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In this paper, we investigate a two-layer fully connected neural network

of the form f (X) = 1√
d1

a�σ(WX), where X ∈ d0×n is a deterministic data

matrix, W ∈ R
d1×d0 and a ∈ R

d1 are random Gaussian weights, and σ is

a nonlinear activation function. We study the limiting spectral distributions

of two empirical kernel matrices associated with f (X): the empirical conju-

gate kernel (CK) and neural tangent kernel (NTK), beyond the linear-width

regime (d1 � n). We focus on the ultra-wide regime, where the width d1 of

the first layer is much larger than the sample size n. Under appropriate as-

sumptions on X and σ , a deformed semicircle law emerges as d1/n → ∞
and n → ∞. We first prove this limiting law for generalized sample covari-

ance matrices with some dependency. To specify it for our neural network

model, we provide a nonlinear Hanson–Wright inequality suitable for neural

networks with random weights and Lipschitz activation functions. We also

demonstrate nonasymptotic concentrations of the empirical CK and NTK

around their limiting kernels in the spectral norm, along with lower bounds

on their smallest eigenvalues. As an application, we show that random fea-

ture regression induced by the empirical kernel achieves the same asymptotic

performance as its limiting kernel regression under the ultra-wide regime.

This allows us to calculate the asymptotic training and test errors for random

feature regression using the corresponding kernel regression.
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1. Introduction. Nowadays, deep neural networks have become one of the leading mod-

els in machine learning, and many theoretical results have been established to understand the

training and generalization of neural networks. Among them, two kernel matrices are promi-

nent in deep learning theory: conjugate kernel (CK) [24, 27, 44, 54, 58, 69, 71, 74, 82] and

neural tangent kernel (NTK) [4, 28, 40]. The CK matrix defined in (5), which has been ex-

ploited to study the generalization of random feature regression, is the Gram matrix of the

output of the last hidden layer on the training dataset. The NTK matrix, defined in (7), is

the Gram matrix of the Jacobian of the neural network with respect to training parameters,

characterizing the performance of a wide neural network through gradient flows. Both are

related to the kernel machine and help us explore the generalization and training process of

the neural network.

We are interested in the behaviors of CK and NTK matrices at random initialization. A re-

cent line of work has proved that these two random kernel matrices will converge to their

expectations when the width of the network becomes infinitely wide [7, 40]. Although CK

and NTK are usually referred to as these expected kernels in literature, we will always call

CK and NTK the empirical kernel matrices in this paper, with a slight abuse of terminology.

In this paper, we study the random CK and NTK matrices of a two-layer fully connected

neural network with input data X ∈ Rd0×n, given by f :Rd0×n →R
n such that

(1) f (X) := 1√
d1

a�σ(WX),

where W ∈ R
d1×d0 is the weight matrix for the first layer, a ∈ R

d1 are the second layer

weights, and σ is a nonlinear activation function applied to the matrix WX elementwisely. We

assume that all entries of a and W are independently identically distributed by the standard

Gaussian N (0,1). We will always view the input data X as a deterministic matrix (indepen-

dent of the random weights in a and W ) with certain assumptions.

In terms of random matrix theory, we study the difference between these two kernel ma-

trices (CK and NTK) and their expectations with respect to random weights, showing both

asymptotic and nonasymptotic behaviors of these differences as the width of the first hidden

layer d1 is growing faster than the number of samples n. As an extension of [29], we prove

that when n/d1 → 0, the centered CK and NTK with appropriate normalization have the lim-

iting eigenvalue distribution given by a deformed semicircle law, determined by the training

data spectrum and the nonlinear activation function. To prove this global law, we further set

up a limiting law theorem for centered sample covariance matrices with dependent structures

and a nonlinear version of the Hanson–Wright inequality. These two results are very general,

which makes them potentially applicable to different scenarios beyond our neural network

model. For the nonasymptotic analysis, we establish concentration inequalities between the

random kernel matrices and their expectations. As a byproduct, we provide lower bounds

of the smallest eigenvalues of CK and NTK, which are essential for the global convergence

of gradient-based optimization methods when training a wide neural network [59, 60, 63].

Because of the nonasymptotic results for kernel matrices, we can also describe how close the

performances of the random feature regression and the limiting kernel regression are with a

general dataset, which allows us to compute the limiting training error and generalization er-

ror for the random feature regression via its corresponding kernel regression in the ultra-wide

regime.
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1.1. Nonlinear random matrix theory in neural networks. Recently, the limiting spectra

of CK and NTK at random initialization have received increasing attention from a random

matrix theory perspective. Most of the papers focus on the linear-width regime d1 ∝ n, us-

ing both the moment method and Stieltjes transforms. Based on moment methods, [67] first

computed the limiting law of the CK for two-layer neural networks with centered nonlinear

activation functions, which is further described as a deformed Marchenko–Pastur law in [64].

This result has been extended to sub-Gaussian weights and input data with real analytic ac-

tivation functions by [19], even for multiple layers with some special activation functions.

Later, [2] generalized their results by adding a random bias vector in pre-activation and a

more general input data matrix. Similar results for the two-layer model with a random bias

vector and random input data were analyzed in [68] by cumulant expansion. In parallel, by

Stieltjes transform, [52] investigated the CK of a one-hidden-layer network with general de-

terministic input data and Lipschitz activation functions via some deterministic equivalent.

[49] further developed a deterministic equivalent for the Fourier feature map. With the help

of the Gaussian equivalent technique and operator-valued free probability theory, the limiting

spectrum of NTK with one hidden layer has been analyzed in [3]. Then the limiting spectra of

CK and NTK of a multi-layer neural network with general deterministic input data have been

fully characterized in [29], where the limiting spectrum of CK is given by the propagation of

the Marchenko–Pastur map through the network, while the NTK is approximated by the lin-

ear combination of CK’s of each hidden layer. [29] illustrated that the pairwise approximate

orthogonality assumption on the input data is preserved in all hidden layers. Such a property

is useful to approximate the expected CK and NTK. We refer to [32] as a summary of the

recent development in nonlinear random matrix theory.

Most of the results in nonlinear random matrix theory focus on the case when d1 is pro-

portional to n as n → ∞. We build a random matrix result for both CK and NTK under the

ultra-wide regime, where d1/n → ∞ and n → ∞. As an intrinsic interest of this regime,

this exhibits the connection between wide (or overparameterized) neural networks and kernel

learning induced by limiting kernels of CK and NTK. In this article, we will follow general

assumptions on the input data and activation function in [29] and study the limiting spectra

of the centered and normalized CK matrix

(2)
1√
nd1

"
Y�Y −E

�
Y�Y

��
,

where Y := σ(WX). Similar results for the NTK can be obtained as well. To complete the

proofs, we establish a nonlinear version of the Hanson–Wright inequality, which has previ-

ously appeared in [49, 52]. This nonlinear version is a generalization of the original Hanson–

Wright inequality [1, 36, 72], and may have various applications in statistics, machine learn-

ing, and other areas. In addition, we also derive a deformed semicircle law for normalized

sample covariance matrices without independence in columns. This result is of independent

interest in random matrix theory as well.

1.2. General sample covariance matrices. We observe that the random matrix Y ∈ Rd1×n

defined above has independent and identically distributed rows. Hence, Y�Y is a generalized

sample covariance matrix. We first inspect a more general sample covariance matrix Y whose

rows are independent copies of some random vector y ∈ R
n. Assuming n and d1 both go

to infinity but n/d1 → 0, we aim to study the limiting empirical eigenvalue distribution of

centered Wishart matrices in the form of (2) with certain conditions on y. This regime is also

related to the ultra-high-dimensional setting in statistics [70].

This regime has been studied for decades starting in [14], where Y has i.i.d. entries and

E[Y�Y ] = d1 Id. In this setting, by the moment method, one can obtain the semicircle law.
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This normalized model also arises in quantum theory with respect to random induced states

(see [8, 9, 26]). The largest eigenvalue of such a normalized sample covariance matrix has

been considered in [22]. Subsequently, [21, 45, 70, 87] analyzed the fluctuations for the linear

spectral statistics of this model and applied this result to hypothesis testing for the covariance

matrix. A spiked model for sample covariance matrices in this regime was recently studied

in [30]. This kind of semicircle law also appears in many other random matrix models. For

instance, [42] showed this limiting law for normalized sample correlation matrices. Also, the

semicircle law for centered sample covariance matrices has already been applied in machine

learning: [31] controlled the generalization error of shallow neural networks with quadratic

activation functions by the moments of this limiting semicircle law; [35] derived a semicircle

law of the fluctuation matrix between stochastic batch Hessian and the deterministic empirical

Hessian of deep neural networks.

For general sample covariance, [80] considered the form Y = BXA1/2 with deterministic

A and B , where X consists of i.i.d. entries with mean zero and variance one. The same

result has been proved in [16] by generalized Stein’s method. Unlike previous results, [85]

tackled the general case, only assuming Y has independent rows with some deterministic

covariance �n. Though this is similar to our model in Section 4, we will consider more

general assumptions on each row of Y , which can be directly verified in our neural network

models.

1.3. Infinite-width kernels and the smallest eigenvalues of empirical kernels. Besides

the above asymptotic spectral fluctuation of (2), we provide nonasymptotic concentrations

of (2) in spectral norm and a corresponding result for the NTK. In the infinite-width net-

works, where d1 → ∞ and n are fixed, both CK and NTK will converge to their expected

kernels. This has been investigated in [27, 44, 54, 74] for the CK and [4, 7, 28, 40, 47]

for the NTK. Such kernels are also called infinite-width kernels in literature. In this current

work, we present the precise probability bounds for concentrations of CK and NTK around

their infinite-width kernels, where the difference is of order
√

n/d1. Our results permit more

general activation functions and input data X only with pairwise approximate orthogonality,

albeit similar concentrations have been applied in [3, 10, 39, 57, 76].

A corollary of our concentration is the explicit lower bounds of the smallest eigenvalues of

the CK and the NTK. Such extreme eigenvalues of the NTK have been utilized to prove the

global convergence of gradient descent algorithms of wide neural networks since the NTK

governs the gradient flow in the training process, see, for example, [6, 23, 28, 59, 60, 63, 76,

83]. The smallest eigenvalue of NTK is also crucial for proving generalization bounds and

memorization capacity in [6, 57]. Analogous to Theorem 3.1 in [57], our lower bounds are

given by the Hermite coefficients of the activation function σ . Besides, the lower bound of

NTK for multi-layer ReLU networks is analyzed in [61].

1.4. Random feature regression and limiting kernel regression. Another byproduct of

our concentration results is to measure the difference of performance between random fea-

ture regression with respect to 1√
d1

Y and corresponding kernel regression when d1/n → ∞.

Random feature regression can be viewed as the linear regression of the last hidden layer, and

its performance has been studied in, for instance, [33, 38, 49, 50, 52, 53, 55, 56, 67] under

the linear-width regime.1 In this regime, the CK matrix 1
d1

Y�Y is not concentrated around its

expectation

(3) � := Ew

�
σ
"
w�X

��
σ
"
w�X

��

1This linear-width regime is also known as the high-dimensional regime, while our ultra-wide regime is also

called a highly overparameterized regime in literature, see [56].
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under the spectral norm, where w is the standard normal random vector in R
d0 . But the lim-

iting spectrum of CK is exploited to characterize the asymptotic performance and double

descent phenomenon of random feature regression when n,d0, d1 → ∞ proportionally. Sev-

eral works have also utilized this regime to depict the performance of the ultra-wide random

network by letting d1/n → ψ ∈ (0,∞) first, getting the asymptotic performance and then

taking ψ → ∞ (see [56, 86]). However, there is still a difference between this sequential

limit and the ultra-wide regime. Before these results, random feature regression has already

attracted significant attention in that it is a random approximation of the Reproducing Kernel

Hilbert Space (RKHS) defined by population kernel function K :Rd0 ×R
d0 →R such that

(4) K(x, z) := Ew

�
σ
"
�w,x�

�
σ
"
�w, z�

��
,

when width d1 is sufficiently large [11, 12, 71, 73]. We point out that Theorem 9 of [10] has

the same order
√

n/d1 of the approximation as ours, despite only for random Fourier features.

In our work, the concentration between empirical kernel induced by 1
d1

Y�Y and the pop-

ulation kernel matrix K defined in (4) for X leads to the control of the differences of train-

ing/test errors between random feature regression and kernel regression, which were previ-

ously concerned by [10, 41, 55, 57] in different cases. Specifically, [41] obtained the same

kind of estimation but considered random features sampled from Gaussian processes. Our

results explicitly show how large width d1 should be so that the random feature regression

gets the same asymptotic performance as kernel regression [55]. With these estimations, we

can take the limiting test error of the kernel regression to predict the limiting test error of

random feature regression as n/d1 → 0 and d0, n → ∞. We refer [46, 47, 51, 55], [18], Sec-

tion 4.3, and references therein for more details in high-dimensional kernel ridge/ridgeless

regressions. We emphasize that the optimal prediction error of random feature regression in

linear-width regime is actually achieved in the ultra-wide regime, which boils down to the

limiting kernel regression, see [53, 55, 56, 86]. This is one of the motivations for studying the

ultra-wide regime and the limiting kernel ridge regression.

In the end, we would like to mention the idea of spectral-norm approximation for the ex-

pected kernel �, which helps us describe the asymptotic behavior of limiting kernel regres-

sion. For specific activation σ , kernel � has an explicit formula, see [48, 49, 52], whereas

generally, it can be expanded in terms of the Hermite expansion of σ [29, 56, 67]. Thanks

to pairwise approximate orthogonality introduced in [29], Definition 3.1, we can approxi-

mate � in the spectral norm for general deterministic data X. This pairwise approximate

orthogonality defines how orthogonal is within different input vectors of X. With certain

i.i.d. assumption on X, [47] and [18], Section 4.3, where the scaling d0 ∝ nα , for α ∈ (0,1],
determined which degree of the polynomial kernel is sufficient to approximate �. Instead,

our theory leverages the approximate orthogonality among general datasets X to obtain a

similar approximation. Our analysis presumably indicates that the weaker orthogonality X

has, the higher degree of the polynomial kernel we need to approximate the kernel �.

1.5. Preliminaries.

Notation. We use tr(A) = 1
n

�
i Aii as the normalized trace of a matrix A ∈ R

n×n and

Tr(A) =�
i Aii . Denote vectors by lowercase boldface. �A� is the spectral norm for matrix

A, �A�F denotes the Frobenius norm, and �x� is the �2-norm of any vector x. A � B is the

Hadamard product of two matrices, that is, (A�B)ij = AijBij . Let Ew[·] and Varw[·] be the

expectation and variance only with respect to random vector w. Given any vector v, diag(v)

is a diagonal matrix where the main diagonal elements are given by v. λmin(A) is the smallest

eigenvalue of any Hermitian matrix A.
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Before stating our main results, we describe our model with assumptions. We first consider

the output of the first hidden layer and empirical conjugate kernel (CK):

(5) Y := σ(WX) and
1

d1
Y�Y.

Observe that the rows of matrix Y are independent and identically distributed since only W

is random and X is deterministic. Let the ith row of Y be y�
i , for 1 ≤ i ≤ d1. Then, we obtain

a sample covariance matrix,

Y�Y =
d1"

i=1

yiy
�
i ,

which is the sum of d1 independent rank-one random matrices in R
n×n. Let the second mo-

ment of any row yi be (3). Later on, we will approximate � based on the assumptions of

input data X.

Next, we define the empirical neural tangent kernel (NTK) for (1), denoted by H ∈ R
n×n.

From Section 3.3 in [29], the (i, j)th entry of H can be explicitly written as

Hij := 1

d1

d1"

r=1

"
σ
"
w�

r xi

�
σ
"
w�

r xj

�
+ a2

r σ
�"w�

r xi

�
σ �"w�

r xj

�
x�
i xj

�
, 1 ≤ i, j ≤ n,(6)

where wr is the r th row of weight matrix W , xi is the ith column of matrix X, and ar is r th

entry of the output layer a. In the matrix form, H can be written by

H := 1

d1

"
Y�Y +

"
S�S

�
�
"
X�X

��
,(7)

where the αth column of S is given by

diag
"
σ �(Wxα)

�
a ∀1 ≤ α ≤ n.(8)

We introduce the following assumptions for the random weights, nonlinear activation func-

tion σ , and input data. These assumptions are basically carried on from [29].

ASSUMPTION 1.1. The entries of W and a are i.i.d. and distributed by N (0,1).

ASSUMPTION 1.2. Activation function σ(x) is a Lipschitz function with the Lipschitz

constant λσ ∈ (0,∞). Assume that σ is centered and normalized with respect to ξ ∼N (0,1)

such that

E
�
σ(ξ)

�
= 0, E

�
σ 2(ξ)

�
= 1.(9)

Define constants aσ and bσ ∈ R by

bσ := E
�
σ �(ξ)

�
, aσ := E

�
σ �(ξ)2�.(10)

Furthermore, σ satisfies either of the following:

1. σ(x) is twice differentiable with supx∈R |σ ��(x)| ≤ λσ , or

2. σ(x) is a piecewise linear function defined by

σ(x) =
�
ax + b, x > 0,

cx + b, x ≤ 0,

for some constants a, b, c ∈ R such that (9) holds.
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Analogously to [39], our Assumption 1.2 permits σ to be the commonly used activation

functions, including ReLU, Sigmoid, and Tanh, although we have to center and normalize

the activation functions to guarantee (9). Such normalized activation functions exclude some

trivial spike in the limiting spectra of CK and NTK [19, 29]. The foregoing assumptions

ensure our nonlinear Hanson–Wright inequality in the proof. As a future direction, going

beyond Gaussian weights and Lipschitz activation functions may involve different types of

concentration inequalities.

