22,

z = (zj,11, zj,22, zj,12, zj,21) = (x̃j,1, x̃j,2, b̃j,1, b̃j,1),

and

M =M0 +W−1M̃ (3.18)

(M0z, z) =
∑

j=1,..,n

(
c+x̃

2
j,1 + c−x̃

2
j,2 + a2+c+b̃

2
j,1 + a2−c−b̃

2
j,2

)
(3.19)

(M̃z, z) = −2β
∑(

x̃j,1x̃j−1,1 + x̃j,2x̃j−1,2 − a2+b̃j,1b̃j−1,1 − a2−b̃j,2b̃j−1,2

)

+ 2β
∑

v2j (x̃j,1 − x̃j,2) (x̃j−1,1 − x̃j−1,2)

+ 2β
∑

t2j

(
a+b̃j,1 − a−b̃j,2

)(
a+b̃j−1,1 − a−b̃j−1,2

)

−
∑(

4

c20
(x̃j,1x̃j,2 − b̃j,1b̃j,2)− 2(a−3

+ nj,12x̃j,1b̃j,2 + a−3
− nj,21x̃j,2b̃j,1)

)

+TrA−1

(
x̃1,1 0
0 x̃1,2

)
A−1

(
x̃1,1 0
0 x̃1,2

)
. (3.20)

Here ζ = {ζj}j=1,...,n, ζj = (ζj,11, ζj,22, a+ζj,12, a−ζj,21) with

ζj,11 = −
(
Uj

(
κ −iy1
iy1 −κ

)
U∗
j

)

11

, ζj,22 = −
(
Uj

(
κ −iy1
iy1 −κ

)
U∗
j

)

22

,

ζj,12 = −
(
Sj

(
κ −iy2
iy2 −κ

)
S−1
j

)

11

, ζj,21 = −
(
Sj

(
κ −iy2
iy2 −κ

)
S−1
j

)

22

.
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We also denoted h = {hj,ls + hqj,ls}j=1,..,n,l,s=1,2, h
0 = {h0j,ls}j=1,..,n,l,s=1,2 with

hj,11 = 2/c0 − βc0v
2
j − βc0v

2
j+1 + a−nj,12/a

2
+,

hj,22 = −2/c0 + βc0v
2
j + βc0v

2
j+1 + a+nj,21/a

2
−,

hj,12 = 2a+/c0 − 2− βc0a+t
2
j − βc0a+t

2
j+1 − nj,21a+/a−,

hj,21 = −2a−/c0 − 2 + βc0a−t
2
j + βc0a−t

2
j+1 − nj,12a−/a+,

h0j,11 = nj,1/a+, h0j,22 = nj,2/a−, h0j12 = −nj,1, h0j,21 = −nj,2 (3.21)

and

hqj,ls = 0, j 6= 1,

hq1,11 = − 1

a+
+ (A−1)11 +

(
A−1ρ̃1S1(LQ)S−1

1 τ̃1A
−1
)
11
,

hq1,12 = − 1

a−
+ (A−1)22 +

(
A−1ρ̃1S1(LQ)S−1

1 τ̃1A
−1
)
22
,

hq1,21 = −1− a+
(
S1(LQ)S−1

1

)
11
,

hq1,22 = −1− a−
(
S1(LQ)S−1

1

)
22
.

We also set

vj = |(UjU∗
j−1)12| tj = |(SjS−1

j−1)12|.

Proof. Rewriting the determinant in (3.6) in a standard way, we obtain

det D =
∑

σ̄

(−1)|σ|
n∏

j=1

Pj,σ̄j (x̃j,1, x̃2j , b̃j,1, b̃j,1), (3.22)

where σ̄ is a permutation of {(j, ls)}, l, s = 1, 2, j = 1, . . . , n, σ̄j is its restriction
on {(j, ls)}2l,s=1, (−1)|σ| is a sign of σ and Pj,σ̄j is an expansion in x̃j,1, x̃2j , b̃j,1,

b̃j,1 of the product of four elements from the rows {(j, ls)}2l,s=1 taken with respect
to σ̄j .

Let us prove that for each j = 1, . . . , n and any σ̄ each term of
Pj,σ̄j (x̃j,1, x̃2j , b̃j,1, b̃j,1) of (3.22) belongs to one of the three following groups:

(i) has a coefficient W−2 or lower;

(ii) has a coefficient W−3/2 and at least one of variables x̃j,1, x̃2j , b̃j,1, b̃j,1 of the
odd degree;

(iii) has a coefficient W−1 and at least two variables of x̃j,1, x̃2j , b̃j,1, b̃j,1 of the
odd degree;

Note that each element in the expansion of the coefficients of the rows (j, 11)
and (j, 22) has a coefficient W−1/2 or lower, and so Pj,σ̄j (x̃j,1, x̃2j , b̃j,1, b̃j,1) has

a coefficient W−1 or lower. In addition, if Pj,σ̄j (x̃j,1, x̃j,2, b̃j,1, b̃j,1) contains any
terms with Rjk (see (3.6)), or at least one off-diagonal elements in (j, 12) and
(j, 21), we get a coefficient W−2 or lower (and so obtain the group (i)).
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We are left to consider terms with dj,12dj,21. Consider first j > 1. If Pj,σ̄j (x̃j,1,

x̃j,2, b̃j,1, b̃j,1) contains two off-diagonal elements in rows (j, 11) and (j, 22), we get
group (i). One off-diagonal element and dj,11 (or dj,22) gives group (ii) or group
(i) (since off-diagonal elements do not depend on x̃j,1, x̃j,2, b̃j,1, b̃j,1), and it is easy
to see from (3.13) that all the terms in expansion of dj,11dj,22dj,12dj,21 belongs to
groups (i)–(iii). For j = 1 everything will be similar since the zero order term
of T of (3.14) (which gives contribution to the W−1 order of elements) does not
depend on x̃j,1, x̃j,2, b̃j,1, b̃j,1, and the next orders contribute to the ordersW−3/2

or smaller.
To get a non-zero contribution, we have to complete the expression

Pj,σ̄j (x̃j,1, x̃j,2, b̃j,1, b̃j,1) by some other terms of the expansion of the exponent

