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In this paper, we investigate a two-layer fully connected neural network
of the form f(X) = ﬁaTa(WX), where X € 90%" i5 a deterministic data
matrix, W € R41%do and @ € R¥ are random Gaussian weights, and o is
a nonlinear activation function. We study the limiting spectral distributions
of two empirical kernel matrices associated with f(X): the empirical conju-
gate kernel (CK) and neural tangent kernel (NTK), beyond the linear-width
regime (d < n). We focus on the ultra-wide regime, where the width d; of
the first layer is much larger than the sample size n. Under appropriate as-
sumptions on X and o, a deformed semicircle law emerges as dj/n — 0o
and n — oo. We first prove this limiting law for generalized sample covari-
ance matrices with some dependency. To specify it for our neural network
model, we provide a nonlinear Hanson—Wright inequality suitable for neural
networks with random weights and Lipschitz activation functions. We also
demonstrate nonasymptotic concentrations of the empirical CK and NTK
around their limiting kernels in the spectral norm, along with lower bounds
on their smallest eigenvalues. As an application, we show that random fea-
ture regression induced by the empirical kernel achieves the same asymptotic
performance as its limiting kernel regression under the ultra-wide regime.
This allows us to calculate the asymptotic training and test errors for random
feature regression using the corresponding kernel regression.
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1. Introduction. Nowadays, deep neural networks have become one of the leading mod-
els in machine learning, and many theoretical results have been established to understand the
training and generalization of neural networks. Among them, two kernel matrices are promi-
nent in deep learning theory: conjugate kernel (CK) [24, 27, 44, 54, 58, 69, 71, 74, 82] and
neural tangent kernel (NTK) [4, 28, 40]. The CK matrix defined in (5), which has been ex-
ploited to study the generalization of random feature regression, is the Gram matrix of the
output of the last hidden layer on the training dataset. The NTK matrix, defined in (7), is
the Gram matrix of the Jacobian of the neural network with respect to training parameters,
characterizing the performance of a wide neural network through gradient flows. Both are
related to the kernel machine and help us explore the generalization and training process of
the neural network.

We are interested in the behaviors of CK and NTK matrices at random initialization. A re-
cent line of work has proved that these two random kernel matrices will converge to their
expectations when the width of the network becomes infinitely wide [7, 40]. Although CK
and NTK are usually referred to as these expected kernels in literature, we will always call
CK and NTK the empirical kernel matrices in this paper, with a slight abuse of terminology.

In this paper, we study the random CK and NTK matrices of a two-layer fully connected
neural network with input data X € R%*"_given by f : R%*" — R” such that

_ L T
ey F(X): Nz o(WX),
where W € R4*% is the weight matrix for the first layer, a € R% are the second layer
weights, and o is a nonlinear activation function applied to the matrix W X elementwisely. We
assume that all entries of @ and W are independently identically distributed by the standard
Gaussian N (0, 1). We will always view the input data X as a deterministic matrix (indepen-
dent of the random weights in @ and W) with certain assumptions.

In terms of random matrix theory, we study the difference between these two kernel ma-
trices (CK and NTK) and their expectations with respect to random weights, showing both
asymptotic and nonasymptotic behaviors of these differences as the width of the first hidden
layer d is growing faster than the number of samples n. As an extension of [29], we prove
that when n/d; — 0, the centered CK and NTK with appropriate normalization have the lim-
iting eigenvalue distribution given by a deformed semicircle law, determined by the training
data spectrum and the nonlinear activation function. To prove this global law, we further set
up a limiting law theorem for centered sample covariance matrices with dependent structures
and a nonlinear version of the Hanson—Wright inequality. These two results are very general,
which makes them potentially applicable to different scenarios beyond our neural network
model. For the nonasymptotic analysis, we establish concentration inequalities between the
random kernel matrices and their expectations. As a byproduct, we provide lower bounds
of the smallest eigenvalues of CK and NTK, which are essential for the global convergence
of gradient-based optimization methods when training a wide neural network [59, 60, 63].
Because of the nonasymptotic results for kernel matrices, we can also describe how close the
performances of the random feature regression and the limiting kernel regression are with a
general dataset, which allows us to compute the limiting training error and generalization er-
ror for the random feature regression via its corresponding kernel regression in the ultra-wide
regime.
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1.1. Nonlinear random matrix theory in neural networks. Recently, the limiting spectra
of CK and NTK at random initialization have received increasing attention from a random
matrix theory perspective. Most of the papers focus on the linear-width regime di  n, us-
ing both the moment method and Stieltjes transforms. Based on moment methods, [67] first
computed the limiting law of the CK for two-layer neural networks with centered nonlinear
activation functions, which is further described as a deformed Marchenko—Pastur law in [64].
This result has been extended to sub-Gaussian weights and input data with real analytic ac-
tivation functions by [19], even for multiple layers with some special activation functions.
Later, [2] generalized their results by adding a random bias vector in pre-activation and a
more general input data matrix. Similar results for the two-layer model with a random bias
vector and random input data were analyzed in [68] by cumulant expansion. In parallel, by
Stieltjes transform, [52] investigated the CK of a one-hidden-layer network with general de-
terministic input data and Lipschitz activation functions via some deterministic equivalent.
[49] further developed a deterministic equivalent for the Fourier feature map. With the help
of the Gaussian equivalent technique and operator-valued free probability theory, the limiting
spectrum of NTK with one hidden layer has been analyzed in [3]. Then the limiting spectra of
CK and NTK of a multi-layer neural network with general deterministic input data have been
fully characterized in [29], where the limiting spectrum of CK is given by the propagation of
the Marchenko—Pastur map through the network, while the NTK is approximated by the lin-
ear combination of CK’s of each hidden layer. [29] illustrated that the pairwise approximate
orthogonality assumption on the input data is preserved in all hidden layers. Such a property
is useful to approximate the expected CK and NTK. We refer to [32] as a summary of the
recent development in nonlinear random matrix theory.

Most of the results in nonlinear random matrix theory focus on the case when d; is pro-
portional to n as n — co. We build a random matrix result for both CK and NTK under the
ultra-wide regime, where d;/n — oo and n — 00. As an intrinsic interest of this regime,
this exhibits the connection between wide (or overparameterized) neural networks and kernel
learning induced by limiting kernels of CK and NTK. In this article, we will follow general
assumptions on the input data and activation function in [29] and study the limiting spectra
of the centered and normalized CK matrix

1 T T

2) S (VT —E[TY)),

where Y := o (W X). Similar results for the NTK can be obtained as well. To complete the
proofs, we establish a nonlinear version of the Hanson—Wright inequality, which has previ-
ously appeared in [49, 52]. This nonlinear version is a generalization of the original Hanson—
Wright inequality [1, 36, 72], and may have various applications in statistics, machine learn-
ing, and other areas. In addition, we also derive a deformed semicircle law for normalized
sample covariance matrices without independence in columns. This result is of independent
interest in random matrix theory as well.

1.2. General sample covariance matrices. 'We observe that the random matrix ¥ € R4 "
defined above has independent and identically distributed rows. Hence, Y 'Y is a generalized
sample covariance matrix. We first inspect a more general sample covariance matrix ¥ whose
rows are independent copies of some random vector y € R”. Assuming n and d; both go
to infinity but n/d; — 0, we aim to study the limiting empirical eigenvalue distribution of
centered Wishart matrices in the form of (2) with certain conditions on y. This regime is also
related to the ultra-high-dimensional setting in statistics [70].

This regime has been studied for decades starting in [14], where Y has i.i.d. entries and
E[YTY] =d,1d. In this setting, by the moment method, one can obtain the semicircle law.
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This normalized model also arises in quantum theory with respect to random induced states
(see [8, 9, 26]). The largest eigenvalue of such a normalized sample covariance matrix has
been considered in [22]. Subsequently, [21, 45, 70, 87] analyzed the fluctuations for the linear
spectral statistics of this model and applied this result to hypothesis testing for the covariance
matrix. A spiked model for sample covariance matrices in this regime was recently studied
in [30]. This kind of semicircle law also appears in many other random matrix models. For
instance, [42] showed this limiting law for normalized sample correlation matrices. Also, the
semicircle law for centered sample covariance matrices has already been applied in machine
learning: [31] controlled the generalization error of shallow neural networks with quadratic
activation functions by the moments of this limiting semicircle law; [35] derived a semicircle
law of the fluctuation matrix between stochastic batch Hessian and the deterministic empirical
Hessian of deep neural networks.

For general sample covariance, [80] considered the form ¥ = BX A"/~ with deterministic
A and B, where X consists of i.i.d. entries with mean zero and variance one. The same
result has been proved in [16] by generalized Stein’s method. Unlike previous results, [85]
tackled the general case, only assuming Y has independent rows with some deterministic
covariance ®,. Though this is similar to our model in Section 4, we will consider more
general assumptions on each row of Y, which can be directly verified in our neural network
models.

1/2

1.3. Infinite-width kernels and the smallest eigenvalues of empirical kernels. Besides
the above asymptotic spectral fluctuation of (2), we provide nonasymptotic concentrations
of (2) in spectral norm and a corresponding result for the NTK. In the infinite-width net-
works, where d; — oo and n are fixed, both CK and NTK will converge to their expected
kernels. This has been investigated in [27, 44, 54, 74] for the CK and [4, 7, 28, 40, 47]
for the NTK. Such kernels are also called infinite-width kernels in literature. In this current
work, we present the precise probability bounds for concentrations of CK and NTK around
their infinite-width kernels, where the difference is of order /n/d;. Our results permit more
general activation functions and input data X only with pairwise approximate orthogonality,
albeit similar concentrations have been applied in [3, 10, 39, 57, 76].

A corollary of our concentration is the explicit lower bounds of the smallest eigenvalues of
the CK and the NTK. Such extreme eigenvalues of the NTK have been utilized to prove the
global convergence of gradient descent algorithms of wide neural networks since the NTK
governs the gradient flow in the training process, see, for example, [6, 23, 28, 59, 60, 63, 76,
83]. The smallest eigenvalue of NTK is also crucial for proving generalization bounds and
memorization capacity in [6, 57]. Analogous to Theorem 3.1 in [57], our lower bounds are
given by the Hermite coefficients of the activation function o . Besides, the lower bound of
NTK for multi-layer ReLU networks is analyzed in [61].

1.4. Random feature regression and limiting kernel regression. Another byproduct of
our concentration results is to measure the difference of performance between random fea-
ture regression with respect to x/Ld_l Y and corresponding kernel regression when d;/n — oo.
Random feature regression can be viewed as the linear regression of the last hidden layer, and
its performance has been studied in, for instance, [33, 38, 49, 50, 52, 53, 55, 56, 67] under
the linear-width regime.! In this regime, the CK matrix dl_l Y 7Y is not concentrated around its

expectation

3) ®:=Eylo(w X) o(w'X)]

IThis linear-width regime is also known as the high-dimensional regime, while our ultra-wide regime is also
called a highly overparameterized regime in literature, see [56].
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under the spectral norm, where w is the standard normal random vector in R%. But the lim-
iting spectrum of CK is exploited to characterize the asymptotic performance and double
descent phenomenon of random feature regression when n, dg, d; — oo proportionally. Sev-
eral works have also utilized this regime to depict the performance of the ultra-wide random
network by letting d1/n — ¥ € (0, oo) first, getting the asymptotic performance and then
taking ¢ — oo (see [56, 86]). However, there is still a difference between this sequential
limit and the ultra-wide regime. Before these results, random feature regression has already
attracted significant attention in that it is a random approximation of the Reproducing Kernel
Hilbert Space (RKHS) defined by population kernel function K : R% x R% — R such that

4) K (x,z) :=Ey[o((w,x))o ((w, z))],

when width d; is sufficiently large [11, 12, 71, 73]. We point out that Theorem 9 of [10] has
the same order /n/d; of the approximation as ours, despite only for random Fourier features.

In our work, the concentration between empirical kernel induced by d]_1Y TY and the pop-
ulation kernel matrix K defined in (4) for X leads to the control of the differences of train-
ing/test errors between random feature regression and kernel regression, which were previ-
ously concerned by [10, 41, 55, 57] in different cases. Specifically, [41] obtained the same
kind of estimation but considered random features sampled from Gaussian processes. Our
results explicitly show how large width d; should be so that the random feature regression
gets the same asymptotic performance as kernel regression [55]. With these estimations, we
can take the limiting test error of the kernel regression to predict the limiting test error of
random feature regression as n/d; — 0 and dy, n — oo. We refer [46, 47, 51, 55], [18], Sec-
tion 4.3, and references therein for more details in high-dimensional kernel ridge/ridgeless
regressions. We emphasize that the optimal prediction error of random feature regression in
linear-width regime is actually achieved in the ultra-wide regime, which boils down to the
limiting kernel regression, see [53, 55, 56, 86]. This is one of the motivations for studying the
ultra-wide regime and the limiting kernel ridge regression.

In the end, we would like to mention the idea of spectral-norm approximation for the ex-
pected kernel @, which helps us describe the asymptotic behavior of limiting kernel regres-
sion. For specific activation o, kernel @ has an explicit formula, see [48, 49, 52], whereas
generally, it can be expanded in terms of the Hermite expansion of o [29, 56, 67]. Thanks
to pairwise approximate orthogonality introduced in [29], Definition 3.1, we can approxi-
mate P in the spectral norm for general deterministic data X. This pairwise approximate
orthogonality defines how orthogonal is within different input vectors of X. With certain
i.i.d. assumption on X, [47] and [18], Section 4.3, where the scaling dy o n*, for @ € (0, 1],
determined which degree of the polynomial kernel is sufficient to approximate &. Instead,
our theory leverages the approximate orthogonality among general datasets X to obtain a
similar approximation. Our analysis presumably indicates that the weaker orthogonality X
has, the higher degree of the polynomial kernel we need to approximate the kernel ®.

1.5. Preliminaries.

Notation. We use tr(A) = %Zi Aj;; as the normalized trace of a matrix A € R"*" and
Tr(A) = >; Ai;. Denote vectors by lowercase boldface. ||A|| is the spectral norm for matrix
A, ||A| F denotes the Frobenius norm, and ||x|| is the £>-norm of any vector x. A ©® B is the
Hadamard product of two matrices, that is, (A © B);j = A;; B;;. Let Ey[-] and Vary|[-] be the
expectation and variance only with respect to random vector w. Given any vector v, diag(v)
is a diagonal matrix where the main diagonal elements are given by v. Apin(A) is the smallest
eigenvalue of any Hermitian matrix A.
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Before stating our main results, we describe our model with assumptions. We first consider
the output of the first hidden layer and empirical conjugate kernel (CK):

1
(5) Y:=o(WX) and d—YTY.

1
Observe that the rows of matrix Y are independent and identically distributed since only W
is random and X is deterministic. Let the ith row of ¥ be yl-T, for 1 <i <d;. Then, we obtain
a sample covariance matrix,

d
YTy => "y,

i=1
which is the sum of d| independent rank-one random matrices in R"*”. Let the second mo-
ment of any row y; be (3). Later on, we will approximate & based on the assumptions of
input data X.