Next, we present the conditions of the deterministic input data X and the asymptotic

regime for our main results. Define the following (ε,B)-orthonormal property for our data

matrix X.

DEFINITION 1.3. For given any ε,B > 0, matrix X is (ε,B)-orthonormal if for any

distinct columns xα , x³ in X, we have
���xα�2 − 1

��≤ ε,
���x³�2 − 1

��≤ ε,
��x�

α x³

��≤ ε,

and also
n"

α=1

"
�xα�2 − 1

�2 ≤ B2, �X� ≤ B.

ASSUMPTION 1.4. Let n,d0, d1 → ∞ such that:

(a) ´ := n/d1 → 0;

(b) X is (εn,B)-orthonormal such that nε4
n → 0 as n → ∞;

(c) The empirical spectral distribution μ̂0 of X�X converges weakly to a fixed and non-

degenerate probability distribution μ0 �= µ0 on [0,∞).

In above (b), the (εn,B)-orthonormal property with nε4
n = o(1) is a quantitative version

of pairwise approximate orthogonality for the column vectors of the data matrix X ∈ R
d0×n.

When d0 � n, it holds, with high probability, for many random X with independent columns

xα , including the anisotropic Gaussian vectors xα ∼ N (0,�) with tr(�) = 1 and ��� �
1/n, vectors generated by Gaussian mixture models, and vectors satisfying the log-Sobolev

inequality or convex Lipschitz concentration property. See [29], Section 3.1, for more details.

Specifically, when xα’s are independently sampled from the unit sphere S
d0−1, X is (εn,B)-

orthonormal with high probability where εn = O(

�
log(n)

n
) and B = O(1) as n � d0. In this

case, for any � > 2, we have nε�
n → 0. In our theory, we always treat X as a deterministic

matrix. However, our results also work for random input X independent of weights W and a

by conditioning on the high probability event that X satisfies (εn,B)-orthonormal property.

Unlike data vectors with independent entries, our assumption is promising to analyze real-

world datasets [53] and establish some n-dependent deterministic equivalents like [49].

The following Hermite polynomials are crucial to the approximation of � in our analysis.

DEFINITION 1.5 (Normalized Hermite polynomials). The r th normalized Hermite poly-

nomial is given by

hr(x) = 1√
r!

(−1)rex2/2 dr

dxr
e−x2/2.

Here {hr}∞r=0 form an orthonormal basis of L2(R,�), where � denotes the standard Gaussian

distribution. For σ1, σ2 ∈ L2(R,�), the inner product is defined by

�σ1, σ2� =
� ∞

−∞
σ1(x)σ2(x)

e−x2/2

√
2π

dx.
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Every function σ ∈ L2(R,�) can be expanded as a Hermite polynomial expansion

σ(x) =
∞"

r=0

ζr(σ )hr(x),

where ζr(σ ) is the r th Hermite coefficient defined by

ζr(σ ) :=
� ∞

−∞
σ(x)hr(x)

e−x2/2

√
2π

dx.

In the following statements and proofs, we denote ξ ∼ N (0,1). Then for any k ∈ N, we

have

ζk(σ ) = E
�
σ(ξ)hk(ξ)

�
.

Specifically, bσ = E[σ �(ξ)] = E[ξ · σ(ξ)] = ζ1(σ ). Let fk(x) = xk . We define the inner-

product kernel random matrix fk(X
�X) ∈ R

n×n by applying fk entrywise to X�X. Define a

deterministic matrix

(11) �0 := μμ� +
3"

k=1

ζk(σ )2fk

"
X�X

�
+
"
1 − ζ1(σ )2 − ζ2(σ )2 − ζ3(σ )2� Id,

where the αth entry of μ ∈ R
n is

√
2ζ2(σ ) · (�xα�2 −1) for 1 ≤ α ≤ n. We will employ �0 as

an approximation of the population covariance � in (3) in the spectral norm when nε4
n → 0.

For any n × n Hermitian matrix An with eigenvalues λ1, . . . , λn, the empirical spectral

distribution of A is defined by

μAn(x) = 1

n

n"

i=1

µλi
(x).

We write lim spec(An) = μ if μAn → μ weakly as n → ∞. The main tool we use to study

the limiting spectral distribution of a matrix sequence is the Stieltjes transform defined as

follows.

DEFINITION 1.6 (Stieltjes transform). Let μ be a probability measure on R. The Stieltjes

transform of μ is a function s(z) defined on the upper half plane C
+ by

s(z) =
�

R

1

x − z
dμ(x).

For any n × n Hermitian matrix An, the Stieltjes transform of the empirical spectral dis-

tribution of An can be written as tr(An − z Id)−1. We call (An − z Id)−1 the resolvent of

An.

2. Main results.

2.1. Spectra of the centered CK and NTK. Our first result is a deformed semicircle law

for the CK matrix. Denote by μ̃0 = (1 − bσ )2 + b2
σμ0 the distribution of (1 − b2

σ )+ b2
σλ with

λ sampled from the distribution μ0. The limiting law of our centered and normalized CK

matrix is depicted by μs � μ̃0, where μs is the standard semicircle law and the notation �
is the free multiplicative convolution in free harmonic analysis. For full descriptions of free

independence and free multiplicative convolution, see [62], Lecture 18, and [5], Section 5.3.3.

The free multiplicative convolution � was first introduced in [79], which later has many

applications for products of asymptotic free random matrices. The main tool for computing
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free multiplicative convolution is the S-transform, invented by [79]. S-transform was recently

utilized to study the dynamical isometry of deep neural networks [25, 37, 65, 66, 84]. Some

basic properties and intriguing examples for free multiplicative convolution with μs can also

be found in [15], Theorems 1.2, 1.3.

THEOREM 2.1 (Limiting spectral distribution for the conjugate kernel). Suppose As-

sumptions 1.1, 1.2, and 1.4 of the input matrix X hold, the empirical eigenvalue distribution

of

(12)
1√
d1n

"
Y�Y −E

�
Y�Y

��

converges weakly to

μ := μs �
""

1 − b2
σ

�
+ b2

σ · μ0

�
= μs � μ̃0(13)

almost surely as n,d0, d1 → ∞. Furthermore, if d1ε
4
n → 0 as n,d0, d1 → ∞, then the em-

pirical eigenvalue distribution of

(14)

�
d1

n

�
1

d1
Y�Y − �0

�

also converges weakly to the probability measure μ almost surely, whose Stieltjes transform

m(z) is defined by

(15) m(z) +
�

R

dμ̃0(x)

z + ³(z)x
= 0

for each z ∈C
+, where ³(z) ∈ C

+ is the unique solution to

(16) ³(z) +
�

R

xdμ̃0(x)

z + ³(z)x
= 0.

Suppose that we additionally have bσ = 0, that is, E[σ �(ξ)] = 0. In this case, our Theo-

rem 2.1 shows that the limiting spectral distribution of (2) is the semicircle law, and from

(13), the deterministic data matrix X does not have an effect on the limiting spectrum. See

Figure 1 for a cosine-type σ with bσ = 0. The only effect of the nonlinearity in μ is the

coefficient bσ in the deformation μ̃0.

Figure 2 is a simulation of the limiting spectral distribution of CK with activation function

σ(x) given by arctan(x) after proper shifting and scaling. More simulations are provided in

FIG. 1. Simulations for empirical eigenvalue distributions of (14) and theoretical predication (red curves) of the

limiting law μ where activation function σ(x) ∝ cos(x) satisfies Assumption 1.2 with bσ = 0, and X is a standard

Gaussian random matrix. Dimension parameters are given by n = 1.9 × 103, d0 = 2 × 103, and d1 = 2 × 105

(left); n = 2 × 103, d0 = 1.9 × 103, and d1 = 2 × 105 (middle); n = 2 × 103, d0 = 2 × 103, and d1 = 2 × 105

(right).
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FIG. 2. Simulations for empirical eigenvalue distributions of (14) and theoretical predication (red curves) of

the limiting law μ where activation function σ(x) ∝ arctan(x) satisfies Assumption 1.2 and X is a standard

Gaussian random matrix: n = 103, d0 = 103, and d1 = 105 (left); n = 103, d0 = 1.5 × 103, and d1 = 105

(middle); n = 1.5 × 103, d0 = 103, and d1 = 105 (right).

Appendix B with different activation functions. The red curves are implemented by the self-

consistent equations (15) and (16) in Theorem 2.1. In Section 4, we present general random

matrix models with similar limiting eigenvalue distribution as μ whose Stieltjes transform is

also determined by (15) and (16).

Theorem 2.1 can be extended to the NTK model as well. Denote by

  := 1

d1

E
�
S�S

�
�
"
X�X

�
∈ R

n×n.(17)

As an approximation of   in the spectral norm, we define

 0 :=
 
aσ −

2"

k=0

η2
k(σ )

�
Id+

2"

k=0

η2
k(σ )fk+1

"
X�X

�
,(18)

where fk’s are defined in (11), aσ is defined in (10), and the kth Hermite coefficient of σ � is

ηk(σ ) := E
�
σ �(ξ)hk(ξ)

�
.(19)

Then, a similar deformed semicircle law can be obtained for the empirical NTK matrix H .

THEOREM 2.2 (Limiting spectral distribution of the NTK). Under Assumptions 1.1, 1.2,

and 1.4 of the input matrix X, the empirical eigenvalue distribution of

(20)

�
d1

n

"
H −E[H ]

�

weakly converges to μ = μs � ((1 − b2
σ ) + b2

σ · μ0) almost surely as n,d0, d1 → ∞ and

n/d1 → 0. Furthermore, suppose that ε4
nd1 → 0, then the empirical eigenvalue distribution

of

(21)

�
d1

n
(H − �0 −  0)

weakly converges to μ almost surely, where �0 and  0 are defined in (11) and (18), respec-

tively.

2.2. Nonasymptotic estimations. With our nonlinear Hanson–Wright inequality (Corol-

lary 3.5), we attain the following concentration bound on the CK matrix in the spectral norm.

THEOREM 2.3. With Assumption 1.1, assume X satisfies
�n

i=1(�xi�2 − 1)2 ≤ B2 for

a constant B ≥ 0, and σ is λσ -Lipschitz with E[σ(ξ)] = 0. Then with probability at least
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1 − 4e−2n,
����

1

d1
Y�Y − �

����≤ C

��
n

d1
+ n

d1

�
λ2

σ�X�2 + 32Bλ2
σ�X�

�
n

d1
,(22)

where C > 0 is a universal constant.

REMARK 2.4. Theorem 2.3 ensures that the empirical spectral measure μn of the cen-

tered random matrix
�

d1
n

( 1
d1

Y�Y − �) has a bounded support for all sufficiently large n.

Together with the global law in Theorem 2.1, our concentration inequality (22) is tight up to

a constant factor. Additionally, by the weak convergence of μn to μ proved in Theorem 2.1,

we can take a test function x2 to obtain that

�

R

x2 dμn(x) →
�

R

x2 dμ(x), that is,

√
d1

n

����
1

d1
Y�Y − �

����
F

→
��

R

x2 dμ(x)

� 1
2

almost surely, as n,d1 → ∞ and d1/n → ∞. Therefore, the fluctuation of 1
d1

Y�Y around �

under the Frobenius norm is exactly of order n/
√

d1.

Based on the foregoing estimation, we have the following lower bound on the smallest

eigenvalue of the empirical conjugate kernel, denoted by λmin(
1
d1

Y�Y).

THEOREM 2.5. Suppose Assumptions 1.1 and 1.2 hold and σ is not a linear function, X

is (εn,B)-orthonormal. Then with probability at least 1 − 4e−2n,

λmin

�
1

d1
Y�Y

�
≥ 1 −

3"

i=1

ζi(σ )2 − CBε2
n

√
n − C

��
n

d1
+ n

d1

�
λ2

σB2,

where CB is a constant depending on B . In particular, if ε4
nn = o(1), B = O(1), d1 = ω(n),

then with high probability,

λmin

�
1

d1

Y�Y

�
≥ 1 −

3"

i=1

ζi(σ )2 − o(1).

REMARK 2.6. A related result in [63], Theorem 5, assumed �xj� = 1 for all j ∈ [n],
λσ ≤ B , |σ(0)| ≤ B , d1 ≥ C log2(n) n

λmin(�)
and obtained 1

d1
λmin(Y

�Y) ≥ λmin(�) − o(1).

We relax the assumption on the column vectors of X, and extend the range of d1 down to

d1 = �(n), to guarantee that 1
d1

λmin(Y
�Y) is lower bounded by an absolute constant, with

an extra assumption that E[σ(ξ)] = 0. This assumption can always be satisfied by shifting

the activation function with a proper constant. Our bound for λmin(�) is derived via Hermite

polynomial expansion, similar to [63], Lemma 15. However, we apply an ε-net argument

for concentration bound for 1
d1

Y�Y around �, while a matrix Chernoff concentration bound

with truncation was used in [63], Theorem 5.

Additionally, the concentration for the NTK matrix H can be obtained in the next theorem.

Recall that H is defined by (7) and the columns of S are defined by (8) with Assumption 1.1.

THEOREM 2.7. Suppose d1 ≥ logn, and σ is λσ -Lipschitz. Then with probability at least

1 − n−7/3,

����
1

d1

"
S�S −E

�
S�S

��
�
"
X�X

�����≤ 10λ4
σ�X�4

�
logn

d1
.(23)
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Moreover, if the assumptions in Theorem 2.3 hold, then with probability at least 1 − n−7/3 −
4e−2n,

�H −EH� ≤ C

��
n

d1
+ n

d1

�
λ2

σ�X�2 + 32Bλ2
σ�X�

�
n

d1
+ 10λ4

σ�X�4

�
logn

d1
.(24)

REMARK 2.8. Compared to Proposition D.3 in [39], we assume a is a Gaussian vector

instead of a Rademacher random vector and attain a better bound. If ai ∈ {+1,−1}, then

one can apply matrix Bernstein inequality for the sum of bounded random matrices. In our

case, the boundedness condition is not satisfied. Section S1.1 in [3] applied matrix Bernstein

inequality for the sum of bounded random matrices when a is a Gaussian vector, but the

boundedness condition does not hold in equation (S7) of [3].

Based on Theorem 2.7, we get a lower bound for the smallest eigenvalue of the NTK.

THEOREM 2.9. Under Assumptions 1.1 and 1.2, suppose that X is (εn,B)-orthonormal,

σ is not a linear function, and d1 ≥ logn. Then with probability at least 1 − n−7/3,

λmin(H) ≥ aσ −
2"

k=0

η2
k(σ ) − CBε4

nn − 10λ4
σB4

�
logn

d1
,

where CB is a constant depending only on B , and ηk(σ ) is defined in (19). In particular, if

ε4
nn = o(1), B = O(1), and d1 = ω(logn), then with high probability,

λmin(H) ≥
 
aσ −

2"

k=0

η2
k(σ )

�
"
1 − o(1)

�
.

REMARK 2.10. We relax the assumption in [61] to d1 = ω(logn) for the 2-layer case

and our result is applicable beyond the ReLU activation function and to more general assump-

tions on X. Our proof strategy is different from [61]. In [61], the authors used the inequality

λmin((S
�S) � (X�X)) ≥ mini �Si�2

2 · λmin(X
�X) where Si is the ith column of S. Then,

getting the lower bound is reduced to show the concentration of the 2-norm of the column

vectors of S. Here we apply a matrix concentration inequality to (S�S) � (X�X) and gain a

weaker assumption on d1 to ensure the lower bound on λmin(H).

REMARK 2.11. In Theorems 2.5 and 2.9, we exclude the linear activation function.

When σ(x) = x, it is easy to check both 1
d1

λmin(Y
�Y) and λmin(H) will trivially determined

by λmin(X
�X), which can be vanishing. In this case, the lower bounds of the smallest eigen-

values of CK and NTK rely on the assumption of μ0 or the distribution of X. For instance,

when the entries of X are i.i.d. Gaussian random variables, λmin(X
�X) has been analyzed

in [75].

2.3. Training and test errors for random feature regression. We apply the results of the

preceding sections to a two-layer neural network at random initialization defined in (1), to

estimate the training errors and test errors with mean-square losses for random feature re-

gression under the ultra-wide regime where d1/n → ∞ and n → ∞. In this model, we take

the random feature 1√
d1

σ(WX) and consider the regression with respect to θ ∈R
d1 based on

fθ (X) := 1√
d1

θ�σ(WX),
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with training data X ∈ R
d0×n and training labels y ∈ R

n. Considering the ridge regression

with ridge parameter λ ≥ 0 and squared loss defined by

L(θ) :=
��fθ (X)� − y

��2 + λ�θ�2,(25)

we can conclude that the minimization θ̂ := arg minθ L(θ) has an explicit solution

(26) θ̂ = 1√
d1

Y

�
1

d1
Y�Y + λ Id

�−1

y,

where Y = σ(WX) is defined in (5). When σ is nonlinear, by Theorem 2.5, it is feasible to

take inverse in (26) for any λ ≥ 0. Hence, in the following results, we will focus on nonlinear

activation functions.2 In general, the optimal predictor for this random feature with respect

to (25) is

f̂
(RF)
λ (x) := 1√

d1

θ̂
�
σ(Wx) = Kn(x,X)

"
Kn(X,X) + λ Id

�−1
y,(27)

where we define an empirical kernel Kn(·, ·) :Rd0 ×R
d0 →R as

(28) Kn(x, z) := 1

d1

σ(Wx)�σ(Wz) = 1

d1

d1"

i=1

σ
"
�wi,x�

�
σ
"
�wi, z�

�
.