of (3.2) in order to get an even degree of each variable x̃j,1, x̃j,2, b̃j,1, b̃j,1. But all
such a terms have the coefficient W−1/2 or lower, and therefore Lemma 3.2 yields
that the coefficient near each j in terms that gives a non-zero contribution must
beW−2 or lower. Since we have a coefficientW 2n in (3.2) after the change (3.11),
this means that to get a non-zero contribution each coefficient must be exactly
W−2. Note that the terms of Pj,σ̄j (x̃j,1, x̃j,2, b̃j,1, b̃j,1) that can be completed to
the monomial with all even degrees and with a coefficients W−2 does not contain
any terms with Rjk, any terms of (3.14) higher than linear in x̃’s, and any terms
of the expansion dj,ls, l, s = 1, 2 of orderW−3/2 or lower (except those that comes
from T ). They also cannot be completed to the monomial with all even degrees
and with a coefficients W−2 by any terms of the exponent of (3.2) that has a
coefficient lower then W−1/2 for some j. Thus we need to consider the terms
up to the third order in the expansions (3.7) and (3.12), the linear terms of the
functions in the exponents (3.3)–(3.5), the linear terms coming from

b−2
j,1b

−2
j,2 = exp

{
−2b̃j,1√

W
− 2b̃j,2√

W
+O

(
W−1

)
}
, (3.23)

(x1,1x1,2b1,1b1,2)
−1 = exp

{
− x̃1,1

a+
√
W

− x̃1,2

a−
√
W

− b̃1,1√
W

− b̃1,2√
W

+O
(
W−1

)
}
,

and no more than quadratic terms in

det
(
X̂1 + iγU1σU

∗
1

)

= detA exp

{
1√
W

TrA−1X̃1 −
1

2W
TrA−1X̃1A

−1X̃1 +O
(
W−3/2

)}
(3.24)

with

X̃1 =

(
x̃1,1 0
0 x̃1,2

)
.

Note that the terms containing x̃j,1b̃j,1/W in dj,11 (see (3.13)) cannot contribute
to the limit, since if we complete them to the monomial with even degrees of
x̃j,1, b̃j,1, then it will contain W−2 and an additional W−1 should come from
the line containing dj,22. Moreover, the terms containing x̃2j,1 in dj,11 can give
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a non-zero contribution only if the resulting monomial contains only x̃2j,1, since
otherwise, taking into account the contribution of the line containing dj,22, we
again obtain at least W−3. Thus we can replace x̃2j,1 by its average via Gaussian

measure (2π/c+)
−1/2e−c+x̃

2
j,1/2, i.e., by c−1

+ . The same is true for x̃j,2b̃j,2/W
and for x̃2j,2 which could be replaced by c−1

− . Similar argument yields that the

contribution of the terms with x̃2j,1 in the line containing dj,12 and x̃2j,2 in the line
containing dj,21 disappear in the limit W → ∞. Thus the term corresponding to
W 2n detD in (3.2) can be replaced by the term

∫
dρ dτ exp

{∑(
c+nj,12 + c−nj,21 − nj,1/c0a+ + nj,2/c0a−

)

+ β
∑

Tr
(
U∗
j ρ̃jSj − U∗

j−1ρ̃j−1Sj−1

)(
S−1
j τ̃jUj − S−1

j−1τ̃j−1Uj−1

)

+W 1/2
∑((

x̃j,1/a+ − b̃j,1)nj,1 + (x̃j,2/a− − b̃j,2)nj,2
)

−W−1/2
∑(

a−2
+

(
x̃j,1/a+ − b̃j,2

)
nj,12 + a−2

−
(
x̃j,2/a− − b̃j,1

)
nj,21

)}

× exp

{
−Tr

(
A−1 − 1√

W
A−1

(
x̃1,1 0
0 x̃1,2

)
A−1

)
ρ̃1
(
S1(LQ)S−1

1

)
τ̃1

}

+ o(1), (3.25)

where ρ̃j , τ̃j , nj,12, nj,21, nj,1, nj,2 are defined in (3.17). Here we have used Grass-
mann variables {ρj,ls}, {τj,ls}, j = 1, . . . , n, l, s = 1, 2 to rewrite the determinant
(3.6) with respect to (5.4), have substituted (3.13) and left only terms that give
the contribution (according to arguments above), and then have changed ρj,11 →√
Wρj,11, τj,11 →

√
Wρj,11. Note also

c+a
2
+ = c0a+, c−a

2
− = −c0a−. (3.26)

Now let us prove that the contribution of the third order in the expansions
(3.7) and (3.12) is small. Indeed, the terms Pj,σ̄j (x̃j,1, x̃j,2, b̃j,1, b̃j,1) that can be
completed to the monomial with all even degrees and with a coefficients W−2 by
these cubic terms cannot come from the contribution of T of (3.14) and can be
one of two types

(1) terms
(
x̃j,1/a+ − b̃j,1

)
x c+c−, where c+, c− come from the zero terms of dj,12,

dj,21 (see (3.13)) and x is an element of the row (j, 22) and so does not depend
on x̃j,1, b̃j,1

(
or similar terms with

(
x̃j,2/a− − b̃j,2

))
;

(2) terms of
(
x̃j,1/a+ − b̃j,1

)(
x̃j,2/a− − b̃j,2

)(
x̃j,1/a+ − b̃j,2

)
c− with x̃2j,1 or b̃2j,2 (or

similar terms with c+ coming from dj,12);

But it is easy to see that

∫ (
x̃4j,1/(3a

4
+)−b̃4j,1/3

)
e−

c+x̃2j,1
2

−
a2
+

c+ b̃2j,1
2 dx̃j,1 db̃j,1 =

2π

a+c+

(
1

a4+c
2
+

− 1

a4+c
2
+

)
= 0,

and so the contribution of (1) is zero. Similarly the contribution (2) is zero.
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Therefore, the contribution of the third order in the expansions (3.7) is small,
and using (3.25), (3.23)–(3.24), and also

exp



− 1

n

n∑

j=1

(
TrU∗

j L±UjΛ1 +TrS−1
j L±SjΛ2

)


 = exp

{
− E(x1 + x2)

}

× exp



− c0

2n

n∑

j=1

(
TrU∗

j LUj

(
κ −iy1
iy1 −κ

)
+TrS−1

j LSj

(
κ −iy2
iy2 −κ

))


for L±, L defined in (1.15), we get (3.16).

Denoting the exponent in the second line of (3.16) by E(z) and taking the
Gaussian integral over dz with z of (3.17), we get

∫

R4n

E(z)dz = (2π)2n det−1/2M

× exp

{
1

2
(M−1(W 1/2h0 +W−1/2(h+ ζ/n)),W 1/2h0 +W−1/2(h+ ζ/n))

}
.