Next, we define the empirical neural tangent kernel (NTK) for (1), denoted by H € R"*".

From Section 3.3 in [29], the (i, j)th entry of H can be explicitly written as

d
1 1
(6) H;jj:= Z > (o (w,! x;)o (w, x;) +afo’ (w)xi)o' (wx;)x]x;), 1<i,j<n,
r=1

where w, is the rth row of weight matrix W, x; is the ith column of matrix X, and a, is rth
entry of the output layer a. In the matrix form, H can be written by

(7) H:= dL(YT” ($TS) o (x X)),
1

where the ath column of S is given by
(8) diag(c’'(Wx4))a V1 <a <n.

We introduce the following assumptions for the random weights, nonlinear activation func-
tion o, and input data. These assumptions are basically carried on from [29].

ASSUMPTION 1.1. The entries of W and a are i.i.d. and distributed by N (0, 1).

ASSUMPTION 1.2. Activation function o (x) is a Lipschitz function with the Lipschitz
constant A, € (0, 00). Assume that o is centered and normalized with respect to & ~ A(0, 1)
such that

) E[o(£)]=0, E[o?&)]=1.
Define constants a, and b, € R by
(10) by :=E[c'(®)],  a, :=E[o'()?]

Furthermore, o satisfies either of the following:

1. o(x) is twice differentiable with sup, . [0 (x)| < A4, Or
2. o(x) is a piecewise linear function defined by

ax+b, x>0,
cx+b, x<0,

for some constants a, b, ¢ € R such that (9) holds.



1902 Z. WANG AND Y. ZHU

Analogously to [39], our Assumption 1.2 permits o to be the commonly used activation
functions, including ReLU, Sigmoid, and Tanh, although we have to center and normalize
the activation functions to guarantee (9). Such normalized activation functions exclude some
trivial spike in the limiting spectra of CK and NTK [19, 29]. The foregoing assumptions
ensure our nonlinear Hanson—Wright inequality in the proof. As a future direction, going
beyond Gaussian weights and Lipschitz activation functions may involve different types of
concentration inequalities.

Next, we present the conditions of the deterministic input data X and the asymptotic
regime for our main results. Define the following (e, B)-orthonormal property for our data
matrix X.

DEFINITION 1.3. For given any &, B > 0, matrix X is (e, B)-orthonormal if for any
distinct columns x4, Xg in X, we have

lIxell2 — 1] <e, llIxglla — 1| <e, X xg| <e,

and also
n

S (%l —1)><B%  |X| <B.

a=1
ASSUMPTION 1.4. Letn,dy,dy — oo such that:

(a) y:=n/d; — 0;

(b) X is (e¢,, B)-orthonormal such that neﬁ — 0asn— o0;

(c) The empirical spectral distribution /i of X T X converges weakly to a fixed and non-
degenerate probability distribution 1o # 8o on [0, 00).

In above (b), the (¢, B)-orthonormal property with neﬁ = o(1) is a quantitative version
of pairwise approximate orthogonality for the column vectors of the data matrix X € R%*",
When dj < n, it holds, with high probability, for many random X with independent columns
Xy, including the anisotropic Gaussian vectors x, ~ N (0, X) with tr(X) =1 and ||Z|| <
1/n, vectors generated by Gaussian mixture models, and vectors satisfying the log-Sobolev
inequality or convex Lipschitz concentration property. See [29], Section 3.1, for more details.
Specifically, when x,,’s are independently sampled from the unit sphere S©~!, X is (g,,, B)-
orthonormal with high probability where &, = O( k)g%) and B = O(1) as n < dp. In this
case, for any £ > 2, we have neﬁ — 0. In our theory, we always treat X as a deterministic
matrix. However, our results also work for random input X independent of weights W and a
by conditioning on the high probability event that X satisfies (g,, B)-orthonormal property.
Unlike data vectors with independent entries, our assumption is promising to analyze real-

world datasets [53] and establish some n-dependent deterministic equivalents like [49].
The following Hermite polynomials are crucial to the approximation of ® in our analysis.

DEFINITION 1.5 (Normalized Hermite polynomials). The rth normalized Hermite poly-
nomial is given by

1 2, d" 2
h, = (=1)é&* /2% —x /2‘
(x) Jﬁ( ) e I

Here {h,} 2, form an orthonormal basis of L?(R, T), where I' denotes the standard Gaussian
distribution. For o7, 02 € L2(R, I'), the inner product is defined by

00 e—x2/2
(o1, 02) = [ 00w .
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Every function o € L?(R, T') can be expanded as a Hermite polynomial expansion

o (x) =) & (0)h(x),

r=0
where ¢, (o) is the rth Hermite coefficient defined by

—x2/2
dx.

£ (o) 1= f_ o@h (0 N

In the following statements and proofs, we denote & ~ N (0, 1). Then for any k € N, we
have

ti(0) = E[o (§)hi(8)].

Specifically, b, = E[o’(§)] = E[& - 0(§)] = ¢1(0). Let fi(x) = x¥. We define the inner-
product kernel random matrix f;(X ' X) € R"*" by applying f; entrywise to X | X. Define a
deterministic matrix

3
(D) @oi=pp’ + Y @) fil(XTX) + (1= £1(0)? = &(0)? — ¢3(0)?) Id,
k=1

where the oth entry of u € R" is «/5{2(0) (X ll2 — 1) for 1 < a <n. We will employ @ as
an approximation of the population covariance ® in (3) in the spectral norm when ng;t — 0.

For any n x n Hermitian matrix A, with eigenvalues Ay, ..., A,, the empirical spectral
distribution of A is defined by

1 n
pa, () =~ > 8, ().
i=1

We write limspec(A,) = p if s, — n weakly as n — oo. The main tool we use to study
the limiting spectral distribution of a matrix sequence is the Stieltjes transform defined as
follows.

DEFINITION 1.6 (Stieltjes transform). Let u be a probability measure on R. The Stieltjes
transform of  is a function s(z) defined on the upper half plane C* by

1
S(Z):/RE‘“‘(")'

For any n x n Hermitian matrix A,, the Stieltjes transform of the empirical spectral dis-
tribution of A, can be written as tr(A, — zId)~!. We call (A, — zId)~! the resolvent of
Ap.

2. Main results.

2.1. Spectra of the centered CK and NTK. Our first result is a deformed semicircle law
for the CK matrix. Denote by fig = (1 — b, )? + b?, o the distribution of (1 — b(z,) + b(z,k with
A sampled from the distribution po. The limiting law of our centered and normalized CK
matrix is depicted by s X 19, where u; is the standard semicircle law and the notation X
is the free multiplicative convolution in free harmonic analysis. For full descriptions of free
independence and free multiplicative convolution, see [62], Lecture 18, and [5], Section 5.3.3.
The free multiplicative convolution X was first introduced in [79], which later has many
applications for products of asymptotic free random matrices. The main tool for computing
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free multiplicative convolution is the S-transform, invented by [79]. S-transform was recently
utilized to study the dynamical isometry of deep neural networks [25, 37, 65, 66, 84]. Some
basic properties and intriguing examples for free multiplicative convolution with pg can also
be found in [15], Theorems 1.2, 1.3.

THEOREM 2.1 (Limiting spectral distribution for the conjugate kernel). Suppose As-
sumptions 1.1, 1.2, and 1.4 of the input matrix X hold, the empirical eigenvalue distribution
of

1
Jdin

(12) (Y'Y —E[Y Y]

converges weakly to

(13) =g B (1= b2) + b - o) = s B fig

almost surely as n, dy, dy — oo. Furthermore, ifdlsfg — 0 as n,dy, d; — o0, then the em-
pirical eigenvalue distribution of

(14) \E (;1 YTy — q>0>

also converges weakly to the probability measure (. almost surely, whose Stieltjes transform
m(z) is defined by

_dpo(x)

15 =
(15 ’"(Z”f Tt p@x
for each 7 € CT, where B(z) € CT is the unique solution to

xd jio(x)

16

(16) ﬁ()+/z+ﬁ(z)x

Suppose that we additionally have b, = 0, that is, E[o’(£)] = 0. In this case, our Theo-
rem 2.1 shows that the limiting spectral distribution of (2) is the semicircle law, and from
(13), the deterministic data matrix X does not have an effect on the limiting spectrum. See
Figure 1 for a cosine-type o with b, = 0. The only effect of the nonlinearity in p is the
coefficient b, in the deformation fig.

Figure 2 is a simulation of the limiting spectral distribution of CK with activation function
o (x) given by arctan(x) after proper shifting and scaling. More simulations are provided in

—— Limiting law 70 —— Limiting law 70 —— Limiting law

8 8 8 8 8

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

F1G. 1. Simulations for empirical eigenvalue distributions of (14) and theoretical predication (red curves) of the
limiting law u where activation function o (x) o cos(x) satisfies Assumption 1.2 with by =0, and X is a standard
Gaussian random matrix. Dimension parameters are given by n = 1.9 x 103, dp =2 x 103, and di=2x 10°
(lefty; n =2 x 103, dg = 1.9 x 103, and d; =2 x 107 (middle); n =2 x 103, dy =2 x 103, and d; =2 x 107
(right).
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160 —— Limiting law 100 — Limiting law —— Limiting law

400

300

200

20 100

-4 =3 -2 -1 0 1 2 3 4 -4 =3 -2 =3 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

FI1G. 2.  Simulations for empirical eigenvalue distributions of (14) and theoretical predication (red curves) of
the limiting law p where activation function o (x) o arctan(x) satisfies Assumption 1.2 and X is a standard
Gaussian random matrix: n = 103, dg = 103, and d| = 10° (left); n = 103, dgp=1.5 x 103, and d| = 10°
(middle); n = 1.5 x 103, dy = 103, and dy = 10° (right).

Appendix B with different activation functions. The red curves are implemented by the self-
consistent equations (15) and (16) in Theorem 2.1. In Section 4, we present general random
matrix models with similar limiting eigenvalue distribution as ;& whose Stieltjes transform is
also determined by (15) and (16).

Theorem 2.1 can be extended to the NTK model as well. Denote by
1
(17) W= d—IE[STS] O (XTX) e R™",
1

As an approximation of W in the spectral norm, we define

2 2
(18) Wy = (aa —Zni(@) Id+ Y " n; () firr (X T X),

k=0 k=0
where f;’s are defined in (11), a, is defined in (10), and the kth Hermite coefficient of ¢’ is
(19) k(o) :=E[o" ()i (§)].

Then, a similar deformed semicircle law can be obtained for the empirical NTK matrix H.

THEOREM 2.2 (Limiting spectral distribution of the NTK). Under Assumptions 1.1, 1.2,
and 1.4 of the input matrix X, the empirical eigenvalue distribution of

d
(20) \E (H —E[H])

weakly converges to u = s X ((1 — bg) + bg - o) almost surely as n,dy, dy — oo and
n/dy — 0. Furthermore, suppose that sﬁdl — 0, then the empirical eigenvalue distribution

of

d
ey \/;(H — @9 — Vo)

weakly converges to u almost surely, where ®g and Vg are defined in (11) and (18), respec-
tively.

2.2. Nonasymptotic estimations. With our nonlinear Hanson—Wright inequality (Corol-
lary 3.5), we attain the following concentration bound on the CK matrix in the spectral norm.

THEOREM 2.3. With Assumption 1.1, assume X satisfies Z?ZI(HX,'H2 — 1)2 < B? for
a constant B > 0, and o is As-Lipschitz with Elo (§)] = 0. Then with probability at least
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1 —4e™2n,

22) ” LyTy <1>H <C( Ll >,\2 I1X12 + 32822 1x]| | 2
d; o d; /) ° g dl’

where C > 0 is a universal constant.

REMARK 2.4. Theorem 2.3 ensures that the empirical spectral measure w, of the cen-

tered random matrix @ (dil Y'Y — ®) has a bounded support for all sufficiently large n.
Together with the global law in Theorem 2.1, our concentration inequality (22) is tight up to
a constant factor. Additionally, by the weak convergence of u, to u proved in Theorem 2.1,
we can take a test function x2 to obtain that
) >
— < / x-d ,u(x))
F R

almost surely, as n, dy — oo and dj /n — oo. Therefore, the fluctuation of dilY 1Y around ®

Jd
/xzdun(x)efxzdu(x), that is, va
R R n

1
—Y'y—o
1

under the Frobenius norm is exactly of order n/./d.

Based on the foregoing estimation, we have the following lower bound on the smallest
eigenvalue of the empirical conjugate kernel, denoted by kmin(dll Y'y).

THEOREM 2.5. Suppose Assumptions 1.1 and 1.2 hold and o is not a linear function, X
is (€n, B)-orthonormal. Then with probability at least 1 — 4e™2",

1 3 n n
oin( YY) 1= Y607 = Caeivin— ¢ [+ 2 a2
dj P dq d;

where Cp is a constant depending on B. In particular, ifsﬁn =o0(1), B=0(1),d; = w(n),
then with high probability,

3
min( YTV ) 2 1= 360 = o)
di i=1

REMARK 2.6. A related result in [63], Theorem 5, assumed ||x;|| =1 for all j € [n],

A < B, |c(0)|<B,d > Clogz(n)m and obtained dil)\min(YTY) > Amin(®) — o(1).
We relax the assumption on the column vectors of X, and extend the range of d; down to
di = Q(n), to guarantee that %)\mm(YTY) is lower bounded by an absolute constant, with
an extra assumption that E[o (§)] = 0. This assumption can always be satisfied by shifting
the activation function with a proper constant. Our bound for Ay (P) is derived via Hermite
polynomial expansion, similar to [63], Lemma 15. However, we apply an e-net argument
for concentration bound for diY TY around @, while a matrix Chernoff concentration bound

with truncation was used in [63], Theorem 5.

Additionally, the concentration for the NTK matrix H can be obtained in the next theorem.
Recall that H is defined by (7) and the columns of § are defined by (8) with Assumption 1.1.

THEOREM 2.7. Suppose d| > logn, and o is Ay -Lipschitz. Then with probability at least

T
1 I
(sTs ~E[sTs) © (xTX) ” SWHPINE-S
1

23) \
1
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Moreover, if the assumptions in Theorem 2.3 hold, then with probability at least 1 —n~"/3 —
4e—2n,

n n n logn
(24) ||H—EH||§C( —+—)A?,||X||2+328k3,||X|| Zoproad x4 221
d; dp dy d

REMARK 2.8. Compared to Proposition D.3 in [39], we assume a is a Gaussian vector
instead of a Rademacher random vector and attain a better bound. If a; € {41, —1}, then
one can apply matrix Bernstein inequality for the sum of bounded random matrices. In our
case, the boundedness condition is not satisfied. Section S1.1 in [3] applied matrix Bernstein
inequality for the sum of bounded random matrices when a is a Gaussian vector, but the
boundedness condition does not hold in equation (S7) of [3].

