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Abstract

We prove the Kudla—Rapoport conjecture for Kramer models of unitary Rapoport—
Zink spaces at ramified places. It is a precise identity between arithmetic intersection
numbers of special cycles on Krimer models and modified derived local densities
of hermitian forms. As an application, we relax the local assumptions at ramified
places in the arithmetic Siegel-Weil formula for unitary Shimura varieties, which is in
particular applicable to unitary Shimura varieties associated to unimodular hermitian
lattices over imaginary quadratic fields.
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1 Introduction
1.1 Background

The classical Siegel-Weil formula ([31, 32, 35]) relates certain Siegel Eisenstein se-
ries to the arithmetic of quadratic forms, namely it expresses special values of these
series as theta functions — generating series of representation numbers of quadratic
forms. Kudla ([13, 14]) initiated an influential program to establish the arithmetic
Siegel-Weil formula relating certain Siegel Eisenstein series to objects in arithmetic
geometry, which among others, aims to express the central derivative of these series
as the arithmetic analogue of theta functions — generating series of arithmetic inter-
section numbers of n special divisors on Shimura varieties associated to SO(n — 1, 2)
orUn—1,1).

For U(n — 1, 1)-Shimura varieties with hyperspecial level at an unramified place,
Kudla—Rapoport [16] conjectured a local arithmetic Siegel-Weil formula, now known
as the (local) Kudla—Rapoport conjecture. It is a precise identity between the central
derivative of local representation densities of hermitian forms (the analytic side) and
the arithmetic intersection number of special cycles on unitary Rapoport—Zink spaces
(the geometric side). This conjecture was recently proved by Zhang and one of us
[20], and we refer to the introduction of [20] for more background and related results.

It is a natural question, which is also important for global applications, to formu-
late and prove an analogue of the Kudla—Rapoport conjecture at a ramified place. Ata
ramified place, there are two well-studied level structures for unitary Rapoport—Zink
spaces, one gives rise to the exotic smooth model which has good reduction, and the
other one gives rise to the Krdmer model which has bad (semistable) reduction. For
the even dimensional exotic smooth model, the analogue of Kudla—Rapoport conjec-
ture was formulated and proved by Liu and one of us [19] using a strategy similar to
[20].

For the Kridmer model, however, the situation is more complicated — it is ex-
pected that the analytic side of the conjecture requires nontrivial modification, by
a certain linear combination of central values of local representation densities. The
necessity of such modification in the presence of bad reduction was first discovered
by Kudla—Rapoport [15] via explicit computation in the context of the Drinfeld p-
adic half plane. In [10], three of us formulated the Kudla—Rapoport conjecture for
Krdamer models (recalled in §1.2) by providing a conceptual recipe for the precise
modification needed for the analytic side. Moreover, this conjecture was proved for
n =2 (based on the previous works [9, 29]) and n = 3 in [10].

The main theorem of the present paper settles this conjecture for any n (and the
proof is new even for n = 2, 3). As a first application, we relax the local assumptions
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A proof of the Kudla—Rapoport conjecture for Kramer models 723

in the arithmetic Siegel-Weil formula for U(n — 1, 1)—Shimura varieties by allowing
Kriamer models at ramified places. The main theorem should also be useful to relax
the local assumptions at ramified places in the arithmetic inner product formula [18,
19] and its p-adic avatar by Disegni—Liu [6].

1.2 Kudla-Rapoport conjecture for Kramer models

Let p be an odd prime. Let Fy be a finite extension of Q, with residue field x =F,.
Let F be a ramified quadratic extension of Fy. Let 7 be a uniformizer of F such that
Trr R, () = 0. Then 7o = 72 is a uniformizer of Fp. Let F be the completion of
the maximal unramified extension of F. Let Of, O be the ring of integers of F, F
respectively.

Let n > 2 be an integer. To define the Krimer model of the unitary Rapoport—
Zink space, we fix a (principally polarized) supersingular hermitian Ofr-modules X
of signature (1,n — 1) over k (Definition 2.1). The Krimer model N' = N, is the
formal scheme over Spf O, parameterizing hermitian formal Or-modules X of sig-
nature (1, n — 1) within the quasi-isogeny class of X, together with a rank 1 filtration
F C Lie X satisfying the Krimer condition (Definition 2.2). The space A is locally
of finite type, and semistable of relative dimension n — 1 over Spf O . There are
two choices of the framing object X (up to quasi-isogeny), giving rise to two non-
isomorphic (resp. isomorphic) spaces N when n is even (resp. odd) (§2.2).

Let Y be the framing hermitian O r-modules of signature (0, 1) over i defined as
in Definition 2.1. The space of quasi-homomorphisms V =V, := Homo, (Y, X) ®0;
F carries a natural F/Fp-hermitian form, which makes V a non-degenerate F/Fy-
hermitian space of dimension n (§2.2). The two choices of the framing object X
exactly correspond to the two isomorphism classes of V, classified by x (V) :=
X((—l)n(nz_l) det(V)) € {£1}, where yx : FOX — {£1} is the quadratic character as-
sociated to F/Fy. For any subset L C V, the special cycle Z(L) (§2.3) is a closed
formal subscheme of A/, over which each quasi-homomorphism x € L deforms to a
homomorphism.

Let L C V be an Op-lattice (of full rank n). We will associate to L two inte-
gers: the arithmetic intersection number Int(L) and the modified derived local density
dDen(L).

Definition 1.1 Let L C V be an Op-lattice. Let x1,...,x, be an Op-basis of L.
Define the arithmetic intersection number

Int(L) :== x (N, Oz " - @ Oz, € Z, (1.1

where O z(,,) denotes the structure sheaf of the special divisor Z(x;), ®L denotes the
derived tensor product of coherent sheaves on N, and x denotes the Euler—Poincaré
characteristic (Definition 2.10). By Howard [11, Corollary D]), we know that Int(L)
is independent of the choice of the basis x, ..., x, and hence is a well-defined in-
variant of L itself.

For another hermitian Op-lattice M (of arbitrary rank), denote by Hermy s the
O,-scheme of hermitian O r-module homomorphisms from L to M (Definition 5.1)
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724 Q. Heetal.

and define its local density to be

Herm O /8
Den(M, L) := lim | Lz’ld( Fo/ 0)|’
d—>+00 q4dLm

where dy. s is the dimension of Hermy, » ® o o Fy. Let H be the standard hyperbolic

hermitian O F-lattice of rank 2 (given by the hermitian matrix ( _73_

. )). Itis well-
known that there exists a local density polynomial Den(M, L, X) € Q[X] such that

for any integer k > 0,
Den(M, L,q ") =Den(H*® M, L). (1.2)

When M has also rank n and x (M) = —x (L), we have Den(M, L) = 0 (Lemma 5.7)
and in this case we write

d
Den'(M,L):= -2 — Den(M, L, X).
dX |y

Define the (normalized) derived local density

Den’(1,, L)
Den'(L) := ————— Q. 1.3
(L) Den(l,. 1) Q (1.3)
Here I, is the unimodular lattice of rank n with x (I,) = —x (L). Recall that a her-
mitian Op-lattice L is unimodular' if L = L*, where L? is the dual lattice of L with
respect to the hermitian form (see §1.5 for notation).
The naive analogue of the Kudla—Rapoport conjecture for Krimer model states
that

Int(L) = Den’(L).

However, as explained in [10] this naive analogue does not hold for trivial reasons. In
fact, by definition Int(L) vanishes unless L is integral (i.e., L C L¥), while Den’(L)
does not vanish for non-integral lattices L which are dual to vertex lattices. More
precisely, recall that an integral Op-lattice A C V is called a vertex lattice (of type t)
if A®/A is a k-vector space (of dimension ). For a vertex lattice A C V of type ¢ > 0,
A" is non-integral and so Int(A*) = 0, while Den’ (A?) # 0 in general (see e.g. (5.7)).
In general, we define the type (L) of L to be the number of positive fundamental
invariants of L (see §1.5).

To account for these discrepancies, we will define dDen(L) by modifying Den’ (L)
with a linear combination of the (normalized) local densities (Corollary 5.8)

Den(Af, L)
Den; (L) := ———"— € Z. (1.4)
Den(A;, A;)

IWe refrain from using the terminology self-dual in the ramified case to avoid possible confusion with a
lattice L such that L = LV, where LV is the dual lattice with respect to the underlying quadratic form, see
§4.2.
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A proof of the Kudla—Rapoport conjecture for Kramer models 725

Here A; C V is a vertex lattice of type ¢ (in particular X(Af) = x(L)). Recall that
the possible vertex type ¢ is given by any even integer such that 0 < ¢ < ti4x, Where

n, ifn even, x (V) =
fmax =11 — 1, ifn Odd,
n—2, ifneven, x(V)=—

Definition 1.2 Let L C V be an Op-lattice. Define the modified derived local density
(Corollary 7.2)

tmax /2
dDen(L) := Den'(L) + Z c2j - Demy;(L) € Z. (1.5)
j=1

Here the coefficients c;; € Q are chosen to satisfy
Den(A%) =0, 1<i<lmun/2, (1.6)

which turns out to be a linear system in (cz, c4, . . .
Theorem 6.1].

) with a unique solution ([10,

s Ctmax

The main purpose of this paper is to prove the following local arithmetic Siegel-
Weil formula, settling the main conjecture of [10]. We will prove this theorem in

§9.

Theorem 1.3 (Kudla—Rapoport conjecture for Kramer models) Let L C 'V be an Op-
lattice. Then

Int(L) = dDen(L).
1.3 The arithmetic Siegel-Weil formula

Next let us describe some global applications of our main theorem, following the set-
ting of [20, §1.3]. We now switch to global notations. Let F be a CM number field
with maximal total real subfield Fy. Fix an embedding Q <> C and fix a CM type
® c Hom(F, Q) = Hom(F, C) of F. We also identify the CM type & with the set
of archimedean places of Fy. Let V be an F/Fy-hermitian space of dimension n and
G = Resp, o U(V). Assume the signatures of V are {(n — 1, 1)g), (n, 0)pca— {¢0}}
for some distinguished element ¢g € ®. Define a torus ZQ {z € Resp/9 G
Nmp/F(2) € Gy, }. Associated to G =272 x G there is a natural Shimura datum
(G, {hg)) of PEL type ([20, §11.1]). Let K = K0 x Kg C G(Aj) be a compact
open subgroup. Then the associated Shimura variety Shx = Shx (G, {hg}) is of di-
mension n — 1 and has a canonical model over its reflex field E.

Assume that K, o C ZA r) is the unique maximal open compact subgroup.
Assume that Kg = [[, Kg,v, where v runs over the finite places of Fp such that
Kg.» CU(V)(Fp,y) is given by

o the stabilizer of a self-dual or almost self-dual lattice A, C V, if v isinertin F,
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726 Q. Heetal.

o the stabilizer of a unimodular lattice A, C V,, if v is ramified in F,
e a principal congruence subgroup of U(V)(Fp ) =~ GL, (Fo ) if v is splitin F.

Let Viam (resp. Vasq) be the set of finite places v of Fy such that v is ramified in F
(resp. v is inert in F and A, is almost self-dual). Further assume that all places of
E above Viam U Vygq are unramified over F. Then we obtain a global regular integral
model Mg of Shx over Of as in [20, §14.1-14.2], which is semistable at all places
of E above Viym U Vs (for more precise technical conditions required, see (GO)-
(G5)). When K is the stabilizer of a global unimodular lattice, the regular integral
model M g recovers that in [10], and that in [2] if Fy = Q.

Let V be the incoherent hermitian space over A associated to V, namely V is
totally positive definite and V,, = V,, for all finite places v. Let px € . (V’}) be a
K -invariant (where K acts on V¢ via the second factor K¢) factorizable Schwartz
function such that ¢k , = 1(a,)» at all v nonsplit in F. Let T € Herm, (Fp) be a
nonsingular F'/ Fy-hermitian matrix of size n. Associated to (T, ) we have arith-
metic special cycles Z(T, pg) over Mg ([20, §14.3]) generalizing the Z(T') in [17].
Analogous to the local situation (1.1), we can define its local arithmetic intersec-
tion numbers Intr ,(¢x) at finite places v. Using the star product of Kudla’s Green
functions, we can also define its local arithmetic intersection number Intr ,(y, ¢x)
at infinite places ([20, §15.3]), which depends on a parameter y € Herm,, (Fso)~0
where Foo = F ®@ R. Combining all the local arithmetic numbers together, define
the global arithmetic intersection number, or the arithmetic degree of the special
cycle Z(T, ¢k) in the arithmetic Chow group of M,

degr(y. px) = Y _Intry(pk) + Y Intru(y, 9x).

vfoo v|oo

On the other hand, associated to ¢ := g ® P € -7 (V"), where ¢ is the Gaus-
sian function, there is a classical incoherent Eisenstein series E(z, s, ¢) ([20, §12.4])
on the hermitian upper half space

H, ={z=x+41iy: x€ Herm,(F), y € Herm, (F)=0}.

This is essentially the Siegel Eisenstein series associated to a standard Siegel-Weil
section of the degenerate principal series ([20, §12.1]). The Eisenstein series here has
a meromorphic continuation and a functional equation relating s <> —s. The central
value E(z, 0, ¢) = 0 by the incoherence. We thus consider its central derivative

) d
Eis'(z, px) = i E(z,s,9).
0

5=

Analogous to the local situation, we need to modify Eis'(z, g ) by central values
of coherent Eisenstein series. For v € Viam U Vagd, let 'V be the coherent hermitian
space over Ar nearby V at v, namely (*V),, >~ V,, exactly for all places w # v.

For any vertex lattice A;, C ("V), of type ¢, the Schwartz function ¢¥ ® I(A” €
tv

S ((*V)*) gives a classical coherent Eisenstein series E(z,s, ¢" ® 1 ). Analo-

(Af )
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gous to (1.4), define the (normalized) central values

1(K
vol(KgG ) E@20.0"®1

— 2 ) 1.7
VO](KA? U) (At,v)”) (4.7)

VEis; (z, ¢k ) :=

t,v°
respect to the Haar measures on U(V)(Fp) and U(YV)(Fp ,) as defined in [18, Def-
inition 3.8]. When v € Viam, analogous to (1.5), define the linear combination

Here K ,: C U"V)(Fp,p) is the stabilizer of A? . and the volumes are taken with
v

lmax,v/z

UEis(z. k)= Y c2j.0 - "Eis;(z, ¢k) - log gy, (1.8)
j=1

where ¢, is the size of the residue field of Fg ,, and fimax,v and ¢y, are the numbers
Imax and ¢ respectively in (1.5) for the local hermitian space ('V), over the ramified
extension F,/Fp,. When v € V,qq, define

VEis(z, 9k) := o, - Eiso(z, ¢k ) - logg?Z, (1.9)

where cp,, = —ﬁqv. Define the modified central derivative
OEis(z, ¢x) :=Eis'(z.9x) + (=1)" > VEis(z, pk). (1.10)

VE€VramUVasd

Associated to an additive character v : Ap,/Fo — C* (as explained in [20, §12.2]
we assume that ¢ is unramified outside the set of finite places of Fy splitin F), it has
a decomposition into Fourier coefficients

dEis(z.px)= Y  0Eisz(z. k). (1.11)
T eHerm,, (Fp)

The following result asserts an identity between the arithmetic degrees of special
cycles and the nonsingular Fourier coefficients of the modified central derivative of
the incoherent Eisenstein series, which generalizes [20, Theorem 1.3.1] from inert
places to all nonsplit places. In particular, when F' is an imaginary quadratic field of
discriminant d = 1 (mod 8), we have an unconditional arithmetic Siegel-Weil for-
mula for all unimodular lattices of signature (n — 1, 1) at non-singular coefficients,
i.e., [10, Theorem 1.5] holds without conditions.

Theorem 1.4 (Arithmetic Siegel-Weil formula: nonsingular terms) Let Diff(T, V)
be the set of places v such that V,, does not represent T ([20, §12.3]). Let T €
Herm,, (Fy) be nonsingular such that Diff(T, V) = {v} where v is nonsplit in F and
not above 2. Then

degy (y, px)q" = c - 9Eisr (z, 9k),

where g7 = Yoo (Tr T2), ck is a nonzero constant independent of T and ¢ (to be
specified in Theorem 10.1).
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728 Q. Heetal.

We form the generating series of arithmetic degrees

deg(z.px) = ) degr (v, px)q . (1.12)
T eHerm,, (Fp)
det T20

The following result relates this generating series to the modified central derivative
of the incoherent Eisenstein series, which removes the assumption that F/Fy is un-
ramified at all finite places from [20, Theorem 1.3.2].

Theorem 1.5 (Arithmetic Siegel-Weil formula) Assume that F/Fy is split at all
places above 2. Further assume that ¢k is nonsingular ([20, §12.3]) at two places
splitin F. Then

deg(z, gx) = c - OEis(z, 9k ).

In particular, d/e%(z, k) is a nonholomorphic hermitian modular form of genus n.
1.4 Strategy and novelty of the proof of the main Theorem 1.3

Our general strategy is closest to the unramified orthogonal case proved in [21]. More
precisely, fix an Op-lattice L” C V of rank n — 1 and denote by W = (L';V)L cV.

Consider functions on V \ L%,
Int;,(x) :=Int(L” 4 (x)), 8Den;,(x) := dDen(L” + (x)).

Then it remains to show the equality of the two functions Int;» = dDen;». To show
this equality, we find a decomposition

Int;» =1Int;p 4 +1Int;p 4, 0Denyy =0Denys 4 + dDenps 4

into “horizontal” and “vertical” parts such that the horizontal identity Int;» ,» =
0Den;» 4 holds and that the vertical parts Int;» 4 and dDen;» 4 behaves well under
Fourier transform along L;.

The horizontal identity essentially reduces to the horizontal computation for n = 2
in [9, 29]. For the vertical identity, we perform a partial Fourier transform along L;
and consider new functions on W \ {0},

Inti‘b’y(x) = /Lb Int;p 4 (y + x)dy, 8Deni‘b’7/(x) = /Lb dDenp» 4 (y + x)dy.

F F

The key is to show that Inti,)’ v and BDenik,’,y/ are both constant on W=\ {0} :=
{x € W\ {0} : val(x) > 0} of W (see §1.5 for notation) as in Theorem 4.16 and
Theorem 8.2. Using an induction on the valuation of L”, we show that the difference
IntJL'b’,y/ —BDenJL-b’,V vanishes on W= := {x € W : val(x) < 0}, and hence it vanishes
identically and allows us to conclude that Int;» o = dDeny» .
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A proof of the Kudla—Rapoport conjecture for Kramer models 729

On the geometric side, we prove a Bruhat—Tits stratification for the Krimer model
(Theorem 3.19), analogous to the case of the Pappas model treated in Rapoport—
Terstiege—Wilson [26]. We make use of the linear invariance of special cycles [11]
to express Int;» 4 as a linear combination of functions on V which are translation
invariant under vertex lattices. A new observation in our ramified case is that the
translation invariance already allows us to control the support of its Fourier trans-
form well enough (Lemma 4.13) to conclude the desired key constancy of Inti'b! 4 on

W=0. Compared to the unramified case, we completely avoid the Tate conjecture of
generalized Deligne-Lusztig varieties and explicit computation of their intersections
with special divisors. It is not clear that the Deligne-Lusztig subvarieties span the Tate
classes in this case. §3 studies the structure of Aeq and special cycles, and should be
of independent interest (in addition to preparation for §4).

On the analytic side, we make use of the primitive decomposition of the local den-
sity polynomial into primitive local density polynomials and obtain a decomposition.

dDen(L) = Z dPden(L)), (1.13)
LcL’

where L’ runs over Op-lattices in L containing L, and the symbol Pden stands for
the primitive version of Den (Corollary 5.4). Unlike the unramified or exotic smooth
case, the primitive local density polynomial itself seems rather complicated (see e.g.
Corollary 6.2). Nevertheless we manage to prove a simple formula for its modified
central derivative 0Pden(L), which we find quite striking.

Theorem 1.6 (Theorem 7.1) Let L C'V be an Op-lattice (of full rank n).
(1) If L is not integral, then 0Pden(L) = 0.
(2) If L is unimodular, then

1, ifnisodd,

dPden(L) = S
0, ifniseven.

(3) If L is integral and of type t > 0, then

t

—1
2
l_[(l —q%"). ift is odd,
dPden(L) = { =1 -
.
(1= x(LHg?) [T =¢*.  iftiseven.
=1

Here we write L >~ I,,_; & L" with I,_; unimodular of rank n —t.

The proof of this theorem occupies the entire §6 and §7, and is our major tech-
nical innovation. One key difference between our case and the unramified or exotic
smooth case is that in our case I,, and H (see (1.2) and (1.3)) have different funda-
mental invariants, hence it is not clear how to reduce the calculation of dPden into
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730 Q. Heetal.

the embedding-counting problems over finite fields in the style of [5, §3]. To deal
with this difficulty, we first decompose dPden(L) according to orbits of Hermitian
embeddings (Theorem 6.1). Now a new observation is that the primitive local density
polynomial becomes simpler when L is “very integral” (i.e., when its fundamental
invariants are all > 1, see Proposition 7.6) in which case the decomposition in Theo-
rem 6.1 is simple. The primitive local density polynomial vanishes when L is “very
non-integral” (e.g., when one of its fundamental invariants is < —2, see the proof of
Lemma 5.2). When L is the dual of a vertex lattice of positive type, this is just our
assumption (1.6). The remaining cases (in particular the unimodular lattice case) are
much trickier to handle, whose proof occupies most of §7 and is summarized in §7.2.
The proof relies on a series of non-trivial polynomial identities (e.g., Lemma 7.15
and Lemma 7.16) involving algebraic combinatorics of quadratic spaces over finite
fields, which should be of independent interest.

With the simple formula for dPden(L) at hand, we finally prove the desired key
constancy of 8Deni‘t, 4 on W=0 \ {0} via involved lattice-theoretic computation in
§8, in a fashion similar to [21]. The techniques developed here on the analytic side
seem to have wide applicability and we hope that they may shed new light on the
Kudla—Rapoport conjecture in the context of more general level structures, e.g., for
minuscule parahoric levels at unramified places formulated by Cho [4].