(3.27)

It is easy to see from (3.18)–(3.20) that

detM = detM0

(
1 +O

(
W−1

))

= (c2+c
2
−a

2
+a

2
−)

n
(
1 +O

(
W−1

))
= c4n0

(
1 +O

(
W−1

))

with c± of (3.8). Note now that

M−1 =

(
M0 +

1

W
M̃

)−1

=M−1
0 − 1

W
M−1

0 M̃M−1
0 +O

(
W−2

)
.

Since M0 is diagonal and h0j,ls is proportional to nj,1 or nj,2 and n2j,l = 0, we have

(
M−1

0 h0, h0
)
= 0.

Hence, the exponent in the right-hand side of (3.27) takes the form

1

2

( (
M−1

0 h0, h+ ζ/n
)
+
(
M−1

0 (h+ ζ/n), h0
)

−
(
M−1

0 M̃M−1
0 h0, h0

))
+ o(1) = I1 + I2 − I3 + o(1).

Then we can rewrite (recall (3.21) and (3.26))

I1 + I2 =
∑(

(hj,11 + ζj,11/n)nj,1
a+c+

+
(hj,22 + ζj,22/n)nj,2

a−c−

− (hj,12 + a+ζj,12/n)nj,1
a2+c+

− (hj,21 + a−ζj,21/n)nj,2
a2−c−

)
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+

(
hq1,11nj11

a+c+
+
h1,22n1,2
a−c−

− h1,12n1,1
a2+c+

− h1,21n1,2
a2−c−

)

=
∑[

nj,1

(
2

a+c0
+ β

(
t2j + t2j+1 − v2j − v2j+1

)

+
a−nj,12
a2+c0

+
nj,21
a−c0

+
ζj,11 − ζj,12

c0n

)

+ nj,2

(
− 2

a−c0
+ β

(
t2j + t2j+1 − v2j − v2j+1

)

− a+nj,21
a2−c0

− nj,12
a+c0

− ζj,22 − ζj,21
c0n

)]

+ n1,1n1,2

(
(A−1)12(S1LQS

−1
1 )22(A

−1)21
c+a+

+
(A−1)21(S1LQS

−1
1 )11(A

−1)12
c−a−

)

+ n1,1
(A−1)11 − (S1(LQ)S−1

1 )11
c+a+

+ n1,2
(A−1)22 − (S1(LQ)S−1

1 )22
c−a−

+O( 1√
W
); (3.28)

I3 =
4

c40

∑
nj,1nj,2 −

1

a2+c
2
0

∑
nj,12nj,1nj,2 −

1

a2−c
2
0

∑
nj,21nj,1nj,2

+
∑ β(v2j + t2j )

c20

(
nj,1nj+1,1 + nj,1nj+1,2 + nj,2nj+1,1 + nj,2nj+1,2

)

− 1

c20
(A−1)12(A

−1)21n1,1n1,2 +O(W−1). (3.29)

Moreover,

eβ
∑

Tr
(
U∗

j ρ̃jSj−U∗

j−1
ρ̃j−1Sj−1

)(
S−1

j τ̃jUj−S−1

j−1
τ̃j−1Uj−1

)

= e
β
W

∑
Tr
(
U∗

j ρ̂jSj−U∗

j−1
ρ̂j−1Sj−1

)(
S−1

j τ̂jUj−S−1

j−1
τ̂j−1Uj−1

)
+O(W−1/2), (3.30)

where

ρ̂j = diag{ρj,11, ρj,22}, τ̂j = diag{τj,11, τj,22}. (3.31)

Combining (3.28)–(3.30) we can integrate the main term of (3.27) with respect
to ρj,12, τj,12, ρj,21, τj,21 according to (5.4). This integration gives

n∏

j=1

(
c+ +

a−nj,1
a2+c0

− nj,2
a+c0

+
nj,1nj,2
a2+c

2
0

)(
c− +

nj,1
a−c0

− a+nj,2
a2−c0

+
nj,1nj,2
a2−c

2
0

)

= c20 +
c0nj,2
a−

− c0nj,1
a+

+
(
1 + 2/c20

)
nj,1nj,2

= c20 exp

{
− nj,1
a+c0

+
nj,2
a−c0

}(
1 +

2

c40
nj,1nj,2

)
,
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which, together with (3.28)–(3.30), yields

ZβnW (κ, z1, z2) = c2n0 eE(x1−x2)
∫
dρ̂ dτ̂ dU dS

n∏

j=1

(
1− 2

c40
nj,1nj,2

)

× exp
{
β
∑

Tr
(
U∗
j ρ̂jSj − U∗

j−1ρ̂j−1Sj−1

)(
S−1
j τ̂jUj − S−1

j−1τ̂j−1Uj−1

)}

× exp

{∑
nj,1

(
β
(
t2j + t2j+1 − v2j − v2j+1

)
+
ζj,11 − ζj,12

c0n

)}

× exp

{∑
nj,2

(
β
(
t2j + t2j+1 − v2j − v2j+1

)
− ζj,22 − ζj,21

c0n

)}

× exp
{
−βc20

∑
(v2j + t2j )

}∫
F (A,Q, ρ̂1, τ̂1, S1) dQ

× exp



− c0

2n

n∑

j=1

(
TrU∗

j LUj

(
κ −iy1
iy1 −κ

)
+TrS−1

j LSj

(
κ −iy2
iy2 −κ

))


+ o(1)

where we have used a+c+ = c0, a−c− = −c0, and
(
1 + 2nj,1nj,2/c

4
0

)
e−4nj,1nj,2/c

4
0 = 1− 2nj,1nj,2/c

4
0.

Here

F (A,Q, ρ̂1, τ̂1, S1) = exp
{
− Tr(iE/2 + iγσ)(LQ)− c0

2
TrS−1

1 LS1(LQ)
}

× exp
{
− TrA−1ρ̂1S1(LQ)S−1

1 τ̂1 +
1

c20
(A−1)12(A

−1)21n1,1n1,2

}
detA

× e

(
n1,1(A−1−S1(LQ)S−1

1
)11−n1,2(A−1−S1(LQ)S−1

1
)22)
)
/c0

× en1,1n1,2

(
(A−1)12(S1LQS

−1

1
)22(A−1)21−(A−1)21(S1LQS

−1

1
)11(A−1)12

)
/c0 .