The n-dimension row vector is given by

(29) Kn(x,X) =
�
Kn(x,x1), . . . ,Kn(x,xn)

�
,

and the (i, j) entry of Kn(X,X) is defined by Kn(xi,xj ), for 1 ≤ i, j ≤ n.

Analogously, consider any kernel function K(·, ·) : Rd0 × R
d0 → R. The optimal kernel

predictor with a ridge parameter λ ≥ 0 for the kernel ridge regression is given by (see [10,

18, 41, 46, 51, 71] for more details)

f̂
(K)
λ (x) := K(x,X)

"
K(X,X) + λ Id

�−1
y,(30)

where K(X,X) is an n × n matrix such that its (i, j) entry is K(xi,xj ), and K(x,X) is a

row vector in R
n similarly with (29). We compare the characteristics of the two different

predictors f̂
(RF)
λ (x) and f̂

(K)
λ (x) when the kernel function K is defined in (4). Denote the

optimal predictors for random features and kernel K on training data X by

f̂
(RF)
λ (X) =

"
f̂

(RF)
λ (x1), . . . , f̂

(RF)
λ (xn)

��
,

f̂
(K)
λ (X) =

"
f̂

(K)
λ (x1), . . . , f̂

(K)
λ (xn)

��
,

respectively. Notice that, in this case, K(X,X) ≡ � defined in (3) and Kn(X,X) is the ran-

dom empirical CK matrix 1
d1

Y�Y defined in (5).

We aim to compare the training and test errors for these two predictors in ultra-wide ran-

dom neural networks, respectively. Let training errors of these two predictors be

E
(K,λ)
train := 1

n

��f̂ (K)
λ (X) − y

��2
2 = λ2

n

��"K(X,X) + λ Id
�−1

y
��2

,(31)

E
(RF,λ)
train := 1

n

��f̂ (RF)
λ (X) − y

��2
2 = λ2

n

��"Kn(X,X) + λ Id
�−1

y
��2

.(32)

2As Remark 2.11 stated, when σ(x) = x, λmin of CK may be possibly vanishing. To include the linear activation

function, we can alternatively assume that the ridge parameter λ is strictly positive and focus on random feature

ridge regressions.
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In the following theorem, we show that, with high probability, the training error of the random

feature regression model can be approximated by the corresponding kernel regression model

with the same ridge parameter λ ≥ 0 for ultra-wide neural networks.

THEOREM 2.12 (Training error approximation). Suppose Assumptions 1.1, 1.2, and 1.4

hold, and σ is not a linear function. Then, for all large n, with probability at least 1 − 4e−2n,

��E(RF,λ)
train − E

(K,λ)
train

��≤ C1√
nd1

��
n

d1

+ C2

�
�y�2,(33)

where constants C1 and C2 only depend on λ, B and σ .

Next, to investigate the test errors (or generalization errors), we introduce further assump-

tions on the data and the target function that we want to learn from training data. Denote the

true regression function by f ∗ :Rd0 →R. Then, the training labels are defined by

y = f ∗(X) + " and f ∗(X) =
"
f ∗(x1), . . . , f

∗(xn)
��

,

where " ∈ R
n is the training label noise. For simplicity, we further impose the following

assumptions, analogously to [50].

ASSUMPTION 2.13. Assume that the target function is a linear function f ∗(x) = �³³³∗,x�,
where random vector satisfies ³³³∗ ∼ N (0, σ 2

³³³ Id). Then, in this case, the training label vector

is given by y = X�³³³∗ + " where " ∼N (0, σ 2
" Id) independent with ³³³∗ ∈ R

d0 .

ASSUMPTION 2.14. Suppose that training dataset X = [x1, . . . ,xn] ∈ R
d0×n satisfies

(εn,B)-orthonormal condition with nε4
n = o(1), and a test data x ∈ R

d0 is independent with

X and y such that X̃ := [x1, . . . ,xn,x] ∈ R
d0×(n+1) is also (εn,B)-orthonormal. For conve-

nience, we further assume the population covariance of the test data is Ex[xx�] = 1
d0

Id.

REMARK 2.15. Our Assumption 2.14 of the test data x ensures the same statistical be-

havior as training data in X, but we do not have any explicit assumption of the distribution

of x. It is promising to adopt such assumptions to handle statistical models with real-world

data [48, 49]. Besides, it is possible to extend our analysis to general population covariance

for Ex[xx�].

For any predictor f̂ , define the test error (generalization error) by

L(f̂ ) := Ex

���f̂ (x) − f ∗(x)
��2�.(34)

We first present the following approximation of the test error of a random feature predictor

via its corresponding kernel predictor.

THEOREM 2.16 (Test error approximation). Suppose that Assumptions 1.1, 1.2, 2.13,

and 2.14 hold, and σ is not a linear function. Then, for any ε ∈ (0,1/2), the difference of test

errors satisfies

(35)
��L
"
f̂

(RF)
λ (x)

�
−L

"
f̂

(K)
λ (x)

���= o
"
(n/d1)

1
2 −ε�,

with probability 1 − o(1), when n/d1 → 0 and n → ∞.
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Theorems 2.12 and 2.16 verify that the random feature regression achieves the same

asymptotic errors as the kernel regression, as long as n/d1 → ∞. This is closely related to

[55], Theorem 1, with different settings. Based on that, we can compute the asymptotic train-

ing and test errors for the random feature model by calculating the corresponding quantities

for the kernel regression in the ultra-wide regime where n/d1 → 0.

THEOREM 2.17 (Asymptotic training and test errors). Suppose Assumptions 1.1 and 1.2

hold, and σ is not a linear function. Suppose the target function f ∗, training data X, and

test data x ∈ R
d0 satisfy Assumptions 2.13 and 2.14. For any λ ≥ 0, let the effective ridge

parameter be

(36) λeff(λ, σ ) := 1 + λ − b2
σ

b2
σ

.

If the training data has some limiting eigenvalue distribution μ0 = lim specX�X as n → ∞
and n/d0 → ´ ∈ (0,∞), then when n/d1 → 0 and n → ∞, the training error satisfies

(37) E
(RF,λ)
train

P−→
σ 2
³³³λ2

´ b4
σ

VK

"
λeff(λ, σ )

�
+ σ 2

" λ2

´ (1 + λ − b2
σ )2

"
BK

"
λeff(λ, σ )

�
− 1 + ´

�
,

and the test error satisfies

(38) L
"
f̂

(RF)
λ (x)

� P−→ σ 2
³³³BK

"
λeff(λ, σ )

�
+ σ 2

" VK

"
λeff(λ, σ )

�
,

where the bias and variance functions are defined by

BK(ν) := (1 − ´ ) + ´ ν2
�

R

1

(x + ν)2
dμ0(x),

VK(ν) := ´

�

R

x

(x + ν)2
dμ0(x).

We emphasize that in the proof of Theorem 2.17, we also get n-dependent deterministic

equivalents for training/test errors of the kernel regression to approximate the performance

of random feature regression. This is akin to [49], Theorem 3, and [18], Theorem 4.13, but

in different regimes. In the following Figure 3, we present implementations of test errors

for random feature regressions on standard Gaussian random data and their limits (38). For

simplicity, we fix n, d0, only let d1 → ∞, and use empirical spectral distribution of X�X to

approximate μ0 in BK(λeff(λ, σ )) and VK(λeff(λ, σ )), which is actually the n-dependent de-

terministic equivalent. However, for Gaussian random matrix X, μ0 is actually a Marchenko–

Pastur law with ratio ´ , so BK(λeff(λ, σ )) and VK(λeff(λ, σ )) can be computed explicitly

according to [50], Definition 1.

REMARK 2.18 (Implicit regularization). For nonlinear σ , the effective ridge parameter

(36) can be viewed as an inflated ridge parameter since b2
σ ∈ [0,1) and λeff > λ ≥ 0. This λeff

leads to implicit regularization for our random feature and kernel ridge regressions even for

the ridgeless regression with λ = 0 [18, 41, 46, 57]. This effective ridge parameter λeff also

shows the effect of the nonlinearity in the random feature and kernel regressions induced by

ultra-wide neural networks.

REMARK 2.19. For convenience, we only consider the linear target function f ∗, but in

general, the above theorems can also be obtained for nonlinear target functions, for instance,
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FIG. 3. Simulations for the test errors of random feature regressions with centered Gaussian random matrix as

input X and regularization parameter λ = 10−3 (left) and λ = 10−6 (right). Here, the activation function σ is a

re-scaled Sigmoid function, σ" = 1 and σ³³³ = 2. We fix d0 = 500, varying values of sample sizes n and widths d1.

Test errors in solid lines with error bars are computed using an independent test set of size 5000. We average our

results over 50 repetitions. Limiting test errors in black dash lines are computed by (38), and we take μ0 to be the

corresponding Marchenko–Pastur distributions.

f ∗ is a nonlinear single-index model. Under (εn,B)-orthonormal assumption with nε4
n → 0,

our expected kernel K(X,X) ≡ � is approximated in terms of

(39) lim specK(X,X) = lim spec
"
b2
σX�X +

"
1 − b2

σ

�
Id
�
,

whence, this kernel regression can only learn linear functions. So if f ∗ is nonlinear, the limit-

ing test error should be decomposed into the linear part as (38) and the nonlinear component

as a noise [18], Theorem 4.13. For more conclusions of this kernel machine, we refer to [46,

47, 51, 55].

REMARK 2.20 (Neural tangent regression). In parallel to the above results, we can obtain

a similar analysis of the limiting training and test errors for random feature regression in (27)

with empirical NTK given by either Kn(X,X) = 1
d1

(S�S)� (X�X) or Kn(X,X) = H . This

random feature regression also refers to neural tangent regression [57]. With the help of

our concentration results in Theorem 2.7 and the lower bound of the smallest eigenvalues in

Theorem 2.9, we can directly extend the above Theorems 2.12, 2.16, and 2.17 to this neural

tangent regression. We omit the proofs in these cases and only state the results as follows.

If Kn(X,X) = 1
d1

(S�S) � (X�X) with expected kernel K(X,X) =   defined by (17),

the limiting training and test errors of this neural tangent regression can be approximated by

the kernel regression with respect to   , as long as d1 = ω(logn). Analogously to (39), we

have an additional approximation

(40) lim spec  = lim spec
"
b2
σX�X +

"
aσ − b2

σ

�
Id
�
.

Under the same assumptions of Theorem 2.17 and replacing n/d1 → 0 with d1 = ω(logn),

we can conclude that the test error of this neural tangent regression has the same limit as

(38) but changing the effective ridge parameter (36) into λeff(λ, σ ) = aσ +λ−b2
σ

b2
σ

. This result is

akin to [57], Corollary 3.2, but permits more general assumptions on X. The limiting training

error of this neural tangent regression can be obtained by slightly modifying the coefficient

in (37).

Similarly, if Kn(X,X) = H defined by (7) possesses an expected kernel K(X,X) = � +
  , this neural tangent regression in (27) is close to kernel regression (30) with kernel

K(x, z) = Ew

�
σ
"
w�x

�
σ
"
w�x

��
+Ew

�
σ �"w�x

�
σ �"w�x

��
x�z,
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under the ultra-wide regime, n/d1 → 0. Combining (39) and (40), Theorem 2.17 can di-

rectly be extended to this neural tangent regression but replacing (36) with λeff(λ, σ ) =
aσ +1+λ−2b2

σ

2b2
σ

. Section 6.1 of [3] also calculated this limiting test error when data X is isotropic

Gaussian.

Organization of the paper. The remaining parts of the paper are structured as follows. In

Section 3, we first provide a nonlinear Hanson–Wright inequality as a concentration tool for

our spectral analysis. Section 4 gives a general theorem for the limiting spectral distributions

of generalized centered sample covariance matrices. We prove the limiting spectral distribu-

tions for the empirical CK and NTK matrices (Theorem 2.1 and Theorem 2.2) in Section 5.

Nonasymptotic estimates in Section 2.2 are proved in Section 6. In Section 7, we justify the

asymptotic results of the training and test errors for the random feature model (Theorem 2.12

and Theorem 2.16). Auxiliary lemmas and additional simulations are included in Appendices

A and B.

3. A nonlinear Hanson–Wright inequality. We give an improved version of Lemma 1

in [52] with a simple proof based on a Hanson–Wright inequality for random vectors with

dependence [1]. This serves as the concentration tool for us to prove the deformed semicircle

law in Section 5 and provide bounds on extreme eigenvalues in Section 6. We first define

some concentration properties for random vectors.

DEFINITION 3.1 (Concentration property). Let X be a random vector in R
n. We say X

has the K-concentration property with constant K if for any 1-Lipschitz function f : Rn →
R, we have E|f (X)| < ∞ and for any t > 0,

P
"��f (X) −Ef (X)

��≥ t
�
≤ 2 exp

"
−t2/K2�.(41)

There are many distributions of random vectors satisfying K-concentration property, in-

cluding uniform random vectors on the sphere, unit ball, hamming or continuous cube, uni-

form random permutation, etc. See [78], Chapter 5, for more details.

DEFINITION 3.2 (Convex concentration property). Let X be a random vector in R
n. We

say X has the K-convex concentration property with the constant K if for any 1-Lipschitz

convex function f :Rn →R, we have E|f (X)| < ∞ and for any t > 0,

P
"��f (X) −Ef (X)

��≥ t
�
≤ 2 exp

"
−t2/K2�.

We will apply the following result from [1] to the nonlinear setting.

LEMMA 3.3 (Theorem 2.5 in [1]). Let X be a mean zero random vector in R
n. If X has

the K-convex concentration property, then for any n × n matrix A and any t > 0,

P
"��X�AX −E

"
X�AX

���≥ t
�
≤ 2 exp

�
− 1

C
min

�
t2

2K4�A�2
F

,
t

K2�A�

��

for some universal constant C > 1.

THEOREM 3.4. Let w ∈ R
d0 be a random vector with K-concentration property, X =

(x1, . . . ,xn) ∈ R
d0×n be a deterministic matrix. Define y = σ(w�X)�, where σ is λσ -

Lipschitz, and � = Eyy�. Let A be an n × n deterministic matrix.
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1. If E[y] = 0, for any t > 0,

P
"��y�Ay − TrA�

��≥ t
�

≤ 2 exp

�
− 1

C
min

�
t2

2K4λ4
σ�X�4�A�2

F

,
t

K2λ2
σ�X�2�A�

��
,

(42)

where C > 0 is an absolute constant.

2. If E[y] �= 0, for any t > 0,

P
"��y�Ay − TrA�

��> t
�

≤ 2 exp

�
− 1

C
min

�
t2

4K4λ4
σ�X�4�A�2

F

,
t

K2λ2
σ�X�2�A�

��

+ 2 exp

�
− t2

16K2λ2
σ�X�2�A�2�Ey�2

�

for some constant C > 0.

PROOF. Let f be any 1-Lipschitz convex function. Since y = σ(w�X)�, f (y) =
f (σ(w�X)�) is a λσ�X�-Lipschitz function of w. Then by the Lipschitz concentration prop-

erty of w in (41), we obtain

P
"��f (y) −Ef (y)

��≥ t
�
≤ 2 exp

�
− t2

K2λ2
σ�X�2

�
.

Therefore, y satisfies the Kλσ�X�-convex concentration property. Define f̃ (x) = f (x−Ey),

then f̃ is also a convex 1-Lipschitz function and f̃ (y) = f (y −Ey). Hence ỹ := y −Ey also

satisfies the Kλσ�X�-convex concentration property. Applying Theorem 3.3 to ỹ, we have

for any t > 0,

(43)

P
"��ỹ�Aỹ −E

"
ỹ�Aỹ

���≥ t
�

≤ 2 exp

�
− 1

C
min

�
t2

2K4λ4
σ�X�4�A�2

F

,
t

K2λ2
σ�X�2�A�

��
.

Since Eỹ = 0, the inequality above implies (42). Note that

ỹ�Aỹ −E
"
ỹ�Aỹ

�
=
"
y�Ay − TrA�

�
− ỹ�AEy −Ey�Aỹ.

Hence,

y�Ay − TrA� =
"
ỹ�Aỹ −E

"
ỹ�Aỹ

��
+ (y −Ey)�

"
A + A��

Ey

=
"
ỹ�Aỹ −E

"
ỹ�Aỹ

��
+
"
y�"A + A��

Ey −Ey�"A + A��
Ey
�
.

(44)

Since y�(A + A�)Ey is a (2�A��Ey��X�λσ )-Lipschitz function of w, by the Lipschitz

concentration property of w, we have

P
"��(y −Ey)�

"
A + A��

Ey
��≥ t

�
≤ 2 exp

�
− t2

4K2(�A��Ey��X�λσ )2

�
.(45)

Then combining (43), (44), and (45), we have

P
"��y�Ay − TrA�

��≥ t
�

≤ P
"��ỹ�Aỹ −E

"
ỹ�Aỹ

���≥ t/2
�
+ P

"��(y −Ey)�
"
A + A��

Ey
��≥ t/2

�
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≤ 2 exp

�
− 1

2C
min

�
t2

4K4λ4
σ�X�4�A�2

F

,
t

K2λ2
σ�X�2�A�

��

+ 2 exp

�
− t2

16K2λ2
σ�X�2�A�2�Ey�2

�
.