1.5 Notation and terminology

In this paper, a lattice means a hermitian Of-lattice without explicit mentioning.
Unless otherwise stated, L always means a non-degenerate lattice of rank n with a
hermitian form (, ).

e We say a sublattice L” of a hermitian space is non-degenerate if the restriction of
the hermitian form to it is non-degenerate.

e We define L* to be the dual lattice of L with respect to the hermitian form (, ). If
L C L%, we say L is integral.

e Following [19, Definition 2.11], for a lattice L with hermitian form (, ), we say
that a basis {£1, ..., £, } of L is a normal basis (which always exists by [19, Lemma
2.12]) if its moment matrix 7 = ((¢;, €;)) is conjugate to

1<i,j<n

(IBIJTZb])@"'@(ﬂST[zbS)@(—ngclJrl 712:)1+1>€B-~~

0 7.L.2C,—H
@ (_7.[20,-1-1 0

by a permutation matrix, for some 81, ..., Bs € 0}(0 and by, ..., bs,c1,...,ct €7Z.
Moreover, we define its (unitary) fundamental invariants (ai,...,a,) to be the
unique nondecreasing rearrangement of (2by, ..., 2bs,2c1 +1,...,2¢, + 1).

e We define the type ¢ (L) of L to be the number of positive fundamental invariants of
L. We use r(L) to denote the rank of L and call L a full type lattice if r (L) =t (L).

e We define the valuation of L to be val(L) := Z?:l a;, where (ai, ..., a,) are the
fundamental invariants of L. For x € L, we define val(x) = val((x, x)), where
val(mg) = 1.
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A proof of the Kudla—Rapoport conjecture for Kramer models 731

e For a hermitian space V, we let V.= {x € V| val(x)?i} where ? can be >, < or

e For aring R, we use ({1, ..., £,)R to denote Spang{{y,...,£,}. When R = OF,
we simply write (€1, ..., £,). We use L to denote L ® ¢, F.

e For a hermitian lattice of rank n, we define its sign as

nn

X (L) == x(=)"T" det(L)) = £1

where x is the quadratic character of FOX associated to F/Fy. Without explicit
mentioning, we always use € to denote x (L).

e Let /5, denote a unimodular lattice of rank m with x(I;,) = €. We also simply
denote a unimodular lattice of rank m by I, if we do not need to remember its sign
or its sign is clear in the context. In particular, when we consider Den’(1,,, L), we
mean I, = I,7€.

e We call a sublattice N C M primitive in M if dimp, N =r(N), where N = (N +
T M)/t M. We also use L to denote L ®oy Or /(7).

o For two lattices L, L’ of same rank, letn(L’, L) =#{L”" C L |LCL",L" = L'}.

e We let 8oqq(n) = 1 if n is an odd integer and So4q(n) = O if 7 is an even integer.

2 Kramer models of Rapoport-Zink spaces and special cycles

We denote a the Galois conjugate of a € F over Fy. Denote by Nilp O be the cate-
gory of O z-schemes § such that 7 is locally nilpotent on §. For such an §, denote its
special fiber S XspfOy Speck by S. Let o € Gal(Fy/Fo) be the Frobenius element.
We fix an injection of rings ig : O, — (9130 and an injection i : O — O extending

ig. Denote by i:O0p — O the map a — i(a).
2.1 RZ spaces

Let S € Nilp O . A p-divisible strict O r,-module over § is a p-divisible group over

S with an O fj-action whose induced action on its Lie algebra is via O, %0 B~
Ogs.

Definition 2.1 A formal hermitian Ofp-module of dimension n over S is a triple
(X, t, 1) where X is a supersingular p-divisible strict O g -module over S of dimen-
sion n and Fy-height 2n (supersingular means the O f,-relative Dieudonné module
of X at each geometric point of S has slope %), t: O — End(X) is an Op-action
and A : X — XV is a principal polarization in the category of strict O p,-modules
such that the Rosati involution induced by A is the Galois conjugation of F/Fy when
restricted on OF.

Definition 2.2 Fix a formal hermitian O gp-module (X, (x, Ax) of dimension n over k.
The moduli space N, is the functor such that A, (S) for any S € Nilp O 7 1s the set of
isomorphism classes of quintuples (X, ¢, A, p, F) such that
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(1) (X, ) is a formal hermitian Ofr-module over §.
(2) p: X x5S — X Xgpecic S is a quasi-isogeny of formal Op-modules of height 0.
(3) F satisfies Krdmer’s ([12]) signature condition: it is a local direct summand of

Lie X of rank n — 1 as an Og-module such that Of acts on F by O L> Op—
Oy and acts on Lie X/ F by Of N Oy — Os.
An isomorphism between two such quintuples (X, ¢, A, p, F) and (X', /, )/, o/, F)

is an isomorphism « : X — X’ such that p’ o (& x5 S) = p, a*(X) is a OFO—multiple
of A and oy (F) = F'.

Notice that A, is a relative Rapoport-Zink space in the sense of [23]. By [11,
Proposition 2.2], V,, is representable by a flat formal scheme of relative dimension
n — 1 over Spf O . We drop the subscript n in N, when there is no ambiguity.

2.2 Associated Hermitian spaces

For a strict O g,-module X over k, let M (X) be the O f,-relative Dieudonné module
of X. Let (X, tx, Ax) be the framing object as in Definition 2.2, and N = M (X) ®OFO

Fy be its rational relative Dieudonne module. Then N is a 2n-dimensional fo—vector
space equipped with a o-linear operator F and a o ~!-linear operator V. The Of-
action tx : O — End(X) induces on N an OFf-action commuting with F and V. We
still denote this induced action by ¢x and denote ¢x (;r) by IT. The principal polariza-
tion of X induces a skew-symmetric Fy-bilinear form (,) on N satisfying

(Fx,y)=(x,Vy)?, (la)x,y)=(x,u@y),

forany x,y € N,a € Of. Then N is an n-dimensional F-vector space equipped with
a F /Fy-hermitian form (, ) defined by (see [30, (2.6)])

(x,y) :=8(Ix, y) + 7 (x, y)), (2.1)
where § is a fixed element in (9; such that o (§) = —4&. We can use the relation
0
1 -1
(x,y)= % Try ), 0 (%, ¥)) (22)

to recover (, ). Let T := [TV~ and C := N7. Then C is an F-vector space of dimen-
sionnand N = C®p, I:b. The restriction of (, ) to C is a F'/ Fp-hermitian form which
we still denote by (,). There are two choices of (X, tx, Ax) up to quasi-isogenies
preserving the polarization on the nose, according to the sign € = x(C) of C. Here
X FOX — {£1} is the character associated to the quadratic extension F/Fy and we
define the sign of C as

x(C) := x((—=1)""=D/2 det(C)).

When 7 is odd, two different choices of € give us isomorphic moduli spaces. When
n is even, two different choices of € give us two non-isomorphic moduli spaces. See
[30, Remark 2.16] and [26, Remark 4.2].
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Fix a formal hermitian O r-module (Y, ty, Ay) of dimension 1 over Spec k. Define
V. =Homgp, (Y, X) ® Q. 2.3)

We drop the subscript n of V,, unless we need to specify the dimension. The vector
space V is equipped with a hermitian form (, )y such that for any x, y € V

(x,))v=2y 0y orxox € End(Y) ®zQ > F (2.4)

where y" is the dual quasi-homomorphism of y. The hermitian spaces (V, (,)v) and
(C, (,)) are related by the F'-linear isomorphism

b:V—>C, x> x(e) 2.5)

where e is a generator of 7-fixed points of the O, -relative Dieudonné module M (Y).
The relative Dieudonné module M (Y) is equipped with a hermitian form (, )y such
that (e, e)y € 0;0. By [30, Lemma 3.6], we have

(x,x)y - (e, &)y = (b(x), b(x)). (2.6)

Here the bilinear form (, )y is the analogue of the form (,) in (2.1) defined on the
rational relative Dieudonné module of Y. By scaling the polarization Ay by a factor
in 0;0 we can assume that

(e,o)y =1,

so V and C are isomorphic as hermitian spaces. When the context is clear we often
drop the subscript V in (, )y.

2.3 Special cycles

We fix a canonical lift (G, tg, Ag) of (Y, ty, Ay) to O in the sense of [8] such that the
action of O on LieG is via the inclusion i. Such a lift is unique up to isomorphism
by [11, Proposition 2.1].

Definition 2.3 For an Of-lattice L of V, define Z(L) to be the subfunctor of A/ such
that AV'(S) is the set of isomorphism classes of tuples (X, (¢, A, p, F) € N(S) such
that for any x € L the quasi-homomorphism

p_loxopg:YXSpeck§—>XX5§

entends to a homomorphism G Xspt0; S = X. By Grothendieck-Messing theory
Z(L) is a closed formal subscheme of \. For x € V, we let Z(x) := Z(L) when
L = (x).
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2.4 Bruhat-Tits stratification of A/;eq

We say a lattice A C C (resp. A C V) is a vertex lattice if A" C A € A¥ where
A? is dual lattice of A with respect to (,) (resp. (, Yy).2 Using the isomorphism of
hermitian spaces (2.5), we often identify A with b~ (A) and use the same notation to
denote both. We call t = diqu (A" /) the type of A. Recall from [26, Lemma 3.2]
that ¢ has to be an even integer. To each vertex lattice A of type 2m, we can associate
a subscheme N, which is a subscheme of the minuscule special cycle Z(A), see
Definition 3.4 below. Let V = A¥/A, we can define a (modified) Deligne-Lusztig
variety Yy over k, see (3.2) below. We prove that Yy is projective and smooth, see
Proposition 3.2. When m # 0 the scheme A/, is isomorphic to Yy ¢, see Theorem
3.16.

For vertex lattices of type 0, we define Exc following the idea of [11, Appendix].

Definition 2.4 The exceptional divisor Exc of A is the set of all points z =
(X,t, A, p, F) € N (k) such that the action

t: O — End(Lie X)

factor through Of 50 7 — K where Op — i is the quotient map. For a vertex
lattice A in C of type 0, define Excp to be the set of all points z = (X, ¢, A, p, F) €
Exc such that p(M (X)) = A ®0, Oj. Both Exc and Exc, are closed subset of N
and we endow them the structure of reduced schemes over «.

The following is a refinement of [11, Proposition A.2].

Lemma 2.5 Each Excp is a Cartier divisor of N isomorphic to IP’Z_I. The scheme
Exc is a disjoint union of Excp over all type O lattices A in C.

Proof Let z = (X,t, A, p, F) € Exc(k) and M = p(M(X)) C N. Then the ac-
tion of ¢(;r) on Lie X is trivial. Hence TIM C VM as LieX = M/VM. Since
dimg (M /VM) = dimg (M /TIM) = n, we know VM = I1M which is equivalent to
(M) = M. By [26, Proposition 4.1], M = A ®¢, O for some vertex lattice A.
Since M is unimodular, A is of type 0. Hence z € Excp (k). Moreover for any k-
algebra R, every rank n — 1 locally direct summand of Lie Xg satisfies Kramer’s
signature condition as in Definition 2.2 and determines a point of Exc (R) uniquely.
So we get an isomorphism }P’g_l — Excp. Since A is regular and Excp has codi-
mension 1, Excy is a Cartier divisor in V. By looking at p (M (X)), it is clear that
Excpa NExcp/(k) =@ if A # A’. Hence Exc is a disjoint union of over all type 0
lattices A. g

Remark 2.6 The proof of Lemma 2.5 shows that the definition of Excp above agrees
with that of [10, §2].

2Notice that the vertex lattice A in the sense of [9, 26] or [10] corresponds to A in our convention.
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By Proposition 3.17 below, Ny = Exc, for type O lattices A. The reduced locus
Nieq has a decomposition (see Theorem 3.19)

Afred = U NA,
A

where the union is over all vertex lattices. The reduced subscheme Z(L)eq is a union
of Bruhat-Tits strata (see Proposition 3.20)

Z(L)ed = U Na. 2.7

ADL

2.5 Horizontal and vertical part

A formal scheme X over Spf O is called horizontal (resp. vertical) if it is flat over
Spf O (resp. 7 is locally nilpotent on Oy). For a formal scheme X over Spf O 3, its
horizontal part X , is canonically defined by the ideal sheaf Oy or of torsion sections
on Oy. If X is noetherian, there exists a m € Z-¢ such that 7" Ox o = 0. We define
the vertical part X C X to be the closed formal subscheme defined by the ideal
sheaf 7 Oy. Since Ox or N 7™ Ox = {0}, we have the following decomposition by
primary decomposition

X=XypUXy 2.8)

as a union of horizontal and vertical formal subschemes. Notice that the horizontal
part X ,» is canonically defined while the vertical part X depends on the choice of
m.

Lemma 2.7 For a lattice L” C 'V of rank greater than or equal to n — 1 with non-
degenerate hermitian form, Z(L") is noetherian.

Proof First we know that Z(L) is locally noetherian since it is a closed formal sub-
scheme of AV which is locally noetherian. Since the rank of L is greater than or equal
to n — 1, the number of vertex lattices A containing L is finite. By (2.7), we know
that Z(L)yeq is a closed subset in finitely many irreducible components of Neq. Since
each irreducible component of Neq is quasi-compact, we know that Z(L) is quasi-
compact, hence noetherian. O

Lemma 2.8 For a rank n — 1 lattice L” C V with non-degenerate hermitian form,
Z(L)y is supported on the reduced locus Nieq of N, i.e., Oz(r),, is annihilated by
a power of the ideal sheaf of Nieq.

Proof We remark here that Nyeq is exactly the supersingular locus of . Hence the
proof of the lemma is the same as that of [20, Lemma 5.1.1]. O
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2.6 Derived special cycles

For a locally noetherian formal scheme X together with a formal subscheme Y, de-
note by K, g (X) the Grothendieck group of finite complexes of coherent locally free
Ox-modules acyclic outside Y. For such a complex A®, denote by [A®] the element
in Kg(X) represented by it. We use Ko(X) to denote K(SX(X). Let K(/)(Y) be the
Grothendieck group of coherent sheaves of Oy-modules on Y. We have a group ho-
momorphism Kg (X)) —> K(’)(Y) which is an isomorphism when X is regular.
Denote by F'K} (X) the codimension i filtration on K] (X) and Gr' K/ (X) its
i-th graded piece. When X is regular, we have a cup product - on Kg (X)q defined

by tensor product of complexes. Under the identification Ké/ (X) > K, ((Y), the cup
product is nothing but derived tensor product:

_ L
[A]-[B]=[A®p, Bl
When X is a scheme, the cup product satisfies ([33, Section 1.3, Theorem 1.3])
FKY(X)g -FK{(X)g cFYV K] (X)qg. (2.9)

It is expected that (2.9) is also true when X is a formal scheme, see [36, (B.3)],
however we do not need this fact in this paper. Throughout the paper, we assume
X = N unless stated otherwise.

Recall that for x € V, Z(x) is a Cartier divisor ([11, Proposition 4.3]).

Definition 2.9 Let L C V be a rank r lattice with a basis {x1, ..., x,.}. Define “Z (L)
to be

[0z ®6,  ®, Ozxnl € Ky N (2.10)

where ® is the derived tensor product of complexes of coherent locally free sheaves
on N. By [11, Corollary C], Lzw) is independent of the choice of the basis
{xla --~’xr}-

Definition 2.10 When L has rank n, we define the intersection number
Int(L) = x N, “Z(L)), (2.11)
where x is the Euler characteristic.

Lemma 2.11 When L is a rank n lattice in 'V, Z(L) is a proper scheme over Spf O ..
In particular, Int(L) is finite.

Proof By Lemma 2.8 Z(L)y is a scheme. We show that Z(L) ,» is empty. If not,
there exists z € Z(L)(Ok) for some finite extension K of F. Let X be the corre-
sponding formal hermitian O r-module of signature (1,7 — 1) over Ok. Since L has
rank n and G has signature (0, 1), this would imply that X has signature (0, n), which
is a contradiction. Hence Z(L) is a scheme. Since Z(L)eq is contained in finitely
many irreducible components of Meq and each irreducible component is proper over
Speck, it follows that Z(L) is proper over SpfOp. The finiteness of Int(L) then
follows from the same argument before [36, (B.4)]. Il
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2.7 A geometric cancellation law

Recall that for two lattices L, L’ C V of rank n, we define
n(l,Ly=#{L" cLp|LcL’",L"=L'}.
Also recall that §o4q(n) = 1 or O depending on whether # is odd or not.

Proposition 2.12 Let L = I; & Ly C 'V where Ly is of rank r, Iy is unimodular of
rank £ and n = £ + r. Let I, be a unimodular lattice that contains L,. Then

Int(1 © Ly) — Int(L2) =n(ly, L2) - (8odd(n) — Sodd(1)). (2.12)
Moreover,
Int(Z,;) = 80qa(n). (2.13)

Proof If L; is unimodular and r = 2, then Int(L,) = 0 by [29, Theorem 1.3] and [9,
Theorem 1.3]. Combining this with (2.12), we obtain (2.13). In order to prove (2.12),
we prove the following equation,

Int(l; © L,) — Int(Ly) = (= 1) n(Iy, Ly). (2.14)

which is the special case of (2.12) when ¢ = 1. The general case then follows from
an easy induction on n using (2.14) and the fact

n(l,, Iy & Ly)=n(l, Ly). (2.15)

By Proposition 3.2 of [10], we have the following decomposition of Cartier divi-
sors on NV,

Z(h)=Z(I)+ Y Exca,,
AoD I

where the summation is over vertex lattices of type 0 in V,, and Z (1) = N,—1 by
[10, Corollary 2.7]. By the same corollary, we know that

XN [05,)1- " 2(L2) = x (NG, “Z(L2)) = Int(Lo).
Hence we have

Int(L) —Int(L2) = D x (N, [Opxey, 1-“Z(L2)).
AoD I

If Ly ¢ Ao, then Exca, N Z(L7) is empty by Proposition 3.20 below. If L, C Ao,
then by [10, Corollary 3.6], we have

XN, [Okxep, - " Z(La)) = (—1)".
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Hence
Int(L) —Int(Ly) = Y (=1).
AoD11SLy
Combining this with (2.15) finishes the proof of (2.14) and the proposition. g

3 Bruhat-Tits stratification of Kraimer models

We prove a Bruhat-Tits stratification for the Kramer model (Theorem 3.19), analo-
gous to the case of the Pappas model (proposed in [24]) treated in [26]. More pre-
cisely, we define closed subschemes Ny (Definition 3.4) and show that the reduced
locus of N is stratified by N5 (Theorem 3.19). From this stratification we obtain a
stratification of the reduced locus of Z (L) (Proposition 3.20). We also show that Ny
is isomorphic to the (modified) Deligne-Lusztig variety Yy ; defined in §3.1 (Theo-
rem 3.16), and is in particular a smooth projective variety over k. We remark here that
for the purpose of our main result (Theorem 9.7), only a weaker version of Propo-
sition 3.20 is needed (namely we do not need the reducedness of A ). However we
believe the rest of this section contributes to the theory of Rapoport-Zink space and
is of independent interest.

3.1 Deligne-Lusztig varieties

Throughout this subsection we assume m > 1. Let V be a 2m-dimensional symplec-
tic space over k =IF; equipped with the symplectic form (, ). Let Vg = V ®, k and
denote the bilinear extension of (, ) to Vg still by (, ). Let Gr(i, V) be the Grassman-
nian variety parametrizing rank i locally direct summands of Vg for any k-algebra
R. Let SGr(i, V) be the subvariety of Gr(i, V') whose k-points are specified by

SGr(i, V) (k) = {z € Gr(i, V) (k) | z is isotropic with respect to (, )}.

Let Sy be the subvariety of SGr(m, V) as in [26, Equation (5.3)] whose «-points are
specified by

Sy (i) = {U € SGr(m, V(i) | dim(U N dU)) > m — 1}, 3.1)

where @ is the Frobenius endormophism. By [26, Proposition 5.3] and its remark, Sy
has isolated singularities which are exactly the points where U = ®(U). We denote
by U the nonsingular locus of Sy. By Proposition 5.5 of loc.cit., Sy ¢ is irreducible
of dimension m. To resolve the singularities of Sy, define Yy to be the subvariety of
SGr(m, V) x SGr(m — 1, V) whose k-points are specified by

Yy (&) = {(U,U") € (SGr(m, V) x SGr(m — 1, V))(&) | U cUN®U)}. (3.2)

Then the variety Yy is a projective subvariety of Gr(m, V) x Gr(m — 1, V). The
forgetful map (U, U’) — U defines a morphism 7, : Yy — Sy.
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Lemma 3.1 The morphism 1, is a projective morphism. It is an isomorphism outside
the singular locus of Sy . For a singular point z of Sy, 7,1 (z) = IP’?_I,

Proof First we know 7, is projective as it is a morphism between projective schemes.
Consider a k-point z = U in U (k). Then U N ®(U) has dimension m — 1, this entails
U’ =U N ®(U). This shows that the morphism has an inverse when restricted on
T, 1 ), hence ;| o\ is an isomorphism of varieties.

If z = U is a singular ik-point, then U = ®(U) and U’ can be any element in
Gr(m —1,U) = Pg ~!. This finishes the proof of the lemma. O

Proposition 3.2 The projective variety Yy i is irreducible and smooth of dimension
m.

Proof Define SGr(m, m — 1, V) to be the sub flag variety of SGr(m, V) x SGr(m —
1, V) whose k-points are specified by

SGr(m,m — 1, V) (k) = {(U,U’") € (SGr(m, V) x SGr(m — 1, V))(k) | U' C U}.
Then Yy i is the intersection of the image of the closed immersion
(SGr(m,m — 1, V)g)* — (SGr(m, V)i x SGr(m — 1, V)¢)*:
(U1, Uy, Ua, Uy) > (U1, Uy, U, Uy),
with the image of the closed immersion
SGr(m, V)¢ x SGr(m — 1, V)i — (SGr(m, V)i x SGr(m — 1, V),;)2 :
(U3, Uy) = (U3, Uy, @(U3), Us).

Since (SGr(m, m — 1, V)z)? and SGr(m, V)i x SGr(m — 1, V)¢ are smooth (as they
are homogeneous varieties), and ® induces the zero map on the tangent space, one
can see immediately that the intersection is transversal. Hence Yy ; is smooth. Since
Sv e is irreducible of dimension m, by Lemma 3.1, we know Yy ; is connected and
has an open subvariety of dimension m. Taking into consideration the smoothness,
we know Yy ¢ must be irreducible of dimension m. This finishes the proof of the
proposition. O

Remark 3.3 One can show that Yy ; is in fact the blow-up of Sy ; along its singular
locus.