Notice

exp

{
1

c0

((
A−1

)
11
n1,1 −

(
A−1

)
22
n1,2

)
+

1

c20

(
A−1

)
12

(
A−1

)
21
n1,1n1,2

}
detA

= det
(
A+

1

c0
Lρ̂1τ̂1

)
,

where ρ̂1, τ̂1 is defined in (3.31). In addition,

e−TrA−1ρ̂1S1(LQ)S−1

1
τ̂1−(S1(LQ)S−1

1
)11n1,1/c0+(S1(LQ)S−1

1
)22n1,2/c0

× en1,1n1,2

(
(A−1)12(S1LQS

−1

1
)22(A−1)21−(A−1)21(S1LQS

−1

1
)11(A−1)12

)
/c0

= exp

{
TrS−1

1 τ̂1

(
A+

1

c0
Lρ̂1τ̂1

)−1

ρ̂1S1LQ− 1

c0
TrS−1

1 Lρ̂1τ̂1S1(LQ)

}
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hence we can perform the integration with respect to Q to get
∫
F (A,Q, ρ̂1, τ̂1, S1) dQ

=

det

(
A+

1

c0
Lρ̂1τ̂1

)

det

(
iE/2 + iγσ +

c0
2
S−1
1 L

(
1− 2

c20
ρ̂1τ̂1

)
S1 − S−1

1 τ̂1

(
A+

1

c0
Lρ̂1τ̂1

)−1

ρ̂1S1

) .

Using

U∗
1

(
A+

1

c0
Lρ̂1τ̂1

)
U1 = − iE

2
+
c0
2
U∗
1L

(
1 +

2

c20
ρ̂1τ̂1

)
U1 + iγσ,

we get finally
∫
F (A,Q, ρ̂1, τ̂1, S1) dQ

= sdet−1



U∗
1L
(
1 + 2

c2
0

ρ̂1τ̂1
)
U1 − iE−2iγσ

c0

2

c0
S−1
1 τ̂1U1

2

c0
U∗
1 ρ̂1S1 −S−1

1 L
(
1− 2

c2
0

ρ̂1τ̂1
)
S1 − iE+2iγσ

c0


 .

Now changing

ρj,11 → c0ρj,1, τj,11 → c0τj,1, ρj,22 → c0ρj,2, τj,22 → c0ρj,2

with an appropriate change in nj,1, nj,2, ρ̂j , τ̂j , and recalling (1.18), we get (1.11)
which finishes the proof of Theorem 1.1 for M = 1. The general case can be
obtain very similar: since M is finite, the additional terms (2.1) do not affect the
saddle-points and the main terms in representation (3.16), they just add some

additional terms to M̃ of (3.20), h
(q)
1,ls of (3.21) and to (3.23) – (3.24) which can

be handled in the same way. �

4. Proof of Theorem 1.2

To simplify formulas below we handle again the case M = 1. We explain the
difference with the case M > 1 at the end of the section.

It is easy to see that (1.11) implies that Zβn(κ, z1, z2) can be written in the
form

Zβn(κ, z1, z2) =e
E(x1−x2)

∫
D(Q)F̃(Q)M̃n−1(Q,Q′)F̃(Q′)dQdQ′,

where

F̃(Q) := exp{ c0
4n

StrQΛκ,y1,y2},

M̃(Q,Q′) = F̃(Q) exp
{
− β̃

4
StrQQ′}F̃(Q′),
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and

D(Q) := Sdet−1
(
Q− iE

2πρ(E)
+

iγ

πρ(E)
LΣ
)
= D(U, S, ρ̂, τ̂).

But for the proof of Theorem 1.2, it is convenient to change variables {Ui}ni=1

and {Si}ni=1 in order to obtain a little bit different representation.

Proposition 4.1. We have

Zβn(κ, z1, z2) = eE(x1−x2)
∫
D1(Q)F(Q)Mn−1(Q,Q′)F(Q′)dQdQ′, (4.1)

where

F(Q) := exp
{ c0
4n

StrQΛ1

}
, Λ1 =

(
Lκ1 0
0 Lκ2

)
, κ1,2 = (κ2 + y21,2)

1/2,

M(Q,Q′) = F(Q) exp
{
− β̃

4
StrQQ′}F(Q′),

D1(Q) = c1 + c2n1 + c3n2 + c4n1n2 + d1ρ1τ2 + d2ρ2τ1, (4.2)

cν =

3∑

k=1

c(k)ν (τ − i sinh t cosα2 cos θ + cosh t sinα2)
−k, ν = 1, 2, 3, 4,

dν = d(1)ν (τ − i sinh t cosα2 cos θ + cosh t sinα2)
−1, ν = 1, 2,

τ = (γ + γ−1)/c0 > 0. (4.3)

Here n1 = ρ1τ1, n2 = ρ2τ2 and α1, α2 are defined as

sinασ = yσ(κ
2 + y2σ)

−1/2, 0 < ασ < π/2, σ = 1, 2.

In addition, c
(k)
ν and d

(1)
ν are polynomials with respect to entries of U , whose coef-

ficients are independent of S in the case of c
(k)
ν , and are bounded functions of S in

the case of d
(1)
ν . Parameters t, θ here correspond to the following parametrizations

of U ∈ Ů(2) and S ∈ Ů(1, 1):

U =

(
eiψ/2 cos ϕ2 e−iψ/2 sin ϕ

2

−eiψ/2 sin ϕ
2 e−iψ/2 cos ϕ2

)
, S =

(
eiθ/2 cosh t

2 e−iθ/2 sinh t
2

eiθ/2 sinh t
2 e−iθ/2 cosh t

2

)
. (4.4)

Proof. Let us introduce unitary matrices

Vσ =

(
cos(ασ/2) −i sin(ασ/2)

−i sin(ασ/2) cos(ασ/2)

)
, σ = 1, 2,

where α1,2 are defined in (4.1). It is straightforward to check that

VσΛκ,yσV
∗
σ = κσL, σ = 1, 2.

For the unitary group we can just change the variables Ui → UiV1, and since the
Haar measure is invariant with respect to this change of variables, we obtain the
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desired transformation for the ”unitary” part of M. Unfortunately, similar trans-
formation for the hyperbolic group does not work directly, since the matrix S̃i =
SiV2 is not hyperbolic. But if we use another parametrization of the Hyperbolic
group

S(t, s) =

(
cosh(t/2) + iset/2/2 − sinh(t/2)− iset/2/2

− sinh(t/2) + iset/2/2 cosh(t/2)− iset/2/2

)
,

then it is straightforward to check that

S(t, s)V2 = S(t+ iα2, s).