Based on Theorem 2.7, we get a lower bound for the smallest eigenvalue of the NTK.

THEOREM 2.9. Under Assumptions 1.1 and 1.2, suppose that X is (¢, B)-orthonormal,
o is not a linear function, and di > logn. Then with probability at least 1 —n~"/3,

2
logn
Amin(H) = a5 — Z 771%(0) — C382n — 10)»§B41l d—gl’

k=0

where Cp is a constant depending only on B, and ni (o) is defined in (19). In particular, if
sﬁn =o0(1), B=0(1), and di = w(logn), then with high probability,

2
Dmin(H) = (aa -y m%(a))(l —o(1)).
k=0

REMARK 2.10. We relax the assumption in [61] to d; = w(logn) for the 2-layer case
and our result is applicable beyond the ReL.U activation function and to more general assump-
tions on X. Our proof strategy is different from [61]. In [61], the authors used the inequality
Amin((ST8) © (XTX)) > min; [|Si]|3 - Amin(X T X) where S; is the ith column of S. Then,
getting the lower bound is reduced to show the concentration of the 2-norm of the column
vectors of S. Here we apply a matrix concentration inequality to (ST S) ® (X ' X) and gain a
weaker assumption on d; to ensure the lower bound on Ami, (H).

REMARK 2.11. In Theorems 2.5 and 2.9, we exclude the linear activation function.
When o (x) = x, it is easy to check both C}—I)Lmin(YTY) and Amin (H) will trivially determined
by Amin(X TX), which can be vanishing. In this case, the lower bounds of the smallest eigen-
values of CK and NTK rely on the assumption of 1 or the distribution of X. For instance,
when the entries of X are i.i.d. Gaussian random variables, Amin(X ' X) has been analyzed
in [75].

2.3. Training and test errors for random feature regression. We apply the results of the
preceding sections to a two-layer neural network at random initialization defined in (1), to
estimate the training errors and test errors with mean-square losses for random feature re-
gression under the ultra-wide regime where di/n — oo and n — oo. In this model, we take
the random feature ——o (W X) and consider the regression with respect to € R% based on

NZD

Fo(X) = ——0T 5 (WX),
1

Jd
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with training data X € R%*" and training labels y € R". Considering the ridge regression
with ridge parameter A > 0 and squared loss defined by

(25) L®) =] fo00T = y[* + 1617,
we can conclude that the minimization 6 := arg ming L (@) has an explicit solution
(26) é:iy(iﬂwrud)_ly,

Vdiy \d

where ¥ = o (W X) is defined in (5). When o is nonlinear, by Theorem 2.5, it is feasible to
take inverse in (26) for any A > 0. Hence, in the following results, we will focus on nonlinear
activation functions.? In general, the optimal predictor for this random feature with respect
to (25) is

1

Vdi

where we define an empirical kernel K, (-, -) : R x R4 — R as

(27) FE (x) = 0 oc(Wx) = K, (x. X)(Ka (X, X) +A1d) "y,

d
(28) Kn(X,2) = dia(Wx)Ta(Wz) = diZa«w,-, X))o ((w;, 2)).
1 Li=

The n-dimension row vector is given by
(29) Kﬂ(X7 X) = [Kn(X, Xl)v --wKn(X, X}’l)]v

and the (7, j) entry of K, (X, X) is defined by K, (x;,x;), for 1 <i, j <n.
Analogously, consider any kernel function K (-, -) : R% x R% — R. The optimal kernel

predictor with a ridge parameter A > O for the kernel ridge regression is given by (see [10,
18, 41, 46, 51, 71] for more details)

(30) AR (x) := K (x, X)(K (X, X) + 11d) "y,

where K (X, X) is an n x n matrix such that its (i, j) entry is K(x;,X;), and K(x, X) is a
row vector in R” similarly with (29). We compare the characteristics of the two different
predictors fk(RF) (x) and fk(K)(x) when the kernel function K is defined in (4). Denote the
optimal predictors for random features and kernel K on training data X by

AP = (. A5 )T

AK A(K AK T
AP0 =FE &0, FO00)T
respectively. Notice that, in this case, K (X, X) = & defined in (3) and K, (X, X) is the ran-
dom empirical CK matrix % Y TY defined in (5).
We aim to compare the training and test errors for these two predictors in ultra-wide ran-
dom neural networks, respectively. Let training errors of these two predictors be
2
train H ’

1, » 22 _
31) EEM = - AR —y)5= ~|(K(X. X) +31d) ly

1 22 -
(32) Eqain” =~ |00 = yl3 = (KX, X) +21d) "y "

train

2 As Remark 2.11 stated, when o (x) = x, Amin of CK may be possibly vanishing. To include the linear activation
function, we can alternatively assume that the ridge parameter A is strictly positive and focus on random feature
ridge regressions.
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In the following theorem, we show that, with high probability, the training error of the random
feature regression model can be approximated by the corresponding kernel regression model
with the same ridge parameter A > 0 for ultra-wide neural networks.

THEOREM 2.12 (Training error approximation). Suppose Assumptions 1.1, 1.2, and 1.4
hold, and o is not a linear function. Then, for all large n, with probability at least 1 — de~2n

(RF,) (K1) Ci [ n 2
(33) |Etrain - Etrain } = \/M( d_l + CQ) Iyl

where constants C1 and Cy only depend on A, B and o .

Next, to investigate the test errors (or generalization errors), we introduce further assump-
tions on the data and the target function that we want to learn from training data. Denote the
true regression function by f*: R% — R. Then, the training labels are defined by

y=r*X)+e and f*X) = (F&D)..... &))",

where € € R" is the training label noise. For simplicity, we further impose the following
assumptions, analogously to [50].

ASSUMPTION 2.13.  Assume that the target function is a linear function f*(x) = (8%, x),
where random vector satisfies B* ~ N (0, crg Id). Then, in this case, the training label vector
is given by y = X T B* + € where € ~ N (0, 02 Id) independent with B* € R%.

ASSUMPTION 2.14. Suppose that training dataset X = [X1, ..., X,] € RO*" satisfies
(&, B)-orthonormal condition with 118,‘11 = o(1), and a test data x € R% is independent with
X and y such that X = [X1, ..., Xy, X] € ROX+D g a]50 (¢,, B)-orthonormal. For conve-
nience, we further assume the population covariance of the test data is Ex[xx '] = d—lo Id.

REMARK 2.15. Our Assumption 2.14 of the test data x ensures the same statistical be-
havior as training data in X, but we do not have any explicit assumption of the distribution
of x. It is promising to adopt such assumptions to handle statistical models with real-world
data [48, 49]. Besides, it is possible to extend our analysis to general population covariance
for Ex[xx"].

For any predictor f , define the fest error (generalization error) by

(34) L(f) =Ex[| f®) = f*®0[*).
We first present the following approximation of the test error of a random feature predictor

via its corresponding kernel predictor.

THEOREM 2.16 (Test error approximation). Suppose that Assumptions 1.1, 1.2, 2.13,
and 2.14 hold, and o is not a linear function. Then, for any ¢ € (0, 1/2), the difference of test
errors satisfies

(35) 1L(FRP ) = LA ®0)] = o((nfd)?~9),

with probability 1 — o(1), when n/d; — 0 and n — oo.
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Theorems 2.12 and 2.16 verify that the random feature regression achieves the same
asymptotic errors as the kernel regression, as long as n/d; — oo. This is closely related to
[55], Theorem 1, with different settings. Based on that, we can compute the asymptotic train-
ing and test errors for the random feature model by calculating the corresponding quantities
for the kernel regression in the ultra-wide regime where n/d; — 0.

THEOREM 2.17 (Asymptotic training and test errors). Suppose Assumptions 1.1 and 1.2
hold, and o is not a linear function. Suppose the target function f*, training data X, and
test data x € R% satisfy Assumptions 2.13 and 2.14. For any » > 0, let the effective ridge
parameter be

1+ 21— b2
(36) Aeff(A, 0) 1= 72‘7
bO'
If the training data has some limiting eigenvalue distribution jo = limspec X ' X as n — 0o
andn/dy — y € (0, 00), then when n/d; — 0 and n — oo, the training error satisfies

242

A 2,2
(RF..) P98 o)
(BN Egn & s Vi (Aett(X, 0)) + JATA—B0R

and the test error satisfies

(Bk (Reft(r, 0)) — 1 + ),

(38) L(FED x0) S 03Bx (et (h, 0)) + 02V (hetr(h, 0)),

where the bias and variance functions are defined by
1
B =) 707 [ o
kW) =>0=-y)+yv e G v)? po(x)
X
b=y [ o
kW= [ s o)

We emphasize that in the proof of Theorem 2.17, we also get n-dependent deterministic
equivalents for training/test errors of the kernel regression to approximate the performance
of random feature regression. This is akin to [49], Theorem 3, and [18], Theorem 4.13, but
in different regimes. In the following Figure 3, we present implementations of test errors
for random feature regressions on standard Gaussian random data and their limits (38). For
simplicity, we fix 7, do, only let d; — 0o, and use empirical spectral distribution of X " X to
approximate (g in Bg (Aer(A, 0)) and Vi (Aegr(X, 0)), which is actually the n-dependent de-
terministic equivalent. However, for Gaussian random matrix X, (g is actually a Marchenko—
Pastur law with ratio y, so Bg (Aef(A, o)) and Vi (Aefr(A, 0)) can be computed explicitly
according to [50], Definition 1.

REMARK 2.18 (Implicit regularization). For nonlinear o, the effective ridge parameter
(36) can be viewed as an inflated ridge parameter since bg € [0, 1) and Aer > A > 0. This Aegr
leads to implicit regularization for our random feature and kernel ridge regressions even for
the ridgeless regression with A = 0 [18, 41, 46, 57]. This effective ridge parameter Aegt also
shows the effect of the nonlinearity in the random feature and kernel regressions induced by
ultra-wide neural networks.

REMARK 2.19. For convenience, we only consider the linear target function f*, but in
general, the above theorems can also be obtained for nonlinear target functions, for instance,
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35
== = Limiting test loss == = Limiting test losses
35 —$— n=1200 —$- n=1200

- n=1000 30 n=1000
—$- n=800 —$— n=800

Test errors
Test errors

I e S WO A

——————————— ) - -

Width di Width di

FI1G. 3. Simulations for the test errors of random feature regressions with centered Gaussian random matrix as
input X and regularization parameter A = 103 (left) and A = 10~ (right). Here, the activation function o is a
re-scaled Sigmoid function, oe = 1 and og = 2. We fix dy = 500, varying values of sample sizes n and widths d .
Test errors in solid lines with error bars are computed using an independent test set of size 5000. We average our
results over 50 repetitions. Limiting test errors in black dash lines are computed by (38), and we take ji() to be the
corresponding Marchenko—Pastur distributions.

f* is a nonlinear single-index model. Under (g,, B)-orthonormal assumption with neﬁ — 0,
our expected kernel K (X, X) = ® is approximated in terms of

(39) limspec K (X, X) = limspec(b2X " X 4 (1 — b2)Id),

whence, this kernel regression can only learn linear functions. So if f* is nonlinear, the limit-
ing test error should be decomposed into the linear part as (38) and the nonlinear component
as a noise [18], Theorem 4.13. For more conclusions of this kernel machine, we refer to [46,
47, 51, 55].

REMARK 2.20 (Neural tangent regression). In parallel to the above results, we can obtain
a similar analysis of the limiting training and test errors for random feature regression in (27)
with empirical NTK given by either K,,(X, X) = %(ST $)O(XTX) or K,(X, X)= H. This
random feature regression also refers to neural tangent regression [57]. With the help of
our concentration results in Theorem 2.7 and the lower bound of the smallest eigenvalues in
Theorem 2.9, we can directly extend the above Theorems 2.12, 2.16, and 2.17 to this neural
tangent regression. We omit the proofs in these cases and only state the results as follows.

If K,(X,X)= %(STS) ® (X T X) with expected kernel K (X, X) = ¥ defined by (17),
the limiting training and test errors of this neural tangent regression can be approximated by
the kernel regression with respect to W, as long as d; = w(logn). Analogously to (39), we
have an additional approximation

(40) limspec W = limspec(b2 X ' X + (a, — b2)1d).

Under the same assumptions of Theorem 2.17 and replacing n/d; — 0 with d; = w(logn),

we can conclude that the test error of this neural tangent regression has the same limit as

A—b2 . :
‘“272". This result is

akin to [57], Corollary 3.2, but permits more general assumptions on X. The limiting training
error of this neural tangent regression can be obtained by slightly modifying the coefficient
in (37).

Similarly, if K,,(X, X) = H defined by (7) possesses an expected kernel K (X, X) = ® +
W, this neural tangent regression in (27) is close to kernel regression (30) with kernel

K(x,2) =Ey[o(w x)o(w'x)]+Ey[o’(w x)o’(w"x)]x "z,

(38) but changing the effective ridge parameter (36) into Aegr(A, o) =
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under the ultra-wide regime, n/d; — 0. Combining (39) and (40), Theorem 2.17 can di-

rectly be extended to this neural tangent regression but replacing (36) with Acg(A,0) =

—_ 2 . . . ., . . . .
%. Section 6.1 of [3] also calculated this limiting test error when data X is isotropic

Gaussian.

Organization of the paper. 'The remaining parts of the paper are structured as follows. In
Section 3, we first provide a nonlinear Hanson—Wright inequality as a concentration tool for
our spectral analysis. Section 4 gives a general theorem for the limiting spectral distributions
of generalized centered sample covariance matrices. We prove the limiting spectral distribu-
tions for the empirical CK and NTK matrices (Theorem 2.1 and Theorem 2.2) in Section 5.
Nonasymptotic estimates in Section 2.2 are proved in Section 6. In Section 7, we justify the
asymptotic results of the training and test errors for the random feature model (Theorem 2.12
and Theorem 2.16). Auxiliary lemmas and additional simulations are included in Appendices
A and B.

3. A nonlinear Hanson—Wright inequality. We give an improved version of Lemma 1
in [52] with a simple proof based on a Hanson—Wright inequality for random vectors with
dependence [1]. This serves as the concentration tool for us to prove the deformed semicircle
law in Section 5 and provide bounds on extreme eigenvalues in Section 6. We first define
some concentration properties for random vectors.

DEFINITION 3.1 (Concentration property). Let X be a random vector in R". We say X
has the K -concentration property with constant K if for any 1-Lipschitz function f : R" —
R, we have E| f(X)| < oo and for any ¢ > 0,

A1) P(|f(X) —Ef(X)| = t) <2exp(—1*/K?).
There are many distributions of random vectors satisfying K -concentration property, in-

cluding uniform random vectors on the sphere, unit ball, hamming or continuous cube, uni-
form random permutation, etc. See [78], Chapter 5, for more details.

DEFINITION 3.2 (Convex concentration property). Let X be a random vector in R"”. We
say X has the K-convex concentration property with the constant K if for any 1-Lipschitz
convex function f : R" — R, we have E| f(X)| < oo and for any ¢ > 0,

P(|f(X) —Ef(X)] = 1) < 2exp(—1*/K?).
We will apply the following result from [1] to the nonlinear setting.