This finishes the proof. �

Since the Gaussian random vector w ∼ N (0, Id0
) satisfies the K-concentration inequality

with K =
√

2 (see, e.g., [20]), we have the following corollary.

COROLLARY 3.5. Let w ∼ N (0, Id0
), X = (x1, . . . ,xn) ∈ R

d0×n be a deterministic ma-

trix. Define y = σ(w�X)�, where σ is λσ -Lipschitz, and � = Eyy�. Let A be an n × n

deterministic matrix.

1. If E[y] = 0, for any t > 0,

P
"��y�Ay − TrA�

��≥ t
�
≤ 2 exp

�
− 1

C
min

�
t2

4λ4
σ�X�4�A�2

F

,
t

λ2
σ�X�2�A�

��
(46)

for some absolute constant C > 0.

2. If E[y] �= 0, for any t > 0,

P
"��y�Ay − TrA�

��> t
�
≤ 2 exp

�
− 1

C
min

�
t2

8λ4
σ�X�4�A�2

F

,
t

λ2
σ�X�2�A�

��

+ 2 exp

�
− t2

32λ2
σ�X�2�A�2�Ey�2

�

≤ 2 exp

�
− 1

C
min

�
t2

8λ4
σ�X�4�A�2

F

,
t

λ2
σ�X�2�A�

��

+ 2 exp

�
− t2

32λ2
σ�X�2�A�2t0

�
,

(47)

where

t0 := 2λ2
σ

n"

i=1

"
�xi� − 1

�2 + 2n
"
Eσ(ξ)

�2
, ξ ∼ N (0,1).

REMARK 3.6. Compared to [52], Lemma 1, we identify the dependence on �A�F and

Ey in the probability estimate. By using the inequality �A�F ≤ √
n�A�, we obtain a similar

inequality to the one in [52] with a better dependence on n. Moreover, our bound in t0 is

independent of d0, while the corresponding term t0 in [52], Lemma 1, depends on �X� and

d0. In particular, when Eσ(ξ) = 0 and X is (εn,B)-orthonormal, t0 is of order 1. Hence,

(47) with the special choice of t0 is the key ingredient in the proof of Theorem 2.3 to get a

concentration of the spectral norm for CK.

PROOF OF COROLLARY 3.5. We only need to prove (47), since other statements follow

immediately by taking K =
√

2. Let xi be the ith column of X. Then

�Ey�2 =
��Eσ

"
w�X

���2 =
n"

i=1

�
Eσ

"
w�xi

��2
.
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Let ξ ∼ N (0,1). We have

��Eσ
"
w�xi

���=
��Eσ

"
ξ�xi�

���≤ E
��"σ

"
ξ�xi�

�
− σ(ξ)

���+
��Eσ(ξ)

��

≤ λσE
��ξ
"
�xi� − 1

���+
��Eσ(ξ)

��≤ λσ

���xi� − 1
��+

��Eσ(ξ)
��.

Therefore

�Ey�2 ≤
n"

i=1

"
λσ

"
�xi� − 1

�
+
��Eσ(ξ)

���2 ≤
n"

i=1

2λ2
σ

"
�xi� − 1

�2 + 2
"
Eσ(ξ)

�2

= 2λ2
σ

n"

i=1

"
�xi� − 1

�2 + 2n
"
Eσ(ξ)

�2 = t0,

(48)

and (47) holds. �

We include the following corollary about the variance of y�Ay, which will be used in

Section 5 to study the spectrum of the CK and NTK.

COROLLARY 3.7. Under the same assumptions of Corollary 3.5, we further assume that

t0 ≤ C1n, and �A�,�X� ≤ C2. Then as n → ∞,

1

n2
E
���y�Ay − TrA�

��2�→ 0.

PROOF. Notice that �A�F ≤ √
n�A�. Thanks to Theorem 3.5 (2), we have that for any

t > 0,

P

�
1

n

��y�Ay − TrA�
��> t

�
≤ 4 exp

"
−Cnmin

�
t2, t

��
,

where constant C > 0 only relies on C1, C2, λσ , and K . Therefore, we can compute the

variance in the following way:

E

�
1

n2

��y�Ay − TrA�
��2
�

=
� ∞

0
P

�
1

n2

��y�Ay − TrA�
��2 > s

�
ds

≤ 4

� ∞

0
exp

"
−Cnmin{s,

√
s}
�
ds

= 4

� 1

0
exp(−Cn

√
s) ds + 4

� +∞

1
exp(−Cns)ds → 0,

as n → ∞. Here, we use the dominant convergence theorem for the first integral in the last

line. �

4. Limiting law for general centered sample covariance matrices. Independent of

the subsequent sections, this section focuses on the generalized sample covariance matrix

where the dimension of the feature is much smaller than the sample size. We will later inter-

pret such sample covariance matrix specifically for our neural network applications. Under

certain weak assumptions, we prove the limiting eigenvalue distribution of the normalized

sample covariance matrix satisfies two self-consistent equations, which are subsumed into a

deformed semicircle law. Our findings in this section demonstrate some degree of universal-

ity, indicating that they hold across various random matrix models and may have implications

for other related fields.
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THEOREM 4.1. Suppose y1, . . . ,yd ∈ R
n are independent random vectors with the same

distribution of a random vector y ∈ R
n. Assume that E[y] = 0, E[yy�] = �n ∈ R

n×n,

where �n is a deterministic matrix whose limiting eigenvalue distribution is μ� �= µ0. As-

sume ��n� ≤ C for some constant C. Define An :=
�

d
n
( 1
d

�d
i=1 yiy

�
i − �n) and R(z) :=

(An − z Id)−1. For any z ∈ C
+ and any deterministic matrices Dn with �Dn� ≤ C, suppose

that as n,d → ∞ and n/d → 0,

(49) trR(z)Dn −E
�
trR(z)Dn

� a.s.−→ 0,

and

(50)
1

n2
E
���y�Dny − TrDn�n

��2�→ 0.

Then the empirical eigenvalue distribution of matrix An weakly converges to μ almost surely,

whose Stieltjes transform m(z) is defined by

(51) m(z) +
�

dμ�(x)

z + ³(z)x
= 0

for each z ∈C
+, where ³(z) ∈ C

+ is the unique solution to

(52) ³(z) +
�

xdμ�(x)

z + ³(z)x
= 0.

In particular, μ = μs �μ�.

REMARK 4.2. In [85], it was assumed that d
n3E|y�Dny − TrDn�n|2 → 0, where

n3/d → ∞ and n/d → 0 as n → ∞. By martingale difference, this condition implies (49).

However, we are not able to verify a certain step in the proof of [85]. Hence, we will not

directly adopt the result of [85] but consider a more general situation without assuming

n3/d → ∞. The weakest conditions we found are conditions (49) and (50), which can be

verified in our nonlinear random model.

The self-consistent equations we derived are consistent with the results in [16, 85], where

they studied the empirical spectral distribution of separable sample covariance matrices in

the regime n/d → 0 under different assumptions. When n → ∞ and n/d → 0, our goal is

to prove that the Stieltjes transform mn(z) of the empirical eigenvalue distribution of An and

³n(z) := tr[R(z)�n] pointwisely converges to m(z) and ³(z), respectively.

For the rest of this section, we first prove a series of lemmas to get n-dependent determin-

istic equivalents related to (51) and (52) and then deduce the proof of Theorem 4.1 at the

end of this section. Recall An =
�

d
n

· ( 1
d

�d
i=1 yiy

�
i − �n), R(z) = (An − z Id)−1, and y is a

random vector independent of An with the same distribution of yi .

LEMMA 4.3. Under the assumptions of Theorem 4.1, for any z ∈ C
+, as d,n → ∞,

(53) trD + zE
�
trR(z)D

�
+E

� 1
n

y�DR(z)y · 1
n

y�R(z)y

1 +
�

n
d

1
n

y�R(z)y

�
= o(1),

where D ∈ R
n×n is any deterministic matrix such that �D� ≤ C, for some constant C.

PROOF. Let z = u + iv ∈ C
+ where u ∈ R and v > 0. Let

R̂ :=
 

1√
dn

d+1"

j=1

yj y�
j −

�
d

n
�n − z Id

�−1

,
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where yj ’s are independent copies of y defined in Theorem 4.1. Notice that, for any deter-

ministic matrix D ∈ R
n×n,

D = R̂

 
1√
dn

d+1"

j=1

yj y�
j −

�
d

n
�n − z Id

�
D

= 1√
dn

R̂

 
d+1"

i=1

yiy
�
i

�
D −

�
d

n
R̂�nD − zR̂D.

Without loss of generality, we assume �D� ≤ 1. Taking normalized trace, we have

(54) trD + z tr[R̂D] = 1√
dn

1

n

d+1"

i=1

y�
i DR̂yi −

�
d

n
tr[R̂�nD].

For each 1 ≤ i ≤ d + 1, Sherman–Morrison formula (Lemma A.2) implies

(55) R̂ = R(i) − R(i)yiy
�
i R(i)

√
dn + y�

i R(i)yi

,

where the leave-one-out resolvent R(i) is defined as

R(i) :=
�

1√
dn

"

1≤j≤d+1,j �=i

yj y�
j −

�
d

n
�n − z Id

�−1

.

Hence, by (55), we obtain

(56)
1√
dn

1

n

d+1"

i=1

y�
i DR̂yi = 1

n

d+1"

i=1

y�
i DR(i)yi√

dn + y�
i R(i)yi

.

Combining equations (54) and (56), and applying expectation at both sides implies

trD + zE[tr R̂D] = 1

n

d+1"

i=1

E

�
y�
i DR(i)yi√

dn + y�
i R(i)yi

�
−
�

d

n
E tr R̂�nD

= d + 1

n
E

�
y�DR(z)y√
dn + y�R(z)y

�
−
�

d

n
E tr R̂�nD,

(57)

because of the assumption that all yi ’s have the same distribution as vector y for all i ∈ [d+1].
With (57), to prove (53), we will first show that when n,d → ∞,

�
d

n

"
E[tr R̂�nD] −E

�
trR(z)�nD

��
= o(1),(58)

E[tr R̂D] −E
�
trR(z)D

�
= o(1),(59)

1

n
E

�
y�DR(z)y√
dn + y�R(z)y

�
= o(1).(60)

Recall that

R̂ − R(z) = 1√
dn

R(z)
"
yd+1y�

d+1

�
R̂,
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and spectral norms �R̂�,�R(z)� ≤ 1/v due to Proposition C.2 in [29]. Notice that ��n� ≤ C.

Hence, we can deduce that
�

d

n

��E[tr R̂�nD] −E
�
trR(z)�nD

���≤ 1

n
E
���trR(z)yd+1y�

d+1R̂�nD
���

≤ 1

n2
E
���R̂�nDR(z)

�� · �yd+1�2�

= C

v2n2
E
�
Tr yd+1y�

d+1

�
= C Tr�n

v2n2
≤ C2

v2n
→ 0,

as n → ∞. The same argument can be applied to the error of E[tr R̂D]−E[trR(z)D]. There-

fore (58) and (59) hold. For (60), we denote ỹ := y/(nd)1/4 and observe that

1

n
E

�
y�DR(z)y√
dn + y�R(z)y

�
= 1

n
E

�
ỹ�DR(z)ỹ

1 + ỹ�R(z)ỹ

�
.

Let R(z) =�n
i=1

1
λi−z

uiu
�
i be the eigen-decomposition of R(z). Then

ỹ�R(z)ỹ/�ỹ�2 =
n"

i=1

1

λi − z

(�ui, ỹ�)2

�ỹ�2
:=
�

1

x − z
dμỹ

is the Stieltjes transform of a discrete measure μỹ =�n
i=1

(�ui ,ỹ�)2

�ỹ�2 µλi
. Then, we can control

the real part of ỹ�R(z)ỹ by Lemma A.4:

(61)
��Re

"
ỹ�R(z)ỹ

���≤ v−1/2�ỹ�
"
Im
"
ỹ�R(z)ỹ

��1/2
.

We now separately consider two cases in the following:

• If the right-hand side of the above inequality (61) is at most 1/2, then

��1 + ỹ�R(z)ỹ
��≥

��1 + Re
"
ỹ�R(z)ỹ

���≥ 1

2
,

which results in

(62)

����
ỹ�DR(z)ỹ

1 + ỹ�R(z)ỹ

����≤
C√
dn

�y�2.

• When v−1/2�ỹ�(Im(ỹ�R(z)ỹ))1/2 > 1/2, we know that
����

ỹ�DR(z)ỹ

1 + ỹ�R(z)ỹ

����≤
�ỹ�D��R(z)ỹ�

| Im(1 + ỹ�R(z)ỹ)| = �ỹ�D��R(z)ỹ�
ỹ� Im(R(z))ỹ

≤ �ỹ�D�
(vỹ� Im(R(z))ỹ)1/2

≤ 2�ỹ�D��ỹ�
v

≤ C�y�2

v
√

nd
,

(63)

where we exploit the fact that (see also equation (A.1.11) in [13])

��R(z)ỹ
��=

"
ỹ�R(z̄)R(z)ỹ

�1/2 =
�

1

v
ỹ� Im

"
R(z)

�
ỹ

�1/2

.

Finally, combining (62) and (63) in the above two cases, we can conclude the asymptotic

result (60) because E�y�2 = Tr�n ≤ Cn in terms of the assumptions of Theorem 4.1.

Then with (58), (59), and (60), we get

(64) trD + zE
�
trR(z)D

�
= E

�
�

d
n

1
n

y�DR(z)y

1 + 1√
dn

y�R(z)y
−
�

d

n
trR(z)�nD

�
+ o(1),
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as n → ∞. We utilize the notion Ey to clarify the expectation only with respect to random

vector y, conditioning on other independent random variables. So the conditional expectation

is Ey[ 1
n

y�DR(z)y] = trDR(z)�n and

E

�
1

n
y�DR(z)y

�
= E

�
Ey

�
1

n
y�DR(z)y

��
= E

�
trR(z)�nD

�
.

Therefore, based on (64), the conclusion (53) holds. �

In the next lemma, we apply the quadratic concentration condition (50) to simplify (53).

LEMMA 4.4. Under the assumptions of Theorem 4.1, condition (50) of Theorem 4.1

implies that

(65) E

� 1
n

y�DR(z)y · 1
n

y�R(z)y

1 +
�

n
d

1
n

y�R(z)y

�
= E

�
trDR(z)�n trR(z)�n

1 +
�

n
d

trR(z)�n

�
+ o(1),

for each z ∈C
+ and any deterministic matrix D with �D� ≤ C.

PROOF. Let us denote

µn :=
1
n

y�DR(z)y · 1
n

y�R(z)y

1 +
�

n
d

1
n

y�R(z)y
− trDR(z)�n trR(z)�n

1 +
�

n
d

trR(z)�n

,

Q1 := 1

n
y�DR(z)y, Q2 := 1

n
y�R(z)y,

Q̄1 := Ey[Q1] = trDR(z)�n, and Q̄2 := Ey[Q1] = trR(z)�n. In other words, µn can be

expressed by

µn = Q1Q2

1 +
�

n
d
Q2

− Q̄1Q̄2

1 +
�

n
d
Q̄2

=
Q1(Q2 +

�
d
n
)

1 +
�

n
d
Q2

−

�
d
n
Q1

1 +
�

n
d
Q2

−
Q̄1(Q̄2 +

�
d
n
)

1 +
�

n
d
Q̄2

+

�
d
n
Q̄1

1 +
�

n
d
Q̄2

=
�

d

n
(Q1 − Q̄1) +

�
d
n
(Q̄1 − Q1)

1 +
�

n
d
Q̄2

+

�
n
d
Q1

�
d
n
(Q̄2 − Q2)

(1 +
�

n
d
Q̄2)(1 +

�
n
d
Q2)

.

Observe that E[Q̄i] = E[Qi] for i = 1,2. Thus, µn has the same expectation as the last term

�n := Q1(Q̄2 − Q2)

(1 +
�

n
d
Q̄2)(1 +

�
n
d
Q2)

,

since we can first take the expectation for y conditioning on the resolvent R(z) and then

take the expectation for R(z). Besides, notice that |Q̄1|, |Q̄2| ≤ C
v

uniformly. Hence,
�

n
d
Q̄2

converges to zero uniformly and there exists some constant C > 0 such that

(66)

����
1

1 +
�

n
d
Q̄2

����≤ C,
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for all large d and n. In addition, observe that
�

n
d
Q1

1 +
�

n
d
Q2

= ỹ�DR(z)ỹ

1 + ỹ�R(z)ỹ
,

where ỹ is defined in the proof of Lemma 4.3. In terms of (62) and (63), we verify that

(67)

����
Q1

1 +
�

n
d
Q2

����≤
C�y�2

n
,

where C > 0 is some constant depending on v. Next, recall that condition (50) exposes that

(68) E(Q2 − Q̄2)
2 → 0 and E

"
�y�2/n − tr�n

�2 → 0

as n → ∞. The first convergence is derived by viewing Dn = R(z) and taking expectation

conditional on R(z). To sum up, we can bound |�n| based on (66) and (67) in the subsequent

way:

|�n| ≤
C�y�2

n
|Q̄2 − Q2| ≤ C

���y�2/n − tr�n

�� · |Q̄2 − Q2| + C| tr�n| · |Q̄2 − Q2|.