On the other hand, M(S1, S2) depends only on S1S
−1
2 and the entries of S1S

−1
2

depend only on t1 − t2

(S(t1, s1)S
−1(t2, s2)))11 = cosh((t1 − t2)/2) + (is1e

(t1−t2)/2 − is2e
−(t1−t2)/2)/2,

(S(t1, s1)S
−1(t2, s2)))12 = − sinh((t1 − t2)/2)− (is1e

(t1−t2)/2 − is2e
−(t1−t2)/2)/2.

Hence, if we change the integration contour with respect to all tj+ iα2 → tj , then

F̃ → F , M̃ → M, D(U, S) → D(UV ∗
1 , SV

∗
2 ).

Thus we are left to study D1 = D(UV ∗
1 , SV

∗
2 ). Denote

Ũ = UV ∗
1 , S̃ = SV ∗

2 .

Using formulas (1.11) and (1.12), we conclude that

D1 :=
det Ã

det B̃

det(1 + 2Ln̂Ã−1)

det(1− 2Ln̂B̃−1 + 4ρ̂(Ã+ 2Ln̂)−1τ̂)

Ã = − iE
c0

+
2iγ

c0
Ũ σ̂Ũ−1 + L, B̃ =

iE

c0
+

2iγ

c0
S̃σ̂S̃−1 + L,

n̂ = diag{n1, n2} (4.5)

It is easy to see that

det Ã =det

(
− iE

c0
+

2iγ

c0
Ũ σ̂Ũ−1 + L

)

=− E2

c20
− 1− 4γ2

c20
− 4iγ

c0

(
Ũ11

¯̃U12 − Ũ12
¯̃U11

)
=

=− 4γ

c0
(τ − sinϕ · cosα1 sinψ + sinα1 cosϕ) (4.6)

det B̃ =det

(
iE

c0
+

2iγ

c0
S̃σ̂S̃−1 + L

)

=− E2

c20
− 1− 4γ2

c20
− 4iγ

c0

(
S̃11
(
S̃−1

)
21

− S̃12
(
S̃−1

)
11

)
=
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=− 4γ

c0
(τ − i sinh t · cosα2 cos θ + cosh t · sinα2), (4.7)

where τ is defined in (4.3) and we used parametrizations (4.4) for U and S. Here
we used also that

S̃−1 =

(
S̃22 −S̃12
−S̃21 S̃11

)
,

and so

−S̃11(S̃−1)21 + S̃12(S̃
−1)11 = S̃11S̃21 + S̃12S̃22

= (SV ∗
2 )11(SV

∗
2 )21 + (SV ∗

2 )12(SV
∗
2 )22

= cosα2(S11S21 + S12S22) + i sinα2(S11S22 + S12S21)

= sinh t cosα2 cos θ + i cosh t t sinα2. (4.8)

Similar formulas can be obtained for Ũ11
¯̃U12 − Ũ12

¯̃U11.
Since

ρ̂(Ã+ 2Ln̂)−1τ̂ = ρ̂Ã−1(1− 2Ln̂Ã−1)τ̂ ,

ρ̂Ã−1Ln̂Ã−1τ̂ B̃−1 = −n1n2Ã−1
12 Ã

−1
21 LB̃

−1,

we have

det
(
1− 2Ln̂B̃−1 + 4ρ̂

(
Ã+ 2Ln̂

)−1
τ̂ B̃−1

)

=det
(
1− 2Ln̂B̃−1 + 4ρ̂Ã−1

(
1− 2Ln̂Ã−1

)
τ̂ B̃−1

)

=det
(
1− 2Ln̂B̃−1 + 4ρ̂Ã−1τ̂ B̃−1

)
det
(
1 + 8n1n2Ã

−1
12 Ã

−1
21 LB̃

−1
)

=
(
1 + n1(4Ã

−1
11 − 2)B̃−1

11 + n2

(
4Ã−1

22 + 2
)
B̃−1

22

+ 4Ã−1
12 B̃

−1
21 ρ1τ2 + 4Ã−1

21 B̃
−1
12 ρ2τ1

)

×
(
1 + n1n2

(
(4Ã−1

11 − 2)(4Ã−1
22 + 2) + 16Ã−1

12 Ã
−1
21

detB̃
+ 8Ã−1

12 Ã
−1
12 Tr B̃−1L

))
.

Hence,

det−1
(
1− 2Ln̂B̃−1 + 4ρ̂(Ã+ 2Ln̂)−1τ̂ B̃−1

)

=
(
1− kbn1n2

)(
1− n1

(
4Ã−1

11 − 2
)
B̃−1

11 − n2

(
4Ã−1

22 + 2
)
B̃−1

22

− 4Ã−1
12 B̃

−1
21 ρ1τ2 − 4Ã−1

21 B̃
−1
12 ρ2τ1

)
,

where

kb =

(
4Ã−1

11 − 2
)(
4Ã−1

22 + 2
)
+ 16Ã−1

12 Ã
−1
21

det B̃
+ 8Ã−1

12 Ã
−1
12 Tr B̃−1L

− 2
(
4Ã−1

11 − 2
)(
4Ã−1

22 + 2
)
B̃−1

11 B̃
−1
22 + 32Ã−1

12 Ã
−1
21 B̃

−1
12 B̃

−1
21
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= −
(
16 det−1 Ã+ 8Tr Ã−1L− 4

)(
B̃−1

11 B̃
−1
22 + B̃−1

12 B̃
−1
21

)
+ 8Ã−1

12 Ã
−1
21 Tr B̃−1L.

Similarly,

det(1 + 2Ln̂Ã−1) = (1 + 2n1Ã
−1
11 − 2n2Ã

−1
22 )(1− 4n1n2(det Ã)

−1).