LEMMA 3.3 (Theorem 2.5 in [1]). Let X be a mean zero random vector in R". If X has
the K -convex concentration property, then for any n x n matrix A and any t > 0,

1 1? t
P(XTAX —E(XTAX)|>1) §Zexp(——min{ - D
C 2K4|A|%T K2 A

for some universal constant C > 1.
THEOREM 3.4. Let w € R% be a random vector with K -concentration property, X =

(X1, ...,X,) € ROX" be g deterministic matrix. Define y = o(w'X)", where o is Ay-
Lipschitz, and ® =Eyy ' . Let A be an n x n deterministic matrix.
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1. IfEly] =0, for any t > 0,
P(ly" Ay — TrA®| > 1)

(42) , ( . { 2 t })
<2exp| —— min ) )
C o L2K98 X I41ANE T K22IXI21A]

where C > 0 is an absolute constant.
2. IfElyl #0, for any t > 0,

P(ly" Ay — TrA®| > 1)

2
t t
§2exp<——min{ ; })
C AKDSIXHNANE T K2AZ I XAl

2
t
16K2A(2,||X||2||A||2||EY||2)

+2 exp(—
for some constant C > 0.

PROOF. Let f be any 1-Lipschitz convex function. Since y = o(w' X)', f(y) =
f(o(w'X)T)isaAq || X|-Lipschitz function of w. Then by the Lipschitz concentration prop-
erty of w in (41), we obtain

2
t
P —E >t1)<2 ——— .
(170 ~Ef )] 2 1) =2e9( 7 )
Therefore, y satisfies the K 1, || X [|-convex concentration property. Define f(x) = f(x—Ey),
then f is also a convex 1-Lipschitz function and f(y) = f(y — Ey). Hence y :=y — Ey also
satisfies the KA, || X ||-convex concentration property. Applying Theorem 3.3 to y, we have
for any ¢ > 0,

P(]y" Ay —E(3 " Ay)| = 1)

B e )

<2exp| —— min ) .

C L2k N8IXI4IANIET K22IXI21A]
Since Ey = 0, the inequality above implies (42). Note that
y' Ay —E(F'Ay)=(y' Ay —TrA®) —y' AEy —Ey' Ay.
Hence,
y Ay —TrAd® = (§" Ay — E(§' A§)) + (y —Ey) (A + AT)Ey
“@4) T T T T T T
=y AYy—E{y Ay)+(y (A+A )Ey—Ey (A+A")Ey).

Since y' (A + ANEy is a (2||A|||Ey|l/|| X || )-Lipschitz function of w, by the Lipschitz
concentration property of w, we have

t2
45 Po-Ep'(A+ATEy|=1) < 2“"(_ FK2([ATIEy] ||X||Ag)2>‘

Then combining (43), (44), and (45), we have
P(ly" Ay — TrA®| > 1)
<P(§' Ay —EF" Ay)| = 1/2) + P(/(y —Ey)" (A + A")Ey| > 1/2)
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2
1 I3
§2exp<——min{ , })
2C AKOLNXI4IANG K2ZIXI21A]

2
t
+ 2exp(— )
16K2AZIX 2| Al I Ey|
This finishes the proof. [l

Since the Gaussian random vector w ~ N(0, I4,) satisfies the K -concentration inequality
with K = +/2 (see, e.g., [20]), we have the following corollary.

COROLLARY 3.5. Let w~ N (O, Ig), X = (X1,...,X,) € R%*" pe g deterministic ma-
trix. Define'y = o(w' X) ", where o is Aq-Lipschitz, and ® = Eyy'. Let A be an n x n
deterministic matrix.

1. IfEly] =0, for any t > 0,

1 12 t
46) P yTAy—TrAq) >t §Zexp<——min{ , D
( [21) C o ladIx AL AZIXI21A]

for some absolute constant C > 0.
2. IfEly] #0, for any t > 0,

P(| TA TrA<D|>t)<2ex( lmin{ e ! })
yAay =P T M X AR RZIXIPIA]

2
t
+ 2exp(— )
3222 IXIIZ AN Ey|2
(47)

. ( 1 { 12 t })
<2exp| ——= min ,
C SALIX4NANG A2 IXI?IA]

2
t
+2exp<— )
32221 X121 Al*10

where
t0:=232 3 (Ixill = 1)* +2n(Ea (§))%, £ ~N(O, D).

i=l

REMARK 3.6. Compared to [52], Lemma 1, we identify the dependence on ||A| r and
Ey in the probability estimate. By using the inequality ||A ||z < /n||A||, we obtain a similar
inequality to the one in [52] with a better dependence on n. Moreover, our bound in fg is
independent of dy, while the corresponding term 7y in [52], Lemma 1, depends on | X|| and
dp. In particular, when Eo (§) =0 and X is (g,, B)-orthonormal, #y is of order 1. Hence,
(47) with the special choice of 7y is the key ingredient in the proof of Theorem 2.3 to get a
concentration of the spectral norm for CK.

PROOF OF COROLLARY 3.5. We only need to prove (47), since other statements follow
immediately by taking K = /2. Let x; be the ith column of X. Then
n
2 2
IEyl* = [Eo(w'X)|* =) [Eo(w'x;)]".

i=1
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Let £ ~ N(0, 1). We have
[Eo(w'x;)| = [Eo (£lIx: )| <E|(o (Elxill) — 0 (€))] + |[Eo (8)]
< EE(Ixi | = D)| + [Eo ()] < Ao |lIxill — 1| + [Eo (8)].

Therefore

IEy|? <Z (Ix;1l — 1) + |Eo (&))? <22k2 (Ixi | = 1) +2(Eo (§))°
i=1
(48)

=23, Z(”Xi I — 1)+ 2n(Eo £))* = 1,
i=1
and (47) holds. [

We include the following corollary about the variance of y' Ay, which will be used in
Section 5 to study the spectrum of the CK and NTK.

COROLLARY 3.7. Under the same assumptions of Corollary 3.5, we further assume that
to < Cn, and ||All, | X|| < C3. Then as n — 0o,

—E[ly" Ay — TrACI>|2] — 0

PROOF. Notice that ||A|r < /n||A|. Thanks to Theorem 3.5 (2), we have that for any
t>0,

1
P(—|yTAy —TrA®| > t) < 4exp(—Cnmin{t?, t}),
n

where constant C > 0 only relies on Cy, C2, A,, and K. Therefore, we can compute the
variance in the following way:

1 T 2 (o LT 2
E| |y Ay -TrA®|" | = P(—ly Ay —TrA®|" > s )ds
n 0 n
oo
54/ exp(—Cnmin{s, /s}) ds
0

1 +00
- 4/ exp(—Cn/5) ds + 4/ exp(—Cns)ds — 0,
0 1

as n — 00. Here, we use the dominant convergence theorem for the first integral in the last
line. [

4. Limiting law for general centered sample covariance matrices. Independent of
the subsequent sections, this section focuses on the generalized sample covariance matrix
where the dimension of the feature is much smaller than the sample size. We will later inter-
pret such sample covariance matrix specifically for our neural network applications. Under
certain weak assumptions, we prove the limiting eigenvalue distribution of the normalized
sample covariance matrix satisfies two self-consistent equations, which are subsumed into a
deformed semicircle law. Our findings in this section demonstrate some degree of universal-
ity, indicating that they hold across various random matrix models and may have implications
for other related fields.
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THEOREM 4.1. Supposeyi,...,ya € R" are independent random vectors with the same
distribution of a random vector 'y € R". Assume that Ely] = 0, E[ny] = o, € R"™™",
where ©,, is a deterministic matrix whose limiting eigenvalue distribution is g % 8g. As-

sume || D, || < C for some constant C. Define A, := [(d Zl ly,yl ®,) and R(z) :=

(A — z1d)~Y. For any z € Ct and any deterministic matrices D,, with | D, | < C, suppose
thatasn,d — oo andn/d — 0,

(49) tr R(z) D, — E[tr R(z) D] = 0,
and

1
(50) n—zEHyTDny —Tr Dnd>n|2] — 0.

Then the empirical eigenvalue distribution of matrix A, weakly converges to u almost surely,
whose Stieltjes transform m(z) is defined by

due(x)

1 —
(51) e+ [ g
for each z € CT, where B(z) € CT is the unique solution to

xdpe(x)
52
(52) poy+ [ o =

In particular, p = us X .

REMARK 4.2. In [85], it was assumed that ,%ElyTDny — TrD,,<I>n|2 — 0, where

n3/d — oo and n/d — 0 as n — oo. By martingale difference, this condition implies (49).
However, we are not able to verify a certain step in the proof of [85]. Hence, we will not
directly adopt the result of [85] but consider a more general situation without assuming
n3/d — oo. The weakest conditions we found are conditions (49) and (50), which can be
verified in our nonlinear random model.

The self-consistent equations we derived are consistent with the results in [16, 85], where
they studied the empirical spectral distribution of separable sample covariance matrices in
the regime n/d — 0 under different assumptions. When n — oo and n/d — 0, our goal is
to prove that the Stieltjes transform m,, (z) of the empirical eigenvalue distribution of A, and
Bn(z) :=tr[R(z)®,,] pointwisely converges to m(z) and B(z), respectively.

For the rest of this section, we first prove a series of lemmas to get n-dependent determin-
istic equivalents related to (51) and (52) and then deduce the proof of Theorem 4.1 at the
end of this section. Recall A,, = \/7 (d Z ly,yl ®,), R(2) = (A, —zId)~!, and yisa
random vector independent of A, with the same distribution of y;.

LEMMA 4.3.  Under the assumptions of Theorem 4.1, for any z € CT, as d,n — o0,
'y DR(2)y- 3y  R(2)y
; =o(1)
1+ \/E 2YTR(2)y

where D € R"™" is any deterministic matrix such that |D| < C, for some constant C.

(53) tr D + zE[tr R(z) D] + E[

PROOF. Letz=u+iveCt whereu e Rand v > 0. Let

d+1 -1
( ZnyJ fCD —zld> :
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where y;’s are independent copies of y defined in Theorem 4.1. Notice that, for any deter-
ministic matrix D € R"*",

d+1 d

1 . [4f] - \/EA R
= ——R iy: |D—,/—R®,D —zRD.
\/E (;%)ﬁ) n n

Without loss of generality, we assume || D|| < 1. Taking normalized trace, we have

. 1 1d+1 d .
(54) trD 4 ztr[RD] = \/_nZleDRy, —t[R®, D].

For each 1 <i <d + 1, Sherman—Morrison formula (Lemma A.2) implies
RWy,y R®
1
Vdn +y ROy, ’

where the leave-one-out resolvent R is defined as

. 1 d -1
R® .— (— yl— D, — Id) )
= DR 7 TRt T

1<j<d+1,j#i

(55) R=R® _

Hence, by (55), we obtain

| d+1 d+1 )y,
1 DR yl
56) TDR =

Combining equations (54) and (56), and applying expectation at both sides implies

d+1 (i)
N y; DRy, d N
trD + zE[tr RD] = ZE[m+yTR<l>y}_\/;EtrR¢”D
l

d+1 TDR d .
_at IE[ y DR@y ]—J—EtchDnD,
n Vdn +yTR(2)y n

because of the assumption that all y;’s have the same distribution as vector y for all i € [d 4 1].
With (57), to prove (53), we will first show that when n, d — oo,

(57)

(58) \/g(]E[tr R®,D] —E[tr R(z)®,D]) = o(1),

(59) Eftr RD] — E[tr R(z) D] = o(1),
1 y' DR(2)y }

60 -E =o(1).

(©0) n [\/ﬁ—l—yTR(z)y ot

Recall that

) 1 A
R—R(z) = ——R@)(Ya+1¥411) R,

Vdn



1918 Z. WANG AND Y. ZHU

and spectral norms ||I§||, IR(z)]| < 1/v due to Proposition C.2 in [29]. Notice that ||, || < C.
Hence, we can deduce that

d A 1 N
\/; [Eltr R®, D] ~ E[ir R@)®, D]| = - Bl[tr R@)Yas Y41 RO, D]

1 N
< SE[|R®.DRE)| - lyai1’]

CTrd, C?
<

— T 1=
= Ve Yan ] = =55~

J— A ﬁ O’
v2n

as n — 00. The same argument can be applied to the error of E[tr ﬁD] — E[tr R(z) D]. There-
fore (58) and (59) hold. For (60), we denote y :=y/ (nd)Y/* and observe that

1E[ yTDR(2)y }:1 [iTDR(z)i}

n LJdn + Yy R(z)y n L1+3TR@¥
Let R(z) =7, ﬁuiuiT be the eigen-decomposition of R(z). Then
7RI =Y I L
=i—z |3l x—2z
is the Stieltjes transform of a discrete measure puy =Y /_; ((T‘iy’ﬁg)z d,,. Then, we can control

the real part of § ' R(z)§ by Lemma A 4:
1) [Re(¥"R@)P)| = v 2IFI(Im(F T R@)7)) 2.

We now separately consider two cases in the following:

e If the right-hand side of the above inequality (61) is at most 1/2, then

B 5 B 5 1
11+§5TR@F| = |1 +Re(§" R)F)| =

5’
which results in
~‘|’ ~
y'DR(2)y C
(62) ‘ DREY |- 2.
14+5'R(2)y Jdn
e When v~ 12§ (ImF " R(2)§))'/? > 1/2, we know that
‘ y'DR(2)y IFTDIIR@FI _ 1§ DIIR@TI
©3) 1+5"R@YI~ [Im(1+§TR@Y)| ¥ Im(R())y
_ 157D _ 25" omish _ Clyl®
= vy Im(R(2)Y)V/? ~ v ~ vv/nd’

where we exploit the fact that (see also equation (A.1.11) in [13])

1 1/2
|R@)¥| =GF"R@ORE@)F)* = (;yT Im(R(z))i) :

Finally, combining (62) and (63) in the above two cases, we can conclude the asymptotic
result (60) because E||y||?> = Tr &, < Cn in terms of the assumptions of Theorem 4.1.
Then with (58), (59), and (60), we get

d1vT DR
(64) tr D + zE[tr R(z) D] =E[ \/:"T @y —\/EtrR(z)CDnD} +o(1),
I+ =y 'R@y Vn
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as n — o0o. We utilize the notion Ey to clarify the expectation only with respect to random
vector y, conditioning on other independent random variables. So the conditional expectation
is Ey[1y" DR(z)y] = tr DR(z)®, and

1
E[;yTDR(z)y] = [Ey[ y DR(z)yH E[tr R(z)®, D].
Therefore, based on (64), the conclusion (53) holds. [
In the next lemma, we apply the quadratic concentration condition (50) to simplify (53).