Here, | tr�n| ≤ ��n� and ��n� is uniformly bounded by some constant. Then, by Hölder’s

inequality, (68) implies that E[|�n|] → 0, as n approaching to infinity. This concludes

E[µn] = E[�n] converges to zero. �

LEMMA 4.5. Under assumptions of Theorem 4.1, we can conclude that

lim
n,d→∞

"
trD + zE

�
trR(z)D

�
+E

�
trDR(z)�n

�
E
�
trR(z)�n

��
= 0

holds for each z ∈ C
+ and deterministic matrix D with uniformly bounded spectral norm.

PROOF. Based on Lemma 4.3 and Lemma 4.4, (65) and (53) yield

trD + zE
�
trR(z)D

�
+E

�
trDR(z)�n trR(z)�n

1 +
�

n
d

trR(z)�n

�
= o(1).

As | trR(z)D| and | trR(z)D�n| are bounded by some constants uniformly and almost surely,

for sufficiently large d and n, |
�

n
d

trR(z)�n| < 1/2 and

����E
�

trDR(z)�n trR(z)�n

1 +
�

n
d

trR(z)�n

�
−E

�
trDR(z)�n trR(z)�n

�����

≤ E

���trR(z)D
�� ·
��trR(z)D�n

�� ·
����

�
n
d

trR(z)�n

1 +
�

n
d

trR(z)�n

����
�

≤ 2C

�
n

d
→ 0,

as n/d → 0. Hence,

(69) trD + zE
�
trR(z)D

�
+E

�
trDR(z)�n trR(z)�n

�
= o(1).

Considering Dn = �n in (49), we can get almost sure convergence for trDR(z)�n ·
(trR(z)�n −E[trR(z)�n]) to zero. Thus by dominated convergence theorem,

lim
n→∞E

�
trDR(z)�n ·

"
trR(z)�n −E

�
trR(z)�n

���
→ 0.
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So we can replace the third term at the right-hand side of (69) with

E
�
trDR(z)�n

�
·E
�
trR(z)�n

�

to obtain the conclusion. �

PROOF OF THEOREM 4.1. Fix any z ∈ C
+. Denote the Stieltjes transform of empirical

spectrum of An and its expectation by mn(z) := trR(z) and m̄n(z) := E[mn(z)] respectively.

Let ³n(z) := trR(z)�n and ³̄n(z) := E[³n(z)]. Notice that mn(z), m̄n(z), ³n and ³̄n(z) are

all in C
+ and uniformly and almost surely bounded by some constant. By choosing D = Id

in Lemma 4.5, we conclude

(70) lim
n,d→∞

"
1 + zm̄n(z) + ³̄n(z)

2�= 0.

Likewise, in Lemma 4.5, we consider D = (³̄n(z)�n + z Id)−1�n. Let

U =
"
³̄n(z)�n + z Id

�−1
.

Because ��n� is uniformly bounded, �D� ≤ C�U�. In terms of Lemma A.6, we only need to

provide a lower bound for the imaginary part of U . Observe that ImU = Im ³̄n(z)�n +v Id �
v Id since λmin(�n) ≥ 0 and Im ³̄n(z) > 0. Thus, �D� ≤ Cv−1 for all n. Meanwhile, we have

the equation ³̄n(z)�nD = �n − zD and hence,

³̄n(z)E
�
trR(z)�nD

�
= E

�
trR(z)�nD

�
E
�
trR(z)�n

�
= ³̄n(z) − zE

�
trR(z)D

�
.

So applying Lemma 4.5 again, we have another limiting equation trD + ³̄n(z) → 0. In other

words,

(71) lim
n,d→∞

"
tr
"
³̄n(z)�n + z Id

�−1
�n + ³̄n(z)

�
= 0.

Thanks to the identity

³̄n(z) tr
"
³̄n(z)�n + z Id

�−1
�n − 1 = −z tr

"
³̄n(z)�n + z Id

�−1
,

we can modify (70) and (71) to get

(72) lim
n,d→∞

"
m̄n(z) + tr

"
³̄n(z)�n + z Id

�−1�= 0.

Since ³̄n(z) and m̄n(z) are uniformly bounded, for any subsequence in n, there is a fur-

ther convergent sub-subsequence. We denote the limit of such sub-subsequence by ³(z) and

m(z) ∈C
+ respectively. Hence, by (71) and (72), one can conclude

lim
n,d→∞

"
³(z) + tr

"
³(z)�n + z Id

�−1
�n

�
= 0.

Because of the convergence of the empirical eigenvalue distribution of �n, we obtain the fixed

point equation (52) for ³(z). Analogously, we can also obtain (51) for m(z) and ³(z). The

existence and the uniqueness of the solutions to (51) and (52) are proved in [15], Theorem 2.1,

and [80], Section 3.4, which implies the convergence of m̄n(z) and ³̄n(z) to m(z) and ³(z)

governed by the self-consistent equations (51) and (52) as n → ∞, respectively.

Then, by virtue of condition (49) in Theorem 4.1, we know mn(z) − m̄n(z)
a.s.−→ 0 and

³n(z) − ³̄n(z)
a.s.−→ 0. Therefore, the empirical Stieltjes transform mn(z) converges to m(z)

almost surely for each z ∈ C
+. Recall that the Stieltjes transform of μ is m(z). By the standard

Stieltjes continuity theorem (see, e.g., [13], Theorem B.9), this finally concludes the weak

convergence of empirical eigenvalue distribution of An to μ.
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Now we show μ = μs �μ�. The fixed point equations (51) and (52) induce

(73) ³2(z) + 1 + zm(z) = 0,

since ³(z) ∈C
+ for any z ∈ C

+. Together with (51), we attain the same self-consistent equa-

tions for the convergence of the empirical spectral distribution of the Wigner-type matrix

studied in [15], Theorem 1.1.

Define Wn, the n-by-n Wigner matrix, as a Hermitian matrix with independent entries
�
Wn[i, j ] : E

�
Wn[i, j ]

�
= 0,E

�
Wn[i, j ]2�= 1,1 ≤ i ≤ j ≤ n

�
.

The Wigner-type matrix studied in [15], Definition 1.2, is indeed 1√
n
�

1/2
n Wn�

1/2
n . Hence,

such Wigner-type matrix 1√
n
�

1/2
n Wn�

1/2
n has the same limiting spectral distribution as An

defined in Theorem 4.1. Both limits are determined by self-consistent equations (51) and

(73).

On the other hand, based on [5], Theorem 5.4.5, 1√
n
Wn and �n are almost surely asymp-

totically free, that is, the empirical distribution of { 1√
n
Wn,�n} converges almost surely to the

law of {s,d}, where s and d are two free noncommutative random variables (s is a semicircle

element and d has the law μ�). Thus, the limiting spectral distribution μ of 1√
n
�

1/2
n Wn�

1/2
n

is the free multiplicative convolution between μs and μ�. This implies μ = μs �μ� in our

setting. �

5. Proofs of Theorem 2.1 and Theorem 2.2. To prove Theorem 2.1, we first establish

the following proposition to analyze the difference between Stieltjes transform of (12) and its

expectation. This will assist us to verify condition (49) in Theorem 4.1. The proof is based

on [29], Lemma E.6.

PROPOSITION 5.1. Let D ∈ R
n×n be any deterministic symmetric matrix with a uni-

formly bounded spectral norm. Following the notions in Theorem 2.1, assume �X� ≤ C for

some constant C and Assumption 1.2 holds. Let R(z) be the resolvent

�
1√
d1n

"
Y�Y −E

�
Y�Y

��
− z Id

�−1

,

for any fixed z ∈ C
+. Then, there exist some constants s, n0 > 0 such that for all n > n0 and

any t > 0,

P
"��trR(z)D −E

�
trR(z)D

���> t
�
≤ 2e−cnt2

.

PROOF. Define function F :Rd1×d0 →R by F(W) := trR(z)D. Fix any W,� ∈ R
d1×d0

where ���F = 1, and let Wt = W + t�. We want to verify F(W) is a Lipschitz function in

W with respect to the Frobenius norm. First, recall

R(z)−1 = 1√
d1n

σ(WX)�σ(WX) −
�

d1

n
� − z Id,

where the last two terms are deterministic with respect to W . Hence,

vec(�)�
"
∇F(W)

�
= d

dt

����
t=0

F(Wt )

= − trR(z)

�
d

dt

����
t=0

R(z)−1

�
R(z)D
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= − 1√
d1n

trR(z)

�
d

dt

����
t=0

σ(WtX)�σ(WtX)

�
R(z)D

= − 2√
d1n

trR(z)

�
σ(WX)� · d

dt

����
t=0

σ(WtX)

�
R(z)D

= − 2√
d1n

trR(z)
"
σ(WX)� ·

"
σ �(WX) � (�X)

��
R(z)D,

where � is the Hadamard product, and σ � is applied entrywise. Here we utilize the formula

∂R(z) = −R(z)
"
∂
"
R(z)−1��R(z)

and R(z) = R(z)�. Lemma A.6 in Appendix A implies that �R(z)� ≤ 1
| Im z| . Therefore, based

on the assumption of D, we have

��vec(�)�
"
∇F(W)

���≤ C√
d1n

��R(z)σ (WX)�
�� ·
��σ �(WX) � (�X)

��,

for some constant C > 0. For the first term in the product on the right-hand side,

�
1√
d1n

��R(z)σ (WX)�
��
�2

= 1√
d1n

����R(z)

�
1√
d1n

σ(WX)�σ(WX)

�
R(z)∗

����

≤ 1√
d1n

���R(z)R(z)−1R(z)∗
��+

����R(z)

��
d1

n
� + z Id

�
R(z)∗

����
�

≤ 1√
d1n

���R(z)
��+

��R(z)
��2
��

d1

n
��� + |z|

��
≤ C

n
.

For the second term,

��σ �(WX) � (�X)
��≤

��σ �(WX) � (�X)
��
F ≤ λσ��X�F ≤ λσ���F · �X� ≤ C.

Thus, |vec(�)�(∇F(W))| ≤ C/
√

n. This holds for every � such that ���F = 1, so F(W)

is C/
√

n-Lipschitz in W with respect to the Frobenius norm. Then the result follows from

the Gaussian concentration inequality for Lipschitz functions. �

Next, we investigate the approximation of � = Ew[σ(w�X)�σ(w�X)] via the Hermite

polynomials {hk}k≥0. The orthogonality of Hermite polynomials allows us to write � as a

series of kernel matrices. Then we only need to estimate each kernel matrix in this series.

The proof is directly based on [34], Lemma 2. The only difference is that we consider the

deterministic input data X with the (εn,B)-orthonormal property, while in Lemma 2 of [34],

the matrix X is formed by independent Gaussian vectors.

LEMMA 5.2. Recall the definition of �0 in (11). If X is (εn,B)-orthonormal and As-

sumption 1.2 holds, then we have the spectral norm bound

�� − �0� ≤ CBε2
n

√
n,

where CB is a constant depending on B . Suppose that ε2
n

√
n → 0 as n → ∞, then ��� ≤ C

uniformly for some constant C independent of n.
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PROOF. By Assumption 1.2, we know that

ξ0(σ ) = 0,

∞"

k=1

ζ 2
k (σ ) = E

�
σ(ξ)2�= 1.

For any fixed t , σ(tx) ∈ L2(R,�). This is because σ(x) ∈ L2(R,�) is a Lipschitz function

and by triangle inequality |σ(tx) − σ(x)| ≤ λσ |tx − x|, we have, for ξ ∼ N (0,1),

E
"
σ(tξ)2�≤ E

"��σ(ξ)
��+ λσ |tξ − ξ |

�2
< ∞.

For 1 ≤ α ≤ n, let σα(x) := σ(�xα�x) and the Hermite expansion of σa can be written as

σα(x) =
∞"

k=0

ζk(σα)hk(x),

where the coefficient ζk(σα) = E[σα(ξ)hk(ξ)]. Let unit vectors be uα = xα/�xα�, for 1 ≤
α ≤ n. So for 1 ≤ α,³ ≤ n, the (α,³) entry of � is

�α³ = E
�
σ
"
w�xα

�
σ
"
w�x³

��
= E

�
σα(ξα)σ³(ξ³)

�
,

where (ξα, ξ³) = (w�uα,w�u³) is a Gaussian random vector with mean zero and covariance

(74)

 
1 u�

α u³

u�
α u³ 1

�
.

By the orthogonality of Hermite polynomials with respect to � and Lemma A.5, we can

obtain

E
�
hj (ξα)hk(ξ³)

�
= E

�
hj

"
w�uα

�
hk

"
w�u³

��
= µj,k

"
u�

α u³

�k
,

which leads to

(75) �α³ =
∞"

k=0

ζk(σα)ζk(σ³)
"
u�

α u³

�k
.

For any k ∈ N, let Tk be an n-by-n matrix with (α,³)th entry

(Tk)α³ := ζk(σα)ζk(σ³)
"
u�

α u³

�k
.(76)

Specifically, for any k ∈ N, we have

Tk = Dkfk

"
X�X

�
Dk,

where Dk is the diagonal matrix diag(ζk(σα)/�xα�k)α∈[n].
At first, we consider twice differentiable σ in Assumption 1.2. Similar with [34], equation

(26), for any ε > 0 and |t − 1| ≤ ε, we take the Taylor approximation of σ(tx) at point x,

then there exists η between tx and x such that

σ(tx) − σ(x) = σ �(x)x(t − 1) + 1

2
σ ��(η)x2(t − 1)2.

Replacing x by ξ and taking expectation, since σ �� is uniformly bounded, we can get

(77)
��E
�
σ(tξ) − σ(ξ)

�
−E

�
σ �(ξ)ξ

�
(t − 1)

��≤ C|t − 1|2 ≤ Cε2
n.

For k ≥ 1, the Lipschitz condition for σ yields
��ζk(σα) − ζk(σ )

��≤ C
���xα� − 1

�� ·E
�
|ξ | ·

��hk(ξ)
���≤ Cεn,(78)
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where constant C does not depend on k. As for piecewise linear σ , it is not hard to see

(79) E
�
σ(tξ) − σ(ξ)

�
= E

�
σ �(ξ)ξ

�
(t − 1).

Now, we begin to approximate Tk separately based on (77), (78), and (79). Denote diag(A)

the diagonal submatrix of a matrix A.

(1) Approximation for
�

k≥4(Tk −diag(Tk)). At first, we estimate the L2 norm with respect

to � of the function σα . Recall that �σα�L2 = E[σα(ξ)2]1/2. Because �σ�L2 = 1 and σ is a

Lipschitz function, we have

sup
1≤α≤n

�σ − σα�L2 = E
�"

σ(ξ) − σα(ξ)
�2�1/2 ≤ C

���xα� − 1
��,(80)

sup
1≤α≤n

�σα�L2 ≤ 1 + Cεn.(81)

Hence, �σα�L2 is uniformly bounded with some constant for all large n. Next, we estimate

the off-diagonal entries of Tk when k ≥ 4. From (76), we obtain that
����
"

k≥4

"
Tk − diag(Tk)

�����≤
����
"

k≥4

"
Tk − diag(Tk)

�����
F

≤
"

k≥4

��Tk − diag(Tk)
��
F

≤
"

k≥4

�
sup
α �=³

��u�
α u³

��k
�� n"

α,³=1

ζk(σα)2ζk(σ³)2

� 1
2

≤
�

sup
α �=³

��u�
α u³

��4
� n"

α=1

∞"

k=0

ζk(σα)2

≤ n ·
�

sup
α �=³

|x�
α x³ |4

�xα�4�x³�4

�
sup

1≤α≤n

�σα�2
L2 ≤ Cn · ε4

n,

(82)

when n is sufficiently large.

(2) Approximation for T0. Recall E[σ(ξ)] = 0 and by Gaussian integration by part,

E
�
σ �(ξ)ξ

�
= E

�
ξ

� ξ

0
σ �(x)x dx

�
= E

�
ξ2σ(ξ)

�
−E

�
ξ

� ξ

0
σ(x) dx

�
= E

�
ξ2σ(ξ)

�
−E

�
σ(ξ)

�
.

Then, we have

E
�
σ �(ξ)ξ

�
= E

�"
ξ2 − 1

�
σ(ξ)

�
= E

�√
2h2(ξ)σ (ξ)

�
=

√
2ζ2(σ ).

If σ is twice differentiable, then E[σ ��(ξ)] =
√

2ζ2(σ ) as well.

Thus, taking t = �xα� in (77) and (79) implies that for any 1 ≤ α ≤ n,

(83)
��ζ0(σα) −

√
2ζ2(σ )

"
�xα� − 1

���≤ Cε2
n.

Define ν� := (ζ0(σ1), . . . , ζ0(σn)), then T0 = νν�. Recall the definition of μ in (11). Then,

(83) ensures that

�μ − ν� ≤ C
√

nε2
n.

Applying the (εn,B)-orthonormal property of xα yields

(84) �μ�2 = 2ζ2(σ )2
n"

α=1

"
�xα� − 1

�2 ≤ 2ζ2(σ )2
n"

α=1

"
�xα�2 − 1

�2 ≤ 2B2ζ2(σ )2.