Then finally D1 of (4.5) can be rewritten as

D1 =
(
det B̃

)−1 [
det Ã− n1

(
4Ã22B̃

−1
11 − 2Ã22 − 2B̃−1

11 det Ã
)

− n2

(
4B̃−1

22 Ã11 + 2Ã11 + 2B̃−1
22 det Ã

)

+ 4Ã12B̃
−1
21 ρ1τ2 + 4Ã21B̃

−1
12 ρ2τ1 − kn1n2

]
,

k = −
(
16− 8Tr ÃL− 4 det Ã

)(
B̃−1

11 B̃
−1
22 + B̃−1

12 B̃
−1
21

)

− 8 Tr B̃−1L+ 4B̃−1
11 Ã11 + 4B̃−1

22 Ã22 + 4, (4.9)

where we used

Ã−1 =




Ã22

det Ã
− Ã12

det Ã

− Ã21

det Ã

Ã11

det Ã


 . (4.10)

Using (4.10) for B̃, and taking into account that (see (4.8))

B̃jj =
iE

c0
− (−1)j +

2iγ

c0
(S̃σ̂S̃−1)jj

=
iE

c0
− (−1)j + (−1)j

2iγ

c0
(S̃12S̃22 + S̃11S̃21)

=
iE

c0
− (−1)j + (−1)j

2iγ

c0
(sinh t cosα2 cos θ + i cosh t sinα2), j = 1, 2,

B̃−1
11 B̃

−1
22 + B̃−1

12 B̃
−1
21 = −(det B̃)−1 + 2(det B̃)−2B̃11B̃22,

we obtain (4.2).

For the next step we will use the following notations:

F (U, S) = exp

{
− c0
n

(
κ1

(
1

2
− |U12|2

)
+ κ2

(
1

2
+ |S12|2

))}
, (4.11)

F1(U, S) = −c0
n

(
κ1

(
1

2
− |U12|2

)
− κ2

(
1

2
+ |S12|2

))

with κ1,2 defined in Proposition 4.1.

Proposition 4.2. We have

Zβn(κ, z1, z2) = −e
E(x1−x2)

2πi

∮

ωA

zn−1(Ĝ(z)f̂ , ĝ)dz, (4.12)
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where ωA = {z : |z| = 1 +A/n},

Ĝ(z) =
(
M̂ − z

)−1
, M̂ = F̂ K̂F̂ , K̂ = K̂0 +O

(
β−1

)
, (4.13)

where operators K̂0, F̂ and the vectors f̂ , ĝ have the form

K̂0 =




KUS K̃1 K̃2 K̃3

0 KUS 0 K̃2

0 0 KUS K̃1

0 0 0 KUS


 , F̂ = F




1 F1 F1 F 2
1

0 1 0 F1

0 0 1 F1

0 0 0 1


 (4.14)

f̂ = F̂ (e4 − e1), ĝ = F̂ (c1e0 + c2e2 + c3e3 + (c4 − c1)e4) +O
(
β̃−1

)
(4.15)

with F and F1 being the operator of multiplication by the functions F and F1

defined in (4.11) on L2(U)⊗L2(S) , KUS = KU ⊗KS and KU and KS being the
integral operators in L2(U) and L2(S) with a “difference” kernels

KU (U,U
′) = KU (U(U ′)∗) = β̃e−β̃|(U(U ′)∗)12|2 ,

KS(S, S
′) = KS(S(S

′)−1) = β̃e−β̃|(S(S
′)−1)12|2 .

and cδ having the form (4.2). Here K̃p, p = 1, 2, 3 are normal operators on

L2(U)⊗ L2(S), they commute with KUS and with the Laplace operators ∆̃U , ∆̃S

on the corresponding groups and satisfy the bounds

|K̃p| ≤ C(1−KUS) ≤ −C(∆̃U + ∆̃S)/β, (4.16)

where the Laplace operators ∆̃U , ∆̃S for the functions depending only on |S12|2
and |U12|2 have the form

∆̃S(ϕ) = − d

dx
x(x+ 1)

dϕ

dx

(
x = |S12|2

)
,

∆̃U (ϕ) = − d

dx
x(1− x)

dϕ

dx

(
x = |U12|2

)
.

The proposition is basically identical to the Proposition 5.1 of [16]. The only
change is the different form of ĝ coming from the presence of the factor D1 in
(4.1). The from of ĝ in (4.14) follows from (1.11) and Proposition 4.1. Indeed,
consider the basis e1 = 1, e2 = n1, e3 = n2, e4 = n1n2, e5 = ρ1τ2, e6 = ρ2τ1,
and let L1 = span{e1, e2, e3, e4}. Write the transfer operator matrix H as a block
matrix with the first block corresponding to L1 (see the proof of Proposition 5.1
in [16]):

H =

(
H(11) H(12)

H(21) H(22)

)
, H(22) =

(
h11 h12
h21 h22

)
,

H(21) =

(
2xd x x 0
−2xd −x −x 0

)
, H(12) =




0 0
y −y
y −y
2yd −2yd


 . (4.17)
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Here hij , x, y, xd, yd are “difference” operators whose kernels are defined with the
functions

hij = hijUhijS , hijU = U2
ijKU , hijS = S̄2

ijKS

x = xUxS , xU = U11U12KU , xS = S̄11S̄12KS , xd = x d,

y = yUyS , yU = U11Ū12KU yS = S̄11S12KS , yd = y d, (4.18)

and x̄, ȳ, x̄d, ȳd mean the complex conjugate kernels. We recall that we are saying
that the operator in L2(Ů2) is a “difference” one with a kernel f , if its kernel
k(U1, U2) has the form k(U1, U2) = f(U1U

∗
2 ). The operator on L2(Ů(1, 1)) is

a“difference” one with a kernel f , if k(S1, S2) = f(S1S
−1
2 ). Let us recall also that

K (and consequently its resolvent) was obtained from H by the transformation

K = T̂HT̂ , T̂ = diag{T, I}, T =




0 0 0 β̃
0 0 1 0
0 1 0 0

β̃−1 0 0 0




Hence the entries of the off-diagonal blocks of the resolvent of K are obtained
from those of the off-diagonal blocks of the resolvent of H by multiplication by
β, 1, or β−1. Thus, to obtain the bound O(β−1) in (4.15), it is sufficient to get
the bound O(β−2) for the corresponding entries of the resolvent of H.

According to the Schur formula, the resolvent G(z) = (H− z)−1 has the form

G(z) :=

(
G(11) −G(11)H(12)G2

−G2H
(21)G(11) G2 +G2H

(21)G(11)H(12)G2

)
,

G(11) =M−1
1 , M1 = H(11) − z −H(12)G2H

(21), G2(z) = (H(22) − z)−1.