LEMMA 4.4. Under the assumptions of Theorem 4.1, condition (50) of Theorem 4.1
implies that

LyT LT
(65) E[ny DR(2)y -,y R(Z)y}:E[trDR(z)dl'ntrR(z)ch

1+\/§%yTR(z)y 1+\/§trR(z)q>n

for each 7 € CT and any deterministic matrix D with |D|| < C.

}—i—o(l),

PROOF. Let us denote
7Y DRQ@Y- ;¥ R@Y  twDR(@)®PytrR(2)P,
1+ /5 yTRG)y 1+ ,/5 0 R@)®,

I + -
01:= oy DR(2)y, 07 := oy R(2)y,

Op 1=

0| := Ey[Q1] = tr DR(z)®,, and 0, = Ey[Q1] = tr R(z)®,. In other words, §, can be
expressed by

010> 0102

” 1+ 500 1+/20
o+ o Q1<Q2+\f) J2o
N Y W N W 1+/§Q2
\ﬁ(Q f(Ql on JE01/4(0: - 02)
= —_ 1 — .
" 1+ /50 (1+\/§Q2)(1+\/§Q2)
Observe that ]E[Qi] =E[Q;] fori =1, 2. Thus, &, has the same expectation as the last term
01(02— 02)
(1+ /5001 + /502

since we can first take the expectation for y conditioning on the resolvent R(z) and then

A, =

take the expectation for R(z). Besides, notice that |Q],|0>| < &£ unlformly Hence, \/g 0>
converges to zero uniformly and there exists some constant C > 0 such that

1 ‘
————|=¢C
‘1+\/§Q2

(66)
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for all large d and n. In addition, observe that

Vi yTDRE)S
1+\/§Q2 1+y"R@R)Y’

where ¥y is defined in the proof of Lemma 4.3. In terms of (62) and (63), we verify that
‘ 0 Clyl?

=< )
l—l-\/ng

n
where C > 0 is some constant depending on v. Next, recall that condition (50) exposes that

(67)

(68) E(Q> — 02)>—> 0 and E(||y||2/n — tr<1>,,)2 —0

as n — oo. The first convergence is derived by viewing D, = R(z) and taking expectation
conditional on R(z). To sum up, we can bound |A, | based on (66) and (67) in the subsequent
way:
Cllyl*
n

|An] < 102 — Q2| < C|llyl*/n —tr |- Q2 — Q2| + Cltr &, | - |02 — Q.

Here, |tr ®,| < ||®,| and ||®, | is uniformly bounded by some constant. Then, by Holder’s
inequality, (68) implies that E[|A,|] — 0, as n approaching to infinity. This concludes
E[é,] = E[A,] converges to zero. [

LEMMA 4.5. Under assumptions of Theorem 4.1, we can conclude that

lim (tr D+ zE[tr R(z) D] + E[tr DR(z)®, |E[tr R(z)P,]) =0

n,d—oo

holds for each z € CT and deterministic matrix D with uniformly bounded spectral norm.

PROOF. Based on Lemma 4.3 and Lemma 4.4, (65) and (53) yield
tr DR(z)®, tr R(z) D,
1+ /50 RE@)®,

As [tr R(z)D| and | tr R(z) D®,,| are bounded by some constants uniformly and almost surely,
for sufficiently large d and n, |\/§ tr R(z)®,| < 1/2 and

trD+zE[trR(z)D]+E[ ] =o(l).

‘E[“DR(Z)CD” trR(Z)q)"] — E[tr DR(2)®, tr R(2)®,]
1+\/§trR(z)q>n
ZTtrR(2) P,
5E[|trR(z)D[-|trR(z)D<Dn\ ‘ \/; - } §2C\/§—> 0,
1+\/§trR(z)c1>n d
asn/d — 0. Hence,
(69) tr D + zE[tr R(z) D] + E[tr DR(2)®, tr R(z)®,] = o(1).

Considering D, = ®,, in (49), we can get almost sure convergence for tr DR(z)®D, -
(tr R(z)®, — E[tr R(z)®P,]) to zero. Thus by dominated convergence theorem,

nli)ngOIE[tr DR(2)®, - (trR(Z)CI)n — E[tr R(z)dD,,])] — 0.
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So we can replace the third term at the right-hand side of (69) with
E[tr DR(2)®,] - E[tr R(z)®,]

to obtain the conclusion. [

PROOF OF THEOREM 4.1. Fix any z € C". Denote the Stieltjes transform of empirical
spectrum of A, and its expectation by m,(z) :=tr R(z) and m, (z) := E[m, (z)] respectively.
Let B,(z) :=tr R(z)®, and B,(z) := E[B,(z)]. Notice that m,,(z), m,(z), B, and B,(z) are
all in C* and uniformly and almost surely bounded by some constant. By choosing D = Id
in Lemma 4.5, we conclude
(70) lim (1 + zi,(2) + Bu(2)?) = 0.

,d—00

n

Likewise, in Lemma 4.5, we consider D = (B, (z)®, + z1d) "' ®,,. Let

U= (Bu(2)®y +21d) .

Because ||®, | is uniformly bounded, || D|| < C||U||. In terms of Lemma A.6, we only need to
provide a lower bound for the imaginary part of U. Observe that Im U = Im B ()P, +vId =
v1d since Amin(P,) > 0 and Im B, (z) > 0. Thus, || D|| < Cv~! for all n. Meanwhile, we have
the equation Bn (2)®, D = ®,, — zD and hence,

Bn(2)E[tr R(z)®, D] = E[tr R(z)®, D]E[tr R(z)®,] = Bn(2) — zE[tr R(z) D].

So applying Lemma 4.5 again, we have another limiting equation tr D + B, (z) — 0. In other
words,

(71) lim (tr(B,(2)®p +21d) '@, + Bu(2)) =0.

n,d— oo

Thanks to the identity

Bu() tr(Br(2)®p +21d) ' @, — 1 = —ztr(B, () Dy +21d) ',

we can modify (70) and (71) to get

(72) Hm (i, (2) + tr(B (2) @y + 21d) ") =0.
n,d— oo

Since Bn (z) and m, (z) are uniformly bounded, for any subsequence in n, there is a fur-
ther convergent sub-subsequence. We denote the limit of such sub-subsequence by 8(z) and
m(z) € C* respectively. Hence, by (71) and (72), one can conclude

lim () +w(B(2)Pn + 21d) "' ®,) =0.

Because of the convergence of the empirical eigenvalue distribution of ®,,, we obtain the fixed
point equation (52) for 8(z). Analogously, we can also obtain (51) for m(z) and B(z). The
existence and the uniqueness of the solutions to (51) and (52) are proved in [15], Theorem 2.1,
and [80], Section 3.4, which implies the convergence of 7, (z) and B, (z) to m(z) and B(z)
governed by the self-consistent equations (51) and (52) as n — oo, respectively.

Then, by virtue of condition (49) in Theorem 4.1, we know m,(z) — m,(2) 2% 0 and
Bn(z) — Bn(2) 2% 0. Therefore, the empirical Stieltjes transform m, (z) converges to m(z)
almost surely for each z € C*. Recall that the Stieltjes transform of w is m(z). By the standard
Stieltjes continuity theorem (see, e.g., [13], Theorem B.9), this finally concludes the weak
convergence of empirical eigenvalue distribution of A, to u.
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Now we show u = us X ue. The fixed point equations (51) and (52) induce
(73) B*(2) + 1+2m(z) =0,

since B(z) € C* for any z € C™. Together with (51), we attain the same self-consistent equa-
tions for the convergence of the empirical spectral distribution of the Wigner-type matrix
studied in [15], Theorem 1.1.

Define W, the n-by-n Wigner matrix, as a Hermitian matrix with independent entries

(Wali, j1:E[Wali, j1] = 0, E[Wali, j1*] =1,1<i < j <n}.

The Wigner-type matrix studied in [15], Definition 1.2, is indeed ﬁcb,l/ 2 W, <I>}/ 2. Hence,

such Wigner-type matrix ﬁCD,I,/ 2 W, CD,IZ/ % has the same limiting spectral distribution as A,

defined in Theorem 4.1. Both limits are determined by self-consistent equations (51) and
(73).
On the other hand, based on [5], Theorem 5.4.5, Ln W, and ®,, are almost surely asymp-

totically free, that is, the empirical distribution of {ﬁ Wy, ®,} converges almost surely to the

law of {s, d}, where s and d are two free noncommutative random variables (s is a semicircle
element and d has the law 1 ¢). Thus, the limiting spectral distribution u of ﬁ <I>,11/ 2 W, d>,1/ 2

is the free multiplicative convolution between g and pg. This implies u = ug X e in our
setting. [

5. Proofs of Theorem 2.1 and Theorem 2.2. To prove Theorem 2.1, we first establish
the following proposition to analyze the difference between Stieltjes transform of (12) and its
expectation. This will assist us to verify condition (49) in Theorem 4.1. The proof is based
on [29], Lemma E.6.

PROPOSITION 5.1. Let D € R™" be any deterministic symmetric matrix with a uni-
formly bounded spectral norm. Following the notions in Theorem 2.1, assume || X|| < C for
some constant C and Assumption 1.2 holds. Let R(z) be the resolvent

(\/CIZI_H(YTY _E[yTY]) - zId)_l,

for any fixed 7 € C*. Then, there exist some constants s, ng > 0 such that for all n > no and
anyt >0,

P(|tr R(z)D — E[tr R(z)D]| > £) < 2",
PROOF. Define function F : R91*% — R by F(W) :=tr R(z)D. Fix any W, A € R91*%

where |Allr =1, and let W; = W + ¢t A. We want to verify F(W) is a Lipschitz function in
W with respect to the Frobenius norm. First, recall

! Wx)To(Wx) — | Do .1
o o -,/ —® —zId,
Jdin n ¢

where the last two terms are deterministic with respect to W. Hence,

R~ ' =

vec(A) T (VF(W)) = d

o F(W,)

=0

d
= —tI'R(Z)(E

R<z>—1>R<z)D

t=0



DEFORMED SEMICIRCLE LAW AND CONCENTRATION IN NEURAL NETWORKS 1923

= _Jclll_ntrR(z)(% t:OG(W,X)Ta(W,X))R(z)D

2 + d
=—WtrR(z)(a(WX) I tZOU(WtX))R(z)D

2 T /
=—mtrR(z)(a(WX) (' (WX) ® (AX)))R(z)D,

where © is the Hadamard product, and ¢’ is applied entrywise. Here we utilize the formula
IR(2)=—R@O(R@) )R ()

and R(z) = R(z) . Lemma A.6 in Appendix A implies that | R(z)|| <
on the assumption of D, we have

Therefore, based

IImI

vec(A) T (VE(W))| < |[R@oeWX) |- |0’

=

for some constant C > 0. For the first term in the product on the right-hand side,

1 T 2
(ﬁ”mz)o(wm H)

_ 1 1 T

- R(Z)( —o(WX) o(WX))
1 -1 * ﬁ *

SWO‘R(Z)R(Z) R(2) ”—I—HR(z)<\/:<D+zId>R(z) )
1 2 |di

=L (1ol + IR (Lo +14)) = €
n n

For the second term,
loe'(WX) 0 (AX)| < [6"(WX) O (AX)|p <A IAX|IF < Ao llAllF - I X] < C.

Thus, | vec(A) T (VF(W))| < C/+/n. This holds for every A such that ||A] g =1, so F(W)
is C/+/n-Lipschitz in W with respect to the Frobenius norm. Then the result follows from
the Gaussian concentration inequality for Lipschitz functions. [J

Next, we investigate the approximation of ® = [E,, [o(w"X)To(w'X)] via the Hermite
polynomials {/x}x>0. The orthogonality of Hermite polynomials allows us to write ® as a
series of kernel matrices. Then we only need to estimate each kernel matrix in this series.
The proof is directly based on [34], Lemma 2. The only difference is that we consider the
deterministic input data X with the (&;, B)-orthonormal property, while in Lemma 2 of [34],
the matrix X is formed by independent Gaussian vectors.

LEMMA 5.2. Recall the definition of ®¢ in (11). If X is (&,, B)-orthonormal and As-
sumption 1.2 holds, then we have the spectral norm bound

|® — @l < Cpe2/n,

where Cp is a constant depending on B. Suppose that e,zlﬁ — 0asn— o0, then |®|| <C
uniformly for some constant C independent of n.
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PROOF. By Assumption 1.2, we know that
o0
£0(0)=0, Y Z()=E[c¢)]=1
k=1
For any fixed ¢, o (tx) € L2(R, T). This is because o (x) € L2(R,T") is a Lipschitz function

and by triangle inequality |o (fx) — o (x)| < Ay |tx — x|, we have, for &€ ~ N (0, 1),
E(o (t£)?) < E(jo (€)] + AoltE — &])* < 0.
For 1 <« <n,let oy(x) := o (||Xy]|x) and the Hermite expansion of o, can be written as
o0
0w (x) = D Ce(ow)he(x),

k=0

where the coefficient {x(0y) = Eloy(§)hi(€)]. Let unit vectors be u, = X, /||Xy ||, for 1 <
o <n.Sofor 1 <«, B <n, the («, B) entry of ® is

Do =E[o (' xo)o (wxp)] = E[ow (Ex)op p)],

where (&4, &g) = (w'ug, wTuﬂ) is a Gaussian random vector with mean zero and covariance

.
(74) ( R “ﬁ) .
u, ug 1

By the orthogonality of Hermite polynomials with respect to I' and Lemma A.5, we can
obtain

E[h; (o)l (€p)] = E[h; (0 ug) i (w ug)] = 8; 1 (ug ug)",
which leads to

(75) Pop =Y Lk (0a) sk (0p) (uy ug)".
k=0

For any k € N, let T} be an n-by-n matrix with (¢, 8)th entry
(76) (To)ap = 0(0a) ek (0p) (ug up)".
Specifically, for any k € N, we have

Tk = Dy fi(X " X) Dy,

where Dy is the diagonal matrix diag(¢x(0y)/||Xe ||k)a€[n].

At first, we consider twice differentiable o in Assumption 1.2. Similar with [34], equation
(26), for any ¢ > 0 and |t — 1| < ¢, we take the Taylor approximation of o (tx) at point x,
then there exists n between ¢x and x such that

otx)—o(x) =o' (xX)x(t —1)+ %a”(n)xz(t — 12

Replacing x by & and taking expectation, since o’ is uniformly bounded, we can get
(717) [E[o(1€) — 0 ()] — E[o"()&](t — 1)| < Clt — 1]> < Ce;.

For k > 1, the Lipschitz condition for o yields

(78) |6k (0w) = 2k (0)| = CllI%all = 1] - E[IE] - [Ax(€)[] < Cen,
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where constant C does not depend on k. As for piecewise linear o, it is not hard to see

(79) E[o(t§) — o ()] =E[o'©)&](r - D).

Now, we begin to approximate Ty separately based on (77), (78), and (79). Denote diag(A)
the diagonal submatrix of a matrix A.