Hence the difference between T0 and μμ� is controlled by

(85)
��T0 − μμ���≤ �μ − ν�

"
2�μ� + �ν − μ�

�
≤ C

√
nε2

n.
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(3) Approximation for Tk for k = 1,2,3. For 0 ≤ k ≤ 3, Assumption 1.4 and (78) show

that

��ζk(σα)/�xα�k − ζk(σ )
��≤ 1

�xα�k

���ζk(σα) − ζk(σ )
��+

��ζk(σ )
�� ·
���xα�k − 1

���

≤ Cεn + C1|�xα� − 1|
(1 − εn)k

≤ C2εn,

(86)

when n is sufficiently large. Notice that Tk = Dkfk(X
�X)Dk , where Dk is the diagonal

matrix. Hence, by (86),
��Dk − ζk(σ ) Id

��≤ C2εn.

And for k = 1,2,3, by the triangle inequality,
��Tk − ζk(σ )2fk

"
X�X

���

=
��Dkfk

"
X�X

�
Dk − ζk(σ )2fk

"
X�X

���

≤
��Dk − ζk(σ ) Id

�� ·
��fk

"
X�X

���"��ζk(σ )
��+

��Dk − ζk(σ ) Id
���≤ Cεn

��fk

"
X�X

���.

When k = 1, f1(X
�X) = X�X and �X�X� ≤ �X�2 ≤ B2. When k = 2,

f2

"
X�X

�
=
"
X�X

�
�
"
X�X

�
.

From Lemma A.1 in Appendix A, we have that

(87)
��f2

"
X�X

���≤ max
1≤α,³≤n

��x�
α x³

�� · �X�2 ≤ B2(1 + εn).

So the left-hand side of (87) is bounded. Analogously, we can verify �f3(X
�X)� is also

bounded. Therefore, we have

(88)
��Tk − ζk(σ )2fk

"
X�X

���≤ Cεn,

for some constant C and k = 1,2,3 when n is sufficiently large.

(4) Approximation for
�

k≥4 diag(Tk). Since u�
α uα = 1, we know

"

k≥4

diag(Tk) = diag

�"

k≥4

ζk(σα)2

�

α∈[n]
= diag

 
�σα�2

L2 −
4"

k=0

ζk(σα)2

�

α∈[n]
.

First, by (80) and (81), we can claim that
���σα�2

L2 − 1
��=

���σα�2
L2 − �σ�2

L2

��≤ C�σα − σ�L2 ≤ Cεn.

Second, in terms of (86), we obtain
��ζk(σα)2 − ζk(σ )2

��≤ C
��ζk(σα) − ζk(σ )

��≤ Cεn,

for k = 1,2 and 3. Combining these together, we conclude that
����
"

k≥4

diag(Tk) −
"
1 − ζ1(σ )2 − ζ2(σ )2 − ζ3(σ )2� Id

����

≤ max
1≤α≤n

�����
"
�σα�2

L2 − 1
�
−

4"

k=0

"
ζk(σα)2 − ζk(σ )2�

�����≤ Cεn.

(89)

Recall

�0 = μμ� +
3"

k=1

ζk(σ )2fk

"
X�X

�
+
"
1 − ζ1(σ )2 − ζ2(σ )2 − ζ3(σ )2� Id .
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In terms of approximations (82), (85), (88), and (89), we can finally manifest

�� − �0� ≤ C
"
εn +

√
nε2

n + nε4
n

�
≤ C

√
nε2

n,(90)

for some constant C > 0 as
√

nε2
n → 0. The spectral norm bound of � is directly deduced by

the spectral norm bound of �0 based on (84) and (87), together with (90). �

REMARK 5.3 (Optimality of εn). For general deterministic data X, our pairwise orthog-

onality assumption with rate nε4
n = o(1) is optimal for the approximation of � by �0 in the

spectral norm. If we relax the decay rate of εn in Assumption 1.4, the above approximation

may require including terms of higher-degree fk(X
�X) for k ≥ 4 in �0, which will lead to

the invalidation of some of our following results and simplifications. Subsequent to the initial

completion of our paper, this weaker regime has been considered in our follow-up work [81].

Next, we continue to provide an additional estimate for �, but in the Frobenius norm to

further simplify the limiting spectral distribution of �.

LEMMA 5.4. If Assumptions 1.2 and 1.4 hold, then � has the same limiting spectrum as

b2
σX�X + (1 − b2

σ ) Id when n → ∞, that is,

lim spec� = lim spec
"
b2
σX�X +

"
1 − b2

σ

�
Id
�
= b2

σμ0 +
"
1 − b2

σ

�
.

PROOF. By the definition of bσ , we know that bσ = ζ1(σ ). As a direct deduction of

Lemma 5.2, the limiting spectrum of � is identical to the limiting spectrum of �0. To

prove this lemma, it suffices to check the Frobenius norm of the difference between �0 and

ζ1(σ )2X�X + (1 − ζ1(σ )2) Id. Notice that

�0 − ζ1(σ )2X�X −
"
1 − ζ1(σ )2� Id

= μμ� + ζ2(σ )2f2

"
X�X

�
+ ζ3(σ )2f3

"
X�X

�
−
"
ζ2(σ )2 + ζ3(σ )2� Id .

By the definition of vector μ and the assumption of X, we have

��μμ���
F = �μ�2 = 2ζ 2

2 (σ )

n"

α=1

"
�xα� − 1

�2 ≤ 2ζ 2
2 (σ )B2.

For k = 2,3, the Frobenius norm can be controlled by

��fk

"
X�X

�
− Id

��2
F =

n"

α,³=1

""
x�
α x³

�k − µα³

�2

≤ n(n − 1)ε2k
n +

n"

α=1

"
�xα�2k − 1

�2 ≤ n2ε2k
n + Cnε2

n.

Hence, as n → ∞, we have

1

n

��μμ���2
F ,

1

n

��fk

"
X�X

�
− Id

��2
F → 0 for k = 2,3,

as nε4
n → 0. Then we conclude that

1

n

���0 − ζ1(σ )2X�X −
"
1 − ζ1(σ )2� Id

��2
F ≤ C

"
nε4

n + ε2
n

�
→ 0.

Hence, lim spec� is the same as lim spec(ζ1(σ )2X�X + (1 − ζ1(σ )2) Id) when n → ∞, due

to Lemma A.7 in Appendix A. �
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Moreover, the proof of Lemma 5.4 can be modified to prove (40), so we omit its proof.

Now, based on Corollary 3.7, Proposition 5.1, Lemma 5.2, and Lemma 5.4, applying Theo-

rem 4.1 for general sample covariance matrices, we can finish the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Based on Corollary 3.7 and Proposition 5.1, we can verify

the conditions (49) and (50) in Theorem 4.1. By Lemma 5.2 and Lemma 5.4, we know that

the limiting eigenvalue distributions of � and (1 − b2
σ ) Id+b2

σX�X are identical and ���
is uniformly bounded. So the limiting eigenvalue distribution of � denoted by μ� is just

(1 − b2
σ ) + b2

σμ0. Hence, the first conclusion of Theorem 2.1 follows from Theorem 4.1.

For the second part of this theorem, we consider the difference

1

n

����
1√
d1n

"
Y�Y −E

�
Y�Y

��
− 1√

d1n

"
Y�Y − d1�0

�����
2

F

≤ d1

n2
�� − �0�2

F ≤ d1

n
�� − �0�2 ≤ d1ε

4
n → 0,

where we employ Lemma 5.2 and the assumption d1ε
4
n = o(1). Thus, because of Lemma A.7,

1√
d1n

(Y�Y − d1�0) has the same limiting eigenvalue distribution as (12), μs � ((1 − b2
σ ) +

b2
σμ0). This finishes the proof of Theorem 2.1. �

Next, we move to study the empirical NTK and its corresponding limiting eigenvalue

distribution. Similarly, we first verify that such NTK concentrates around its expectation and

then simplify this expectation by some deterministic matrix only depending on the input data

matrix X and nonlinear activation σ . The following lemma can be obtained from (23) in

Theorem 2.7.

LEMMA 5.5. Suppose that Assumption 1.1 holds, supx∈R |σ �(x)| ≤ λσ and �X� ≤ B .

Then if d1 = ω(logn), we have

1

d1

��"S�S
�
�
"
X�X

�
−E

�"
S�S

�
�
"
X�X

����→ 0,

almost surely as n,d0, d1 → ∞. Moreover, if d1/n → ∞ as n → ∞, then almost surely

(91)
1√
nd1

��"S�S
�
�
"
X�X

�
−E

�"
S�S

�
�
"
X�X

����→ 0.

LEMMA 5.6. Suppose X is (εn,B)-orthonormal. Under Assumption 1.2, we have

�  −  0� ≤ CBε4
nn,

where   and  0 are defined in (17) and (18), respectively, and CB is a constant depending

on B .

PROOF. We can directly apply methods in the proof of Lemma 5.2. Notice that (6) and

(8) imply

E
�
S�S

�
= d1E

�
σ �"w�X

��
σ �"w�X

��
,

for any standard Gaussian random vector w ∼ N (0, Id). Recall that (19) defines the kth coef-

ficient of Hermite expansion of σ �(x) by ηk(σ ) for any k ∈ N. Then, Assumption 1.2 indicates

bσ = η0(σ ) and aσ =�∞
k=0 η2

k(σ ). For 1 ≤ α ≤ n, we introduce φα(x) := σ �(�xα�x) and the

Hermite expansion of this function as

φα(x) =
∞"

k=0

ζk(φα)hk(x),
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where the coefficient ζk(σα) = E[φα(ξ)hk(ξ)]. Let uα = xα/�xα�, for 1 ≤ α ≤ n. So for

1 ≤ α,³ ≤ n, the (α,³)-entry of   is

 α³ = E
�
φα(ξα)φ³(ξ³)

�
·
"
x�
a x³

�
,

where (ξα, ξ³) = (w�uα,w�u³) is a Gaussian random vector with mean zero and covariance

(74). Following the derivation of formula (75), we obtain

 α³ =
∞"

k=0

ζk(φα)ζk(φ³)

�xα�k�x³�k

"
x�
α x³

�k+1
.

For any k ∈ N, let Tk ∈R
n×n be an n-by-n matrix with (α,³) entry

(Tk)α³ := ζk(φα)ζk(φ³)

�xα�k�x³�k

"
x�
α x³

�k+1
.

We can write Tk = Dkfk+1(X
�X)Dk for any k ∈ N, where Dk is diag(ζk(φα)/�xα�k). Then,

adopting the proof of (88), we can similarly conclude that
��Tk − η2

k(σ )fk+1

"
X�X

���≤ Cεn,

for some constant C and k = 0,1,2, when n is sufficiently large. Likewise, (82) indicates
����
"

k≥3

"
Tk − diag(Tk)

�����≤ Cε4
nn,

and a similar proof of (89) implies that
�����
"

k≥3

diag(Tk) −
 
aσ −

2"

k=0

η2
k(σ )

�
Id

�����≤ Cεn.

Based on these approximations, we can conclude the result of this lemma. �

PROOF OF THEOREM 2.2. The first part of the statement is a straight consequence of (91)

and Theorem 2.1. Denote by A :=
�

d1
n

(H − E[H ]) and B :=
�

d1
n

( 1
d1

Y�Y − �). Observe

that

B − A = 1√
nd1

�"
S�S

�
�
"
X�X

�
−E

�"
S�S

�
�
"
X�X

���
.

Hence, (91) indicates �B − A� → 0 as n → ∞. This convergence implies that limiting laws

of A and B are identical because of Lemma A.3.

The second part is because of Lemma 5.2 and Lemma 5.6. From (7) and (17), E[H ] =
� +   . Then almost surely,

����

�
d1

n

"
H −E[H ]

�
−
�

d1

n
(H − �0 −  0)

����

=
�

d1

n

���0 +  0 −E[H ]
��

≤
�

d1

n

"
�� − �0� + �  −  0�

�
≤
�

d1

n

"√
nε2

n + nε4
n

�
→ 0,

as ε4
nd1 → 0 by the assumption of Theorem 2.2. Therefore, the limiting eigenvalue distribu-

tion of (21) is the same as (20). �
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6. Proof of the concentration for extreme eigenvalues. In this section, we obtain the

estimates of the extreme eigenvalues for the CK and NTK we studied in Section 5. The limit-

ing spectral distribution of 1√
d1n

(Y�Y −E[Y�Y ]) tells us the bulk behavior of the spectrum.

An estimation of the extreme eigenvalues will show that the eigenvalues are confined in a

finite interval with high probability. We first provide a nonasymptotic bound on the con-

centration of 1
d1

Y�Y under the spectral norm. The proof is based on the Hanson–Wright

inequality we proved in Section 3 and an ε-net argument.

PROOF OF THEOREM 2.3. Recall notation in Section 1. Define

M := 1√
d1n

Y�Y = 1√
d1n

d1"

i=1

yiy
�
i ,

M −EM = 1√
d1n

d1"

i=1

"
yiy

�
i −E

�
yiy

�
i

��
= 1√

d1n

d1"

i=1

"
yiy

�
i − �

�
,

where y�
i = σ(w�

i X).

For any fixed z ∈ S
n−1, we have

z�(M −EM)z = 1√
d1n

d1"

i=1

�
�z,yi�2 − z��z

�

= 1√
d1n

d1"

i=1

�
y�
i

"
zz��yi − Tr

"
�zz���

= (y1, . . . ,yd1
)�Az(y1, . . . ,yd1

) − Tr(Az�̃),

(92)

where

Az = 1√
d1n

£
¤¤¥

zz�

. . .

zz�

¦
§§̈ ∈ R

nd1×nd1, �̃ =

£
¤¥
�

.. .

�

¦
§̈ ∈ R

nd1×nd1,

and column vector (y1, . . . ,yd1
) ∈ R

nd1 is the concatenation of column vectors y1, . . . ,yd1
.

Then

(y1, . . . ,yd1
)� = σ

"
(w1, . . . ,wd1

)�X̃
�

with block matrix

X̃ =

£
¤¥
X

.. .

X

¦
§̈

.

Notice that

�Az� = 1√
d1n

, �Az�F = 1√
n
, �X̃� = �X�.

Denote ỹ = (y1, . . . ,yd1
). With (48), we obtain

�Eỹ�2 = d1�Ey�2 ≤ d1

 
2λ2

σ

n"

i=1

"
�xi�2 − 1

�2 + 2n
"
Eσ(ξ)

�2
�

= d1

 
2λ2

σ

n"

i=1

"
�xi�2 − 1

�2
�

≤ 2d1λ
2
σB2,
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where the last line is from the assumptions on X and σ . When B �= 0, applying (47) to (92)

implies

P
"��(y1, . . . ,yd1

)�Az(y1, . . . ,yd1
) − Tr(Az�̃)

��≥ t
�

≤ 2 exp

�
− 1

C
min

�
t2n

8λ4
σ�X�4

,
t
√

d1n

λ2
σ�X�2

��
+ 2 exp

�
− t2d1n

32λ2
σ�X�2�Eỹ�2

�

≤ 2 exp

�
− 1

C
min

�
t2n

8λ4
σ�X�4

,
t
√

d1n

λ2
σ�X�2

��
+ 2 exp

�
− t2n

64λ4
σB2�X�2

�
.

Let N be a 1/2-net on S
n−1 with |N | ≤ 5n (see, e.g., [78], Corollary 4.2.13), then

�M −EM� ≤ 2 sup
z∈N

��z�(M −EM)z
��.

Taking a union bound over N yields

P
"
�M −EM� ≥ 2t

�
≤ 2 exp

�
n log 5 − 1

C
min

�
t2n

16λ4
σ�X�4

,
t
√

d1n

2λ2
σ�X�2

��

+ 2 exp

�
n log 5 − t2n

64λ4
σB2�X�2

�
.

We then can set

t =
�

8
√

C + 8C

�
n

d1

�
λ2

σ�X�2 + 16Bλ2
σ�X�,

to conclude

P

�
�M −EM� ≥

�
16

√
C + 16C

�
n

d1

�
λ2

σ�X�2 + 32Bλ2
σ�X�

�
≤ 4e−2n.

Since
����

1

d1
Y�Y − �

����=
�

n

d1
�M −EM�,

the upper bound in (22) is then verified. When B = 0, we can apply (46) and follow the same

steps to get the desired bound. �

By the concentration inequality in Theorem 2.3, we can get a lower bound on the smallest

eigenvalue of the conjugate kernel 1
d1

Y�Y as follows.

LEMMA 6.1. Assume X satisfies
�n

i=1(�xi�2 − 1)2 ≤ B2 for a constant B > 0, and σ is

λσ -Lipschitz with Eσ(ξ) = 0. Then with probability at least 1 − 4e−2n,

λmin

�
1

d1
Y�Y

�
≥ λmin(�) − C

��
n

d1
+ n

d1

�
λ2

σ�X�2 − 32Bλ2
σ�X�

�
n

d1
.(93)

PROOF. By Weyl’s inequality [5], Corollary A.6, we have
����λmin

�
1

d1
Y�Y

�
− λmin(�)

����≤
����

1

d1
Y�Y − d1�

����.