3.2 Minuscule cycle A/ and its tangent space

In this section, we often identify a vertex lattice A C V with b~ (A) using the iso-
morphism of hermitian spaces (2.5) unless otherwise stated.

Definition 3.4 For a vertex lattice A C V of type #(A) = 2m, define the subfunctor

N to be the subfunctor of A such that for a O j-scheme S, NA(S) is the set of
isomorphism classes of tuples (X, ¢, A, p, F) satisfying the following conditions.
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(1) X, 0,2, p, F) € Z(A)(S).
(2) If m > 1, we require in addition that x,(Lie(G XSptO S)) C F for any x € A.

We first describe the i-points of A and NVy.

Proposition 3.5 There is a bijection between Nieq(k) and the set of pairs of Op-
lattices (M, M") in N satisfying

Mi=M, IMct'M)ycnli™'M, VMcM c<'(M)NnM, and
length(M/M') = 1.

Proof Let (X,t, A, p, F) be ak-point of N and M (X) be the O F,-relative Dieudonné
module of X. Define M = p(M(X)) C N and M’ = p(Pr~'(F)) C N where Pr:
M(X) — Lie X = M(X)/VM (X) is the natural quotient map. The condition M* =
M 1is equivalent to the fact that A is a principal polarization. The condition [TM C
M) cTI7'M is equivalent to moM C VM C M. The condition VM Cc M’ C
=Y (M)N M and length(M/M’) = 1 is equivalent to the condition

VM cM cM, IM' C VM, dimg(M/M') =1,
which is in turn equivalent to
FcCLlieX, dimg(F)=n-1, II-F={0}, II-LieX CF.

Notice that the condition IT-Lie X C F is automatic once we know dimg (F) =n —1
and F is stable under the action of I1. Hence the filtration F C Lie X satisfies
Kridmer’s signature condition and we have translated all conditions in the defini-
tion of A/ in term of relative Dieudonné modules. The proposition now follows from
Dieudonné theory. u

For a vertex lattice A in V or C, define
A:=A®o, Op, A":= A" ®0, 0. 3.3)

Corollary 3.6 Let A be a vertex lattice in C. There is a bijection between N (k) and
the set of pairs of O p-lattices (M, M) in N satisfying the conditions in Proposition
3.5 and the following condition.

(1) Ift(A) =0, then M = A.
(2) Ift(A)>2,then ACM' C M.

Proof By Dieudonné theory, a point (X, ¢, A, p, F) € N (k) is in Z(A) (i) if and only
if p= o x(M(Y)) C M(X) for any x € b~ (A). Since M(Y) is generated by e, this
is the case if and only if x(e) € M = p(M (X)) for any x € b=1(A), if and only if
ACM (by the definition of b (2.5)), if and only if A C M. When t(A) =0, both
M and A are unimodular, thus M = A. Similarly (2) is equivalent to Condition (2)
in Definition 3.4 as the Lie algebra of Y is generated by the image of e under the
quotient map M(Y) — LieY =M (Y)/VM(Y). O
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To study the tangent space of N, we recall the Grothendieck-Messing deforma-
tion theory of A from [11, §3]. We remark here that although [11] deals with the case
Fy = Qp, the argument in fact applies to general Fy using the relative display theory
of [1]. Let R € Nilp O . For a strict O ,-module X over Spec R, we denote by D(X)
the Op,-relative Dieudonné crystal in the sense of [1, §3]. A point z € N(R) cor-
responds to a strict O r,-module (X, ¢, ) over R together with filtration 7 C Lie X
satisfying Definition 2.2. We have the following exact sequence of locally free R-
modules

0— Fil(X) —» D(X) — Lie X — 0, 3.4

where Fil(X) and Lie X are of rank n and D(X) is of rank 2xn. The principal polar-
ization X induces a symplectic form (, ) on D(X) such that

(tla)x,y) = (x,1(@)y)

for all a € Of and x, y € D(X). With respect to (,) the Hodge filtration Fil(X) is
maximal isotropic. Hence (, ) induces a perfect pairing (still denoted by (, )):

(,):Fil(X) x LieX — R. 3.5)

The submodule F C Lie X and its perpendicular complement F~ (which is locally
a direct summand of Fil(X) of rank one) with respect to (3.5) determine each other.
The condition on F in Definition 2.2 is

OF acts on F by Op > Oz — O and on Lie X/F by Or > 0z — Os. (3.6)

This is equivalent to the condition that O acts on F+ by Of 50 7 — Os and on

Fil(X)/]-'L by OF N Op— Os. Since OF, acts on D(X) by ip and O = Opy[n],
(3.6) is further equivalent to

(M+7n)-F-=0, (1T —7)-Fil(X) C F*, 3.7
where we use IT to denote the action ¢(77) on D(X).

Definition 3.7 Let € be the following category. Objects in ¥ are triples (O, O —
i, d) where O is an Artinian O z-algebra, O — i is an O j-algebra homomorphism,
and d is a nilpotent OF,-pd-structure (see [1, Definition 1.2.2]) on Ker(O — «).
Morphisms in ¢ are O ;;-algebra homomorphisms compatible with structure maps to
k and O f,-pd-structure structures.

Let z=(X,(,A, 0, F) € Z(A)(k) and M = p(M (X)) C N. Then A C M by
Corollary 3.6. We can identify (3.4) with

0—>VM/moM — M /moM — M/VM — 0.

Let X C VM/moM be the perpendicular complement of F as described above.
Denote by Z(A), (resp. Ny ;) the completion of Z(A) (resp. Np) at z. For any
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Oe¥andi=(X,..)e Z(AN);(0), we can identify D(X) with Mop:=M ®0ﬁ0 o
and by Grothendieck-Messing theory z corresponds to a filtration of free @-module
direct summands

FrcFilcMp,
which lifts the filtration 7+ C Fil ¢ Mz = M /7M. Let fo be the map

fo: 7 (FLFi). (3.8)

Lemma 3.8 Let the notations be as above. Denote by Ay o the image of the com-
position of maps A — M — Mo, and let Alfl’ o be its perpendicular complement in
Mo under the alternating form (, ).

(1) The map fo deﬁnes a bijection from Z(A);(O) to the set consisting of pairs
(FL F11) lifting (FL, Fil) satisfying the following conditions:

(a) FL and Fil are free O-module direct summands of Mo of rank 1 and n
respectively and F FL c Fil;

(b) Fil is isotropic with respect to (. );

(¢) (MM+m)-F+=0and (11 — ) -Fil C F+;

(d) Fil contains Fil~ := (11 + 7) - Ay.o.

(2) The restriction of fo to N, NA. :(O) defines a bijection from N ;(O) to the set
consisting of pairs (F* F11) satisfying the above conditions together with the
extra condition:

e FLC Ay o

Proof Proof of (1): By the previous discussion, (.73 . 1’:‘{1) satisfies conditions (a),
(b) and (c) for any 7 C NM,(O) (N, is the completion of N at 7). Conversely by
Grothendieck-Messing theory any pair (F FL F1l) lifting (F L Fil) satisfying (a), (b)
and (c) gives rise to a unique point 7 € N;(O). Since the action of Of on LieG is
via the inclusion i, the Hodge filtration of G is Spany{(Il + ) - e ® 1} where e
is a generator of M (Y) as in §2.2. The image of the Spany{(IT + 7) - ¢ ® 1} under
elements of A CV in Mg is exactly Fil . By Grothendick-Messing theory again,
Z € Z(A);(0) if and only if condition (d) holds.

(2) is a corollary of (1). For any 7 = X,..., z) € Z(N);(0), let F' be the preim-
age of F under the quotient map My — M@ /Fil. Condition (2) in Definition 3.4 is
equivalent to Ay o C F' by the same reasoning as Corollary 3.6. The perpendicular
complement of F' with respect to (, ) is F~L. Hence condition (2) in Definition 3.4
is equivalent to condition (e). Hence Z € N ;(O) if and only if (e) is satisfied. This
finishes the proof of the lemma. g

Lemma 3.9 Let A be a vertex lattice of type 2m in C and M C N be an O -lattice
such that A C M and M = M*. Then there is an Op-basis {ey, ..., en} of M such
that

(easearm) =1, (ey,ey) € 0;
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for 1 <a <m, 2m + 1 < p <n, the inner product (,) between any other basis
vectors is zero, and

A= Spanoﬁ{l'[el,..., em, em+t1s---»e€n}

Proof By assumption we have I[TM C MA? ¢ A ¢ M and dimg(M/A) = m. With
respect to the k-valued quadratic form (,) (mod 7) on M/IIM, A/IIM has a de-
composition

A/TIM=ROW,

where R is totally isotropic and W is non-degenerate. Then by the nondegeneracy of
(,) (mod ) on M/TIM we know that there is a totally isotropic subspace R’ such
that

M/TIM =(R @ R)O W,

and (,) (mod m) induces a perfect pairing between R and R’. Hence we can find
a basis {&1, &,} of M/TIM such that R’ = (&1,...,&n), R = (@mst,...,om), W=
(é2m+17 ey én), and

(eq» eqrm) =1 (modm), (Euyéu) (mOd”)EEX

for ] <o <m and 2m + 1 < u < n and the pairing between all other basis vectors
are zero. We can lift the above basis to a basis {ey, ..., e,} of M which will satisfy
the assumptions of the lemma. O

Proposition 3.10 The scheme Z(A) has no Oﬁ/(nz)-point.

Proof Let O = O/ (?) with the reduction map © — & and the natural Op,-
pd structure on wO. Then O € €. Let z = (X,t, A, p, F) € Z(A)(k) and M =
p(M(X)) C N as in Proposition 3.5. Then by Corollary 3.6 A C M, and we can
assume there is an Oﬁ—basis {e1,..., ey} of M as in Lemma 3.9. Denote the image
of ¢; in My still by ¢;. Then {ey, ..., ey, [ey, ..., Ie,} is an O-basis of M. With
respect to the alternating form (, ), we have by (2.2)

(eq, epya) = —1/8, (emta, [leq) =—1/8, (ey, Ile,) € 0;0, 3.9
for 1l <a <m,2m+1 < u <n, and all other pairings between basis vectors are zero.
_Assume that z can be lifted to a point Z € Z(A);(O), which corresponds to a pair
(FL,Fil) as in Lemma 3.8. First notice that
Fil =M +7) Ayo

= Spanop,@,oﬁ olnley, ..., 7ley, IT+m)eptr, ..., (I +m)e,}. (3.10)
0
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With respect to the alternating form (, ), its perpendicular complement (f:ﬁ‘)L in
Ay o is generated by

{(II+m)er, ...+ mey, Hepy1, mepit, ...,
HeZmJTeZm,(H+7T)32m+1,---,(n+7f)en}- (3‘11)

By Lemma 3.8 (c), F2 is annihilated by IT + m, hence it is spanned by a vector

n
U:Za,-(l'[ —m)e;,

i=1

where a; € O* for some i as F1 is a direct summand of Mpo. By Lemma 3.8, we
must have Fil C }::ﬂ, FL c Fil and Fil is isotropic. Hence Fil ¢ (la\ii_)J-. Moreover
(I::fl_ ]t'l) =0, which implies ¢; € 7O for 1 <i <m and 2m + 1 <i < n. Hence
without loss of generality we can assume that a,, 41 = 1.

Since Fil is a direct summand of Mp we have Mp = Fil ® S where S is an O-
module. We can write [Te; = w+w’ where w € Filand w’ € S. Since [le; € Fil~ ¢
Fil, we must have 7w’ = 0. This implies that w’ € 7 M and w is of the form

w= 14 bm)e; +x

where b € O and x € 7 - Spanpy{es, Iea, ..., e,, Ile,}. Since w € Fil C (laﬁ_)L, by
(3.11), we must have b = 1 and x is of the form

m 2m n
x=Y di(M+mei+ » (ci+diMe+ Y  di(+m)e;,
i=2 i=m+1 i=2m+1

wherec; e tOform+1<i <2mandd; € 1O for2 <i < n. Since (IT+ 7)e; e Fil
for2m+1 <i < n, by changing w and x at the same time if necessary we can assume
that d; =0 for 2m + 1 <i <n. By (3.9), we have

((IT+m)er, (I1 = m)ept1) =2 (e, Hepmt1) #0.

Moreover

m
=Y (di(M+7)ei, amyi (T = T)emsi)
i=2

2m

+ D {(ci +diMyer, ai (T = 7)ei )
i=m+1

=0
Here we have used the fact that a; e rO for 1 <i <m,c;enOform+1<i <2m

and d; € mO for 2 <i < 2m. Then (w, v) # 0 which contradicts the fact that Fil is
isotropic. Hence there is no lift of z into Z(A)(O). This proves the lemma. O
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As Ny is a formal subscheme of Z(A), the following corollary is immediate.
Corollary 3.11 N has no O,;/(Trz)—point.

Proposition 3.12 Let A be a vertex lattice of type 2m (m > 1) in V and z € Np (k).
Then the tangent space T,(Na ) has dimension less than or equal to m.

Proof Let z = (X,t, A, p, F) € Na(k) and M = p(M (X)) C N as in Proposition
3.5. Let O = ic[€]/(€?), then O is an O ;-algebra through the map Oy — k — O
and the ideal (¢) C O is equipped with a natural Of,-pd structure. Then O € %
Any point Z € T,(Na ¢) = Na (O) corresponds to a unique pair (FL, Fil) lifting
(FL,Fil) as in Lemma 3.8. We prove the lemma in two cases.

Case (a): Fil £ IT - M. Since Mo is a free Of ®0F0 O-modules of rank n, we
have the following exact sequence

0= M-Mp— Mo 5T Mp — 0,

where IT- Mo is a free O-module of rank n and the first arrow is the natural injection.
This implies the following sequence is exact.

0— (- Mp) NFil > Al 5 1. Fil - 0. 3.12)

Since Fil #I1- Mo, by (3.12) we know that I - Fil # {0}. By Lemma 3.8, IT - Fil c
F+and F- hasrank 1, we know that IT - Fil = FL by Nakayama’s lemma. In particu-
lar 71 is determined by Fil. Moreover Fil is determined by its image in the O-module
(F11 )L /F11 where Fil~ =11 - Ap, o as in Lemma 3.8. Equation (3.10) is still true
and implies that Fil~ is an isotropic free O-module direct summand of My of rank
n —m (notice that 7 = 0 in O). Notice that it by (3.12) and the fact that IT- F11 =Fti
free (in particular projective), (I1 - M@) NFil is a free direct summand of Fil of corank
1. This implies that (IT- Mp) N Fil is a free direct summand of T - Mg of corank 1
as well. So (IT - M) N Fil/Fil~ is a hyperplane in the O-module 1 - M /Fil~ of
rank m, and is determined by m — 1 parameters over i as the tangent space of P¢' -
has dimension m — 1. Hence (IT- Mp) N Fil is determined by m — 1 parameters over
i as well. Since Fil is maximal isotropic, it corresponds to a hyperplane in the rank
two O-module

((TT- M) NFi)*/(IT - M) NFil,

hence is further determined by one parameter over i as the tangent space of }P’,l? has
dimension 1. This proves case (a).

Case (b): Fil =1I1 - M. By Lemma 3.9, we know I1- Mp C Ay 0 and Ay o is
a free O-module direct summand of M of corank m. Hence (A y, O)J- is a free O-
module of rank m and is in (IT- Mp)+ = T1- M. As in [12], we assume that we have
aQ ®op, OrF-basis {ey, ..., e,} of Mo such that {¢;, I[1-¢;) =§;; for 1 <i,j<n
and all other pairings between these basis vectors are zero. The lift Fil is spanned by
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X1, ..., X, Where

Ae
(‘xlv"'1-xl1)2(617"'7envnels"'snen)(1 )

n

where A € M, (k) and A ="'A since Fil is isotropic. Assume FLCFl=1I- Mg is
spanned by

n
anJriH - €.
i=1

Then b, # 0 for some i and we can assume without loss of generality b, = 1.
The lift 7 is spanned by

n 2n
Zbiei—i- Z b1l -¢;,
i=1 i=n+1

where Bn+l =1 and l;,,_H =by4i +€cj for2 <i <n and some ¢; € k. Let
A="(but1.....bw).
Equations (4.7), (4.8) and (4.10) of [12] tell us that
A=yx-"A

for some y; € k. Equation (4.5) of loc.cit. tells us

t(blv'”vgn):A)"v

which is equal to 1A - A - A =0as A - A =0 by (4.9) of loc.cit.. In particular Flc
[IMo and a point in T;(N ) is determined by the n — 1 parameters ¢; for 2 <
i <n together with the additional parameter y;. Now the condition Ftco M,@)L
(condition (e) of Lemma 3.8) imposes further n — m independent linear equations
on the parameters ¢; for 2 < i < n. This shows that the tangent space T,(Na z) has
dimension less than or equal to m. This finishes the proof of the proposition. g

3.3 Isomorphism between A/, and Yy i

By [26, Lemma 6.1], the lattices A and A? (see (3.3)) are closed under IT, V and F,
hence determine supersingular p-divisible strict O -modules with Of-action X_
and X, (denoted by X - and X 5+ resp. in [26, §6]) of dimension n over k together
with quasi-isogenies p_ : X_ — X of height m and p4 : X4 — X of height —m.
The inclusion A C A? also defines an isogeny pp : X— — X4 of height 2m. Since
X_=Y" as an Op-module for any k-scheme S, on the special fiber condition (1) in
Definition 3.4 is equivalent to the condition

(1) : The quasi-isogeny PxX.— = ,0_1 o(p-)s:(X-)s — X isanisogeny. (3.13)
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This is further equivalent by loc.cit. to the condition
(1) : The quasi-isogeny px. + := (,oJr)El op:X — (Xy)sisanisogeny. (3.14)

Lemma 3.13 The functor Na i is representable by a projective scheme over k. The
functor morphism N'p ¢ — N is a closed immersion.

Proof Z(A); is a closed formal subscheme of AV. Since for any k-scheme S, Condi-
tion (1) in Definition 3.4 is equivalent to (3.13), the functor Z(A); can be represented
by a projective scheme over k by exact the same argument as that of [34, Lemma 3.2].
Condition (2) of Definition 3.4 defines Vs ¢ as a closed subscheme of Z(A)g, hence
is itself projective over i and a closed formal subscheme of V. This finishes the proof
of the lemma. O

In the following discussion we assume that A has type greater than or equal to 2.
Let V = A*/A and define a symplectic form (, )y on V as follows. For X, y € V with
lifts x, y € A", define (X, j)v by the image of md(x, y) in F, (see §2.2). Extend this
form bilinearly to V. Note that t induces identity on V and the Frobenius & on V;.
Let R be a k-algebra and (X, ¢, A, p, F) € Na(R). As in the proof of [34, Corollary
3.9], Image(D((pa)r)) is a locally free direct summands of D((X4)g) of corank 2m
and

D((X+)r)/Tmage(D((pa)R)) = A*/A &z R = Vg.

As (pA)R = px,+ 0 px,—, we know ker(px +) = ker((,oA)R)/ker(pX _) as a quotient
of finite group schemes over Spec R. Since A% C A, by relative Dieudonné theory,
we know ker(pp) C X_[tx_ ()] orequivalently tx_(;r) -ker(pp) = {0}. Hence ¢ (;7) -
ker(px,+) = {0} or equivalently ker(px +) C X[¢(sr)]. Thus there exists an isogeny
px.+ : X4 — X such that px 4 o px 4 is the isogeny () : X — X. Recall Fil in the
exact sequence (3.4).

Lemma 3.14 D(5x. )~ ' (Fil) is a locally free direct summand of D(X ) that con-
tains D((pa)R). Moreover the quotient

U(X):= D(px.+) " (Fil) /Image(D((pa)r)) (3.15)
is a locally free direct summand of Vg of rank m.

Proof By universality, it suffices to check the case when Spec R is an affine sub for-
mal scheme of A4 . In this case, by Nakayama’s lemma, it suffices to check the con-
dition on the k-points of M. A point z € Na (k) corresponds to a pair (M, M) as
in Corollary 3.6. Then the isogeny px, + is induced by the map of relative Dieudonné
modules A% — M : x > IT - x. Recall Fil= VM. So

D(px.+) ' (Fil) = T™'VM/moA® = t =1 (M) /o A*.
Since A C M, we have A = r‘l(A) ct Y M). So

Image(D((pa)R)) = A/moA* C D(px.+) ' (Fil).
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The condition M = M? is equivalent to the fact that ®(U (X)) is Lagrangian in
V, which in turn is equivalent to the fact that U(X) is Lagrangian which implies
dimg U(X) =m. O

By Condition (2) of Definition 3.4, we know Image(D((pa)r)) C
D(,ox,+)(q;1 (F)) where gx : D(X) — Lie X is the natural quotient homomorphism
of R-modules (see the proof of Corollary 3.6). Define

F(X) = D(px,+)(gx " (F))/Image(D((pr)Rr))-

Then F(X) is a locally free direct summand of U (X) of rank m — 1. We define a map
¢ : N g — Gr(m, Vg) x Gr(m — 1, V¢) by

o: (X, t,,A, 0, F)— (UX), F(X)) € (Gr(m, Vg) x Gr(m — 1, V¢))(R).
Lemma 3.15 ¢ defines a bijection between N (k) and Yy (k).

Proof A point z € N (i) corresponds to a pair (M, M') as in Corollary 3.6. By the
definition of ¢ we have ¢ (z) = (U, U’) where

(U, UY={"'"VM/A, M'JA) = "' (M)/A, M'/A) = (@ " (M/A), M'/RA).

As in the proof of Lemma 3.14, the condition M = M* is equivalent to the condi-
tion that U is Lagrangian. The condition M" C M is equivalent to U’ C ®(U). The
condition M’ C t~!1(M) is equivalent to U’ C U. This shows that ¢ (z) € Yy (k).
Conversely assume (U, U’) €Yy (k) and let M = Pr-i{(®U)) and M’ =
Pr—'(U’) where Pr: A* — A"/A is the natural quotient map. Then by definition
A cM cMcCA,and M =M asU is Lagrangian. Since VM C VA =TIA? C
A C M, we have VM C M’. We also have

NMchOA*cA=t""Act (M),
and
-1 —1,%8y _ xt —1% -1
iy cr ' AHY=Afcn'Acni'm. (3.16)

Hence ITM C t’l(M) C I1-'M. This shows that (M, M’) satisfies the conditions
in Proposition 3.5 and Corollary 3.6. This defines the inverse of ¢ on the level of
k-points. Hence ¢ defines a bijection between A (k) and Yy (k). O

Theorem 3.16 Let A be a vertex lattice of type 2m (m > 1) in V. Then Ny is reduced
and the morphism ¢ defines an isomorphism Ny — Yy . In particular N is smooth
of dimension m over k.