(1) Approximation for 3 ;- 4(Ty — diag(Ty)). At first, we estimate the L? norm with respect
to I' of the function o,,. Recall that ||oy||;2 = E[oy, (£)21'/2. Because loll;2=1and o is a
Lipschitz function, we have

(80) sup o =gl = E[(0 (&) — 04 (6))*]"* < C|lIxo |l — 1],
(81) sup |logllz2 <1+ Cey.
1<a<n

Hence, |0y |72 is uniformly bounded with some constant for all large n. Next, we estimate
the off-diagonal entries of 7 when k > 4. From (76), we obtain that

> (1 — diag(T)| < 3|7~ diag(T)
k>4 Fo k>4

> (T — diag(Tk))H <

k>4

1

< Z(S‘;P’“I“Mk)[ > g“k(ffa)z{k(ffﬂ)z}

k>4 @ a.p=1

< (sl;%(ulu/s BDIPMACHE

a=1k=0

(82)

Ty |4
X, X
<n- (sup %) sup ||00,||%2 <Cn-g,
ap X I*IXp1*/ 1<a<n

when 7 is sufficiently large.
(2) Approximation for Tp. Recall E[o (§)] = 0 and by Gaussian integration by part,

& &
E[o’(£)¢] = E[s [ oo dx] _E[£%0()] —E[s [ o(x)dx] _E[£%0(5)] — E[0(®)].
Then, we have
E[o'(§)&] =E[(¢* — 1)o (§)] = E[V2hy(§)0 (§)] = V202(0).

If o is twice differentiable, then E[o” (§)] = v/2¢2(0) as well.
Thus, taking ¢ = ||X|| in (77) and (79) implies that for any 1 <« <n,

(83) |20(0w) — V20(0) (Ixe || — 1)] < Ce2.

Define v := (¢o(o1), ..., Co(0y)), then Ty = vy . Recall the definition of o in (11). Then,
(83) ensures that

I —v|l < C/ns2.
Applying the (&,, B)-orthonormal property of x,, yields
n n
B4l =20200)" Y (Ixall = 1)* £20(0)* Y (Ixall* = 1)* < 2B75(0)%.
a=l1 a=1
Hence the difference between T and s | is controlled by
(85) |70 — mr™| < e = vl @Il + v - gl) < C/ne;.
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(3) Approximation for Ty for k =1,2,3. For 0 < k < 3, Assumption 1.4 and (78) show
that

1
% ¥

|2k (0a) /1% IF — ()| < [k (00) — ek (@)] + |k (@)] - |Ixe IF = 1]]

(36) C C 1
_CeantCllxal =11 _

— (I—Sn)k — n»

when 7 is sufficiently large. Notice that Ty = Dy fir (X TX)Dk, where Dy is the diagonal
matrix. Hence, by (86),

| Dk — ¢x(0) 1d|| < Caep.
And for k = 1, 2, 3, by the triangle inequality,
[Tk = 21 (0)? fi(X T X) |

= | Di fie(X T X) Di = 6(0)* fi(X T X) |

<D = s 1d] - | fi(XTX) [ (J6(@)] + | D = k(o) 1d])) < Cen] fi(X T X)].
Whenk=1, fi(X'X)=X"X and | X" X| < ||X||*> < B>. Whenk =2,

AEXTX)=(X"X)0 (XTX).

From Lemma A.1 in Appendix A, we have that
(87) [ACTX)] = max xgxs| - 1XI7 < BX(1L+e).
So the left-hand side of (87) is bounded. Analogously, we can verify | f3(X TX)|l is also
bounded. Therefore, we have
(88) |7k = tx(@)* fi(XTX) | < Cen,

for some constant C and k = 1, 2, 3 when n is sufficiently large.
(4) Approximation for ) -, diag(Ty). Since u' u, = 1, we know

o

4
> diag(Ty) = diag(Z Ck (%)2) = diag(ﬂoa 13, =3 g(aa)z)
aE|n k:()

k=4 k>4
First, by (80) and (81), we can claim that

a€ln]

loall72 — 1] =|lloall;2 — loll32] < Clloa — o2 < Cép.
Second, in terms of (86), we obtain
|6k (00)* — &k (0)?| < Cltr(ow) — e ()| < Cen,

for k =1, 2 and 3. Combining these together, we conclude that

3" diag(T) — (1 - 21(0)% — £2(0)? — Cs(a)z)ld“
k>4
(89) A
(ol — 1) = (& (02)* — tk(0)?)

k=0

< max

< Cegy.
1<a<n

Recall

3
Po=pu" + > 6@ (X X)) + (1 - £1(0)* — £2(0)* — £3(0)?) Id.
k=1
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In terms of approximations (82), (85), (88), and (89), we can finally manifest
(90) |® — Dol < C(en + v/nej + ney) < C/ney,

for some constant C > 0 as y/ne2 — 0. The spectral norm bound of @ is directly deduced by
the spectral norm bound of ®( based on (84) and (87), together with (90). [

REMARK 5.3 (Optimality of ¢,). For general deterministic data X, our pairwise orthog-

4

onality assumption with rate ne, = o(1) is optimal for the approximation of ® by ® in the

spectral norm. If we relax the decay rate of ¢, in Assumption 1.4, the above approximation
may require including terms of higher-degree fi (X TX) for k > 4 in ®¢, which will lead to
the invalidation of some of our following results and simplifications. Subsequent to the initial
completion of our paper, this weaker regime has been considered in our follow-up work [81].

Next, we continue to provide an additional estimate for @, but in the Frobenius norm to
further simplify the limiting spectral distribution of ®.

LEMMA 5.4. If Assumptions 1.2 and 1.4 hold, then © has the same limiting spectrum as
b2XTX 4+ (1 — b2)1d when n — oo, that is,

limspec ® = limspec(b2 X " X + (1 — b2) Id) = b2 po + (1 — b2).

PROOF. By the definition of b,, we know that b, = ¢1(0). As a direct deduction of
Lemma 5.2, the limiting spectrum of @ is identical to the limiting spectrum of ®q. To
prove this lemma, it suffices to check the Frobenius norm of the difference between ®¢ and
21(0)2X "X + (1 — ¢1(0)?) 1d. Notice that

Do —1(0)2X X — (1 =¢1(0)?) 1d

=pp’ + 00 HXTX)+ 500 fH(XTX) — (020)* + &3(0)?) 1d.

By the definition of vector u and the assumption of X, we have

len | e = Il =2620) Y (Ixell — 1)* < 2¢3(0) B2

a=1
For k =2, 3, the Frobenius norm can be controlled by

n

| A(XTX)—1d[7 = Y ((xaxp)" —bap)’
o, B=1

n
<n(n—1eX + 3 (Ixal® = 1)7 < n2e2 + Cne?.

a=1

Hence, as n — oo, we have

1 1
—H;Lqu%,, —||fk(XTX)—Id||%—>O fork =2,3,
n n

as neir — 0. Then we conclude that
1
@0~ 210)*XTX — (1= 010)) W} < Clney + ) — 0.

Hence, lim spec & is the same as lim spec({| 0)>2XTX+(1- g1 (6)?)1d) when n — oo, due
to Lemma A.7 in Appendix A. [
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Moreover, the proof of Lemma 5.4 can be modified to prove (40), so we omit its proof.
Now, based on Corollary 3.7, Proposition 5.1, Lemma 5.2, and Lemma 5.4, applying Theo-
rem 4.1 for general sample covariance matrices, we can finish the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Based on Corollary 3.7 and Proposition 5.1, we can verify
the conditions (49) and (50) in Theorem 4.1. By Lemma 5.2 and Lemma 5.4, we know that
the limiting eigenvalue distributions of ® and (1 — bg) Id +b§X TX are identical and ||®||
is uniformly bounded. So the limiting eigenvalue distribution of & denoted by e is just
(1-— bg) + bg o. Hence, the first conclusion of Theorem 2.1 follows from Theorem 4.1.

For the second part of this theorem, we consider the difference

1 1 1

- W(YTY ~E[r'Y]) - E(YTY — d1 @)

dp dy
= lle- Dol|% < —lo- doll> <djet — 0,

2

F

where we employ Lemma 5.2 and the assumption dj &} = o(1). Thus, because of Lemma A.7,
ﬁ(Y TY — d; ®p) has the same limiting eigenvalue distribution as (12), us X ((1 — bg) +

b?, o). This finishes the proof of Theorem 2.1. [

Next, we move to study the empirical NTK and its corresponding limiting eigenvalue
distribution. Similarly, we first verify that such NTK concentrates around its expectation and
then simplify this expectation by some deterministic matrix only depending on the input data
matrix X and nonlinear activation o. The following lemma can be obtained from (23) in
Theorem 2.7.

LEMMA 5.5. Suppose that Assumption 1.1 holds, sup,cg |0'(x)| < Ay and | X|| < B.
Then if di = w(logn), we have

1
—l(sTs) o (x"X) ~E[(s"s) o (X " X)]| -0,
1
almost surely as n, dy, dy — oo. Moreover, if dj/n — 00 as n — 00, then almost surely
1
91 —— (ST o (XTX)-E[(STS) o (xTX 0.
1) Mll( )O (X X)-E[(S'S)o (X X)]|—

LEMMA 5.6. Suppose X is (¢, B)-orthonormal. Under Assumption 1.2, we have
IW — Woll < Cpeyn,

where ¥ and Vg are defined in (17) and (18), respectively, and Cp is a constant depending
on B.

PROOF. We can directly apply methods in the proof of Lemma 5.2. Notice that (6) and
(8) imply
E[STS]=diE[o’(w' X) o' (w X)],
for any standard Gaussian random vector w ~ N (0, Id). Recall that (19) defines the kth coef-
ficient of Hermite expansion of ¢’ (x) by i (o) for any k € N. Then, Assumption 1.2 indicates

by =no(0) and ax =Y 32 17,%((7). For 1 <« < n, we introduce ¢ (x) := o'(||Xy||x) and the
Hermite expansion of this function as

b (X) =Y Gi(da) i (x),

k=0



DEFORMED SEMICIRCLE LAW AND CONCENTRATION IN NEURAL NETWORKS 1929

where the coefficient {x(0y) = E[¢q (§)hir(§)]. Let uy = Xy /||Xy ||, for 1 < o <n. So for
1 <a, B <n,the (a, B)-entry of W is

Wop = B¢ Ea)dp(Ep)] - (x4 Xp),
where (&4, 6p) = (wuy, w u,g) is a Gaussian random vector with mean zero and covariance

(74). Following the derivation of formula (75), we obtain

Z é“k(%)é“k((iﬁﬂ)( T )k+1'

aff =
2 g [Flxg F e

For any k € N, let T}, € R"*" be an n-by-n matrix with (&, ) entry
_ 598k (dp) (xTxg) 1.

1% [1¥ 1% 1%

We can write Ty = Di fi+1 (X T X) Dy for any k € N, where Dy, is diag(Zx (¢o)/ || Xe %) Then,
adopting the proof of (88), we can similarly conclude that

| Tk — 72(0) frs1 (X TX)|| < Cén,

for some constant C and k =0, 1, 2, when # is sufficiently large. Likewise, (82) indicates

(Tk)tx .

Y (T - diag(Tk))H <Cen,
k>3

and a similar proof of (89) implies that

2
> diag(Ty) — <a,, -3 n,%(a)> Id

k>3 k=0

< Ceg,.

Based on these approximations, we can conclude the result of this lemma. [

PROOF OF THEOREM 2.2. The first part of the statement is a straight consequence of (91)
and Theorem 2.1. Denote by A := \/%T(H — E[H]) and B := \/d;‘(dllYTY — ®@). Observe
that

1
Jnd;
Hence, (91) indicates ||B — A|| — 0 as n — oo. This convergence implies that limiting laws
of A and B are identical because of Lemma A.3.

The second part is because of Lemma 5.2 and Lemma 5.6. From (7) and (17), E[H] =
® 4 W. Then almost surely,

d d
N R
n n
\/7”<I>0+\P0— E[H]|
d
f(ncb oll + ¥ — Woll) < \E(ﬁeﬁwe;‘)—w,

as 83411 — 0 by the assumption of Theorem 2.2. Therefore, the limiting eigenvalue distribu-
tion of (21) is the same as (20). [

B—A= [(STS)o (XTX)—E[(STS) o (X X)]].
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6. Proof of the concentration for extreme eigenvalues. In this section, we obtain the
estimates of the extreme eigenvalues for the CK and NTK we studied in Section 5. The limit-
ing spectral distribution of ﬁ (YTY —E[Y TY)) tells us the bulk behavior of the spectrum.
An estimation of the extreme eigenvalues will show that the eigenvalues are confined in a
finite interval with high probability. We first provide a nonasymptotic bound on the con-
centration of iYTY under the spectral norm. The proof is based on the Hanson—Wright
inequality we proved in Section 3 and an e-net argument.

PROOF OF THEOREM 2.3. Recall notation in Section 1. Define

1
M = Y
Jdin
1 & 1 &
M—-EM =

where yl.T = a(wiTX).
For any fixed z € S~ we have

d
T T
z' (M —-—EM)z= —z Pz
( ) dln g ]
(92) al
— Tr(dzz"
i (0z2")
=1 .. Ya) Ay, .. ¥a) — Tr(A, @),
where
1 2z (O]
Az — .. c ]R"dl xndj , d~) — .. c Rndl xnd ,
Jdin ) )
! 2z o
and column vector (yi,...,Y¥q,) € R"1 is the concatenation of column vectors Yi,.--,¥Yd-
Then

(yl,...,ydl)T =o((w1,...,wd1)T)~()

with block matrix

X
X =
X
Notice that
Azl = : ; ||Az||F:L, X1 =1XII.
Jdin Vn

Denote y = (y1, ..., Yq,). With (48), we obtain

IESI* = di|Ey|1* < dy (2)3, > (%117 — 1) +2n(Eo—<s>)2>

i=I

n
=d (n?, > (IIxi 11> = 1)2> <2d122 B2,

i=l



DEFORMED SEMICIRCLE LAW AND CONCENTRATION IN NEURAL NETWORKS 1931

where the last line is from the assumptions on X and o. When B # 0, applying (47) to (92)
implies

P(|(y1, > Ya) Aa(¥1s - Yay) — Tr(A®)| > 1)
- < 1 { *n t/din }>+2 ( 2din >
<2exp( ——=min , expl| — —
C BALIX[* A2)1X2 3222 || X ||2 || Ey |2

- < 1 . { ’n t/din }>+2 ( ’n )
exp| —— min , exp| —————— ).
=P T M s X Az X P\ "6 B21x |7
Let \ be a 1/2-net on S~ with IN| < 5" (see, e.g., [78], Corollary 4.2.13), then

IM —EM| <2suplz' (M —EM)z|.
zeN

Taking a union bound over N yields

P(|M —EM| = 21) <2 (1 5_ 1 { t’n t/din ])
o exp|nlogd — — min ,
= =R E T e M e X 232X P
2
“n
2 log5 — —————— ).
! eXp(n % 6%32”;(”2)

We then can set

t= (8«/E+ 8C /dﬁl))\gnxuz +16BA2 [ X],

to conclude

IP’(HM —EM| > (16¢E+ 16C /di)/\i X 1?4+ 32B22 ||X||) <4e7%".
1

|
H—YTY—ch: "M —EM]|,
di d

the upper bound in (22) is then verified. When B = 0, we can apply (46) and follow the same
steps to get the desired bound. [

Since

By the concentration inequality in Theorem 2.3, we can get a lower bound on the smallest
eigenvalue of the conjugate kernel di] Y'Y as follows.