Then (93) follows from (22). �

The lower bound in (93) relies on λmin(�). Under certain assumptions on X and σ , we

can guarantee that λmin(�) is bounded below by an absolute constant.
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LEMMA 6.2. Assume σ is not a linear function and σ(x) is Lipschitz. Then

sup
�
k ∈ N : ζk(σ )2 > 0

�
= ∞.(94)

PROOF. Suppose that sup{k ∈ N : ζk(σ )2 > 0} is finite. Then σ is a polynomial of degree

at least 2 from our assumption, which is a contradiction to the fact that σ is Lipschitz. Hence,

(94) holds. �

LEMMA 6.3. Assume Assumption 1.2 holds, σ is not a linear function, and X satisfies

(εn,B)-orthonormal property. Then,

λmin(�) ≥ 1 − ζ1(σ )2 − ζ2(σ )2 − ζ3(σ )2 − CBε2
n

√
n.(95)

REMARK 6.4. This bound will not hold when σ is a linear function. Suppose σ is a

linear function, under Assumption 1.2, we must have σ(x) = x and � = X�X. Then we will

not have a lower bound on λmin(�) based on the Hermite coefficients of σ .

PROOF OF LEMMA 6.3. From Lemma 5.2, under our assumptions, we know that

�� − �0� ≤ CBε2
n

√
n

where �0 is given by (11). Thus, λmin(�) ≥ λmin(�0) − CBε2
n

√
n,

and, from Weyl’s inequality [5], Theorem A.5, we have

λmin(�0) ≥
3"

k=1

ζk(σ )2λmin

"
fk

"
X�X

��
+
"
1 − ζ1(σ )2 − ζ2(σ )2 − ζ3(σ )2�.

Note that fk(X
�X) = K�

k Kk , where Kk ∈ R
dk

0 ×n, and each column of Kk is given by the kth

Kronecker product xi ⊗ · · · ⊗ xi . Hence, fk(X
�X) is positive semidefinite. Therefore,

λmin(�0) ≥ 1 − ζ1(σ )2 − ζ2(σ )2 − ζ3(σ )2.

Since σ is nonlinear and Lipschitz, (94) holds for σ . Therefore,

1 − ζ1(σ )2 − ζ2(σ )2 − ζ3(σ )2 =
∞"

k=4

ζk(σ )2 > 0,

and (95) holds. �

Theorem 2.5 then follows directly from Lemma 6.1 and Lemma 6.3.

Next, we move on to nonasymptotic estimations for NTKs. Recall that the empirical NTK

matrix H is given by (7) and the αth column of S is defined by diag(σ �(Wxα))a, for 1 ≤ α ≤
n, in (8).

The ith row of S is given by z�
i := σ �(w�

i X)ai , and E[zi] = 0, where ai is the ith entry

of a. Define Dα = diag(σ �(w�
α X)aα), for 1 ≤ α ≤ d1. We can rewrite (S�S) � (X�X) as

"
S�S

�
�
"
X�X

�
=

d1"

α=1

a2
αDαX�XDα.
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Let us define L and further expand it as follows:

L := 1

d1

"
S�S −E

�
S�S

��
�
"
X�X

�
(96)

= 1

d1

d1"

i=1

"
ziz

�
i −E

�
ziz

�
i

��
�
"
X�X

�

= 1

d1

d1"

i=1

"
Di

"
X�X

�
Di −E

�
Di

"
X�X

�
Di

��
= 1

d1

d1"

i=1

Zi .(97)

Here Zi is a centered random matrix, and we can apply matrix Bernstein’s inequality to show

the concentration of L. Since Zi does not have an almost sure bound on the spectral norm, we

will use the following sub-exponential version of the matrix Bernstein inequality from [77].

LEMMA 6.5 ([77], Theorem 6.2). Let Zk be independent Hermitian matrices of size

n × n. Assume

EZi = 0,
��E
�
Z

p
i

���≤ 1

2
p!Rp−2a2,

for any integer p ≥ 2. Then for all t ≥ 0,

P

  �����

d1"

i=1

Zi

�����≥ t

�
≤ n exp

�
− t2

2d1a2 + 2Rt

�
.(98)

PROOF OF THEOREM 2.7. From (97), EZi = 0, and

�Zi� ≤ �Di�2
��XX���+E�Di�2

��XX���≤ C1

"
a2
i + 1

�
,

where C1 = λ2
σ�X�2 and where ai ∼ N (0,1) is the ith entry of the second layer weight a.

Then

��E
�
Z

p
i

���≤ E�Zi�p ≤ C
2p
1 E

"
a2
i + 1

�p ≤ C
2p
1

p"

k=1

�
p

k

�
(2k − 1)!!

= C
2p
1 p!

p"

k=1

(2k − 1)!!
k!(p − k)! ≤ C

2p
1 p!

p"

k=1

2k ≤ 2
"
2C2

1

�p
p!.

So we can take R = 2C2
1 , a2 = 8C4

1 in (98) and obtain

P

 �����

d1"

i=1

Zi

�����≥ t

�
≤ n exp

�
− t2

16d1C
4
1 + 4C2

1 t

�
.

Hence, L defined in (96) has a probability bound:

P
"
�L� ≥ t

�
= P

 
1

d1

�����

d1"

i=1

Zi

�����≥ t

�
≤ n exp

�
− t2d1

16C4
1 + 4C2

1 t

�
.
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Take t = 10C2
1

√
logn/d1. Under the assumption that d1 ≥ logn, we conclude that, with high

probability at least 1 − n−7/3,

�L� ≤ 10C2
1

�
logn

d1

.(99)

Thus, as a corollary, the two statements in Lemma 5.5 follow from (99). Meanwhile, since

�H −EH� ≤
����

1

d1
Y�Y − �

����+ �L�,

the bound in (24) follows from Theorem 2.3 and (99). �

We now proceed to provide a lower bound of λmin(H) from Theorem 2.7.

PROOF OF THEOREM 2.9. Note that from (7), (17), and (96), we have

λmin(H) ≥ 1

d1

λmin

""
S�S

�
�
"
X�X

��

≥ 1

d1
λmin

""
ES�S

�
�
"
X�X

��
− �L� = λmin( ) − �L�.

Then with Lemma 5.6, we can get

λmin(H) ≥ λmin( 0) − Cε4
nn − �L� ≥

 
aσ −

2"

k=0

η2
k(σ )

�
− Cε4

nn − �L�.

Therefore, from Theorem 2.7, with probability at least 1 − n−7/3,

λmin(H) ≥ aσ −
2"

k=0

η2
k(σ ) − Cε4

nn − 10λ4
σ�X�4

�
logn

d1

≥ aσ −
2"

k=0

η2
k(σ ) − Cε4

nn − 10λ4
σB4

�
logn

d1

.

Since σ is Lipschitz and nonlinear, we know σ �(x) is not a linear function (including

the constant function) and |σ �(x)| is bounded. Suppose that σ �(x) has finite many nonzero

Hermite coefficients, σ(x) is a polynomial, then we get a contradiction. Hence, the Hermite

coefficients of σ � satisfy

sup
�
k ∈ N : η2

k(σ ) > 0
�
= ∞ and aσ −

2"

k=0

η2
k(σ ) =

∞"

k=3

η2
k(σ ) > 0.

This finishes the proof. �

7. Proofs of Theorem 2.12 and Theorem 2.17. By definitions, the random matrix

Kn(X,X) is 1
d1

Y�Y and the kernel matrix K(X,X) = � is defined in (3). These two ma-

trices have already been analyzed in Theorem 2.3 and Theorem 2.5, so we will apply these

results to estimate how great the difference between training errors of random feature regres-

sion and its corresponding kernel regression.
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PROOF OF THEOREM 2.12. Denote Kλ := (K + λ Id). From the definitions of training

errors in (31) and (32), we have

��E(RF,λ)
train − E

(K,λ)
train

��

= 1

n

����f̂ (RF)
λ (X) − y

��2 −
��f̂ (K)

λ (X) − y
��2��

= λ2

n

��Tr
�"

K(X,X) + λ Id
�−2

yy��− Tr
�"

Kn(X,X) + λ Id
�−2

yy����

= λ2

n

��y��"K(X,X) + λ Id
�−2 −

"
Kn(X,X) + λ Id

�−2�
y
��

≤ λ2

n

��"K(X,X) + λ Id
�−2 −

"
Kn(X,X) + λ Id

�−2�� · �y�2

≤ λ2�y�2

nλ2
min(K(X,X))λ2

min(Kn(X,X))

��(K2
λ −

"
Kn(X,X) + λ Id

�2��.

(100)

Here, in (100), we employ the identity

(101) A−1 − B−1 = B−1(B − A)A−1,

for A = (K(X,X) + λ Id)−2 and B = (Kn(X,X) + λ Id)−2, and the fact that �(K(X,X) +
λ Id)−1� ≤ λ−1

min(K(X,X)) and (Kn(X,X) + λ Id)−1� ≤ λ−1
min(Kn(X,X)). Next, before pro-

viding uniform upper bounds for λ−2
min(K(X,X)) and λ−2

min(Kn(X,X)) in (100), we can first

get a bound for the last term of (100) as follows:

(102)

��"K(X,X) + λ Id
�2 −

"
Kn(X,X) + λ Id

�2��

=
��K2(X,X) − K2

n(X,X) + 2λ
"
K(X,X) − Kn(X,X)

���

≤
��K2(X,X) − K2

n(X,X)
��+ 2λ

��"K(X,X) − Kn(X,X)
���

≤
"��Kn(X,X) − K(X,X)

��+ 2
��K(X,X)

��+ 2λ
�
·
��K(X,X) − Kn(X,X)

��

≤ C

��
n

d1
+ C

��
n

d1

for some constant C > 0, with probability at least 1 − 4e−2n, where the last bound in (102) is

due to Theorem 2.3 and Lemma A.9 in Appendix A. Additionally, combining Theorem 2.3

and Theorem 2.5, we can easily get

(103)
��"Kn(X,X) + λ Id

�−1��≤ λ−1
min

"
Kn(X,X)

�
≤ C

for all large n and some universal constant C, under the same event that (102) holds. The-

orem 6.3 also shows λ−1
min(K(X,X)) ≤ C for all large n. Hence, with the upper bounds for

λ−2
min(K(X,X)) and λ−2

min(Kn(X,X)), (33) follows from the bounds of (100) and (102). �

For ease of notation, we denote K := K(X,X) and Kn := Kn(X,X). Hence, from (34),

we can further decompose the test errors for K and Kn into

L
"
f̂

(K)
λ

�
= Ex

���f ∗(x)
��2�

+ Tr
�
(K + λ Id)−1yy�(K + λ Id)−1

Ex

�
K(x,X)�K(x,X)

��
(104)

− 2 Tr
�
(K + λ Id)−1yEx

�
f ∗(x)K(x,X)

��
,



1936 Z. WANG AND Y. ZHU

L
"
f̂

(RF)
λ

�
= Ex

���f ∗(x)
��2�

+ Tr
�
(Kn + λ Id)−1yy�(Kn + λ Id)−1

Ex

�
Kn(x,X)�Kn(x,X)

��
(105)

− 2 Tr
�
(Kn + λ Id)−1yEx

�
f ∗(x)Kn(x,X)

��
.

Let us denote

E1 := Tr
�
(Kn + λ Id)−1yy�(Kn + λ Id)−1

Ex

�
Kn(x,X)�Kn(x,X)

��
,

Ē1 := Tr
�
(K + λ Id)−1yy�(K + λ Id)−1

Ex

�
K(x,X)�K(x,X)

��
,

E2 := Tr
�
(Kn + λ Id)−1y³³³∗�

Ex

�
xKn(x,X)

��
,

Ē2 := Tr
�
(K + λ Id)−1y³³³∗�

Ex

�
xK(x,X)

��
.

As we can see, to compare the test errors between random feature and kernel regression

models, we need to control |E1 − Ē1| and |E2 − Ē2|. First, it is necessary to study the con-

centrations of

Ex

�
K(x,X)�K(x,X) − Kn(x,X)�Kn(x,X)

�

and

Ex

�
f ∗(x)

"
K(x,X) − Kn(x,X)

��
.

LEMMA 7.1. Under Assumption 1.2 for σ and Assumption 2.14 for x and X, with prob-

ability at least 1 − 4e−2n, we have

��Kn(x,X) − K(x,X)
��≤ C

�
n

d1
,(106)

where C > 0 is a universal constant. Here, we only consider the randomness of the weight

matrix in Kn(x,X) defined by (28) and (29).

PROOF. We consider X̃ = [x1, . . . ,xn,x], its corresponding kernels Kn(X̃, X̃), and

K(X̃, X̃) ∈ R
(n+1)×(n+1). Under Assumption 2.14, we can directly apply Theorem 2.3 to

get the concentration of Kn(X̃, X̃) around K(X̃, X̃), namely,

(107)
��Kn(X̃, X̃) − K(X̃, X̃)

��≤ C

�
n

d1

,

with probability at least 1 − 4e−2n. Meanwhile, we can write Kn(X̃, X̃) and K(X̃, X̃) as

block matrices:

Kn(X̃, X̃) =
�
Kn(X,X) Kn(X,x)

Kn(x,X) Kn(x,x)

�
and K(X̃, X̃) =

�
K(X,X) K(X,x)

K(x,X) K(x,x)

�
.

Since the �2-norm of any row is bounded above by the spectral norm of its entire matrix, we

complete the proof of (106). �

LEMMA 7.2. Assume that training labels satisfy Assumption 2.13 and �X� ≤ B , then

for any deterministic A ∈ R
n×n, we have

Var
"
y�Ay

�
,Var

"
³³³∗�Ay

�
≤ c�A�2

F ,

where constant c only depends on σ³³³ , σ", and B . Moreover,

E
�
y�Ay

�
= σ 2

³³³ TrAX�X + σ 2
" TrA, E

�
³³³∗�Ay

�
= σ 2

³³³ TrAX�.
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PROOF. We follow the idea in Lemma C.8 of [56] to investigate the variance of the

quadratic form for the Gaussian random vector by

(108) Var
"
g�Ag

�
= �A�2

F + Tr
"
A2�≤ 2�A�2

F ,

for any deterministic square matrix A and standard normal random vector g. Notice that the

quadratic form

y�Ay = g�
 

σ 2
³³³XAX� σ"σ³³³XA

σ"σ³³³AX� σ 2
" A

�
g,

where g is a standard Gaussian random vector in R
d0+n. Similarly, the second quadratic form

can be written as

³³³∗�Ay = g�
 
σ 2
³³³AX� σ"σ³³³A

0 0

�
g.

Let

Ã1 :=
 

σ 2
³³³XAX� σ"σ³³³XA

σ"σ³³³AX� σ 2
" A

�
, Ã2 :=

 
σ 2
³³³AX� σ"σ³³³A

0 0

�
.

By (108), we know Var(y�Ay) ≤ 2�Ã1�2
F and Var(³³³∗�Ay) ≤ 2�Ã2�2

F . Since

�Ã1�2
F = σ 4

³³³

��XAX���2
F + σ 2

" σ 2
³³³�XA�2

F + σ 2
" σ 2

³³³

��AX���2
F + σ 4

" �A�2
F ≤ c�A�2

F

and similarly �Ã2�F ≤ c�A�2
F for a constant c, we can complete the proof. �

As a remark, in Lemma 7.2, for simplicity, we only provide a variance control for the

quadratic forms to obtain convergence in probability in the following proofs of Theorems

2.16 and 2.17. However, we can apply Hanson–Wright inequalities in Section 3 to get more

precise probability bounds and consider non-Gaussian distributions for ³³³∗ and ".

PROOF OF THEOREM 2.16. Based on the preceding expansions of L(f̂
(RF)
λ (x)) and

L(f̂
(K)
λ (x)) in (104) and (105), we need to control the right-hand side of

��L
"
f̂

(RF)
λ (x)

�
−L

"
f̂

(K)
λ (x)

���≤ |E1 − Ē1| + 2|Ē2 − E2|.
In the subsequent procedure, we first take the concentrations of E1 and E2 with respect to

normal random vectors ³³³∗ and ", respectively. Then, we apply Theorem 2.3 and Lemma 7.1

to complete the proof of (35). For simplicity, we start with the second term

|Ē2 − E2| ≤
��³³³∗�

Ex

�
x
"
Kn(x,X) − K(x,X)

��
(Kn + λ Id)−1y

��

+
��³³³∗�

Ex

�
xK(x,X)

�"
(Kn + λ Id)−1 − (K + λ Id)−1�y

��

≤ |I1 − Ī1| + |I2 − Ī2| + |Ī1| + |Ī2|,

(109)

where I1 and I2 are quadratic forms defined below

I1 :=³³³∗�
Ex

�
x
"
Kn(x,X) − K(x,X)

��
(Kn + λ Id)−1y,

I2 :=³³³∗�
Ex

�
xK(x,X)

�"
(Kn + λ Id)−1 − (K + λ Id)−1�y,

and their expectations with respect to random vectors ³³³∗ and " are denoted by

Ī1 := E",³³³∗[I1] = σ 2
³³³ Tr

"
Ex

�
x
"
Kn(x,X) − K(x,X)

��
(Kn + λ Id)−1X��,

Ī2 := E",³³³∗[I2] = σ 2
³³³ Tr

""
(Kn + λ Id)−1 − (K + λ Id)−1�X�

Ex

�
xK(x,X)

��
.
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We first consider the randomness of the weight matrix in Kn and define the event E where

both (103) and (107) hold. Then, Theorem 2.5 and the proof of Lemma 7.1 indicate that event

E occurs with probability at least 1 − 4e−2n for all large n. Notice that E does not rely on the

randomness of test data x.