Proof Let J\f[r\"‘d be the underlying reduced ic-scheme of N . Lemma 3.15 shows that
¢ induces a morphism ¢4 :./\/[r\ed — Yy ¢ which is a bijection on x-points, in par-
ticular quasi-finite. Since ¢™¢ is a morphism between projective varieties, it is pro-
jective. Moreover using the theory of relative displays and windows, working with
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Cohen rings instead of the Witt ring, we can show that J\/Ir\ed(R) = Yy (R) for any
field R containing & by the same proof as that of Lemma 3.15. In particular ¢
is birational. Being quasi-finite and proper at the same time, it is an isomorphism
by Zariski’s main theorem since Yy ; is normal. Now Proposition 3.12 implies that
N4 = N; z. By [25, Lemma 10.3] and Corollary 3.11, we have N, = N ¢. This
finishes the proof of the theorem. U

Proposition 3.17 Let A be a vertex lattice of type 0 in V. Then N is the exceptional
divisor Exc and is isomorphic to Pg_l.

Proof Let R be any ic-algebra and z be any point in A4 (R) and (X, ¢, A, p, F) be
the pullback of the universal object of A/ to z. As A is a unimodular lattice, the
quasi-isogeny p_ has height 0. Thus the isogeny

px.—=p o (p)r: (X )r— X

has height 0 and is an isomorphism, hence we can identify (X,...,p) with
((X)Rs---s(p—)R). As TI|p = V|p for any vertex lattice A, and LieX_ =
M(X_)/VM(X_), the action of () on Lie X_ is trivial. The point z is uniquely
determined by the filtration F C Lie X. Hence F can be any rank n — 1 locally free
R-module on Lie X. This shows that A/, is isomorphic to ngl and is in particular
reduced. Moreover if R = i, then p(M (X)) = A. This shows that A is a subscheme
of Excy according Definition 2.4. By the proof of Lemma 2.5, we know that A/s and
Excp have the same ic-points. As they are both reduced subscheme of A/, they must
be the same. This proves the proposition. g

3.4 Bruhat-Tits stratification

Lemma 3.18 For any pair (M, F) satisfying the condition in Proposition 3.5, there
is a unique vertex lattice A(M) such that A(M) C M and A(M) is maximal among
all such vertex lattices.

Proof This is essentially [26, Proposition 4.1] as such M satisfies the conditions in
Proposition 2.4 of loc.cit.. d

Theorem 3.19 There is a stratification of Nieq by closed strata Ny given by

Neea = Na. (3.17)
A

where the union is over all vertex lattices in V. We call this the Bruhat-Tits stratifica-
tion of Nied. In the following, assume that A and A’ are vertex lattices of type greater
than or equal to 2, and Ao and A{ are vertex lattices of type 0.

(1) If A C A/, then N/ is a subscheme of Na.
(2) The intersection of Nnr " Np is nonempty if and only if N = A + A’ is a vertex
lattice, in which case we have Ny "Ny = Npr.
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(3) The intersection OfNA6 NNa, is always empty if Ao # A.
(4) The intersection Nn NNy, is nonempty if and only if A C Ag in which case
N NNy, is isomorphic to ]P)g_l where 2m is the type of A.

Proof To prove (3.17), it suffices to check this on k-points. A point z € Npeq(k) cor-
responds to a pair (M, M") as in Proposition 3.5. Take A = A(M) as in Lemma 3.18.
If A has type 0, then both A and M are unimodular and A C M, so they have to be
equal. Hence z € Nj by Corollary 3.6. If A is not of type 0, then M is not t-invariant,
hence M’ = M N t~!(M) is uniquely determined. Since A is t-invariant, AcCM.
Hence z € N5 (i) by Corollary 3.6. This proves (3.17).

(1) follows immediately from Definition 3.4.

(2). If A” is a vertex lattice, then Ny NN = N~ by Definition 3.4. Conversely if
N NN (k) is nonempty, let (M, M") € Nor NN (). Then A(M) D A+ A’ by the
maximality of A(M). Then A + A’ C A(M) C A(M)* C A* N (A)? = (A + A')E.
Hence A + A’ is a vertex lattice.

(3) follows directly from Corollary 3.6.

(4). By Corollary 3.6, a point (M, M’) € N'(k) is in Ny N Ny, if and only if
M= Ao Qo Op and A C M’ C M. This show that A C Ag and M’ corresponds
to a point in P(Ag/A) (k). Hence Ny NNy, (k) =P(Ag/A) (k). Similarly one can
show that

Na NN (R) =P(Ao/A)(R)
for any x-algebra R. This finishes the proof of (4). g

Proposition 3.20 For a rank r lattice L C V, the reduced subscheme Z(L)teq of Z(L)
is a union of Bruhat-Tits strata:

Z(Lyrea= | J Na. (3.18)

LCA

where the union is taken over all vertex lattices A such that L C A. Moreover, the
intersection of Z(L) with N is nonempty if and only if L C AF.

Proof The proof of (3.18) is the same as that of [30, Proposition 3.8].

If Lc A% and L is integral, define A’ := L + A. Then A’ is a vertex lattice and
A C A’. By Theorem 3.19 (1) and the definition of Z(L), N/ is in the intersection
of Z(L) and Ny.

Conversely if the intersection of Z(L) and N is not empty, then by (3.18) and
Theorem 3.19, there exists a vertex lattice A’ such that A C A’ and L C A’. Since
A’ C (A)* C A%, we know that L C A®. This finishes the proof of the lemma. [

4 Fourier transform: the geometric side
4.1 Horizontal and vertical part of “ Z (L")

Definition4.1 Let L” be a rank n — 1 integral lattice in V. We say that L” is horizontal
if one of the following conditions is satisfied.
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(1) L” is unimodular.
(2) L’ is of the form L” = M & L’ where M is a unimodular sublattice of rank n — 2
such that (M)~ (the perpendicular complement of M in V) is nonsplit.

We denote the set of horizontal lattices by Hor.

Lemma 4.2 Let L" be a rank n — 1 lattice in V. Then L® is horizontal if and only if
there is a unique vertex lattice A which contains L°. If this is the case, A is of type 0.

Proof We first prove the “only if” direction. Let A be any vertex lattice containing
LP.If L is unimodular, then A has to be of the form L’ @ L’ where L' is the unique
unimodular lattice in (L;)J-. If L is of the form M & L’ such that M is of rank n — 2
and (M )t s nonsplit, then the proof of [30, Theorem 3.10] implies that there is a
unique vertex lattice A" in (M #)L which is of unimodular (this corresponds to the
fact that the Bruhat-Tits building of (M) has only one point). Then A must be of
the form M & A’. In both cases, A is unique and is of type 0.

We now prove the “if” direction. If #(L”) > 2, then there exist a type 2 vertex
lattice A, containing L” and any type 0 vertex lattice containing A, (there are ¢ + 1
of them) also contains L. Hence 7(L?) < 1 and L” is of the form M & L’ such that
M isof rank n — 2. If (Mp)* is split and val(L’) > 0, then [9, Corollary 3.11] implies
that there are more than one type 0 vertex lattices A’ in (Mp)+ containing L’. For
any such A’, M @ A’ is a vertex lattice of type O containing L”. This shows that in
order for such A to be unique, L” must satisfies the conditions in Definition 4.1. The
lemma is proved. 0

For a rank n — 1 lattice L” in V, define
Hor(L") := {M" e Hor | L” c M"}. 4.1)
When dim(V) =2 and x (V) = —1, for y € V, define
+ — .
é(y)" — Zval(y) M Zval(y) if val(y) > 0,
2 if val(y) =0.
Here Zo = Spf O}, and Z} = Z = Spf W; are quasi-canonical lifting cycles defined
in [29, §3] where W; is a totally ramified abelian extension of O of degree ¢°.
When dim(V) =2 and x(V) = 1, for y € V=0, define Z(y)° to be Z"(y), where
zh (y) =Spf O is as in [9, Theorem 4.1]. In all cases, Z(y)° is a closed subscheme
of N>.

For a M” € Hor, we can decompose M bas M & Span{y} where M is unimodular
and val(y) has to be zero if (M F)T s split. By [10, Propositign 2.6], the unimodular
lattice M induces a closed emlzedding No < N,. We deﬁn~e Z(M")° to be the image
of the composed embedding Z(y)° <> N3 < N, where Z(y)° is the closed formal

subscheme of A, defined above. Moreover by loc. cit., the definition of zZ (MP)° is
independent of the choice of M. The following is [10, Theorem 4.2].
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Theorem 4.3 Let L° be a rank n — 1 non-degenerate integral lattice in V, then

Ze= |J Zmy. (4.2)
MPeHor(L")

In particular, Z(L") 4 is of pure dimension 1. We have the following identity in
b
G k7 W

Oz l= D [Ozupl- 43)
MPeHor(L")

Lemma 4.4 For any formal subscheme Z of N and 0 <i <n, FiK()Z WN) is an ideal
in Ko(\N).

Proof By definition F! KOZ (W) is generated by elements of the form [F°*] where F*®
is a finite complex of locally free coherent O nr-modules acyclic outside a sub formal
scheme Y of Z such that the codimension of Y in V is greater than or equal to i. By
Kunneth formula for chain complexes, the product complex F* ®¢,, K* is acyclic
outside Y as well for any finite complexes of locally free coherent O ar-modules C°.
This proves the lemma. O

By Lemma 4.4, for any formal subscheme Z of N, we can define a quotient ring
(not necessary with identity)

GrKEN) := KE(N)/F"KE(N). 4.4)

In particular Gr" ' KZ (N) = F'~'KZ(N)/F" K (N) is a subgroup of Gr' KZ (\).

Let L” be a rank n — 1 non-degenerate integral lattice. Since Z(L’) is
one-dimensional, the intersection Z(L"),r N Z(L")y must be 0-dimensional if
nonempty. It follows that there is a decomposition

Gr k2 W) =G kEE 7 (N @ G kEE Y (). 4.5)
Under this decomposition, we have
]LZ(Lb)_]LZ(Lb) Lzb /- Z(L%) N
= w+ " Z(L)y eGrKy ™ "(N), (4.6)

where we denote by the same notation the image of “Z(L") under the natural quo-

b b
tient map KOZ(L YN — Gr’KOZ(L )(N). Tt follows that the element “Z(L")y €

b
Gr’ KOZ (% (N) is canonically defined although Z (L") y depends on the choice of
a large integer m > 0.
Since Z(L") s has expected dimension, “Z (L") 4 is in fact in Gr"~! KOZ(L?)(N')
and is represented by the structure sheaf of Z(L") 4. In order to match the analytic
side of our conjecture, we need to slightly modify “Z(L") ,».
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Definition 4.5 Let L” be a horizontal lattice in V. Define “Z(L")° € Gr’ ng (Lq)(J\/' )
by

[Oz 0]+ %[OPA] if L” is unimodular,

]LZ(Lb)O — ]
[Oz )]+ [Op,] otherwise,

where A is the unique type 0 vertex lattice containing L” as in Lemma 4.2 and PP is
a projective line over k in Excy.

Remark 4.6 “Z(L")° is the difference cycle D(L") defined in [10, Definition 2.15].

Definition 4.7 Let L° be a rank n — 1 non-degenerate integral lattice. Define
b
LZ(L"%, e Ik ™) (W) by

LZW= 0 Y hEzmey,
M°eHor(L")

where Z(M b)"%/ is as in Definition 4.5. Define the modified vertical part of the de-
rived special cycle “Z (L") by

Lz =2 - L2, e GYKEE W),
For any x € V'\ L;, define

Int;p p(x) = x N, ]LZ(Lb);g» [0z, and @.7)
Intp 4 (x) := x (N, H‘Z(Lb)fy Oz D. '

Lemma 4.8 For a rank n — 1 non-degenerate integral lattice L”, we have
Lz eGrkEE ().

Proof By the definition of 2 (Lb)i;/, the decomposition (4.6) and Theorem 4.3, we
have

LEWYy =2y + 2 - ) 2y
M"eHor(L)
=LZ(Wyy+ ) (Ozarel = ZM0)).

MPeHor(L")

b
We know all terms in the last expression are in Gr' K 637 0y (N) by the definition of
L Z(L?)y and Definition 4.5. O
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Lemma 4.9 If L” is a horizontal lattice of rank n — 1 in 'V, then

Lzwhy, =t2@". (4.8)
In particular for any x € V '\ L; we have

Int;p 4p(x) =Int;s (x).

Proof Let A be the unique type 0 vertex lattice containing L” as indicated by Lemma

4.2. Then A N L';, is the unique unimodular lattice in Hor(L"). By Theorem 4.3, we
have

1— (_l)n—l

FEWLNy —FEW) = m— 1+ ——

O, 1 =LZ(L%)y,

where m := |Hor(L)|. By Proposition 3.20 and Lemma 4.2, we know that
Lz yy e Gr’Ké\/A (N). [10, Corollary 3.5] implies that in fact “Z(L")y €
Gr"_lK(j)vA (N), hence

LZ2(L%)y =m'[Op,]
for some integer m’. In order to prove (4.8), it suffices to show

1 -1 n—1
m =m— % 4.9)

Now assume L” = M & L’ where M is unimodular and of rank n — 2 and val(L’) = a.
Then m =a + 1. By [10, Lemma 4.4], we know that

AN B2 - (O, ) =2a4+1=2m — 1.
By [10, Corollary 3.7], we know
XWNEZ(L)y - [On D =m"- x (N, [Op,1- [On, ) = —2m.
On the other hand, by [10, Corollary 3.6],
XWNEZ@L0) 0 - [ON D + XN 2Ly - 1O D)
=X W 2L - [0, D = (=)'
Combine the above equations, we get (4.9). 0

4.2 Hermitian lattices and Fourier transform

We fix an additive character v : Fp — C* whose conductor is OF,. Recall that the
Fourier transform with respect to ¢ is defined by

px) = /Vw(y) Y (Trryry (x, y))d p(y), (4.10)
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where du is the unique self-dual Haar measure on V with respect to this trans-
form. For a lattice L in V we use L to denote its dual under the quadratic form
Trr/r ((,)). The following lemma is well-known and easy to check.

Lemma 4.10 Let L C 'V be a lattice of rank n and 11, € .7 (V) be its characteristic
function. Then

[, =vol(L,dp) - 1pv.

Lemma4.11 Let L be a rank n lattice in V. A function ¢ € (V) is L-invariant (in-
variant under the translation of L) if and only if its Fourier transform @ is supported
on LY.

Proof We first prove the “only if”” direction. For any u € V, let i1 be its image in the
quotient V/L. Define

L(p):=pn+L.

Any L-invariant function ¢ € .%(V) is a linear combination of the characteristic func-
tions 17(z). So it suffices to assume ¢ = 1,(z). In this case,

b (x) =Y (Tre gy (x, @) - 11(x).

So $(x) is supported on L by Lemma 4.10. This proves the “only if” direction.
For the “if” direction. It suffices to show that if ¢ is supported on LY, then @ is
L-invariant. For any z € L, we have

@(x+z)=/V<p(y)-W(TrF/FO(x,y))-xlf(TrF/Fo(z,y))du(y).

Since ¥ (Trr (2, y)) =1 forany z € L and y € LY and ¢ is supported on LV, the
above is equal to @(x). This finishes the proof of the lemma. g

For an integer m, recall that
=M —{x e V| val(x) > m}.

Definition 4.12 Define ./(V)=" to be the subspace of . (V) consisting of functions
@ such that ¢ is supported on V=",

Lemma 4.13 Let A be a vertex lattice in V. Any A-invariant function in . (V) is in
L (V)z-1,

Proof By Lemma 4.11, it suffices to show that AY C V="!. Since A is a vertex
lattice, we have

A =H'© -,
for some ¢. Simple calculation gives then

1 1 1
A =—=AN=—-H Ol V=" 0
T T /g
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4.3 Fourier transform of Int;,

Theorem 4.14 Let A be a vertex lattice and K € K(j)vA N). For any x € V\ {0}, the

function that takes x to K - [Oz )] € Kév‘\ (N) is A-invariant. More precisely, for
any y € A such that x + y # 0, we have

K- [0z0)] =K - [Oz¢qp]- 4.11)
Moreover, the function

Intxc(x) == x N, K- [Ozx)])
extends to a A-invariant function in % (V)=~1.
Proof Any element K € Ké\/ (W) = K{(Na) is a sum of elements of the form [F]

where [F] is a coherent sheaf of O, -module. Hence it suffices to prove the theorem
for IC = [F]. By [11, Corollary C], we know

[0z0) ®0 O20] =10z() ®p,, Oz(xin]

For any y € A with x + y # 0, N, is a subscheme of Z(y) by Proposition 3.20.
Hence we have

K- [0z] =IF ®g,, Oz
=[F ®](L9NA ONy ®0z,, Oz(y) ®6, Oz(x)]
=[F @%NA ONy ®0z(,, Oz(y) ®p . OZ(xiy)]
=K - [Oz@x4y)]

We have proved the A-invariance of K - [Oz(y)]. It follows that Intx(x) is also A-
invariant. Hence we can define Inty:(0) to be Inty-(x) for any 0 £ x € A and obtain
a (unique) A-invariant function (still denoted by Intx-(x)) for all x € V. In particular
Intxc(x) is locally constant. If x ¢ A*, by Proposition 3.20, the intersection of Z(x)
with A4 is empty, which implies Intx (x) = 0. This shows that the function Intx (x)
is compactly supported. Hence it is in . (V) and is in fact in .(V)=~! by Lemma
4.13. This finishes the proof of the theorem. O

Theorem 4.15 For every non-degenerate lattice L” of V of rank n — 1, the function

Intys 4 on V\ L; can be extended to an element in . (V)=~! which we denote by
the same notation.

Proof Lemmas 4.8 and 2.8 imply that “Z (L"), € Gr K= (N N Gr’Kf(”)'V ).

Lemma 2.7 implies that there exist finitely many classes K; € Gr’ Ké\/“’d WN)q to-
gether with C; € Q such that

Int;s y (x) =Y Ci- XN, Ki - [Oz()D.
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By Theorem 3.19 we may assume that K; is supported on some N . Now we can
apply Theorem 4.14 to conclude the proof. g

4.4 Partial Fourier transform

Let L” be arank n — 1 non-degenerate lattice in V. Let W = (LbF)L. For any function

¢ defined on V \ L;, we define its partial Fourier transform ¢ as a function on
W {0} by

gol(x) :=/ o(x +y)dy, VYVxeW. (4.12)
Ly

Theorem 4.16 The partial Fourier transform Inti‘b y €S (W)==! and is W=0-

invariant. In particular it is constant on W0,

Proof 1t is easy to see that partial Fourier transform maps . (V) to .(W). It remains
to show that the Fourier transform of Int;:b 4 € (W) is supported on W==1, For
x € W, we have

—

Inti‘b’nf/(x) =1Intzs 4 (x),

where Int;» 4 (x) is the Fourier transform of Int;, 4 € (V). Since Int;» 5 is sup-

o

ported on V="! by Theorem 4.15, we know that IntJL‘b 4 (x) is supported on w=-1,

Since W is one-dimensional, W=" is a full rank lattice in W for any m € Z. By
Lemma 4.11 and what we just proved, IntJL‘b 4 1s invariant under the translation of

(W="hHY =w=0, O

5 Review of local densities and primitive local densities

In this section, we recall various explicit formulas of local density polynomials fol-
lowing Sect. 5 of [10].

5.1 Basic properties of local density and primitive local density polynomials

Definition 5.1 Let M and L be two hermitian Of-lattices of rank m and n respec-
tively. Let @ be an integer such that (x, y) € 7, BE}F() for x,ye M or x,y € L.
Define the local density of M representing L as

Hermy, y (OF, /(g ™))
Den(M, L) := lim

d—> 00 q2(d+a)nm —dn?

which is independent of the choice of a. Here Hermy 4 (OF,/ (né”“)) is given by

the set
{¢ € Homo, (L/{ L, M/t M) |

(@(x), ¢(y) = (x,y) mod (x§d5)z), X,y € L}.
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In this paper, we only deal with the case when we can and will choose a = 0. It is
well-known that there is a local density polynomial Den(M, L, X) € Q[X] such that

Den(M, L,q %) =Den(M & H*, L). (5.1)

Moreover, we denote Den(M, L) =Den(M, L, 1) and
, 0
Den' (M, L) :=-2- a—XDen(M, L,X)|x=1. (5.2)

Similarly, the primitive local density polynomial Pden(M, L, X) is defined to be the
polynomial in Q[X] such that

Pden(M, L,q~ %) = lim ¢ 4@ +20=)pherm; o (O /()] (5.3)
d—o0 ?
where
Pherm; ywpk (Op, /(7)) i= (¢ € Hermy yye e (O, /() | ¢ is primitive}.
Here we recall that ¢ € Herm; yapt(OF,/ (7161)) is primitive if dimg, ((¢ (L) +
(M &S Hk))/n(M &) Hk) = n. In particular, we have Pden(M, M) = Den(M, M)
since any ¢ € Hermy » (OF,/ (ng )) is primitive for large enough d.

Recall that without explicit mentioning, we assume ¢ = x (L). As an analogue of
(1.3) and (1.4), we define

d g
£ Pden(1,, L, X Pden(A7, L
Pden’(L) := —2 - X o (n ) and Pden, (L) := L. (5.4)
Den(1y, In) Den(A?, AY)
To save notation, we simply denote Pdeng(L) by Pden(L). We define
fm%
9Pden(L) :=Pden’(L) + Y c; - Pdeny; (L), (5.5)

j=1

where ¢;; is asin (1.5).

Lemma 5.2 Let L be a lattice. If there exists x € L such val(x) < —1, then
dDen(L) = Den’(L) = dPden(L) = Pden’(L) = 0.