Since f̂5,6 = 0, we can write

(
G(z)f̂ , ĝ

)
=
(
G(11)f (1), g(1) − (H(21))∗G∗

2g
(2)
)
,

where f (1), g(1) are the projection of f̂ , ĝ on L1 and g(2) is a projection of ĝ on
span{e5, e6}. Let us consider H(22) = ĥ+ h̃, where ĥ is a diagonal part and h̃-off
diagonal part of H(22), and let G2d = (ĥ− z)−1. By the resolvent identity we can
write

G2 = G2d −G2dh̃G2 (4.19)

Moreover, it was proven in [16] (see the proof of Lemma 6.2) that

‖G2(z)‖ ≤ Cn, ‖G2d(z)‖ ≤ Cn, ‖h̃‖ ≤ Cβ−2, ‖H(21)‖ ≤ Cβ−2

⇒ ‖(H(21))∗(G2dh̃G2)
∗‖ ≤ Cβ−2

For the first terms of the right-hand side of (4.19) we use the expansion

G2d(z) = −z−1
∞∑

s=0

z−s
(
ĥ
)s

(4.20)
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It is easy to see that, due to the form g(2) (see (4.9)), ĥ and H(21) (see (4.17) and
(4.18)), after the integration with respect to U only the term corresponding to
s = 1 in the above expansion will give non zero contribution. Hence, using that

∥∥(H(21)
)∗
ĥ∗g(2)

∥∥ ≤ Cβ−2,

after the multiplication by β we get (4.15). �

Now let us derive (1.13) from Proposition 4.2. To this end, set

M̂0 = F̂ 2, Ĝ0 =
(
M̂0 − z

)−1
,

and consider

∆G := Ĝ− Ĝ0 = −Ĝ0

(
M̂ − M̂0

)
Ĝ0 − Ĝ0

(
M̂ − M̂0

)
Ĝ
(
M̂ − M̂0

)
Ĝ0.

We apply the following lemma:

Lemma 4.3. For any z ∈ ωA (see (4.12)) we have the bounds

∥∥∥Ĝ
∥∥∥ ≤ C log2 n/|z − 1|,

∥∥∥
(
M̂ − M̂0

)
Ĝ0f̂

∥∥∥
2
≤ C

(
n/β̃

)2
, (4.21)

∥∥∥
(
M̂ − M̂0

)
Ĝ0ĝ

∥∥∥
2
≤ C

(
n/β̃

)2
,
∣∣∣(Ĝ0

(
M̂ − M̂0

)
Ĝ0f̂ , ĝ)

∣∣∣ ≤ n log n

β̃|z − 1|
. (4.22)

Inequalities (4.21) were proven in [16] (see Lemma 5.1). Hence we need to
prove only inequalities (4.22). We postpone the proof to the end of the section,
and continue with the proof of (1.13) using Lemma 4.3.

Let us write
∣∣∣∣
1

2πi

∮

ωA

zn−1(∆Gf̂, ĝ)dz

∣∣∣∣ ≤ C

∮

ωA

∣∣∣(Ĝ0(M̂ − M̂0)Ĝ0f̂ , ĝ)
∣∣∣ |dz|

+ C

∮

ωA

∥∥∥Ĝ(z)
∥∥∥
∥∥∥(M̂ − M̂0)Ĝ0(z)f̂

∥∥∥
∥∥∥(M̂ − M̂0)Ĝ0(z̄)ĝ

∥∥∥ |dz|

≤ C
(
n log n/β̃

) ∮

ωA

|dz|
|z − 1| ≤ Cn log2 n/β̃ → 0,

where we used n log2 n� β̃ and

∮

ωA

|dz|
|z − 1| ≤ C log n.

Thus we have proved that (recall (4.14))

Zβn(κ, z1, z2) = −e
E(x1−x2)

2πi

∮

ωA

zn−1
(
Ĝ0(z)f̂ , ĝ

)
dz + o(1)

= eE(x1−x2)
(
F̂ 2n−2f̂ , ĝ

)
+ o(1).
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Proof of inequalities (4.22). Using inequalities (4.16) it is easy to conclude
the it is sufficient to prove that

‖(∆S +∆U )Ĝ0ĝ‖2 ≤ Cn2, |(Ĝ0(∆S +∆U )Ĝ0f̂ , ĝ)| ≤ n log n/|z − 1|. (4.23)

Notice that since Ĝ0 = (F̂ 2 − z)−1, we can write

Ĝ0 =




G0 G0F1FG0 G0F1FG0 G0F1FG0F1FG0 +G0F
2
1FG0

0 G0 0 G0F1FG0

0 0 G0 G0F1FG0

0 0 0 G0




G0 = (F 2 − z)−1, F (x) = e−(2c2x−2c1u+c1−c2)/2n (4.24)

with x = |S12|2, u = |U12|2. Observe that coefficients of Ĝ0 do not depend on θ
of (4.4). Hence we can integrate over θ in expression for ĝ of (4.14) and (4.2).
Using that

1

2π

2π∫

0

dθ

(τ − i cosα2 sinh t cos θ + sinα2 cosh t)δ

= Cδ
∂δ−1

∂τ δ−1

(
(τ + sinα2 cosh t)

2 + sinh2 t cos2 α2

)−1/2
, δ = 1, 2, 3,

one can conclude that (4.23) will follow from the bounds

∥∥∥(∆S +∆U )f̃ν g̃ν

∥∥∥
2
≤ Cn2, ν = 1, . . . , 4, (4.25)

where for x = sinh2(t/2)

f̃ν(x) = aνG0F + bνF1(FG0)
2 + dνF

2
1 (FG0)

3

g̃ν(x) = a(1)ν

(
(τ + sinα2 cosh t)

2 + sinh2 t cos2 α2

)−1/2

+ b(1)ν
∂

∂τ

(
(τ + sinα2 cosh t)

2 + sinh2 t cos2 α2

)−1/2

+ d(1)ν
∂2

∂τ2

(
(τ + sinα2 cosh t)

2 + sinh2 t cos2 α2

)−1/2
, (4.26)

where aν , bν , dν and a
(1)
ν , b

(1)
ν , d

(1)
ν are bounded functions depending only on u.