LEMMA 6.1. Assume X satisfies Y i (I|x; I2=1)?< Bzfor a constant B > 0, and o is
Ao -Lipschitz with Eo (£) = 0. Then with probability at least 1 — 4e™",

Lo Y22 2 n
93) Amin| 7Y Y ) = Amin(®) — C| [+ — )2 I X7 = 32BAG || X, [ -
di d d dy

PROOF. By Weyl’s inequality [5], Corollary A.6, we have
1T
)‘vmin<d_ly Y) - )‘vmin((b) =

Then (93) follows from (22). [

1
‘—YTY—dMDH.
d

The lower bound in (93) relies on Apin (P). Under certain assumptions on X and o, we
can guarantee that Ay (P) is bounded below by an absolute constant.
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LEMMA 6.2. Assume o is not a linear function and o (x) is Lipschitz. Then

(94) sup{k € N: & (0)* > 0} = o0.

PROOF.  Suppose that sup{k € N : £x (') > 0} is finite. Then o is a polynomial of degree
at least 2 from our assumption, which is a contradiction to the fact that o is Lipschitz. Hence,
(94) holds. I

LEMMA 6.3. Assume Assumption 1.2 holds, o is not a linear function, and X satisfies
(en, B)-orthonormal property. Then,

(95) Amin(®) > 1 — £1(0)* — 22(0)* — £3(0)* — Ce2/n.

REMARK 6.4. This bound will not hold when ¢ is a linear function. Suppose o is a
linear function, under Assumption 1.2, we must have o(x) =x and & = X TX. Then we will
not have a lower bound on A, (®) based on the Hermite coefficients of o.

PROOF OF LEMMA 6.3. From Lemma 5.2, under our assumptions, we know that
|0 — @oll < Cpeps/n

where @y is given by (11). Thus, Amin(®) > Amin(Po) — Cpe2/n,
and, from Weyl’s inequality [5], Theorem A.5, we have

3
Amin(@0) = Y 21(0) Amin (ft (X X)) + (1 = £1(0)? = £2(0)* — £3(0)?).

k=1

Note that f; (X TX)=K ,(T Ky, where K € Rdg *7 and each column of K} is given by the kth
Kronecker product x; ® - - - ® x;. Hence, fi (X X ) is positive semidefinite. Therefore,

Amin(®0) > 1 — £1(0)? — £2(0)* — &3(0)*.

Since o is nonlinear and Lipschitz, (94) holds for o. Therefore,

1= 21(0)> = 22(0)* = 83(0)* = ) &r(0)* > 0,

k=4

and (95) holds. [

Theorem 2.5 then follows directly from Lemma 6.1 and Lemma 6.3.

Next, we move on to nonasymptotic estimations for NTKs. Recall that the empirical NTK
matrix H is given by (7) and the «th column of S is defined by diag(c’/(Wxgy))a, for 1 <a <
n, in (8).

The ith row of S is given by zl-T = o’(wlTX)ai, and E[z;] = 0, where q; is the ith entry
of a. Define D, = diag(a/(wIX)aa), for 1 <o <d;. We can rewrite (ST S) © (X X) as

d
(ST (X'X)=> aiDyX " XD.

a=1
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Let us define L and further expand it as follows:

(96) L:= di(STS ~E[s"s)o(x'X)
1
1 &
= — (zile — E[ZiZ,T]) O] (XTX)

di i3

| @ 1 &
97) = — > (Di(XTX)D; —E[Di(XTX)D;]) = Zzi.

di i3 dl

Here Z; is a centered random matrix, and we can apply matrix Bernstein’s inequality to show
the concentration of L. Since Z; does not have an almost sure bound on the spectral norm, we
will use the following sub-exponential version of the matrix Bernstein inequality from [77].

LEMMA 6.5 ([77], Theorem 6.2). Let Zy be independent Hermitian matrices of size
n x n.Assume

1
EZ; =0, |E[z]]] < Ep!RP_Zaz,

for any integer p > 2. Then for all t > 0,

d

2 Zi

i=1

(98) IP’(

2
t
= I) = "CXP<_2d1a2 n 2Rt)'

PROOF OF THEOREM 2.7.  From (97), EZ; =0, and
1Zil < IDiP|XXT |+ EID:i || XXT| < C1(a? + 1),

where C| = k?f | X | and where a; ~ N (0, 1) is the ith entry of the second layer weight a.
Then

p
2 2
|E[z!]| <ElZi|I” < C{PE(@? + 1) < C}” Z: (’]z) 2k — D!

—-C 2p § : <C?? ) 2C
1 p! kv( k)' =1 p! 21 = 1)

So we can take R = 2C12, a’? = SC;t in (98) and obtain

2
t
P >t) <nex ——).
< - )— p( 16d,C} 4+ 4C7t

Hence, L defined in (96) has a probability bound:

dy

2.2

i=I

d

2.2

i=l

P(IL|>t)=P ! o = < 2, )
= — nex —_———— |.
= di =) =P\ T 60t 1 ack
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Take t = 10C12~/ logn/d;. Under the assumption that dy > logn, we conclude that, with high
probability at least 1 —n~"/3,

logn
2
(99) IL|| < 103,/ o

Thus, as a corollary, the two statements in Lemma 5.5 follow from (99). Meanwhile, since

1
I~ Bl < | Ty -0 L.
1
the bound in (24) follows from Theorem 2.3 and (99). [
We now proceed to provide a lower bound of Apin(H) from Theorem 2.7.
PROOF OF THEOREM 2.9. Note that from (7), (17), and (96), we have
1
omin(H) 2 - 3min(ST5) © (X7 X))
1 T T
2 nin((ES'8) O (X1 X)) = LIl = Amin(¥) = L.

Then with Lemma 5.6, we can get

2
Amin(H) > Amin(¥o) — Cetn — |L| > (aa -y ni(a)) — Cetn —|IL]|.
k=0

Therefore, from Theorem 2.7, with probability at least 1 — n=1/3,

2
logn
hmin(H) > a5 — 3 n2(0) — Cen — 1024 ||X||“,/d—g1
k=0

2
1
>a, — Y no) — Celn — 104 B /%.
k=0 1

Since o is Lipschitz and nonlinear, we know o’(x) is not a linear function (including
the constant function) and |o’(x)| is bounded. Suppose that ¢’ (x) has finite many nonzero
Hermite coefficients, o (x) is a polynomial, then we get a contradiction. Hence, the Hermite
coefficients of o’ satisfy

2 00
sup{k e N: ni(o) > 0} =00 and a,— Z ni (o) = Z ni(o) > 0.
k=0 k=3

This finishes the proof. [l

7. Proofs of Theorem 2.12 and Theorem 2.17. By definitions, the random matrix
K, (X, X) is dllYTY and the kernel matrix K (X, X) = ® is defined in (3). These two ma-
trices have already been analyzed in Theorem 2.3 and Theorem 2.5, so we will apply these
results to estimate how great the difference between training errors of random feature regres-
sion and its corresponding kernel regression.
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PROOF OF THEOREM 2.12. Denote K, := (K + AId). From the definitions of training
errors in (31) and (32), we have

|E(RF,A) _ E(K,A)|

train train

1, 4 ~
= I =y = 147 X - 5]

2
- %|Tr[(K(X, X) +A1d) Zyy "] = Te[(Ko (X, X) + 21d) 2yy ]|

(100) 2
= %|yT[(K(X, X) 4+ A1d) "% — (K, (X, X) + A1d) 2]y

A2 - -
< (KX X) +11d) 7 = (K (X, X) + 210) 7 - fly)?

Alyl?
(K(X, X)A2, (Kn(X, X))

min

[(K? — (Ka(X, X) + A1d)7.

<
— 2
n)‘min

Here, in (100), we employ the identity

(101) A" B =B B-—A)A"!,

for A= (K(X,X)+21d)"% and B = (K, (X, X) + A1d)~2, and the fact that ||(K (X, X) +
AId) ' < a2l (K(X, X)) and (Kn(X, X) + A1d)~ ! < A7L (K. (X, X)). Next, before pro-

min min

viding uniform upper bounds for A2 (K(X, X)) and A2 (K,(X, X)) in (100), we can first

min min

get a bound for the last term of (100) as follows:
[(K (X, X) 4 A1d)* — (K, (X, X) + A1d)?|
= |K*(X, X) — K2(X, X) + 20(K (X, X) — K, (X, X))
< |K*(X, X) — Kp(X, X)| +22[ (K (X, X) — Ko (X, X))|
<(|Kn(X, X) — KX, X)| + 2| K(X, X)| +21) - | K (X, X) — Kn(X, X)|

for some constant C > 0, with probability at least 1 — 4e~2", where the last bound in (102) is
due to Theorem 2.3 and Lemma A.9 in Appendix A. Additionally, combining Theorem 2.3
and Theorem 2.5, we can easily get

(102)

(103) [(Kn(X, X) +21d) | <Azl (K. (X, X)) < C

— “min
for all large n and some universal constant C, under the same event that (102) holds. The-

orem 6.3 also shows A;iln(K (X, X)) < C for all large n. Hence, with the upper bounds for
)»I;izn(K(X, X)) and A2 (K, (X, X)), (33) follows from the bounds of (100) and (102). [

min

For ease of notation, we denote K := K (X, X) and K, := K,,(X, X). Hence, from (34),
we can further decompose the test errors for K and K, into

L") =Exl| /@]
(104) +Tr[(K +A1d) " yy "(K + 2 1d) 7 Ey[K (x, X) T K (x, X)]]
—2Te[(K + A1) yEx[ £* ) K (x, X)]],
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LIFED) =Ex| 0]
(105) +Tr[(Kn + A1) Lyy T (K, + A 1d) By [ K, (x, X) T K (x, X)]]
— 2Tr[(Kp + A 1d) " yEx[ f* () K (x, X)]].

Let us denote

Ep :i=Tr[(K, +21d) " yy (K, + 11d) 'Ex[ K, (x, X) T K, (x, X)]],

Er:=Ti[(K + A1) 'yy T (K + 11d) " 'Ex[K (x, X) T K (x, X)]],

= Tr[(K, + A 1d) " yB* T Ex[xK, (x, X)]],
Ey :=Ti[(K 4+ 1 1d) ' yB* TEL[xK (x, X)]].

As we can see, to compare the test errors betwegn random feature and kernel regression
models, we need to control |E| — E;| and | E;» — E»|. First, it is necessary to study the con-
centrations of

Ex[K (%, X) K (X, X) — K, (x, X) T K, (x, X)]
and

Ex[f* () (K (x, X) — Kn(x, X))]-

LEMMA 7.1. Under Assumption 1.2 for o and Assumption 2.14 for x and X, with prob-
ability at least 1 — 4e=?", we have

(106) |Kn(x, X) — K(x, X)| SC\/CZZ’
1

where C > 0 is a universal constant. Here, we only consider the randomness of the weight
matrix in K, (x, X) defined by (28) and (29).

P~RO~OF. We consider X = [x1,...,Xp, X], its corresponding kernels K,,(f( , 5(), and
K (X, X) e Ro+Dx(tD), Under Assumption 2.14, we can directly apply Theorem 2.3 to
get the concentration of K, (X, X) around K (X, X), namely,

(107) |Kn (X, X) — K(X,X)| SC\/dz’
1

with probability at least 1 — 4¢—2" Meanwhile, we can write Kn()? X ) and K (f( , )~() as
block matrices:

o o (Ky(X.X) Ku(X,X) o o (K(X,X) K(X.,x)
K"(X’X)_<K,,(x,X) Kn(x,x)> and K(X’X)_(K(X,X) K(x,x))

Since the £>-norm of any row is bounded above by the spectral norm of its entire matrix, we
complete the proof of (106). [

LEMMA 7.2. Assume that training labels satisfy Assumption 2.13 and || X| < B, then
for any deterministic A € R"*", we have
Var(y" Ay), Var(B*T Ay) < cllAll,

where constant ¢ only depends on og, o¢, and B. Moreover,

E[yTAy]=0§TrAXTX+a€2TrA, E[ﬂ*TAy]=0§TrAXT.
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PROOF. We follow the idea in Lemma C.8 of [56] to investigate the variance of the
quadratic form for the Gaussian random vector by
(108) Var(g" Ag) = [|AlI} + Tr(A%) <2[|A|3,

for any deterministic square matrix A and standard normal random vector g. Notice that the
quadratic form

2 T
T T[(0gXAX  oecopXA
Ay = ,
yAY=8 (aeaﬁAXT (TEZA &

where g is a standard Gaussian random vector in R%*"_ Similarly, the second quadratic form
can be written as

2 T
ﬂ*TAy _ gT (O‘ﬁAX creo*ﬂA>

0 0
Let

- 0fXAX' ocopXA . 05 AX" oA
0eogAX oA 0 0

By (108), we know Var(y T Ay) <2|A; II% and Var(B*T Ay) < 2||A2||%. Since
= 2 2
1A} = of | XAXT |7 + 0203 1X AN} + 0203 |AX T |7 + 021 AI% < cllAl%
and similarly | As|lF <c|lA II% for a constant ¢, we can complete the proof. [J

As a remark, in Lemma 7.2, for simplicity, we only provide a variance control for the
quadratic forms to obtain convergence in probability in the following proofs of Theorems
2.16 and 2.17. However, we can apply Hanson—Wright inequalities in Section 3 to get more
precise probability bounds and consider non-Gaussian distributions for 8* and €.

PROOF OF THEOREM 2.16. Based on the preceding expansions of E(fk(RF)(x)) and
L5 (x)) in (104) and (105), we need to control the right-hand side of

1£(FRP %)) — £(FE ®)| < |E) — E1| +2|E2 — Eal.

In the subsequent procedure, we first take the concentrations of E| and E; with respect to
normal random vectors B* and €, respectively. Then, we apply Theorem 2.3 and Lemma 7.1
to complete the proof of (35). For simplicity, we start with the second term

|Ey — Ea| < |B* T Ex[X(Ku(x, X) — K(x, X)) (K, + A1d) "' y|
(109) + |B* TEL[xK (x, X)]((Kp +21d) " — (K + A1d) 1) y|
<l =il + L — bl + 11| + L],
where /1 and I, are quadratic forms defined below
Iy = B* T Bx[x(Ky (x, X) — K (x, X))](K, + A1d) 'y,
L= B*TEL[xK (x, X)]((K, +A1d) ™' — (K + 21d) ")y,
and their expectations with respect to random vectors 8* and € are denoted by
Iy :=Ee p<[11] = o4 Tr(Ex[x(K,, (x. X) — K (x, X))](K, + 21d) 7' X T),
L :=Ee ge[ 1] = o5 Tr(((K, + A1d) ™" — (K + 21d) ™) X "Ex[xK (x, X)]).
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We first consider the randomness of the weight matrix in K,, and define the event £ where
both (103) and (107) hold. Then, Theorem 2.5 and the proof of Lemma 7.1 indicate that event
& occurs with probability at least 1 — 4e~2" for all large n. Notice that £ does not rely on the
randomness of test data x.