Proof Assume M = I, or M = Aj; for some t. Then Den(M & HF, L) =0 and
Pden(M & H k. L) = 0 since there is no vector in M with valuation less than or equal
to —1. O

Now we record several results that describe the relation between local density and
primitive local density polynomials.
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Lemma 5.3 [10, Lemma 5.1] Let M and L be lattices of rank m and n. Then we have

Den(M.L.X)= @" " X) 'L /DPden(M, L, X),
LcL'cLp

where £(L'/L) =length,, L'/L. Here Pden(M, L', X) = 0 for L’ with fundamental
invariant less than the smallest fundamental invariant of M. In particular, the sum-
mation is finite.

Corollary 5.4 Let L be a lattice. We have the following identity:

aDen(L)= Y dPden(L).
LcL'CcLf

Proof Since Pden(I,, L', 1) = Pden([,,, L’) = 0, we have by Lemma 5.3

Pden(/,, L', X)

d d
—2— Den(/,,L, X)=-2 —
1 (I ) > %y,

dX |y_
X= LcL'CcLf

= Y Pden'(,. L.

LcL'CcLp

Similarly, according to Lemma 5.3, we have

Den(Azj, L)= Y Pden(Ay;, L)
LCL'CLF

for 0 < j < tmax/2. Now the corollary follows from (1.5) and (5.5). O

Conversely, the primitive local density polynomial is a linear combination of local
density polynomials.

Theorem 5.5 [10, Theorem 5.2] Let M and L be lattices of rank m and n. We have

n
Pden(M, L, X) = Z(-l)"q"<"—“/2+"("—’">xi Z Den(M, L', X).
i=0 LcL'cn™'L
¢(L'/Ly=i
Corollary 5.6 Let L be a lattice of rank n. Then
n
dPden(L) =Y (-=1)'q’"P2 3" gDen(L’).
i=0 LcLl'cn™ 'L
oL /L)=i

Recall that for two lattices L, L’ C V of rank n,

n(L,L)y=|{L" CLp|LCL" L' =L}.
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Lemma 5.7 For two lattices L and M of the same rank n, we have

Pden(M, L) = ODen(M’ 2 %;i (5.6)

Moreover,
Den(M,L)=n(M, L) -Den(M, M).
In particular, if x (M) # x (L), then Den(M, L) = 0.

Proof First of all, for M = L, Pden(M, L) = Den(M, L) by the definition of
primitive local density. Now we show that if Pden(M,L) # 0, then M = L. If
Pden(M, L) # 0, then for any large enough d we have

Phermy y (OF, /() # 0.

Let ¢ € Phermy (OF,/ (716’ )) be a primitive embedding and L) = L ®0Fo
Op,/ (). Let ¢ (L)) be the image of ¢(L(a)) in My). Since ¢ is primitive, we
have ¢ (L(4)) = M(q). Then by Nakayama’s lemma, we know ¢ (L (4)) = M(4). Hence
¢ is an isometry between L4y = M(4). Since this holds for any large enough d, we
have L= M.

Now the formula of Den(M, L) follows from (5.6) and Lemma 5.3. O

Corollary 5.8 Let L be a lattice. Then for any even integer t such that 0 <t < tyax,
we have

Den(AY, L)

Den; (L) := 3
Den(A;, A7)

Corollary 5.9 Assume L 2 A?for any vertex lattice Ay witht > 0. Then
0Pden(L) =Pden’(L).
Corollary 5.10 Let ¢; be the coefficients in (1.6) with even t and 0 <t < tyax. Then
¢; = —Pden’(AD).
Proof On the one hand, combining Corollary 5.6 with (1.6), we obtain
9Pden(A?) = 0.
On the other hand, by Lemma 5.7 and (1.5),

9Pden(A¥) = Pden’ (AY) + ;. O
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Table 1 Examples of ¢; for
small n,t and € = 1

2 3 4 5 6
2 =1 1 =1 1 —1
q+1 q(q+D 2(q+1) a3 (g+1) q*(g+D)
4 0 0 ! -1 .
a2(q%+1) q*(g%+1) q6<qz+ll>
6 0 0 0 0 5@

Write A,jj = H'/?@ L, where L; is unimodular of rank n;. Then by Lemma 5.13,
Corollaries 6.2 and 5.10, we have (see the following subsections for the relevant
notations)

t/2—1

(1 _ng) ny np—i—1 .
a=—2-L— = 2N T a-¢2“). Y jov. Tl
i=0 £=0

Den(/,, I %
(I, In) ¢ VieGr(i,L1)(Fy)

Combining this formula with Lemma 5.16 and Lemma 5.18, we can compute ¢; ex-
plicitly. We give some examples here.

Example 5.11 If n is odd, we have

Pden’(I,, A} ) - 57
Ctmax == = n— n— ° :
Den(I,, I,) ¢ (¢ 1)
If nis even and € = 1, we have
Pden’(I,, A} ) (—1)?
c = - T = non n .
fmax Den(l,, I,) g2 Vg2 4+1)
We also give a list of ¢; for small n, # and € = 1 in Table 1.
In fact, computation suggests that ¢; has the following simple formula:
-1 n+t/2 n/2+1 . .
qt/Z(n(ft—)l)(qn/(z(l_l)(qt;2+l) if nisevenand € = —1,
cr = _ 1y i (5.8)
otherwise.

77T (PR

We believe this formula can be proved by similar method as in §7. Since this formula
is not needed in our proof, we omit the details.

5.2 Explicit formulas for some simple primitive local density polynomials

Lemma5.12 ([19, Lemma 2.15]) Assume L is an integral lattice of rank n. Then

n—1
Pden(H*, L) = [ [(1 — ¢~ *%).
=0
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Lemma 5.13 [10, Corollary 5.8] Assume L = H/ @ L| where j > 0 and Ly is an
integral lattice of rank ny. Then

j—1
Den(l, L, X) = ([T(1 = ¢ X)) Den(hn, L1, ¥ X),

=0
j-1
Pden(l,,, L, X) = (]_[(1 — q”X))Pden(lm, L1, q% X).
=0
In particular,
i1
Pden’(I,,, L) = 2( [Ta- q”))Pden(Im, Li.q¥). (5.9)

=1

Proof First, by [10, Corollary 5.8] and Lemma 5.12,
j—1
Den(ly, L, X) = (]‘[(1 - q”X))Den(lm, L1,¢¥X). (5.10)
£=0

Notice that if L ¢ L" and L is not of the form H/ @ L', then there exists v e L’ \ L
such that Pr Hi (v) # 0 and PrH_,- (v) ¢ H;. Hence some fundamental invariant of L’
F F

is less than or equal to —2. Hence Den(l,,, L', X) = 0 by Lemma 5.2. Now Theorem
5.5 and (5.10) imply

Pden(1,,, L, X)

n
— Z(_l)iqi(i—l)/2+i(n—nl)Xi Z Den(lm, H/ @L/l, X)

i=0 LicLicn™'Ly
oLy /Ly)=i

Jj—1 n
_ (1—[(1 _ qsz)> Z(_l)iqi(i—l)/2+i(n—m—2j)(quX)i
£=0 i=0
x > Den(ly.L}.q*X)

LicLjcr™'L
¢(L'/L)=i

j—1
= (TTa =4 x))Pden(t. L1. g% X)
=0

as expected. d

Definition 5.14 Assume U and V are quadratic spaces over [,. We define O(U, V)
to be the set of isometries from U into V, and M (U, V) to be the set of subspaces
V1 C V such that V| = U. Moreover, we define m(U, V) = |M U, V)]|.
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Definition 5.15 We define U to be the i-dimensional non-degenerate quadratic space
over F, with x (Uy) = €. Moreover, we define 0; to be the i-dimensional totally
isotropic space.

Lemma 5.16 [10, Lemma A.11] Assume L = I,fl_, & Ly where Ly is a lattice of full
type t and n < m. Then

Pden(12, L) = """ . |00, © UL, U2)|.

m>

Specifically, we have by [21, Lemma 3.2.1],

|O(O] @ USI’ U;;)' zq(k+j)(2m—k—j—l)/2 l_[ (1 _ q—2l)
L2t - j<i<| 25
(14 eejg— "7y ifm=k=1 (mod?2),
1 iftm=k—1=1 (mod 2),
(1—€q™ %) ifm=k—1=0 (mod?2),

(1—eqg )1 +eerg™ ") ifm=k=0 (mod?2).

Corollary 5.17 Let I, be the unimodular lattice of rank n and sign —e. Then

nn—1)

—2s . .
Den(1,, I,) = Zq Hs 1(1 ) if n is odd,
(I+eq 2)1—1 — (1 g~ %) ifniseven.

n(n 1)

5.3 Counting formulas for subspaces of a quadratic space over I,

The main results of §6 transforms the calculation of primitive local density polyno-
mial into a sum over the subspaces of a quadratic space over . In this subsection,
we count the number of such subspaces with a fixed quadratic form.

Lemma 5.18 Given quadratic spaces U and V over F,, let M(U, V) be the set of
subspaces Vi C V such that Vi 2 U, and let m(U, V) =|M (U, V)|. Then

1000; © U, Uy
q/*IOW, U - IGL; (Fy)|

mO0; U2, US) =

In particular,
m(0; © U2, US) =g *m(0;, Uy " mU, Up), (5.11)
where
€ ifk=0,
8(n,k,e,e2) =3 —€exr ifbothk andn — k are odd, (5.12)
€6 otherwise.
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Proof We prove the first identity first. Fix a subspace Vj of U such that V1 =0; &
U ,f 2. Then by Witt’s theorem we have a surjection

000, 8U2, U5 — M©O; &U2 U, ¢— d(V).

Moreover, each fiber of this surjection is in bijection with O(0; & U,fz). Any ¢ €

00; & U,fz) is determined uniquely by ¢; = ¢|0/_ and ¢, = ¢|U52_ The number
X k

of different choices of ¢ is |GL;(IF,)|. The number of different choices of ¢, is

g/F oW, U). 0

Lemma 5.19 Forany €1, €3 € {£1}, we have

min{z, j}
t 0 (itk—
m(Oj o Uez7 0, & U;l—t) = E (6) ,q(t O (j+k é)m(oj_e o Uez’ U;l—t .
£=0 q

Proof Let V and U be quadratic spaces over I, such that V =0, S U;_,, and U =
0,00 ,fz. Let R = 0, be the radical of V. First, we consider a partition of

min{z, j}
MU, V)= || M(U.V)
=0

such that
Vi e My(U, V) if and only if dim]Fq (VinR)=¢.

The number of choices of £-dimensional subspace of R is (z)q. Now we fix an ¢-

dimensional subspace W of R. Let R = 0,_, be the radical of the quotient space of
V/W. Then a choice of V| € My(U, V) such that Vi N R = W corresponds to an
element of

S={ViCcV/W|ViNR={0}and V| =0,_, S U}.

Write V/W = ROV,X=0,_ D U;Ll. LetPr:V/W — V5 be the natural quotient
map. For V| € S, the condition Vi N R = {0} implies that Pr(V;) = 0;_, & U by
the rank-nullity theorem. Moreover, the following map

§—> MO ®U?,Va), Vi Pr(Vy)
is a surjection with each fiber in a bijection with R g

Corollary 5.20

000; U, 0, US| = ¢/ OW, UD)| - IGL; (F)| - m(0; @ UZ, 0, © US_,)

min{z, j}

t i
=IGL;F)l- ) <£> qUmOU+k=O+tk
q

=0
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00— S U2, U,
IGL;j ¢ (IFg)l )

We will also need the following lemma later (Sect. 7), which follows from Lem-
mas 5.18 and 5.16.

Lemma 5.21 For integers 0 <r <n and €1, € = =1, we have

1 ifr=n—1=1(mod?2),
. l—eag 2 ifr =n=1 (mod 2),
m(U, ", Uy) I+eeiq’ 2
mUS, Uy | e ifr=n—1=0 (mod 2),
1+€1q : —r r
l—eerg 2 l—€q 2 .o
— - - ifr =n=0 (mod 2),
l+eerg” 2 l+eig 2

and

m(U:_l’_I, Urf) _ qn—Zr—l(l _ (_1)n_r661q_L%J)

m(Urel,U,j) l—(—l)""lelq_L%J

Lemma 5.22 Assume i <r <n and €,0,8' € {£1}. Let §(r,i,8',0) or §(n,i,€,0)
be as in (5.12). Then

m(U?, USHmUPTH ) gdeieody — ¥ umwy?, ud).
Proof Let V = Uy and S be the following set of flags in V,
S={0CF I CFCV|FRZU’, FHL=UY)
We can count the cardinality of S in two ways. One way is to first count the number of
Fy e M(U{, V), then for a fixed Fy count the number of F) e M(Ufiri""s ’0), (F)h)
which has a one-to-one correspondence with F, = F2’ SFeM (U,‘S/, V). This way
we get

#S| = m(UY, UHm@U o) ghias)y

On the other hand, we can first count the number of F, €¢ M (Uf,, V), then count the
number of | € M(U7, F») and get

#SI=mU; , UDmMUY, U}).
This finishes the proof of the lemma. H
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5.4 g-Binomial theorem
In this subsection we discuss the g-binomial theorem and related results, which are
used repeatedly in §7 to obtain certain vanishing results and transform complicated

linear combinations into simple formulas.

Definition 5.23 The g-analogue of (*}) is defined to be

(n) _ @ =D @1
i), @ -=D-@=-1

In fact, ('l' )q is the number of i-dimensional subspaces of a n-dimensional vector

space over [F,. Now we recall the g-binomial theorem.

Lemma 5.24 (¢g-binomial theorem) The following identity between polynomials of X
holds:

n—1
H(l—q X) = Z( ig"z ”(,) X, (5.13)

q

Corollary 5.25 Let f be a polynomial of degree <n — 1. Then

" .= (n .
S (-1ig" () @™ =o0.
i=0 1/q

Proof Let f =a,_1x" "' 4+ -.-4+ap. For 0 <s <n — 1, by evaluating (5.13) at X =
q~—*, we have

Z( Dig T (l) -ayq™ =0.

i=0 q
Hence
n D n—1 n ( i, '
Y (=Dig = () flg™H=) ) (=D'q () Lagq ™ =0.
i=0 ! 5=0i=0 '/ q O

The following is in some sense an inverse of g-binomial theorem that will be used
in §7.

Lemma 5.26

i—1
() JIa+a % ==x"

4 ¢=0

S
i=0
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Proof Let g;(X) = ]_[2_1 (g~¢X +1). Since {g; (X)} forms a basis of the vector space

of polynomials of degree < n, there exist a, ; € C such that

(=X)"= " ani - gi(X).

i=0
Notice that gi4+1(X) = (1 + ¢ X)g;(X), hence Xg;(X) = g’ (gi+1(X) — g (X)).
Then we have

n+1
D anpiig(X) ==X = (=X) - (= X)"
i=0

= (—ani)- Xgi(X)

i=0

=Y (=an)q" - (gi11(X) — gi(X)).

i=0
As a result, we have
an.0 ifi =0,
ani1i=3q'ani —q' lanio1 if0<i<n+1, (5.14)
—annq" ifi=n+1.

It is easy to check that b, ; = (—l)iqi(igl) . (;’)q satisfies (5.14) and that a; ; = by ;.

So we have a,, ; = by ;. Il

6 Decomposition of primitive local densities

This section is devoted to prove the following decomposition of the primitive local
density polynomial, which is a vast generalization of [10, Proposition A.14] and one
of the main tools we use to prove Theorem 7.1.

Theorem 6.1 Assume that L is an integral lattice of rank n. For any m > 0 we have
n .
Pden(l,,, L, X) = ZPden"" (I, L, X),
i=0
where Pden" " (I,,, L, X) is a polynomial characterized by
Pden"™" (I, L, quk)

— ¢~ %Pden(H*, 0,_;) Z q""V'Pden(I,,, Lv,), (6.1
V1€Gr(i,L)(Fy)
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where 0,_; is a totally isotropic lattice of rank n — i and Ly, C L is a sublattice of
rank i such that Ly, = V.

Here, an important special case is when m = n. In this case, Pdeno(ln_f, L,X)=0
since x (L) # x (1,7 ¢). Hence,

n—1
Pden(l,, L, X) =Y Pden"™ (I, L. X).
i=0

Applying the formulas of Pden(H k. 0,—;) and Pden(/,,, Ly,) given in Lemmas
5.12 and 5.16, we obtain the following corollary.

Corollary 6.2 Let L be an integral lattice of rank n. We have

Pden(l,,, L, X)

n—i—1

=> (@™ [T a=¢*0)- > 100l ©62)
i=0 £=0

V1€Gr(i,L)(Fy)
In particular,

n n—i—1

Pen'(1,, ) =2)"( [T a=¢*)- > 10Tl

i=0 =1 V1€Gr(i,L)(Fy)
When L is a full type lattice of rank , L is totally isotropic. So we obtain

Corollary 6.3 Let L be a full type lattice of rank n. Then

n n—i—1

Pden(l, L, X) = Y_((¢" %) T <1—q2‘X))~(’f> 00:. Tl
£=0 q

i=0
In particular,

n  n—i—l1

Pden/(ln,L)zzz( [ (1—q23))~<':) 10(0;, In)-

i=0 =1 q
Here by Lemma 5.16, we have
[Tize<i ("1t —1) if m is odd,

’ (qm/Z - X(Im)) (qm/z_“ + X(Im))
<o (gm 1) if m is even.

Proof of Theorem 6.1 To save notation, we use M to denote I, in this proof. Recall
that by (5.3),

i(i—1)
2

100;, )| = ¢

Pden(M, L,q~*) = lim "2 Pherm vy (Ory /(7).
— 00 ’
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First, we define a partition

Pherm; ywp+ (Op, /(7)) = |_| PhenniLYM@Hk(OFO/(ng)),

0<i<n
where
Phermi’M@Hk (OFO/(ﬂg))

={pe PhermL’M@Hk(OFO/(ng)) | dimp, Pryi (¢ (L)) =i} (6.3)

Here Pry« denote the projection map to H k and Pr gk (@(L)) denote the image of
Pry«(¢(L)) in ﬁk. As a result, we have

n
Pden(M.L,X) =) Pden' (M, LX),
i=0
where Pden’ (M, L, X) is the function such that
. _ . _ _ 2 .
Pden’(M. L.g~2):= lim ¢~ "= Pherm|, | o (Or /().

We need to count |Pherm"L,M@Hk(0F0/(ng))|. For ¢ € Pherm"I"M@Hk(OFO/(n(‘)j)),
it induces

¢:V=L— MOH")7(MaH"), and ¢« :=Pr 0.

By the_ definition of Pherm"LY e Hk(O Fol (7161 )), For a (n — i)-dimensional subspace
ViCL,let
Pherm" . (OR, /(7))

= {¢ € Pherm}, o1 (O, /() | Ker(d ) = Vi C L).

Since Ker(¢ «) C L has dimension n —i for any ¢ € PhermiL)M@Hk (0F, /(7)) we
have

Pherm"L’ v (OF, /() = |_| Pherm{{ et (OF, /(7d).  (6.4)
V1€Gr(n—i,V)(F,)

We need to show

_ _n2 V
g~ G200 Pherm ! o (OR, /()]
=q"=Dix"~pden(H*, Ly,) - Pden(M, Ly,). (6.5)

Let V; be a subspace of V such that V =V, @ V,. Let Ly, C L be a sublattice of rank
n — i such that the image of Ly, in V is V;. Similarly, let Ly, C L be a sublattice of
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rank i such that the image of Ly, in V is V5. Let ¢; = ¢| Ly, fori € {1,2}. According
to Lemma 6.4, the number of different choices of ¢, is given by

Pherm, o (OR, /()] = g' "0 =DPden(H", Ly,).  (6.6)
.

Now for a fixed ¢, € Phermiva’ wem (O, /(). let

Pherm(ﬁ1 M@Hk (OFO/(ng))
= {¢1 €Phermy, eyt (Or /() | (@1,¢2) € Pherm)" o (OF, /(7))).

Claim: For any ¢, € PhermeVT wask (OF, /(d)),

[Pherm” /i (Or,/ (7))

=q@DCDED Phermy, v (O, /()] (6.7)

_ q(2d—1)(2k—i)(n—i)+(2m(n—i)—(n—i)z)dpden(M’ Ly,)

Assuming the claim holds, (6.5) follows from (6.6) and (6.7) since for any fixed ¢»
we have

Pherm,’ o (OFy /()]

i d @ d
= |PhermlLV2,M@Hk(OFO/(7TO))I : |PhermL2V] ’Mer(OFO/(T[O ))|

Proof of the claim: For ¢; € Pherquzv1 ,M@Hk(OFo/(”g))’ write ¢1 = ¢y yr + d1.m,

where ¢ yx =Pryi o ¢ and ¢; p = Pry o ¢;. First, for any g € UM & H¥), one
can directly check the map

Pherm® oy (Ory /(1)) — Pherm{™® o Ok /(x).  (68)

¢1 > go

is well-defined and is in fact a bijection. Then according to Lemma 6.5, we may
assume ¢o(Ly,) C H*.
Now finding ¢; such that (¢, ¢2) € Pherm{l M Hk(OFo / (ng)) is equivalent to

finding ¢ such that ¢, y is primitive, ¢; yr € nHF,
($1(v). p2(w)) = (v, w) mod (x*'~!) foranyve Ly, weLy,, (69
and

(¢1(v), p1(w)) = (v, w) mod (>~ 1) forany ve Ly, we Ly,. (6.10)
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We consider condition (6.9) first. Since ¢2(Ly,) C H k we have

(@1, 51 (v), p2(w)) = (¢1(v), p2(w)) forany v € Ly,, w € Ly,.