It is straightforward to check that

∣∣g̃ν(x)
∣∣ ≤ C(x2 + 1)−1/2, |(x+ 1)g̃′ν(x)| ≤ C(x2 + 1)−1/2,

x(x+ 1)
∣∣g̃′′ν (x)

∣∣ ≤ C(x2 + 1)−1/2, (4.27)

and ∣∣f̃ ′′ν (x)
∣∣ ≤ Cn,

∣∣(x+ 1)f ′ν(x)
∣∣ ≤ Cn,

∣∣fν(x)
∣∣ ≤ Cn.
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Then, since

∆S

(
f̃ν g̃ν

)
= x(x+ 1)

(
f̃ν g̃ν

)′′
+ (2x+ 1)

(
f̃ν g̃ν

)′
+ f̃ν g̃ν ,

we conclude that

∣∣∆S(f̃ν g̃ν)
∣∣ ≤ Cn(x2 + 1)−1/2 ⇒

∥∥∆S(f̃ν g̃ν)
∥∥2 ≤ Cn2.

In addition, one can obtain by the same way that

∥∥∆U

(
f̃ν g̃ν

)∥∥2 ≤ Cn2.

Thus, we obtain (4.25).

To prove the second inequality in (4.23), we observe that for any fν of the
same type as in (4.26) we have

|G0∆Sfν | ≤
Ce−cx/n

|z − 1|2 ≤ Cne−cx/n

|z − 1| .

Hence

∣∣∣∣
∫

∆S(fν)gνdx

∣∣∣∣ ≤
Cn

|z − 1|

∫ ∞

0

e−cx/ndx

(x2 + 1)1/2

=
Cn

|z − 1|

∫ ∞

0

e−cx̃dx

(x̃2 + n−2)1/2
≤ Cn log n

|z − 1| .

Here we changed the variable x→ nx̃. Repeating the argument for ∆U we obtain
the second inequality in (4.25).

The case M > 1 is very similar, since in this case the transfer matrix M and
F in (4.1) remain the same and only D1 is replaced by the product of Dα of the
same form but with different γα (see (1.11)). Hence, in (4.12) the resolvent Ĝ and
the function f̂ are the same and only the function ĝ will be different. But one can
see from the argument given after (4.27) that for our proof we need only bounds
(4.27), and the fact that ĝ depends polynomially on entries of U (recall that we
used polynomial dependence on U in (4.19)-(4.20) to prove that only a finite
number of terms in (4.20) are non zero). But for M > 1 D1 should be replaced
by the product of Dα and each of them has the form (4.2) with τ replaced by τα
defined by (4.3) with γ = γα. Hence it is evident that that resulting ĝ will satisfy
(4.27) and will depend on entries of U polynomially.

5. Appendix

5.1. Grassmann integration. Let us consider two sets of formal variables
{ψj}nj=1, {ψj}nj=1, which satisfy the anticommutation conditions

ψjψk + ψkψj = ψjψk + ψkψj = ψjψk + ψkψj = 0, j, k = 1, . . . , n. (5.1)
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Note that this definition implies ψ2
j = ψ

2
j = 0. These two sets of variables

{ψj}nj=1 and {ψj}nj=1 generate the Grassmann algebra A. Taking into account

that ψ2
j = 0, we have that all elements of A are polynomials of {ψj}nj=1 and

{ψj}nj=1 of degree at most one in each variable. We can also define functions of
the Grassmann variables. Let χ be an element of A, i.e.,

χ = a+

n∑

j=1

(ajψj + bjψj) +
∑

j 6=k
(aj,kψjψk + bj,kψjψk + cj,kψjψk) + · · · . (5.2)

For any sufficiently smooth function f we define by f(χ) the element of A obtained
by substituting χ − a in the Taylor series of f at the point a. Since χ is a
polynomial of {ψj}nj=1, {ψj}nj=1 of the form (5.2), according to (5.1) there exists

such l that (χ− a)l = 0, and hence the series terminates after a finite number of
terms and so f(χ) ∈ A.

Following Berezin [1], we define the operation of integration with respect to
the anticommuting variables in a formal way:

∫
dψj =

∫
dψj = 0,

∫
ψjdψj =

∫
ψjdψj = 1,

and then extend the definition to the general element of A by the linearity. A
multiple integral is defined to be a repeated integral. Assume also that the
“differentials” dψj and dψk anticommute with each other and with the variables
ψj and ψk. Thus, according to the definition, if

f(ψ1, . . . , ψk) = p0 +

k∑

j1=1

pj1ψj1 +
∑

j1<j2

pj1,j2ψj1ψj2 + · · ·+ p1,2,··· ,kψ1 . . . ψk,

then ∫
f(ψ1, . . . , ψk)dψk · · · dψ1 = p1,2,...,k.

Let A be an ordinary Hermitian matrix with a positive real part. The follow-
ing Gaussian integral is well-known

∫
exp



−

n∑

j,k=1

Ajkzjzk





n∏

j=1

d<zjd=zj
π

=
1

detA
. (5.3)

One of the important formulas of the Grassmann variables theory is the analog
of this formula for the Grassmann algebra (see [1]):

∫
exp



−

n∑

j,k=1

Ajkψjψk





n∏

j=1

dψjdψj = detA, (5.4)

where A now is any n× n matrix.
We will also need the following bosonization formula
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Proposition 5.1 (see, e.g., [5]). Let F : R → C be some function that depends
only on combinations

φ̄φ :=

{
p∑

α=1

φ̄lαφsα

}2

l,s=1

,

and set

dΦ =
2∏

l=1

p∏

α=1

d<φlα d=φlα.

Assume also that p ≥ 2. Then

∫
F
(
φ̄φ
)
dΦ =

π2p−1

(p− 1)!(p− 2)!

∫
F (B) detp−2B dB,

where B is a 2× 2 positive Hermitian matrix, and

dB = 1B>0 dB11 dB22 d<B12 d=B12.
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Комплексна деформацiя скiнченного рангу для

випадкових стрiчкових матриць: апрокимацiя

сiгма-моделi

Mariya Shcherbina and Tatyana Shcherbina

Ми вивчаємо розподiл комплексних власних значень z1, . . . , zN ви-
падкової ермiтової блокової стрiчкової матрицi розмiру N ×N з компле-
ксною деформацiєю скiнченного рангу. У режимi, коли розмiр блоков W
зростає швидше за N , ми доводимо, що гранична щiльнiсть =z1, . . . ,=zN
у сiгма-модельнiй апроксимацiї збiгається з вiдповiдною щiльнiстю для
Ґаусiвського унiтарного ансамблю. Для цього ми використовуємо метод,
розроблений в [16].

Ключовi слова: випадковi стрiчковi матрицi, делокалiзований режим,
комплексна деформацiя, сiгма-модель, суперсиметрiя