We now consider A = Ex[x(K,,(x, X) — K(x, X))](K, + 21d)~! in Lemma 7.2. Condi-
tioning on event £, we have

IA]% < Ex[[x(Ka(x, X) — Kx, X)) |5] - | (Kn + A1) X T |2

(110) 3 n
< IX 12| (K + A1) 7 - Ex[ X112 Ko (%, X) — K (x, X) 7] < €

for some constant C, where we utilize the assumption E[|Ix|2] = 1. Hence, based on
Lemma 7.2, we know Var, g«(I1) < cn/d;, for some constant c. By Chebyshev’s inequal-
ity and event &,

_ 1—e n\¢ _2
(11 P11 — 1| > (n/dy) > )56<d—) e
1

for any ¢ € (0, 1/2). Hence, (dl/n)%_s - - I_1| = o(1) with probability 1 — o(1), when
n/dy — 0 and n — oo.

Likewise, when A = Ex[xK (x, X)]((K,, + AId)~! — (K + A1d)~!), we can apply (101)
and

(112) |Kx, X)|| < |K(X, X)| <CAr2B?,

due to Lemma A.9 in Appendix A, to obtain || A ||%- < Cn/d; conditionally on event £. Then,
similarly, Lemma 7.2 shows Var¢ g« (1) < cn/d;. Therefore, (111) also holds for [I; — I>].
Moreover, conditioning on the event &,

|| = o3| Ex[(Kn(x, X) — K(x, X)) (K, + A1d) ' X Tx]|
< o Ex[IIx] - [ Kn(x, X) = K (%, X) | - 11X - | (Kyy + A1)~

(113)

1.
2 21% 271 1 n
< ogEx[lIx]| PPE[||Kn(x, X) — K&, X) | ]2 I X[ (K +21d) 7 || < C‘,d_l’

for some constant C. In the same way, with (112), |I_2| <C \/dzl on the event £. Therefore,

from (109), we can conclude |E, — E5| = 0((n/d1)1/2_8) for any ¢ € (0, 1/2), with proba-
bility 1 — o(1), when n/d; — 0 and n — oo.
Analogously, the first term |E| — E|| is controlled by the following four quadratic forms

4
|Ey—E11 <) |yT Ay

i=l

k)

where we define by J; ;== y T A;y for 1 <i <4 and
A= (K, + A1) T By [K,(x, X) T (K (X, X) — K (X, X))](K, +A1d) 71,
Ay = (K, 4+ A 1d) T Ey[(Kp(x, X) — K(x, X)) T K (x, X)](K, +A1d) ",
Az = ((Kp +21d) 7" — (K +21d) " HEL[K (x, X) K (x, X)](K, +21d) 7,
Ag = (K +11d) "By [K (x, X) T K (x, X)]((Ky +21d) ™" — (K 4+ A1d)71).

Similarly with (110) and (113), it is not hard to verify ||A;||F < Ci/n/d; and |E¢ g=[J;]| <
C\/n/d; conditioning on the event £. Then, like (111), we can invoke Lemma 7.2 for each A;
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to apply Chebyshev’s inequality and conclude |E| — E1| = o((n/d;)'/?>~¢) with probability
1 —o(1) when di/n — oo, forany € € (0,1/2). O

LEMMA 7.3.  With Assumptions 1.2 and 2.14, for (e, B)-orthonormal X, we have that

b4 pt
Ex[Kx, X)TK(x, X)]— 22XTX| < |Ex[K(x, X)"K(x, X)]— 2XTX
(114) ‘ "[ =% xl =% .
< Ci/ng;,
b2 b2
(115) HEX[xK(x,X)]—d—"X < |Ex[xK (x, X)]—d—ffx < C+/ng2,
0 0 F

for some constant C > 0.

PROOF. By Lemma A.8, we have an entrywise approximation
|K (%, %) — b(z,xTxi| < C)Lasrzl,

for any 1 <i <n. Hence, |K(x, X) — ngTXH < Cka\/ﬁeﬁ. Assumption 2.14 of x implies

4
that Z—SX TX = bﬁ Ex[X "xx X]. Then, we can verify (114) based on the following approxi-
mation

b4
Ex[K (x, X)TK (x, X)] — d—(’XTX
0

F

A

Ex[|K(x, X)TK(x, X) — b2 X "xx" X| ]
<EJ| K& X)) (KX, X)—b2x"X) | + b2 (Kx, X)T —b2X "x)x ' X| ;]
< Ex[[| K (x. X) = bpx " X[(|K %, 0] + [65x" X[)] < C /ey,

for some universal constant C. The same argument can also be employed to prove (115), so
details will be omitted here. []

PROOF OF THEOREM 2.17. From (33) and (35), we can easily conclude that

(RF,\) (K,») P
(116) Etrain - Etrain — 0,
(117) (£8P %)) — £(FFx)) S o0,

(RF,A)

train and the test error

as n — oo and n/d; — 0. Therefore, to study the training error E

L( fA(RF) (x)) of random feature regression, it suffices to analyze the asymptotic behaviors of
(K,2)
E

train . and L( fA(K) (x)) for the kernel regression, respectively. In the rest of the proof, we will

(K.2) under the

first analyze the test error £( f)fK)(X)) and then compute the training error E .~

ultra-wide regime.
Recall that K, = (K + A1d) and the test error is given by

A 1
(118) L) = I8 + Ly =2La,
where L := yTKA_IEX[K(X, X)TK(x, X)]K;ly, L, = ,B*TEX[XK(X, X)]K;ly. The

spectral norm of K, is bounded from above and the smallest eigenvalue is bounded from
below by some positive constants.
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We first focus on the last two terms L; and L, in the test error. Let us define

N b4 ~ b2
Ly:= d—;yTKJIXTXK;ly and Lo:= d—gﬁ*TXKily-

Then, we obtain two quadratic forms

~ 3 bt 3
Li—Li=y'K; 1<EX[K(X, X)TK(x, X)] - d—ZXTX)KA ly=:yTAy,

2

Lr—I» =ﬂ*T(Ex[xK(x, x)] -2 )K;‘y — 8" Aay,

where ||A1||F and ||Az|| F are at most Cfs for some constant C > 0, due to Lemma 7.3.
Hence, applying Lemma 7.2 for these two quadratic forms, we have Var(L; — L)< cng4 —
0 as n — oo. Additionally, Lemma 7.2 and the proof of Lemma 7.3 verify that E[ yTAl y]
and E[B*T A, y] are vanishing as n — 00. Therefore, L; — L; converges to zero in probability
for i =1,2. So we can move to analyze L and L, instead. Copying the above procedure,
we can separately compute the variances of L and L, with respect to B* and €, and then
apply Lemma 7.2. Then, |Ly — Ly| and |Ly — L| will converge to zero in probability as
n, dy — oo, where

_ - bialn bt oln
Li=Eepllil= 28 ok XTXK ' XTX + "d‘ wk; ' XTXK; !,
0 0
- ~ b2o2n
Ly =Ecp[Lr] = "dﬂ K XX,
0

To obtain the last approximation, we define K(X,X):= ng TX+1- bg) Id and

(119) Ky i=b2X"X+(1+1—b2)1d.

We aim to replace K by K; in L and L. Recalling the identity (101), we have
K 'K '=K ' (KX, X) - KX, X))K; "

Since o is not a linear function, 1 — bg > 0. Then, with (103), the proof of Lemma 5.4
indicates

(120) |kt = K7 < CyJn2ed +ne2,

where we apply the fact that Amin(k X, X)=>1- bg > 0. Let us denote

bro2n broln
(121) 0= 2B R IXTXRXTX + 222 e RIX XK,
dop dop
b2oin
(122) L):="2P gk 'xTx.

Notice that for any matrices A, B € R"*", |AB|r < |AlllIBllF, | Ttc(AB)| < [[Allr|| Bl F-
Then, with the help of (120) and uniform bounds of the spectral norms of X ' X, K . ! and
K " ! we obtain that

L1 — LY
4 2 _ b40'2 _ _
BTk XTX(KT - RT)XTX] + ’ Bime(k;' — K7 HXTXK'XTX|
0
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§e2 -1 p-WhvTve-I bﬁaz —“1vT -1 p-1
d Tr(K, " — K, )X XK, | + TrK, X X(K," —K; )|
0

+

C ||K_ —K 1HF<Cd_ ner+e2 — 0,

as n — 0o, n/dyp — y and nsn — (. Combining all the approximations, we conclude that
L; and L? have identical limits in probability for i = 1, 2. On the other hand, based on the
assumption of X and definitions in (119), (121), and (122), it is not hard to check that

2
. 0_ 14 2 X
A% LT=bo0BY | e T b2y )
X
+bio? d ,
OV R(ng+1+)x_b%)2 /J«O(x)

X
lim LY =b203 / d :
s OB Jy bx+ 14—z W)

Therefore, L1 and L, converge in probability to the above limits, respectively, as n — oco. In

the end, we apply the concentration of the quadratic form 8* 8* in (118) to get d—lo 18*]1? E

ag. Then, by (117), we can get the limit in (38) for the test error E(fA(RF)). As a byproduct,

Wwe can even use L(l) and Lg to form an n-dependent deterministic equivalent of £( fk(RF)) as

well.

Thanks to Lemma 7.2, the training error, E (K.2)

2 -
train | = % y'K 2 2y, analogously, concentrates
around its expectation with respect to B* and €, which is ogkz K 2XTX 4+ 0202t K72

Moreover, because of (120), we can further substitute K, 2 by K . 2 defined in (119). Hence,
we know that, asymptotically,

EED — 0220 R2XTX — 0222w K2 5 0,

train

where as n, dy — o0,

lim o
n—oo ﬂ

220 K2XT X _aﬁﬁ/ a

d ,
e Glx+ 1+ A—b2)? o (x)

C 292 =2 252
Jim oA tr K _UGA/

d .
R B2x t 1L A—b2) po(x)

The last two limits are due to po = limspec X TX as n,dy — oo. Therefore, by (116), we
obtain our final result (37) in Theorem 2.17. [

APPENDIX A: AUXILIARY LEMMAS

LEMMA A.1 (Equation (3.7.9) in [43]). Let A, B be two n X n matrices, A be positive
semidefinite, and A © B be the Hadamard product between A and B. Then,

IA© B ST?E}X|AU| -[IB].

LEMMA A.2 (Sherman—Morrison formula, [17]). Suppose A € R"*" is an invertible
square matrix and u, v € R" are column vectors. Then
A lav A7

Ty\=1_ 4—-1_
(A+uv') " =A v AT’
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LEMMA A.3 (Theorem A.45in [13]). Let A, B be two n x n Hermitian matrices. Then
A and B have the same limiting spectral distribution if |A — B|| > 0 as n — oo.

LEMMA A.4 (Theorem B.11in [13]). Letz=x+4iv € C, v > 0and s(z) be the Stieltjes
transform of a probability measure. Then |Res(z)| < v™'/2/Ims(z2).

LEMMA A.5 (Lemma D.2 in [60]). Let X,y € R? such that |x|| = |ly|| = 1 and w ~
N(0, 1). Let hj be the jth normalized Hermite polynomial given in (1.5). Then

Ew[h;((w, x))he((w,y))] = 81 (x, y)*.

LEMMA A.6 (Proposition C.2 in [29]). Suppose M =U +iV € C**"*, U, V are real
symmetric, and V is invertible with omin(V) > co > 0. Then M is invertible with opyin(M) >
o.

LEMMA A.7 (Proposition C.3 in [29]). Let M, M be two sequences of n x n Hermitian
matrices satisfying

1 ~
;”M_M”F_)O

as n — 00. Suppose that, as n — 00, limspec M = v for a probability distribution v on R,
then limspec M = v.

LEMMA A.8. Recall the definition of ® in (3). Under Assumption 1.2, if X is (e, B)-
orthonormal with sufficiently small €, then for a universal constant C > 0 and any a # f €
[n], we have

|Pap — by Xy Xp| < Ce?,

|Ep[o(w'xy)]| < Ce.

PROOF. When o is twice differentiable in Assumption 1.2, this result follows from
Lemma D.3 in [29]. When o is a piecewise linear function defined in case 2 of Assump-
tion 1.2, the second inequality follows from (79) with ¢ = ||xy||. For the first inequality, the
Hermite expansion of ®,g is given by (75) with coefficients i (o) = E[o (|[Xy|I§)Ak (§)] for
k € N. Observe that the piecewise linear function in case 2 of Assumption 1.2 satisfies

Gk(00) = [Xg[ICk(0)  fork =1,
Go0(0w) = b(1 — [Ixal),

because of condition (9) for o. Recall uy, = X, /||X¢ || and ¢; (o) = b, . Then, analogously to
the derivation of (82), there exists some constant C > 0 such that

3 Gk (0a) gk (0p) (ug ug)*
k#£1

|[Pap — by X0 Xp| =

x4 x5
<b?(1—IIxe 1) (1 = IIxg]l) + —”X“Hn’i o lo |2, < Ce?,
o

for ¢ € (0, 1) and (e, B)-orthonormal X. This completes the proof of this lemma. [J
With the above lemma, the proof of Lemma D.4 in [29] yields the following lemma.

LEMMA A.9.  Under the same assumptions as Lemma A.8, there exists a constant C such
that |K (X, X)| < CB2. Additionally, with Assumption 2.14, we have | K (X, X)|| < CB>.
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FI1G. 4.  Simulations for empirical eigenvalue distributions of (14) and theoretical predication (red curves) of
the limiting law p with activation functions o (x) o Sigmoid function (first row) and o (x) = x linear function
(second row) satisfying Assumption 1.2: n = 103, dg = 103, and d; = 10° (left); n = 103, dg=1.5x 103, and
dy = 10° (middle); n = 1.5 x 103, dy = 103, and dy = 10° (right).

APPENDIX B: ADDITIONAL SIMULATIONS

Figures 4 and 5 provide additional simulations for the eigenvalue distribution described in
Theorem 2.1 with different activation functions and scaling. Here, we compute the empiri-
cal eigenvalue distributions of centered CK matrices in histograms and the limiting spectra
in terms of self-consistent equations. All the input data X’s are standard random Gaussian
matrices. Interestingly, in Figure 5, we observe an outlier that emerges outside the bulk dis-
tribution for the piecewise linear activation function defined in case 2 of Assumption 1.2. The
analysis of the emergence of the outlier, in this case, would be interesting for future work.
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