When £ is large enough, we can always find and fix a qﬁi i« that satisfies (6.9). Then
finding ¢ p that satisfies (6.9) is equivalent to find @ gt = ¢y yr — ¢1,H"” which
satisfies

(P gk (v), P2(w)) =0 mod (nzd*l) forany v e Ly,, w € Ly,,

Then according to Lemma 6.6, the number of different choices for ¢, yr is
g2d=D k=D =0

Now we consider condition (6.10). Since ¢y« (v) € 7 H* for any v € Ly,, (6.10)
is equivalent to

(D1,u (W), p1,u(w)) + e = (¢1(v), P1(w))
= (v, w) mod (nzd_l) for any v, w € Ly,,

for some o € Op. By Lemma 5.16, for a unimodular lattice M and any integral lattice
N, Pden(M, N) only depends on M and N. Hence, for our purpose, we may replace
(6.10) by

(@1, (), $1.u(W)) = ($1(V), $1(w)) = (v, w) mod (x>~ forany v, w € Ly;.
Therefore the number of different choices of primitive ¢; s is given by
q@m=D=0=0dpden(M, Ly,).
As a result, we have

[Pherm(?. i (Or /(i)
— q(2d71)(2k7i)(n7i) . q(2m(n7i)7(n7i)2)dpden(M’ LVI)'
This finishes the proof of the claim. g

Lemma 6.4 Assume that L is an integral lattice of rank n and k > n. Then

Pherm) , =, (OF,/(x§))| = q*"" [Phermy, (O, /(x§))]-

Proof For ¢ € Pherm’L’ 1 @k (ORr/ (7161 )), we may identify ¢ with (¢ g« , ¢;,,) where
¢ =Pryro¢ and ¢;, =Pr;, o¢. As

|Homo, (L, ) (O, /(g )| = ¢*"™,
it suffices to show that for any fixed ¢ € Homo,. (L, 1,,), we have

|{¢ € Pherm} | o1 (OR, /(X)) | 1, = @}| = |Phermy, g (O, /(Rg)I. (6.11)
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Let L, be the lattice L equipped with the hermitian form (x, y) L, ‘= (Pgx (x),
Dk (y)) where ¢ is any element in PhermL I e91_1,6(01::0/(71(?)) such that ¢;, = ¢.

Since each such ¢ is an isometry and ¢;,, is fixed, (, )z, 1s independent of the choice
of ¢. Then we have a bijection

(¢ € Pherm? | o4 (05, /(i) | 91, = 9} — Pherm; i (O, /(xd). (6.12)
¢) = ¢)Hk.

Since L is integral and ¢ is an isometric embedding, Lg , is also integral. Then
according to [19, Lemma 2.16],

|Pherme,Hk(0FO/(n(‘)l))| = [Pherm;_x(OF, /().

Combining with the bijection in (6.12), this proves (6.11), hence finishes the proof of
the lemma. g

Lemma 6.5 Assume that M is a unimodular lattice, L is an integral lattice of rank
n,and¢p: L — MS HF¥ is a primitive isometric embedding such that Pryx (¢ (L)) is
primitive in H*. Then there exists a g € UM & H*) such that g(¢ (L)) C H*.

Proof Consider the non-degenerate symplectic space over [Fy: (ﬁk, )N =

(ﬁk, 7(,)). Let U denote the image of ve H kin ﬁk. Since Pry« (¢ (L)) is primitive
in H*, V(L) := Pry«(¢(L)) is a n-dimensional subspace. Since M and L are inte-
gral, Pry« (¢ (L)) is integral. Hence V(L) is an isotropic subspace. Let {1, ..., ¢,}
be a basis of L, £, yx = Pry«({) and e5 = ZS‘HI(. Since V(L) is an n-dimensional
isotropic space, we have k > n and we can extend {ey, ..., e,} to a standard symplec-
tic basis {e1, f1,..., ek, fk} of Fk, where (es, f;) = 8¢, and (es, e;) = (fs, fr) =0
forl <s,t <k.

Now let {fi,..., fu} be a lifting of {f1, ..., fu}. In particular, for 1 <s <n, we
have (45, fv) =7 -1 + x for some x € Op. Therefore L®(f-- fn) H". Hence,
there exists g € U(M & H¥) such that g(L @ (f1 f,,)) C Hk O

Lemma 6.6 Let N C H* be a primitive integral lattice of rank i. Then

#Hwemx H /a{ H* | (N, w) =0 mod (x> ")} = ¢~ DD,

Proof Through this proof, we use L to denote the image of L in ﬁk for any sublat-
tice L of H*. Let N be the perpendicular lattice of N in H*. First we show N1 is
primitive of rank 2k — i. If N is not primitive, then there exists v € N such that
7 v e HY \ N-L. However, (ﬂ_lv, N) =0, hence 7~ 1v € N1, which is a contra-
diction.

We claim that for any w € 7 H* and (N, w) =0 mod 7% with a > 0, there exists
ax € 7 H* such that w — x € N*. We prove the lemma by assuming the claim, and
give the proof of the claim in the last paragraph. Taking a = 2d, the claim implies
that

#HwenH /nd H* | (N,w)=0 mod (x**~ 1)}
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=#Hwen(N* + 7l HY /zd H* | (N,w) =0 mod (>~ 1)}.
Since N* is primitive of rank 2k — i, we have
#Hw e N /nd H* | (N,w) =0 mod (7?7} =g~ DE=D,

This proves the lemma assuming the claim.
Now we prove the claim. Consider the symplectic space over [F,: (ﬁk, w(,))-

Since N is integral, N is isotropic in H Let N be spanned by {ei,...,¢;}.
Then we may extend {eq, ..., ¢;} to a standard symplectic basis {e1, f1,..., ek, fr}
of H', where (es, fi) = 851, and (es,e;) = (fs, fi) =0 for 1 < s,¢ < k. Let

{e1, f1,...,ex, fk} be a lifting of {ey, f1,..., ek, fx}. By our choice of ¢;, we can
find a basis {wy, ..., w;} of N such that wy; —¢; € 7 H* for any 1 <s <i. Consider
x=a1f1 +Haifi € (fl,...,fk).lnordertohavew—x € N1, we need to solve
the following system of equations:

m(wg,x) =m(wg, w) forl <s <i. (6.13)

Let A denote the i x i matrix corresponding to this system of linear equations. Since
wy—eg emH k we have A = Id; mod (7). Therefore, there exists a unique solution
x of (6.13). Moreover, since 7 (N, w) =0 mod 7%, we have m (wy, w) € (w4) for 1 <
s <i.Then (6.13) implies that a; € (7%), hence x € 7¢ H*. The claim is proved. O

7 Explicit formulas for Pden’(L)
7.1 Explicit formulas and consequences

The goal of this section is to establish the following formulas for

tmax/z
dPden(L) = Pden’(L) + Z c2jPdeny;(L). (7.1)
j=0

Here

_ Pden’(I,, L)

Pden’(L) =
Den(1,, I)

is normalized as in (5.4). Recall, from Lemma 5.9, that
dPden(L) = Pden’(L) (7.2)
when L is not dual to some vertex lattice A; of positive type ¢ > 0.

Theorem 7.1 Let L CV be a lattice of rank n.
(1) If L is not integral, then 0Pden(L) = 0.
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(2) If L is unimodular, then

I, ifnisodd,

0, ifniseven.

dPden(L) = Pden’(L) = :
(3) If L =1,_;® L, where L is of full type t, then

1
[1,.2,(1—q%, ift is odd,

dPden(L) = Pden’(L) = iy
(= x(Lg)[];—, A - q*Y), ift is even.

Corollary 7.2 Let L be a lattice. Then dDen(L) € Z. Moreover, dDen(L) = 0 for
non-integral L.

Proof According to Corollary 5.4, we have

dDen(L) = Z dPden(L’).
LcL'CcLf

Now Theorem 7.1 implies that dPden(L’) € Z, hence dDen(L) € Z. If L is non-
integral, then 9Pden(L’) = 0 for each L’ such that L C L’ by (1) of Theorem 7.1. [

As another corollary, we prove the following cancellation law for dDen(L). Recall
that for Hermitian lattices L and L’ of the same rank, n(L', L) =#{L" C Ly | L C
L// L// "=v L/}

Corollary 7.3 Let L = L1 & Ly CV be a rank n lattice, with L| being unimodular
and L; of rank n;. Then

dDen(L) — 0Den(L2) = n(ly,, L2) - (80dd(n) — 8odda(12)). (7.3)
Proof By Corollary 5.4 and Lemma 7.4, we have

oDen(L)= Y dPden(L)= »  9Pden(L; & L)).

LCL'CLF LycLiCLy
Similarly,
aDen(Ly)= Y 0Pden(L)).
LycLiCLy
Hence
dDen(L) —9Den(Ly)= Y (dPden(L; & L) — dPden(L))).
LycL)CLa
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If L), is not integral, then both dPden(L; & L)) and dPden(L)) vanishes by (1) of
Theorem 7.1. If L, is integral but not unimodular, then (3) of Theorem 7.1 implies
dPden(L; & L)) — dPden(L)) = 0. Hence

dDen(L) — dDen(L;) = Z (0Pden(L; & L)) — dPden(L})).  (7.4)
LZCL/ZCLZ,F
L1@L/2'£A0
Combining (7.4) with (2) of Theorem 7.1, we have
dDen(L) — dDen(L2) = n(Ip,, L2) - (8odd(n) — Sodd(n2))-

This proves the corollary. g

Lemma 7.4 Assume L = L1 & Ly is a lattice where Ly is unimodular. If L C L' C
7~ L and L' is not of the form L1 & L', then L' is not integral and dPden(L’) = 0.

Proof Consider the FF,-vector space 7~ 'L /L. Since we assume L' is not of the form
L1 & L, there exists v € L’ \ L such that Pr i, (v) # 0, which in turn implies that
L’ is not integral. Hence dPden(L") = 0 by (1) of Theorem 7.1. O

7.2 Proof strategy

The proof of Theorem 7.1 occupies the rest of this section. Since the proof is rather
long and technical, we summarize the main idea of the proof first. When there is some
x € L with val(x) < —1, dPden(L) = 0 by Lemma 5.2. Otherwise, write

L:Hj@lnl—t@LZv

where L is of full type ¢. There are four cases.

(a) The case ny —t =0 (i.e., L = H/ @ L,) is significantly simpler than the general
case, and we will deal with it in next subsection although it is part of the general
case. For example, when L is of full type, the reduction L of L modulo 7 is a
totally isotropic quadratic space over IF,. Hence, the summation in Corollary 6.2
is simply:

3 |0(v1,1_m)|=('f) 1000, T)-
q

V1€Gr(i, L) (Fy)

An application of g-binomial theorem settles this case.
(b) The case j =0, 1i.e., L is integral.
(c) Thecase j >0and? > 0.
(d) The case that t =0 and j > 0 is part of the modification assumption.

In general, the problem becomes harder when ny — ¢ is larger. In fact, when r > 0, i.e.,
ny —t < ny, (b) and (c) can be proved via Corollary 6.2 and an involved application
of the induction formulas of Den(/,, L) established in [10]. However, when ¢t = 0,
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i.e., L is unimodular, this method fails. To overcome this difficulty and give a uniform
proof of (b) and (c), we introduce a new method which is different from [10] even in
the case n < 3.

To illustrate the idea, we stick to case (b) for now. The first key step is to discover
a finer structure of dPden(L) and prove the following formula (Lemma 7.11):

min{n—t,n—1} n—1

a0 5 (1) caprs
i—r
r=0 i=0 q

-g(n,n1,r,q7"), (7.5)

where () is some constant number and g(n, ny, r, X) is a linear combination of poly-
nomials of degree n — 1. The second key observation is that there is a lot of cancella-
tion underlying this linear combination. Indeed, we show for r < n that g(n, ny, r, X)
is actually of degree <n — r — 1 and is essentially a simple multiple of some sim-
ple polynomial (denoted by h(n, r, X)) (Lemmas 7.13 and 7.15). This enables us to
apply g-binomial theorem (Corollary 5.25) to the inner sums in (7.5). Consequently,
we obtain

m(n,t)

dPden(L) = (x) Y _ (=1)'g

r=0

(n=r)(n—r—1)
2

q" - gn,n—t,r,q7"). (7.6)

The last step is to evaluate this sum and the result is given by Lemma 7.16. It is in
this step that the case n; = n (L is unimodular) becomes different: the sum above is
a sum from r =0 only to n — 1, not to n; = n. To make it worse, the ‘missing’ term
g(n,n,n, X) is in fact ill-behaved.

One common strategy in proving Lemmas 7.15 and 7.16 is to express both sides
of the identity as (uniquely) linear combinations of certain basis of polynomials, and
prove that the coefficients satisfy the same recursion formulas and the same initial
conditions. Here we use crucially the combinatorical properties of m (U, V) (Lemma
5.18) for U and V quadratic spaces over IF,.

In Case (c), the derivative becomes the value of some primitive local density poly-
nomials at some non-central point ¢/ by Lemma 5.13. Strikingly, the formula for this
value (see (7.39)) is very similar to the formula for the derivative Pden(l,,—; © L»)
(see (7.40)). Proof of Cases (b) and (c) will be given in Sect. 7.6 after long preparation
in Sects. 7.4 and 7.5.

7.3 Thecasen; —t =0

In this subsection we assume that n; — ¢t = 0 and divide it further into two subcases:
j=0orj>0.

Proposition 7.5 Assume that L = H/ @ L, where j > 0 and L is of full type and
has rankno =n — 2j. Then

oPden(L) =0.
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A proof of the Kudla—Rapoport conjecture for Kramer models 777

Proof By Lemma 5.13, we have

j—1
Pden’(I,, L) = 2( [Ta- q”))Pden(ln, Lo, q¥).
=1

Hence it suffice to show
Pden(1,,, Ly, q" ") =0.

We prove the odd n case and leave the even n case to the reader. According to Corol-
lary 6.3, we have

Pden(I,, Ly, q" ™)

ny o ny—i—1 i
— E (_1))’!2—iql(t2—1) <n2> . 1_[ (q2ﬁ+n—r12 _ l) . H(qn+1—2l _ 1)
l
i=0 q

£=0 =1
np ”*2”2_1-_] nTil
_; =D fnp
=Y (-1Tig e () - I @-v- JT @ -0
i=0 ! q n—ny _n+l_
l=—= {="5=—i

n—1
We can factor out Hei”"u (g%t — 1) so that
=—"

n—np

2 ny L )
Pden(l,, L2.q" ™) [] @* D' =Y (-1 7ig"T" (”2> g(na.q7),
g=n=1 i=0 g
-2
where
2o
g X)= [] @x*-1 (1.7)

=gt

is a polynomial of X of degree n, — 1. Now Pden(/,, L2, ¢"~"?) = 0 by Corollary
5.25. 0

Proposition 7.6 Assume that L is a full type lattice of rank n. We have
n—1
Pden/(L) — H(i](l - qu), lfn is odd,
(1 —egH 1 (1= g%).  ifniseven.
Proof First of all, recall that

_ Pden’(I,,, L)

Pden’(L) = ————=,
Den(l,, I,)
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where

l

24T P I1Z, (g% — 1) if n is odd,
zq(%)(z 1)(qz +e€) H/é:l (g* —1) ifniseven.

Den({,, I,) = (7.8)

We verify the even n case and leave the odd n case to the reader. Direct calculation
using Corollary 6.3 gives

1|
n 2 -1
Pden’ (1. L)((¢% +) [ ] ¢* = D)
(=1
e
=2) (-)"g 2 () @ -o [ @D
i=0 q e=4—i+1

—ZD ilg™ ”( ) (@i —e) H @ = ).

e_n+1

According to Corollary 5.25,

Z( 1yl ”( ) @ —e) H % 1)

Z—H-H

n—1
n(n—1) n
=q 2 (@ *-e [] @ -1

(=141
1o
=g DG DA —eq?) [T —g*
=1
Now by (7.8), we conclude that
11
Pden’(L) = (1 — eq?) [Ja-q¢*
=1
as claimed. O

7.4 Preparation

In this subsection, we rewrite Pden’(1,,, L) as a linear combination of special values
of certain polynomial g, (n,m,r, X) as in Lemma 7.11. We then express general
8e; (n,m, 1, X) as a simple combination of g, (n, r, 7, X), see Lemma 7.13.
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Let L =1;", ® L, where L; is of full type ¢. By Corollary 6.2, we have

n—ln—i—1
Pden'(I,,L)=2>  [] a=¢*9 > > (o @U,”,,O@U,?_,)
i=0 (=1 0<j<iee{£l}

(7.9)

x ‘o (0yous, ure)|-

Here and in the following, we interpret ZQ (1) f (USZ) as f (Uol) for a function f
with U;? as input.
Let s and n be integers such that 0 < s < n, and let € = £ 1. For odd n, we define

nts—2
I, %0 @*X) ¢ T X(@"T X —eer)
2
fans, X)=1 Tl 2@ X7 =1 if sisodd,  (7.10)
il .
]—[Z_le(q%Xz) HZ nipss (g**X%—1) ifsiseven.

Similarly, for an even integer n > 0 and 0 < s < n, we define

nts—3 n
l_[[=2" (qZZXZ)q 5+s—1 X

HZ 711+x+1 @*Xx*-1) if s is odd,
féz(nvsa X) = n4s—2 7 (711)
[T, (q”Xz) 93" X —ee2)
‘Hl 42 (@*X* = 1) if s is even.

Here when s = 0, we always take €, = 1. Notice that f, (n, s, X) is a polynomial
of degree n — 1.

Lemma 7.7

(1) Assume 0 <i < n. We have

n—i—1

[T = ¢*)100i-, & U2, U = (=1 7'q" T 1) fey(n. 5,47,

where

G -1 ifn is odd,
(q? + )H@l(qze 1) ifniseven.

(2) Assume 0 <i <n,s <n and that n' —n > 0 is even. We have

n—i—1

[T =" "00,&Ue, U
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=D Wen_.
=(=D)""q 7 I, n)f,(n,s,q = ),

where

n

'—1
]_[K 2)1’—;1 (ng - 1) lf‘n is Odd,

=1 /
o L

(g +e) HZ (@ =1 ifniseven.
=

I.(n',n):=

Proof This follows from the formula of |O(0;_s © Us?, U, €)| given in Lemma 5.16
and a straightforward computation. |

Lemma 7.8 For integers 0 <i,t <n, we have

n—t
<{) ZZ(_l)a,qa(m-nq%.(”—f) .(’?‘“)_ (7.12)
i q a q 1—a q

a=0

Proof The identity is automatically true for i > ¢ as both sides are zero. Recall the
following analogue of Pascal’s identity for g-binomial coefficients:

O, o
i)y I q i—1 q

By this identity, we obtain 2 terms, one with the 7-index raised, another with the
i-index lowered. Applying again (7.13) to ("H)q and (iil)q respectively, we obtain

i

t t+ _ r+1 s r+1 _ t—1
) = . g i+2(! _q z+1( . —q' i+2(! )
iy i/ i—1 q i—1 p i—2 q

We may continue this process and after n — ¢ steps, we obtain 2"’ many terms.
Each term corresponds to a lattice path starting from the origin, going to north and
east as follows. If the ¢-th step raises the index of ¢ (resp. reduces the index of i),
we define the lattice path goes towards north for the £-th step (resp. east). We use
I =(iy,...,in—s) where iy € {0, 1} to denote the path whose £-th step goes towards
north (east) if iy =0 (ip = 1) and let |I| =i + --- + i,—;. We use Pj to denote the
term corresponding to /. Now the lemma follows from the following claim.
Claim:

Z P] — (_1)(1 . qa(l+l—i)q “(“z_l) ) <n - t) ) <I’l — a) .
I\=a a q 1 —a q

Indeed a direct calculation shows that

_y ala=D n—a
P(]agon—[—a) = (—1)“ . qa([-‘rl l)q 2 . < ) .
1 —a q
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Let A; denote the area bounded by the lattice path I, the horizontal axis, and the
vertical line given by x = |I|. Then a direct computation shows that

P] :qAI . P(la’on—tfa).

Now the claim follows from the well-known formula of g-binomial coefficient (see
[3, Theorem 6.9] for example):

This proves the claim and the lemma. g

Lemma 7.9 Foran integer n >0 and € = +£1, let

a(n) = qL%J 551

1 i
) _ {q ifn is odd, and

q%(%_l) ifn is even,
(—1)% ifn is odd,

Be(n) = 6(—1)% if n is even,
1 ifn=0.

Then

S DIg T m0;. US) = an)fen).
=0

Proof If n = 0, the statement both sides are 1 by definition. From now on we assume
n > 0. By [21, Lemma 3.2.2.], we have

N
Im(0;, Up)| = <]> @+,

q =1

with
d= :%] 1—e ?fn %S odd, and e = 1 %fn %S odd,
27— 7 ifniseven, 1 —€¢ ifniseven.
So we have
- =D - o (d\ o
j L S jG- B
Z(—I)Jq 2 m(OJ, U;):Z(—l)fq 2 <> l_[(qa'—i-e l+1),
j=0 Jj=0 I g1

which by Lemma 5.26 equals to (—g¢t¢~1)¢. A direct calculation checks that
(=g H? = am)pe (). O
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Definition 7.10 For 0 <r <m <n, we define

8e(n,m,r, X)
: k=) - ii-b (m—j—k
_ G i
=Y (=Dfg 7 Y mUE UHDY (-1ig> ( . )
° r—j—k
k=0 eel£l) =0 q

m(0, US_) fey (n, K, X)

with § = 8(m, k, €1, €2) as defined in (5.12). In the following, when 7 is clear in the
context, we simply write g, (m, r, X) for g¢, (n,m,r, X).

In particular, g¢, (n,m, 0, X) = f1(n,0, X) and by Lemma 7.9,

r

e (n’ o, X) — Z(_l)kq k(k;l) Z m(U€2’ Urél)
k=0 ere{x1}
ca(r —=k)Bs(r —k) - fe,(n, k, X). (7.14)

In the rest of this section, we let m = n — ¢ without explicit mentioning.

Lemma 7.11 Assume L is a lattice of rank n and type t.
(1) Let m(n,t) :=min{n — t,n — 1}. Then for 0 <i <n — 1, we have

m(n,t)

. i—r)(i—r—1
(Pden”il)/(ln,L):zle(n)' Z <’ll :) (- 1)1 r4n— qu )(2 )qr(n*m)
r=0
'gél(nvm»rvqii)'

(2) Assume that n' — n is a positive even integer and m < n. Then for 0 <i <n, we
have

—(i_r)(iz_"_l) qr(n—m)

m
Pden" (17, L.q" ") = Ic(n',m) Y ('z - :) (—1)i~"+ng
r=0

q
n'-n_;
"8 (n,m,r,q 2 7).