We now consider A = Ex[x(Kn(x,X) − K(x,X))](Kn + λ Id)−1 in Lemma 7.2. Condi-

tioning on event E , we have

�A�2
F ≤ Ex

���x
"
Kn(x,X) − K(x,X)

����2
F

�
·
��(Kn + λ Id)−1X���2

≤ �X�2
��(Kn + λ Id)−1

��2 ·Ex

�
�x�2

��Kn(x,X) − K(x,X)
��2�≤ C

n

d1
,

(110)

for some constant C, where we utilize the assumption E[�x�2] = 1. Hence, based on

Lemma 7.2, we know Var",³³³∗(I1) ≤ cn/d1, for some constant c. By Chebyshev’s inequal-

ity and event E ,

(111) P
"
|I1 − Ī1| ≥ (n/d1)

1−ε
2
�
≤ c

�
n

d1

�ε

+ 4e−2n,

for any ε ∈ (0,1/2). Hence, (d1/n)
1
2 −ε · |I1 − Ī1| = o(1) with probability 1 − o(1), when

n/d1 → 0 and n → ∞.

Likewise, when A = Ex[xK(x,X)]((Kn + λ Id)−1 − (K + λ Id)−1), we can apply (101)

and

(112)
��K(x,X)

��≤
��K(X̃, X̃)

��≤ Cλ2
σB2,

due to Lemma A.9 in Appendix A, to obtain �A�2
F ≤ Cn/d1 conditionally on event E . Then,

similarly, Lemma 7.2 shows Var",³³³∗(I2) ≤ cn/d1. Therefore, (111) also holds for |I2 − Ī2|.
Moreover, conditioning on the event E ,

(113)

|Ī1| = σ 2
³³³

��Ex

�"
Kn(x,X) − K(x,X)

�
(Kn + λ Id)−1X�x

���

≤ σ 2
³³³Ex

�
�x� ·

��Kn(x,X) − K(x,X)
�� · �X� ·

��(Kn + λ Id)−1
���,

≤ σ 2
³³³Ex

�
�x�2� 1

2Ex

���Kn(x,X) − K(x,X)
��2� 1

2 �X�
��(Kn + λ Id)−1

��≤ C

�
n

d1
,

for some constant C. In the same way, with (112), |Ī2| ≤ C
�

n
d1

on the event E . Therefore,

from (109), we can conclude |Ē2 − E2| = o((n/d1)
1/2−ε) for any ε ∈ (0,1/2), with proba-

bility 1 − o(1), when n/d1 → 0 and n → ∞.

Analogously, the first term |Ē1 − E1| is controlled by the following four quadratic forms

|Ē1 − E1| ≤
4"

i=1

��y�Aiy
��,

where we define by Ji := y�Aiy for 1 ≤ i ≤ 4 and

A1 := (Kn + λ Id)−1
Ex

�
Kn(x,X)�

"
Kn(x,X) − K(x,X)

��
(Kn + λ Id)−1,

A2 := (Kn + λ Id)−1
Ex

�"
Kn(x,X) − K(x,X)

��
K(x,X)

�
(Kn + λ Id)−1,

A3 :=
"
(Kn + λ Id)−1 − (K + λ Id)−1�

Ex

�
K(x,X)�K(x,X)

�
(Kn + λ Id)−1,

A4 := (K + λ Id)−1
Ex

�
K(x,X)�K(x,X)

�"
(Kn + λ Id)−1 − (K + λ Id)−1�.

Similarly with (110) and (113), it is not hard to verify �Ai�F ≤ C
√

n/d1 and |E",³³³∗[Ji]| ≤
C

√
n/d1 conditioning on the event E . Then, like (111), we can invoke Lemma 7.2 for each Ai
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to apply Chebyshev’s inequality and conclude |Ē1 − E1| = o((n/d1)
1/2−ε) with probability

1 − o(1) when d1/n → ∞, for any ε ∈ (0,1/2). �

LEMMA 7.3. With Assumptions 1.2 and 2.14, for (εn,B)-orthonormal X, we have that

����Ex

�
K(x,X)�K(x,X)

�
− b4

σ

d0
X�X

����≤
����Ex

�
K(x,X)�K(x,X)

�
− b4

σ

d0
X�X

����
F

≤ C
√

nε2
n,

(114)

����Ex

�
xK(x,X)

�
− b2

σ

d0
X

����≤
����Ex

�
xK(x,X)

�
− b2

σ

d0
X

����
F

≤ C
√

nε2
n,(115)

for some constant C > 0.

PROOF. By Lemma A.8, we have an entrywise approximation

��K(x,xi) − b2
σ x�xi

��≤ Cλσ ε2
n,

for any 1 ≤ i ≤ n. Hence, �K(x,X) − b2
σ x�X� ≤ Cλσ

√
nε2

n. Assumption 2.14 of x implies

that
b4
σ

d0
X�X = b4

σEx[X�xx�X]. Then, we can verify (114) based on the following approxi-

mation
����Ex

�
K(x,X)�K(x,X)

�
− b4

σ

d0
X�X

����
F

≤ Ex

���K(x,X)�K(x,X) − b4
σX�xx�X

��
F

�

≤ Ex

���K(x,X)�
"
K(x,X) − b2

σ x�X
���

F + b2
σ

��"K(x,X)� − b2
σX�x

�
x�X

��
F

�

≤ Ex

���K(x,X) − b2
σ x�X

��"��K(x,X)
��+

��b2
σ x�X

����≤ C
√

nε2
n,

for some universal constant C. The same argument can also be employed to prove (115), so

details will be omitted here. �

PROOF OF THEOREM 2.17. From (33) and (35), we can easily conclude that

E
(RF,λ)
train − E

(K,λ)
train

P→ 0,(116)

L
"
f̂

(RF)
λ (x)

�
−L

"
f̂

(K)
λ (x)

� P→ 0,(117)

as n → ∞ and n/d1 → 0. Therefore, to study the training error E
(RF,λ)
train and the test error

L(f̂
(RF)
λ (x)) of random feature regression, it suffices to analyze the asymptotic behaviors of

E
(K,λ)
train and L(f̂

(K)
λ (x)) for the kernel regression, respectively. In the rest of the proof, we will

first analyze the test error L(f̂
(K)
λ (x)) and then compute the training error E

(K,λ)
train under the

ultra-wide regime.

Recall that Kλ = (K + λ Id) and the test error is given by

L
"
f̂

(K)
λ

�
= 1

d0

��³³³∗��2 + L1 − 2L2,(118)

where L1 := y�K−1
λ Ex[K(x,X)�K(x,X)]K−1

λ y, L2 := ³³³∗�
Ex[xK(x,X)]K−1

λ y. The

spectral norm of Kλ is bounded from above and the smallest eigenvalue is bounded from

below by some positive constants.
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We first focus on the last two terms L1 and L2 in the test error. Let us define

�L1 := b4
σ

d0
y�K−1

λ X�XK−1
λ y and �L2 := b2

σ

d0
³³³∗�XK−1

λ y.

Then, we obtain two quadratic forms

L1 − �L1 = y�K−1
λ

�
Ex

�
K(x,X)�K(x,X)

�
− b4

σ

d0
X�X

�
K−1

λ y =: y�A1y,

L2 − �L2 =³³³∗�
�
Ex

�
xK(x,X)

�
− b2

σ

d0
X

�
K−1

λ y =:³³³∗�A2y,

where �A1�F and �A2�F are at most C
√

nε2
n for some constant C > 0, due to Lemma 7.3.

Hence, applying Lemma 7.2 for these two quadratic forms, we have Var(Li − �Li) ≤ cnε4
n →

0 as n → ∞. Additionally, Lemma 7.2 and the proof of Lemma 7.3 verify that E[y�A1y]
and E[³³³∗�A2y] are vanishing as n → ∞. Therefore, Li −�Li converges to zero in probability

for i = 1,2. So we can move to analyze �L1 and �L2 instead. Copying the above procedure,

we can separately compute the variances of �L1 and �L2 with respect to ³³³∗ and ", and then

apply Lemma 7.2. Then, |�L1 − L̄1| and |�L2 − L̄2| will converge to zero in probability as

n,d0 → ∞, where

L̄1 := E",³³³∗[�L1] =
b4
σσ 2

³³³n

d0
trK−1

λ X�XK−1
λ X�X + b4

σσ 2
" n

d0
trK−1

λ X�XK−1
λ ,

L̄2 := E",³³³∗[�L2] =
b2
σσ 2

³³³n

d0
trK−1

λ X�X.

To obtain the last approximation, we define K̄(X,X) := b2
σX�X + (1 − b2

σ ) Id and

(119) K̄λ := b2
σX�X +

"
1 + λ − b2

σ

�
Id .

We aim to replace Kλ by K̄λ in L̄1 and L̄2. Recalling the identity (101), we have

K−1
λ − K̄−1

λ = K̄−1
λ

"
K(X,X) − K̄(X,X)

�
K−1

λ .

Since σ is not a linear function, 1 − b2
σ > 0. Then, with (103), the proof of Lemma 5.4

indicates

��K−1
λ − K̄−1

λ

��
F ≤ C

�
n2ε4

n + nε2
n,(120)

where we apply the fact that λmin(K̄(X,X)) ≥ 1 − b2
σ > 0. Let us denote

L0
1 :=

b4
σσ 2

³³³n

d0

tr K̄−1
λ X�XK̄−1

λ X�X + b4
σσ 2

" n

d0

tr K̄−1
λ X�XK̄−1

λ ,(121)

L0
2 :=

b2
σσ 2

³³³n

d0
tr K̄−1

λ X�X.(122)

Notice that for any matrices A,B ∈ R
n×n, �AB�F ≤ �A��B�F , |Tr(AB)| ≤ �A�F �B�F .

Then, with the help of (120) and uniform bounds of the spectral norms of X�X, K−1
λ and

K̄−1
λ , we obtain that

��L̄1 − L0
1

��

≤
b4
σσ 2

³³³

d0

��TrK−1
λ X�X

"
K−1

λ − K̄−1
λ

�
X�X

��+
b4
σσ 2

³³³

d0

��Tr
"
K−1

λ − K̄−1
λ

�
X�XK̄−1

λ X�X
��
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+ b4
σσ 2

"

d0

��Tr
"
K−1

λ − K̄−1
λ

�
X�XK̄−1

λ

��+ b4
σσ 2

"

d0

��TrK−1
λ X�X

"
K−1

λ − K̄−1
λ

���

≤ C
√

n

d0

��K−1
λ − K̄−1

λ

��
F ≤ C

n

d0

�
nε4

n + ε2
n → 0,

as n → ∞, n/d0 → ´ and nε4
n → 0. Combining all the approximations, we conclude that

Li and L0
i have identical limits in probability for i = 1,2. On the other hand, based on the

assumption of X and definitions in (119), (121), and (122), it is not hard to check that

lim
n→∞L0

1 = b4
σσ 2

³³³´

�

R

x2

(b2
σx + 1 + λ − b2

σ )2
dμ0(x)

+ b4
σσ 2

" ´

�

R

x

(b2
σx + 1 + λ − b2

σ )2
dμ0(x),

lim
n→∞L0

2 = b2
σσ 2

³³³´

�

R

x

b2
σx + 1 + λ − b2

σ

dμ0(x).

Therefore, L1 and L2 converge in probability to the above limits, respectively, as n → ∞. In

the end, we apply the concentration of the quadratic form ³³³∗�³³³∗ in (118) to get 1
d0

�³³³∗�2 P−→
σ 2
³³³ . Then, by (117), we can get the limit in (38) for the test error L(f̂

(RF)
λ ). As a byproduct,

we can even use L0
1 and L0

2 to form an n-dependent deterministic equivalent of L(f̂
(RF)
λ ) as

well.

Thanks to Lemma 7.2, the training error, E
(K,λ)
train = λ2

n
y�K−2

λ y, analogously, concentrates

around its expectation with respect to ³³³∗ and ", which is σ 2
³³³λ2 trK−2

λ X�X + σ 2
" λ2 trK−2

λ .

Moreover, because of (120), we can further substitute K−2
λ by K̄−2

λ defined in (119). Hence,

we know that, asymptotically,

��E(K,λ)
train − σ 2

³³³λ2 tr K̄−2
λ X�X − σ 2

" λ2 tr K̄−2
λ

�� P−→ 0,

where as n,d0 → ∞,

lim
n→∞σ 2

³³³λ2 tr K̄−2
λ X�X = σ 2

³³³λ2
�

R

x

(b2
σx + 1 + λ − b2

σ )2
dμ0(x),

lim
n→∞σ 2

" λ2 tr K̄−2
λ = σ 2

" λ2
�

R

1

(b2
σx + 1 + λ − b2

σ )2
dμ0(x).

The last two limits are due to μ0 = lim specX�X as n,d0 → ∞. Therefore, by (116), we

obtain our final result (37) in Theorem 2.17. �

APPENDIX A: AUXILIARY LEMMAS

LEMMA A.1 (Equation (3.7.9) in [43]). Let A, B be two n × n matrices, A be positive

semidefinite, and A � B be the Hadamard product between A and B . Then,

�A � B� ≤ max
i,j

|Aij | · �B�.

LEMMA A.2 (Sherman–Morrison formula, [17]). Suppose A ∈ R
n×n is an invertible

square matrix and u,v ∈R
n are column vectors. Then

"
A + uv��−1 = A−1 − A−1uv�A−1

1 + v�A−1u
.
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LEMMA A.3 (Theorem A.45 in [13]). Let A, B be two n × n Hermitian matrices. Then

A and B have the same limiting spectral distribution if �A − B� → 0 as n → ∞.

LEMMA A.4 (Theorem B.11 in [13]). Let z = x + iv ∈ C, v > 0 and s(z) be the Stieltjes

transform of a probability measure. Then |Re s(z)| ≤ v−1/2
√

Im s(z).

LEMMA A.5 (Lemma D.2 in [60]). Let x,y ∈ R
d such that �x� = �y� = 1 and w ∼

N (0, Id). Let hj be the j th normalized Hermite polynomial given in (1.5). Then

Ew

�
hj

"
�w,x�

�
hk

"
�w,y�

��
= µjk�x,y�k.

LEMMA A.6 (Proposition C.2 in [29]). Suppose M = U + iV ∈ C
n×n, U , V are real

symmetric, and V is invertible with σmin(V ) ≥ c0 > 0. Then M is invertible with σmin(M) ≥
c0.

LEMMA A.7 (Proposition C.3 in [29]). Let M , �M be two sequences of n × n Hermitian

matrices satisfying

1

n
�M − �M�2

F → 0

as n → ∞. Suppose that, as n → ∞, lim specM = ν for a probability distribution ν on R,

then lim spec �M = ν.

LEMMA A.8. Recall the definition of � in (3). Under Assumption 1.2, if X is (ε,B)-

orthonormal with sufficiently small ε, then for a universal constant C > 0 and any α �= ³ ∈
[n], we have

���α³ − b2
σ x�

α x³

��≤ Cε2,

��Ew

�
σ
"
w�xα

����≤ Cε.

PROOF. When σ is twice differentiable in Assumption 1.2, this result follows from

Lemma D.3 in [29]. When σ is a piecewise linear function defined in case 2 of Assump-

tion 1.2, the second inequality follows from (79) with t = �xα�. For the first inequality, the

Hermite expansion of �α³ is given by (75) with coefficients ζk(σα) = E[σ(�xα�ξ)hk(ξ)] for

k ∈N. Observe that the piecewise linear function in case 2 of Assumption 1.2 satisfies

ζk(σα) = �xα�ζk(σ ) for k ≥ 1,

ζ0(σα) = b
"
1 − �xα�

�
,

because of condition (9) for σ . Recall uα = xα/�xα� and ζ1(σ ) = bσ . Then, analogously to

the derivation of (82), there exists some constant C > 0 such that

���α³ − b2
σ x�

α x³

��=
����
"

k �=1

ζk(σα)ζk(σ³)
"
u�

α u³

�k
����

≤ b2"1 − �xα�
�"

1 − �x³�
�
+ |x�

α x³ |2
�xα��x³��σ�2

L2 ≤ Cε2,

for ε ∈ (0,1) and (ε,B)-orthonormal X. This completes the proof of this lemma. �

With the above lemma, the proof of Lemma D.4 in [29] yields the following lemma.

LEMMA A.9. Under the same assumptions as Lemma A.8, there exists a constant C such

that �K(X,X)� ≤ CB2. Additionally, with Assumption 2.14, we have �K(X̃, X̃)� ≤ CB2.
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FIG. 4. Simulations for empirical eigenvalue distributions of (14) and theoretical predication (red curves) of

the limiting law μ with activation functions σ(x) ∝ Sigmoid function (first row) and σ(x) = x linear function

(second row) satisfying Assumption 1.2: n = 103, d0 = 103, and d1 = 105 (left); n = 103, d0 = 1.5 × 103, and

d1 = 105 (middle); n = 1.5 × 103, d0 = 103, and d1 = 105 (right).

APPENDIX B: ADDITIONAL SIMULATIONS

Figures 4 and 5 provide additional simulations for the eigenvalue distribution described in

Theorem 2.1 with different activation functions and scaling. Here, we compute the empiri-

cal eigenvalue distributions of centered CK matrices in histograms and the limiting spectra

in terms of self-consistent equations. All the input data X’s are standard random Gaussian

matrices. Interestingly, in Figure 5, we observe an outlier that emerges outside the bulk dis-

tribution for the piecewise linear activation function defined in case 2 of Assumption 1.2. The

analysis of the emergence of the outlier, in this case, would be interesting for future work.
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