Proof We prove (1) first. By (7.9), Lemma 7.7 and Lemma 5.19, we have

(Pden" Y (I, L) - (2(—1>"—"—11€<n))_1

t
t € e —i
=Z<z> Z > GO0 O S UL USL ) fer (kg™
=0

9 k=0 ere+1

= Xl: < )qu(z(zs»s’“”
1 —S

s=max{i—t,0} 9 k=0eye+1
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A proof of the Kudla—Rapoport conjecture for Kramer models 783

x m(Os—x SUZ, UsL) fe, (n, kg7,

where the last identity is obtained by setting s =i — £. Notice that if s > n — ¢, then
m(0,_r ©UZ, UsL,) = 0. Hence we may assume s < n — f, or equivalently t <n —s
in the above summation. Now applying (7.12)toi —s <t <n—sandletm =n —t,
we may rewrite the above summation as

z Sl (")

s=max{i—t,0} a=0
> 1 i(i—1
Z Z qa(nferl7(ifs))+%+(n7m+s7i)sqm%)
k=0 ere+1

xmOs_x QU2 UE) fo, (0, k, g7

i m—s
n—s—a Gi— (-\+0))(l (s+a+1)) (s+a)(n—m)
= . q
q

. (_1)11( ) Z Z q(S+a)(S—S+a+1)+a(a+l)

9 k=0erye£1

x m(Os— @ U, Ugh) fey (0. k. g™,
Now let r = s + a. Notice that r < m and ('l.’::)q =0 for r > i. Rearranging the
summation index, we obtain
. , -1
(Pden" =Y (U, L) - (=1 1em))

mf{n,t}

n—r G=r)(i=r=1) _ —
=y ( ) a7 g g (m g,
q

i—r
r=0
where
8e;(n,m, 1, X)
d ss—1)
=Z<—1>”~( ) Z Y 4 T mOk SUE, UG fey (n. k. X)
s=0 4 k=0ee+l
a k(k=1) g ii-h (m—j—k
- i LU= -] —
=Y (=D 7 Y mU2,UNHD (~1)g > -(r_ ._k)
k=0 eel£l} j=0 J q

-m(0j, Up 1) fer (n, K, X).

Here, we use Lemma 5.18 to obtain the last identity.
Using (2) of Lemma 7.7, the same proof of (1) proves (2). Il
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We conclude this subsection by establishing a formula to express g¢, (m, r, X) in
terms of g, (r,r, X), which, as we will see, has a particular simple form (Lemma
7.15). First, we need the following identity which might have independent interest.

Lemma 7.12 For any integers 0 <r <n, we have

Z( 1)/q/U~ “/2( ) m©0;, U= Y mU UDa@)p:(r), (1.15)

q te{£l}

where «(r) and B, (r) are defined in Lemma 7.9.

Proof We proceed by induction on n. The case n = 1 is obvious. Now recall the

identities
n

m(0;, Uy )-() =Y ) mO; U7, Uy

J i=1 oe{£l}

J
=<”) =Y Y @ U mUr, Um0, U,
J ef{£l1}

i=loe

J

by (5.11), and

Z( 1y g0~ 1)/2(”_J> (") zi(_l)quw/z(”) <r) —0. (7.16)
j=0 T ¢ =0 a7

These imply that

Z( 1)] G- 1)/2< _ ) m(Oj,U)

q

__Z( 1)/ g/~ 1)/2< )
r—j

J
6
XY Y g Uy Um(©;-, U )

i=1 oe{%l}
_Z Z (— 1)1+1 i(i— 1)/2m(Ua U)
i=1 oe{£l)
r—i n—i—
XZ(_l)]q](J—l)ﬂ( . ) (OJ’US(nleJ))
) r—i—j p

where in the last step we switch the order of summation and substitute j by j +i.
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We can now use the induction hypothesis

r—i

S (—1yigii-nr(" BERAR TR
r—i—j 2

=0 q

= Y mU_ U )l — i) (r — i)
Te{£l}

and

Urhen)y — m? , uSHmy, ud),

}’l i

mUZ, USmUY_;,

where 8’ € {41} such that T = §(r, i, 8’, o) (see Lemma 5.22) to obtain

r

S n—j
> (=Dig’Y “”(r_j) m(0;. Uy)

j=0 q
.
:Z Z (—1)itlgii=D/2
i=1 ce{£l1}
x Y mUY UHmMUE U —i)e(r —i) (7.17)
te{£l}

Hence (7.15) is equivalent to
Z Z ( 1)1 l(l 1)/2
i=0 oe{£1}

x Y mUY UHmMUE U —i)pe(r —i) =0 (7.18)
re{+l}

Now applying Lemma 7.9, the left hand side of (7.18) is equal to

Z Z (_l)iqi(i—l)/Z Z m(U8 , U )m(UU’ UB)

i=0o0e{xl} Te{l}

—I
x Y (=17 m0;, U )

j=0
r r—i
_ Z U‘S,U )ZZ Z (— 1)l+J i+)+j— 1)/2m(0 @U,-",U;S/)
Te(£l) i=0 j=00e{£l}
- 3 et S () o
§ef{x1) k=0 k/q
The lemma is proved. O
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Lemma7.13 For 0 <r <m < n, we have

g, (m,r, X) = Z m(US, U gey (r, 1, X).
eze{£1}

Proof When r =0, we have by definition

gm,0,X)=fi(n,0,X)= > m(Ug’, Us)ge; 0,0, X).
eze{£1}

Now we assume r > 0, § = 8(m, k, €1, €2) and 8’ = 8(r, k, €3, €). On the one
hand, by definition

861(msrsx)
d kk—1) G- (m—j—k
— _1 k ; UGZ,UQ 1] II .
> (=g > m >Z( ) ik
k=0 ec(£l) =0 q

m(ojs k)fez(” k, X).

On the other hand, we have by (7.14),

Y mUS, UgHge,(r.r. X)
eze{£l}

—Z(— k k(k 1) Z Z m(Uez,Uﬂ)m(Uq Uel)

erefx1) e3e{£1)
ca(r —k)Bs(r —k) - fe,(n, k, X).
By Lemma 5.22,
mUE, USmUE, UL =mUE, UmUL . U ).

Hence, in order to prove the theorem, it suffices to show for any k and €;

A G- (m—j—k
2 JU=D / - -
Y (~1)g ( - ._k) -m(05, Uy _p)
=0 r=J q
= Y mU UL - ar —k)By (r — k),
8'ef£1)
which is exactly the content of Lemma 7.12. U

7.5 Some identities between polynomials

Although g¢, (r, r, X) by definition is a complicated linear combination of f, (n,
k, X). We show in this subsection that in fact g¢, (v, 7, X) has a very simple form
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(Lemma 7.15). Similarly, although Pden’(I,,, L) is a complicated linear combination

of the special values of g¢, (n —t, r, X), certain linear combination of g¢, (n —

t’r?X)

is of a simple form (Lemma 7.16). By a direct computation, we can check the follow-

ing lemma.

Lemma?7.14 ForO<s <n—1, let

1 b (¥ X2 = 1) if n — s is odd,
he,(n,s, X) = n s 20
il ) g7 Ea —661)1_[[ n+r+2(q2lX2—1) if n — s is even.
Then
hey(n, j,qX)=he(n+1,j+1,X),
[ ;
q- 2 =he(n+1,j,X)

+ (=D eeihe, (n+ 1,7+ 1, X).

Lemma 7.15 Forintegers 0 <r <n — 1 ande€,e; = =£1, we have
e, (r.r, X) = (1) " Vet a(r)he, (n. 1, X).

In particular, ge, (r, v, X) is a polynomial of degreen —r — 1.

(7.19)

(7.20)

(7.21)

Proof We prove the case when n case is odd and r is even, and leave the other three
cases to the reader. The idea is the same (a little bit more complicated). In this case,

we need to show

he (n, r, X)
_Z( g Z m(Uészfl)-oc(r—k)ﬁa(r—k)‘M
ere{£l} el(n,”, )
=€), (7.22)

where § =68(r, k, €1, €7). Since n is odd and r is even, we have

l_[g n;—l (quxz)
féz(na kv X) —
hEl (n9 r, X)

n—1+

n+kX(q 3 X—eez)]‘[Z s @X2—1) ifkisodd,

]_[Fm (g**'x?)- ]_[ZJJFH,( (quX2 -1 if k is even.
- 2 - 2

@ Springer



788 Q. Heetal.

n+r

As a result, dividing (7.22) by g7 (73
Jj =r —k, (7.22) is equivalent to

- X" and setting Y = (¢"7 X) L

Fa (V) =Y (1T T () Y mUE L UBG) - (G Y)

j=0 ere{El}

=Y, (7.23)

where fez (j, Y) is a polynomial of degree j defined as follows:
2o =g~y if j is even,
r—j—1 r=2
(I—eeg™ 7 V) -[1,%,0i (1 =g 7Y if jis odd.
- 2

Since { f1(j,Y),0 < j < r} forms a basis of the space of polynomials with degree
<, there exists unique tuples (a;) and (b;) such that

r r
fM=a¥Y =Y a;fi(.Y). and 2 (nY)=) b;fi(j.Y).
j=0 j=0
We need to show (a;) = (b;). It is easy to check
ar = b, = (=1 2e1a(r).

Now to prove a; = b; for all j, it suffices to prove that both a; and b; satisfy the
recursion formula for j <r

a) = —q/ ﬁaﬁz if j is even, (7.24)
0 if j is odd.
We start with a ;. First of all, we have
r r
Y aTai LG =g V) =fq 'Y= ajfi(j.q7'Y). (7.25)
j=0 Jj=0
Notice that
fGg ' =0—q7"Y) fi(j —2.7).

Since

| N

z o s, —€q 2 if j is even,

fl(]+laY)/fl(JsY)= _r—j—1 .
l+eq” 2 Y ifjisodd,
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we have
r—j—2 ~ ~
~ —eq 2 (iIG+1,Y)— fi(j,Y)) ifjiseven,
Yf1(,Y)= rq—j—l ~fl. / ~f1. g . ] .
eq 2 (AG+1LY)- fi(,Y) if j is odd,
—q" I 2(fi(G+2.Y) = fi(j.Y)) if j is even,
YAV =1 —¢"I2(fi(j +2.Y)
+@-DAG+LY)—qfi(j,Y)) if jisodd.
Therefore,

i g AG Y +A—g ) fi(j—2,Y) if jiseven,
fGa ' =147 G +@—Da ™ fi(i=1,7)
+(U—g"HAG-2.7) if j is odd.

Plugging this into (7.25), we obtain

(g — l)q_j_lajH + 1 - q_j_z)aj+2 if j is even,

—r _ ,=J a; = .
(" —q 'a, :(l_q—/—l)aj+2 if j is odd,

with a,41 = a,4+2 = 0. So we have (7.24). We remark that in other cases, we have
similar recursion formula as above but could not be simplified like (7.24).
Now we compute b; for j < r. Recall that r is even. First, if j =0, we have

D mU2 L UMBG) - fer (oY) = f 0, Y).

ere{El1}

It is easy to check that

fGY) if j is even,

il x o (7.26)
(1—€e2g 2 )fi(j—1,Y) ifjisodd.

fealG. V) = {
Now Lemmas 5.21 and 7.9 imply for j 20 and § =4(r, j, €1, €2), we have

D o mUZ LU Bs() - fer (G Y)

ere{£1}
26'(_1)%(e-lq_%w_%])m(U1 LU, YY) if jis even
e T T A ’
2(—1)%m(U}_j,Uf')fl(j—1,Y) if j is odd.

Plugging this into the definition of g, (r, X) as in (7.23), we obtain

g (nX)=Y bif1(j,Y)

j=0
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- _ A (G —(r=1) 1 /€
withb;j=0forodd j,bp=q 2 (1—-2¢q m(U;,U,")), and

i r—j
Jo =pDo—j-D T2 €1q 2
by =2(—1y"%q 7 4 leq ),_, m(U}_;, US")
(I+eg 2)A+qg 7)
i r—j—D(r—j—2)
—2=1)TEig T e+ DmUL L U

for even j # 0. Applying Lemma 5.21, for even j # 0, we have

r—j r
p_d U=pe=j=h g~ 2 (€e14+q 2) :
bj=2—1)"2g 2 ; —a(j)mU}_;, US).
(I+egq 2)A+qg 7)
Now applying Lemma 5.21 twice, we can check that b; satisfy (7.24). d

Recall that m(n, ¢) :=min{n —t,n — 1}.

Lemma7.16 For0 <t <n,and m =n —t, we have

mi.) (=r)(n—r—=1)
S g T g X) = Py m, X), (1.27)
r=0

where

nn

-1 .
Fe,(n,m, X) = q 2’17]}1(","1,”)5)1 . l‘fl‘#(),
(D" lam) 355, (—¢" X)) ift=0.

Proof We treat the case r = O first. In this case, €] = €. Before we give the details
of the proof, we summarize the main idea. Since {h.(n, s, X),0 <s <n — 1} forms
a basis of the space of polynomials with degree < n — 1, there exists unique tuples
(an,;) and (b, ;) € Q" such that

n—1
Fen.n,X)=Y_ay jhe(n. j. X), and
j=0
(7.28)
n-l (n—r)(n—r—1) n-l
Y=g T g X)=)Y bnjhe(n, j. X).
r=0 j=0

We need to show a, j = b, ; for all n and j. We first show that a, ; satisfy the
recursion relations (7.32), which gives a description of a1, ; in terms of a, ; and
an, j—1. We can directly check aj o = b1,o = 1. Then by an induction on 7, it suffices
to show b, ; also satisfies (7.32).

Now we derive (7.32). It is easy to check that

Fn+1,n+1,X)=¢B3 " ' X)Fe(n,n, gX) + (=1)"a(n+1).  (7.29)
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Plugging (7.28) into the above formula and applying Lemma 7.14, we obtain

n
Zan+l,jhe(n +1,j,X)
=0

n—1

=q' (" X)) an jhe(n+1,j+1.X)

j=0
+ (—D"a(n+ Dhe(n,n — 1, X). (7.30)
Let
. n n+j+2 n—1 if j is even,
s =_+ +1_7: 2.77,1 7.31
v p=131+n SRl Y S U} i is odd. (731

Then Lemma 7.14 and (7.30) imply
n n—1
Y anrijhen+ 1,7, X)=) an jq" " he(n+1, j, X)
=0 j=0

n
+Y (=" ay j1g" " Phe(n+ 1, j, X)
j=1

+(=D"a(n+ Dhe(n+1,n, X).
That is

an+1,0 =¢q" an,0,
g1, =q""Day j+ (=1 g7 0T Vay ;g 0<j<n, (7.32)
Ap+l,n = qy(n’”_l)an,n—l + (=D a(n+1).

n(

-1
Now we compute b, ;. A direct computation shows that b, o =¢q 2 ). In the
following, we compute b; for j # 0.
For r =0, we have

hé (I’l, 07 X) if nis Odd,

,O,X = 707X = i i
ge(n )= fi(n ) he(n,0,X) + (1 — )he(n, 1, X) ifn is even.

Now we assume r # 0. Recall that by Lemma 7.13, we have

gen.r,X)= Y m(UP, US)ge(r.r, X).
ez3e{*l1}
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Notice that when n — r is odd, h¢, (n, r, X) is independent of €;. Then a direct calcu-
lation using Lemma 7.15 and the formula for m (U, pin Uy) gives

gé(n7rs X)

o |2 ifn=r—1=1(mod2),
=a@he(n,r, X\)m(Us, Uy) | 1+eq 2 (7.33)
—2e¢ ifn=r—1=0 (mod 2).
When n — r is even, we have
hey(n,r, X)=(g"T X — €e)he(n,r + 1, X). (7.34)

So a direct calculation gives

gé(n’r’ X) =0((r)h€(n,r + 17 X)m(UrEa U;f)

ntr ntr m(U"¢,U¢)
2 X —-1+(-D"qg 2 X+1)———=2 7.35
x(q (=1)"(q AT (7.35)
We have by Lemma 5.18
m(Ur—e’ U;) 1 _qf% 1 . ifn=r=1 (mod 2),
= n—r l—eq 2 :
m(UE, US) l44¢ 7 # ifn=r =0 (mod 2).

The equation (7.34) gives
Xhe(n,r+1,X) = qinTH(hE(n, rnX)+he(n,r+1,X)).
So when n =r =1 (mod 2), we have

ge(narvx)
€ € q_% q_%_l
=2a(r)mU;,U,))| ——=hem,r,X) + ——=h@m,r+1,X)|,
14+qg 2 1+q 2
and when n =r =0 (mod 2) and r # 0, we have
gE(nﬂraX)
_ 2a(r)m U, UY)
(I+q~ 7)1 +eq™?)

x ((1 +eqg Dhe(n,r, X)+(1—q~ 7)1 —€q Dhe(n,r + 1, X)).

In summary, we have the numbers b, ; for j # 0 are given by the following.
If n and j are odd, then

- w—pe—j-n  m(US,UY)

buj=2-7q T (D5

n—j

l+g 7
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If n is odd and j is even, then

. (= n—j—1)
by j =2(—1)1 g "

5 (ot(j)q‘%. (U U — el — (g~ F — 1)

P m(Uj_l, U,f)) .
1+eq™ I+q 2

(S

If n and j are even, then
. (n—=j)n—j—=1) n
L 2D (Ut eq?)
n,j: n—1 T
(1+q )1 +eq?)

If n is even, then for j = 1 we have

m(U$, UY).

n(n

—1
bui=gq"T (1 —e+2eq~ " DymU}, US),

and for odd j > 1, by ; is equal to

21ty (===

n=ig(i — (1 —a—"F1 — g~
« (eaymue, ue 4 L200 = DA~ 4 W —eq 2D e u9).
_n—j+l _izt J n
A+g 2 )d+eqg™ 7))

Using the explicit formulas, direct calculation shows that b, ; satisfies (7.32).

From now on, we assume ¢ # 0 and let m = n — ¢t. The proof is essentially the

same as the proof of Lemma 7.15 and we only prove the case that # is odd and m is
even in detail. According to Lemma 7.13, we have

m(n,t)

(n=r)(n—r—1)
D 0ag T g g mr X)
r=0

m(n,t)
(n—r)(n—r—1)
=Y (=Dg T ¢ > mUUDgerrX)
r=0 e3e{£1}
(=m)(ntm—1) mn.) (m=r)(m—r—1)
=q 2 Y (=D'qg 2 ) mUSUbgerrX).
r=0 eze{x1}

Assume that n is odd and m is even. Factoring out h¢, (n,m, X), replacing X by
q X , and apply Lemma 7.15, we have that (7.27) is equivalent to

m
(n—m)(n+m—1) (m—=r)(m—r—1)
q 2 > (=D'g T Y mUS, Uhe(r)gl, (m,r, X)
r=0 eze{*1}

=F'(n,m, X), (7.36)
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where
ce3(qg T X —ee3) - [T} . (@*X>—1) ifrisodd,
- 2

/
8e(m, 1, X) =
“ 631—[( r+2 (@*X>-1) if 7 is even,

and

2
F/(n,m, X) _ q"(ﬂ2 D l_[(qZZXQ)'

Since g.(r,m, X) forms a basis of the space of polynomials with degree < m, there
exists unique tuples (a;) and (b;) such that

m m
LHS of (7.36) = Y "ajg.(m. j. X), RHSof (7.36)= Y "bjg.(m, j, X).
j=0 j=0

It suffices to show that ag = by and both (a;) and (b;) satisfy the following recursive
relation for 0 < r <m:

0 if r is odd,
qur+2_1 (737)

ar = . .
g—gr dr=2 if r is even.

We derive the recursive relation for a; first. Notice that

gl(m,r,qX) = (g""*X* — Dgl(m,r +2,X).

Moreover,
—r4l / /7 . .
-1, X)— X f

Xgl(m,r, X) = f]_i2 (e/ge(m,r , X) ,ge(m,r, )) 1 r?sodd,
q 2(eg(m,r —1,X) + g (m,r, X)) if r is even.
g~ "D (qgl(m,r —2,X)

X2glm.r.X) =13 +elqg—Dglm,r—1,X)+gL(m,r, X)) ifrisodd,
g " (ge(m,r —2,X)+g.(m,r, X)) if r is even.

Hence if m is even, then

gé(m’raqX)
q" gl (m,r, X) +€e(qg— g™ " lgl(m,r + 1, X)

=1 +@" " =Dglm.r+2.X) if r is odd,
q" T glm,r, X)+ (g™ — Dgl(m,r+2,X) if 7 is even.

Hencefor 1l <r <m+1

(7.38)

" — "y, ("~ Da,_s if r is odd,
ar elg—Dg™ "ar_1 + (" "2 = Da,_» ifriseven,
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with a,,4+1 = 0, which implies (7.37).
Now we compute b;. First, when r =0,

> m(UP, UgHgl,(m. 0, X) = egl(m, 0, X).
eze{£1}

Forr #£0,

> mUS. UL, (m.r. X)
ese{E1)

B —2em(UE, UpH)gl(m,r +1,X) if r is odd,
N emUY, Uy —mU, Uy gl(m,r, X) if ris even.

Then
b — 0 if r is odd,
T a._,+a, ifriseven,
where
r (m—r)(m—r—1) € €1 . .
—2(—-1)"q 2 a(r)em(U;_,Uy) ifrisodd,
(n—m)(n+m—1) M=) (1 —r—
a,=q 2 (—l)ra(r)q( ==t
x e(mU}, Ugh) —mU", Uyl)) if r is even.

Finally, a direct calculation shows that ag = by = €q ne and b, satisfies (7.38). [

7.6 Proof of Theorem 7.1

Now we are ready to prove Theorem 7.1.
Recall that

, Pden’(I,,, L)
Pden' (L) = ————,
Pden(/,, I,,)
and
Pden(ly,, Ip) = 2a(n)l(n),
where I (n) is defined in Lemma 7.7.
We first assume that L = H/ @ Ly with j > 0 where L1 = I,,, ;& L, is an integral

lattice of rank n1 and type ¢t > O (the other non-integral cases were taken care of in
the summary of the proof at the beginning of this section). By Lemma 5.13, we have

j-1
Pden’(I,,, L) = 2( [Ta- q”))Pdenun, Li.q¥).
=1
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It suffices to show Pden(/,,, L1, qzj) =0. By Theorem 6.1 and Lemma 7.11, we have

ni
Pden(ly, L.q*) =) Pden" ~'(1, . L.¢*)

i=0
o n r (i—=n 9]
_ 1= i SEDEEED Gy
—fem,nozz(l._r) g
r=0 i=0 q
cge (ny,my —t,1,q7 7). (7.39)

Notice that the assumption ¢ > 0 implies that r <nj —t <n; — 1. Hence g¢, (n,n
t,r, X) is a polynomial of degree n; —r — 1 by Lemma 7.15. Then we may apply
Corollary 5.25 to conclude

ni

nt—r . (i—r)(i—-r=1)
Z(l.l_r) ()" T T g (o — 1 rg 2 ) =0,
q

i=0
Hence

2(THZ - )

Pden’ (L) =
Pden(7,, I,,)

Pden(I,, L,q" ") =0.

Next, we assume L = I,,_; & L, is integral of rank n and type ¢ (Cases (2) and (3)
or equivalently Case (b) in the summary of the proof at the beginning of this section).
Similarly, by Theorem 6.1 and Lemma 7.11, we have

n—1
Pden’(1,, L) = Z(Pden"—" Y (I, L)
i=0
m(n,t) n—1 Goryimr—1)
_2[ (l’l) Z Z( ) ( 1)}1 1+l+rq72 qu
r=0 i=0
e (n,n—t,r,q7"). (7.40)

Here, recall that m(n, t) := min{n — ¢, n — 1}. Applying Corollary 5.25 as before, we
have

n

n—r ;o U=r)(i—r=1 ;
Z(l._r> D' =D""g T ¢ g (n—t,r,g7) =0.
i=0 q

Hence,
m(n,t)
(n—r)(n—r—1)

Pden'(I,, L)=2Ic(n) Y (=1)'q = ¢ gq(.n—t.r.qg”").
r=0
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By Lemma 7.16, if ¢ # 0, then

m(n,t)

- (n—=r)(n—r—1) rt —n
Z(—l)q T q" - gq(n,n—t,r,q7")
r=0

=F61(nvn _tsq_n)

-1
[T,2,(1—q*) if ¢ is odd,

=a(n)- ! L
(1—ee1g)[[7_; (1 —¢*) iftiseven.

Notice that if 7 is even, then X(I,fl_,)x(Lz) = €. Hence ee; = x(L7).
If t =0, then by Lemma 7.16,

m(n,t)

(n—r)(n—r—1) _ _
Y=g T ¢ g nrg")=Feq(nn.g™"
r=0

1 ifnisodd,

=a(n) -
() 0 ifniseven.

This proves the theorem.

8 Fourier transform: the analytic side

In this section, we study the partial Fourier transform of the vertical part of the ana-
lytic side following Sect. 8 of [21]. The main result is Theorem 8.2.

Definition 8.1 For a non-degenerate lattice LPcVofrankn —1,and x € V \ L'},
we define

aDenys y(x)= Y dPden(L')1(x),
L°cL'cL’?
L'°¢Hor(L")

where L' =L’ N L;.

Theorem 8.2 Let L” C 'V be a non-degenerate lattice of rank n — 1, and let W =
(L;)J- be the perpendicular space of L; in V. Recall the partial Fourier transform

aDeniW(x)zfk dDenys 4 (x +y)dy, x €W\ {0}.
: L

F

Then BDenJL‘[, v (x) is constant on W=\ {0} and is zero for x € W<0,

Proof Tt suffices to show that if val(x) > 0, then

8Denib)7/(x) - BDeni,j/(rr—]x) =0.
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By definition, we have

dDen, , (x) = f ) Z dPden(L) 1. (x + y)dy,
Lr percrs
L'°¢Hor(L")
where L' runs over lattices of rank 7 in L?, + (x).
Recall that Pr;» denotes the projection to L[}. We rewrite the summation based
F
onL'N L; and Pr » (L'). For lattices L'> ¢ L'’ in L; of rank n — 1, let
F

Lat(L*, ") :={L'cV|L'nL), =L", Pr» (L) =L"}.
F
Then by Lemmas 7.2.1 and 7.2.2 of [20], we have

aDenthj/(x) = Z Z Z BPden(L’) /LD 1y (x+y)dy.

L'cL” _ L'°cL’ LeLa(L’L')
L’’¢Hor(L") L'° /L'’ cyclic

Here we can switch the order of the sum and integral because there are only finitely
many nonzero terms in the sum for a fixed x. Since L”/L" is cyclic, it has a generator

= L}. Moreover, for L’ € Lat(L'®, Z’b), we can write L' = L + (u) with u =
u’ + ut € V where 0 #* ut € W. Moreover, write x = au’ with & € F*, then

x+y=ocu+(y—ocub)€L/
ifandonly if¢ € O and y — au’ € L'’. As a result, we have

) . _ n
fb 1L,(x+y)_1L’(7T7])C+y)dy: VO](L )7 1f<x>_(u >’

L 0, otherwise.
Therefore, we have
dDeny; , (x) —dDeny, ,(x'x)=" Y vol(L)D(L")(x),  (8.1)
L’cL’®

L'°¢Hor(L")
where

DL = ) > aPden(L)

~ L’cL”  ule(x) generator
L' /L' cyclic /=L 4+ (u”+u™)

= Z aPden(L” + (u” + x)). (8.2)

ubE(L’b)n/L’b
val(u”)>0

Here the last step uses the fact that L' = L + (u” + x) is integral if and only if
u’ e (L'°)?/L'" and val(u”) > 0 (since val(x) > 0).
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It suffices to show D(L”)(x) =0 for any L’® such that L ¢ L’> and L'* ¢
Hor(L"). To show this, we write L'’ = I;! © Ly where L is of full type (of rank
n — 1 —np). Let us be the projection of u” to Ly. Then

(LY = (L)Y /L = L5/Ly and L+ (u”+x) =L + (uz +x).
We consider a partition of
(L3)°/La = ST (L) U S*(La) US™ (L2)

with

SH(Lo) = (T L) /Lo, S°(La) = ((xL5)° = (L5)*)/La,

S™(L2) = ((L5)° = (wL5)")/La.
Here, for a lattice L,

L°:={x e L |val(x) >0} and L°® :={x € L | val(x) > 0}.

In general, for a full type lattice L, we also define

(L) =@ L*®/L], pOL):=|((xL*° — (xL*)*°)/L|,

(8.3)
pw (L) = |((LH)° — (mL%)°)/L|.
For v € {£1}, let
nOV (L) == l{u € (TL*)° — (WL : x ((u,u)) = v}/L|. (8.4)

Since L' = L” 4 (uy + x) with u5 integral and val(x) > 0, it is not hard to check that

t(L")+ 1 ifup e ST(Ly),
t(LYy=1{:(L"" ifup € SO(Ly),
t(L"") —1 ifur e S™(Ly).

Set t = ¢(L"). There are two cases.
When ¢ is odd, we can write

L oL), ifu € S5 (L2),

L'=L"4 (uy+x) =
WtV e e itue s, (L),

In both cases, a simple calculation gives
x (L)) =€e;.
For ¢ > 1, by Theorem 7.1,

t—1_

1
2
dPden(L)) = (1 —ee1g'7) [] (1 -4
=1
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t+1 t—1 .
(1—e€erg 2 )1 +eerqz) ifuyeST(Ly),
1 +eeig ™ if uy € S°(Lo),
1 if up € S7(L»).

For t =1, S™(L) is empty and L” ¢ Hor(L") implies that L' = Ly} & L} with
X(L’z) =1, 1i.e. €] = €. In this case, by Theorem 7.1,

1—q ifueST(Ly),

dPden(L’) =
(&) 1 ifu e SO(L»).

Hence by (8.2), we have D(L") =0 if

1 =1 =1 _
(1—eeig 7 )1 +eerg 2 )H)ut(La) + (1 +ee1g 2 )u’(La) + 1™ (L) =0. (8.5)

When ¢ = (L") is even, L ¢ Hor(L") implies that r > 0. Moreover, if u; €
S9(L,), we have a decomposition (since uy € L is perpendicular to I,fll)

L'=L"++x)=1; &z +x) S L)
for some full type lattice L), of rank 7. Then a direct calculation gives
x(Ly) = (=D)"erex (u2).

So we have by Theorem 7.1,

i (1-4" if us € S*(Lo),
oPden(L’) = [ (1 —¢*)- {1 = (=)"erexuq®  ifuz € S°(L),
=1 1 ifur € S~ (Ly).

Hence by (8.2), we have D(L") =0 if
(=gt (Ly) + (1 — (=) ereq)u® (L)
+ (1 + (=DM ereg®)u® " (L) + 1~ (Ly) =0. (8.6)

Now (8.5) follows from Proposition 8.7 and (8.6) follows from Proposition 8.9.
Hence we have D(L"”) = 0 for L’® such that L” ¢ L’® and L'” ¢ Hor(L"). Now the
theorem follows from (8.1). O

To complete the proof of Theorem 8.2, we are left to state and prove Propositions
8.7 and 8.9.

Definition 8.3 Let L and L’ be lattices of full type such that L ¢ L’ ¢ 7~ 'L. For
[ {+a 0’ ) {07 +1}7 {Oa _1}}’ define

(L, L'y :=pu (L) — [L': LIn* (L),

where ,u?(L) is defined in (8.3) and (8.4).
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Lemma 8.4 Let L be a full type lattice of rank t. Then
pHL)+ L) +um (L) =¢" - nF (D).
Let L and L’ be full type lattices of rank t such that L C L' C w~'L. Then
wH (L LY+ (L L) +pu (L L) =q"-uT(L.L).
Proof 1t suffices to show that the following map
(LY°/L—(wLH)°/L, x+> 7x

is surjective and every fiber of this map has size ¢’. For x € (7 L?)°° = n(L%)°, the
fiber at x is

(' y+x)e@hH°:yel).
Since x € w(L%)°,
4+ x) e (LP)® = (y+x)en(lh)® « yen(Lh°.
Moreover, the assumption that L is a full type lattice implies that L C 7 (L")°. Hence
r '+ e yel)=ILI=¢".

This proves the first statement. The second statement follows from the first and the
definition of u’(L, L'). O

Definition 8.5 Let L be a full type lattice of rank . We call L maximal of type ¢ if
forany L’ with L C L' C L, we have 1 (L') < t.

Lemma 8.6 If L is non-maximal full type lattice of rank t, then there exists a L' such
that LC L' c n~'L and

(L, L)+ p (L, L)y =q-pu* (L. L).
Proof We need to finda L’ suchthat L ¢ L’ c #~!L and

[((TL*)° — (xL'°)/Ll = q - |(xLH)*° — (wL'%)*°)/L|.

Let (ay, ..., a;) be the fundamental invariants of L. We consider two cases separately.
(i) If a; is even and a; > 4, then we may choose a normal basis {1, ..., {;} of
L such that (£1,...,0;,_1) L £;. Write (¢;,4;) = ut(—no)Tt. In this case, we choose
L' ={,....4_1, n_lﬁt), with fundamental invariants (ay, ..., a;—1,a; — 2). Then
Lt = (@9t %1, and
gL't =m0ty gy a2y,
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For a fixed xo = Y, _, sim ~“T1¢; where s; € OF, let

So i={x e (@L")° — (xL'"")° :x =xo+ 5,74, 5, € OF}/L,

Sy =1{x € (LH°° — (xL'H° i x = xo+ i 4, s, € O}/ L.
It suffices to show [Sy | = g - |3 |. Notice that x = xo +smatly, e Sy, if and only
if

a1, —1 a _q -
st €0F,  (x,x)=u;(—=m0)” 2wy (—m0) T 7 (x0, x0) + 5:5;) € Op,

and x € S7° if and only if

st € 0%, (x,x) =u;(—70) " 2 T w;  (—70) T (%0, X0) 4 5:5,) € (70).

Consider the m-adic expansions

o0 o0
. B o ,
si=Y biw',  —u; (=m0) T (o, x0) = Y cimt’,

i>0 i>0
where b;, ¢; € OF, /(o). Then x € S;’O if and only if 5; € 0;, and

co =b(2),
¢y =b1bg — boby,
¢2 =byby — b1by + boba,

a;—3
ca-3= ) (=1)'by3-ibi.
i=0

Similarly, x € S if and only if x € S7 and

ar—3
Cay—2 — Z (—1)'bg,—2—ibi = 2bg,—2bo.

i=1

Since s; € O, by # 0 and b,,—» is uniquely determined by the above equation.
Hence |S7 | = ¢ - |S3;| as aresult.

(i) If a; is odd (since L is non-maximal, a¢; > 1 in this case) or a, = 2,
then we may choose a normal basis {{1,...,¥¢;} of L such that the moment ma-

ag

trix of {{;—_1,¢;} is H,,, where H, := <(_2)af ]TO ) We may choose L' =
1,.... 40, 7 le,_, £,) with fundamental invariants (ay, ...,a;—2,a; —1,a, —1).
In this case,

aLf = (z 9y, . 7% T, and
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aL'f = (mm gt a2,
For a fixed xo = Y, _,_; siw % +1¢; where s; € Op, let

S;o ={xe (ﬂLu)o - (nL/ﬁ)o X =X0 +St—l777at+1£t—1 +Stﬂ7a’+1£n
where s;_1, 5, € Or}/L,
Spoi={x € (ML) — (x L' ix =xo+ sy + s ey,

where s;_1,5; € Op}/L.

It suffices to show [Sy/| = ¢ - |Sy)]. Notice that x = xo + siom T4t
spratly, e Sy, if and only if

si€0F,  (x,x) = (x0,%0) + (515 + (=DU§_1s) (=) Tx =4 € Op,,
and x € S7° if and only if

st € 0%, (x,x) = (x0,%0) + (5—15 + (= D515 (= 1)~ Tz =4F2 ¢ (7).

Write
o oo o0
sci=Yy b, si=Y e, —(=D“ w2, x0) =) _din,
i>0 i>0 i=0

where b;, ¢;,d; € O, /(7). Then x € S;g if and only if x € S;’O and

dg,—2 + 8 =—2by,_>cp,

where § is certain expression involving by, ..., bs,—3 and cq, ..., cq,—2. Since s; €

0;,-(, co # 0. Hence, for any given S, the number of choices of b,, _; is determined if
oo o | __ oo

x € Sy0. Asaresult, [S7 =g - S5 O

Proposition 8.7 Assume that t > 1 is odd and L is a full type lattice of rank t. Then
for any x € {1}, we have

i+l =l =19 —
I=xqg2)A+xg2)Hu L)+ A+ xqg 2 )H)u (L) +p~ (L) =0.

Proof We prove this for maximal L first. We can choose a basis {£1, ..., £;} of L with
t—1

1
moment matrix Diag(H, 2 Ju;(—mg)). Set Ly = (£1,...,4,_1) and Ly = (¢;). Then
we can directly compute that

rLH° =L, @LHY=Lior'L,, (IH°=r"'Lior"'L,.
Hence

wt(L)=|@LH°/LI=1, p’(L)=|((wL)° — (xLH)*°)/LI=q — 1,
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and
w (L) =|((LH° — (xL%)°) /Ll =q" —q.
As aresult,
i+l =l =19 —
IT=xqg2)d+xg 2" L)+A+xg 2 )Hw (L) +npn (L)

ol =t =t
=(-xq2)d+xqg2)+U+xqg2)g-1)+q" —q
—0.

Now we assume L is not maximal and the proposition holds for L’ such that
L C L' by an induction on val(L). With this assumption, it suffices to show

t+1 t—1 t—1
(1= xq )+ xq Tt (L. L)+ 1+ xg THu’(L. L)) +u~ (L, L) =0,
which follows from a combination of Lemmas 8.4 and 8.6. O

Lemma 8.8 If L is non-maximal full type lattice of rank t, then there exists a L' such
that LC L' C 'L and

pnO @, Ly =p® (L, L.
Proof Let

8V i={x € (WLH° — (wLH)*°) — (wL'")° — (A L'%)*°) : x ((x)) = v}/L.

We need to show |ST!| = |S~!|. Let {¢1,..., ¢} be a normal basis of L, and let
{ai,...,a;} be the set of fundamental invariants of L. We consider two cases sepa-
rately.
(1) If a; is even and a; > 4, then we may choose a normal basis {£1, ..., {;} of

L such that (€1, ...,€,_1) L ¢. In this case, we choose L' = ({1, ..., 41,7 1¢,),
with fundamental invariants (ay, ..., a;—1,a; — 2). Then

aLf = (@9t %1, and

gL't = (matlyy gy gt 2y,

For a fixed xg = Zl§i<t s;iw %L, where s; € OF, we set
Sy i={x € (WLF)° — (T LH*°) = (xL'H)° = (x L'H)*°) :
x=x0+sm T, s, € Op, x((x)) = v}/L.

We need to show |S;F1 = [S. . Write (¢, €;) = u;(—70) 7 . Notice that x = xo +
sty e Sy, if and only if

st € O, (x,x)eO?O, x((x,x)) =v. 8.7)
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Notice that
_ 44l 1 a | -
(x,x) =u(—=mo)” 27 (u, (—70)2" (X0, X0) + 5¢5¢).
Write
o0 o0
, _ @ .
si=y biw', and —u; ' (=m0)? T (x0, x0) = ) i,
i>0 i>0

where b;, ¢; € OF, /(o). Then the conditions in (8.7) are equivalent to the following
equations:

co=b3 #0,
¢y =b1by — boby,
c» =byby — b1by + boby,

ar—3
a3 =Y (=1)'bag,3-ibi,
i=0
ar—2
v= g (=m0 F (= 2+ Y (<D bo2-iby) ).
i=0

Since a; is even by assumption, the last equation is the same with

a;—3

v= 1 (=) EF (= g2+ Y (<1 by —2-ibi + 2boba,2)).

i=1

Notice that the possible choices of {by, ..., bs,—3} are determined by the first a; — 2
equations. And for a given choice of {bo, ..., by, —3}, the number of choices of b, —»
that satisfies the last equation is clearly independent of v since by # 0.

(i) If a; is odd or a; = 2, then we may choose a normal basis {{1, ..., £;} of L such

ag
that the moment matrix of {¢;_1, ¢;} is H,,, where H,, := ((_](.),)at 7r0 ) We may

choose L' = {£1,...,4;_2, n_lﬁt,l,ﬁt) with fundamental invariants (ay, ..., a;—2,
a;—1 — 1,a; — 1). In this case,

aLf = (@9t 4%t and
gL't =m0ty gty Tty
For a fixed xo = Y"1, st we set
Siy = {x € (TLF)° = (WLH)*™) — ((WLF)° — (xL'H)*) :

x=x0+ s 41 g mm ety
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Si—1,8: € O, x ({x)) = v}/L.

It suffices to show |S;51| = ISX_OII. Notice that x = xo + s,z %-1tle, | +
sim e € Sy if and only if

S € OX,

(x, X) = (x0, %0) + (515 + (=515 (=)™ a4 c0f (88

x((x, x)) =v.
Write
o oo oo
sici=Yy b, si=Y e, —(=D“ w2 (x, x0) = Y _din,
i>0 i>0 i=0

where b;, ¢;, d; € OF,/(mp). Then the condition in (8.8) is equivalent to the following
equations:

do = boco + (=1)“ boco,
di = bico — boct + (—1)“ (—b1co + boco),

V= X((—l)az—ln—aﬁ—Z( —dg 2+ S +2ba,_zco)),

where S is certain expression involving by, ..., b, —3 and ¢y, ..., cq,—2. Since s; €
0;, co # 0. Hence, for any given S, the number of choices of b,, > that satisfies the
last equation is clearly independent of v. g

Proposition 8.9 Assume that t > 1 is even and that L is a full type lattice of rank t.
Then for any x € {£1}, we have

(A —g"ut (L) + (1 — xg )+t (L) + (A + xg)u® (L) + n~ (L) =0.

Proof We prove this for maximal L first. There are two cases we need to consider.

t
. . . o [
(i) If we can choose a basis {{1, ..., ¢,;} of L with moment matrix Dlag(Hl2 ,
u;—1(—mo), u; (—mo)) where x(—u;—ju;) = —1, then set Ly = (£q,...,¢,—2) and
Lr = (€;_1,¥;). In this case, a direct computation shows that

@LH® =L, @LH=Li®r 'Ly, L =r""L.
Hence
ut(L)=|@LH™/LI=1, p (L)=|(LH° = (xL)°)/LI=q"—q¢*. (8.9)
Moreover,

uO (L) = [{(x,y) € Ff — (0,0) | x (ur—1x> +ury*) = v}|.
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It is well known that
{(x, y) € Fy = (0,0) | u—1x” +uyy> = 1} =g — x(—u—1u) =g + 1.
Hence

q>—1

pH L) =pt T (L) = "

(8.10)
Combining (8.9) and (8.10), we have

(A —gHut (L) + (1= xg)p® (L) + (A + xg )~ (L) + p~ (L)
=(1—g)+ (@ -D+(q —g¢*>=0.

'
(ii) If we can choose a basis {£1, ..., £;} of L with moment matrix H;’, then we can
directly compute that

(LH° =L, @LH°=L, LH°=r"'L.
Hence
phLy =L/l =1, p’(L)=0,
uo(L)=|((L° = (xLH°)/LI=¢q" — 1.
As a result we have

(=g ut (L) + (1 = xg ) (L) + A+ xg)Hu® (L) + (L)
=(1—-¢g"H+(q —-1)=0.

Now we assume L is not maximal and the proposition holds for L’ such that
L C L' by an induction on val(L). With this assumption, it suffices to show

(A —g"Hut (@, L)+ — xqg)u® (L, L)
+ (I +xg)Hu "L, L)+~ (L, L)) =0,

which follows from a combination of Lemmas 8.4 and 8.8. Il

9 Proof of the main theorem

We prove the main theorem in this section by an induction on val(L) using the results
we obtained about the partial Fourier transform in previous sections.
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9.1 Comparison of horizontal intersection numbers

Lemma9.1 Let L CV be a lattice. If L = L1 & Ly where L is unimodular, then
Int(L) — dDen(L) = Int(L;) — dDen(L>).

Proof The lemma follows from comparing (7.3) with (2.12). O

Definition 9.2 Let L” C V be a non-degenerate lattice of rank n — 1, and x € V \ L'}.
Define

aDenyy s (x)= Y dPden(L))1 (). 9.1)
Lcl'cL't
L'’ eHor(L")
Lemma 9.3 If L” C V is horizontal, then
Int; p(x) =0Denps sp(x),

where Int;» p is defined in Definition 4.7.

Proof Let L = L” @ (x). By Lemma 4.9, we know
Int;» s (x) =Int;p(x) = Int(L). 9.2)

On the other hand, since L’ is horizontal, by Lemma 4.2 any integral lattice of rank
n — 1 containing L" is horizontal, hence we have

dDenp» 4 (x) = dDen;»(x) = dDen(L). 9.3)

So it suffices to prove Int(L) = dDen(L).

When n =2, by (9.2) and (9.3), the lemma is a consequence of [29, Theorem 1.1]
and [9, Theorem 1.1]. When n > 2, L’ has a unimodular direct summand L of rank
n—2suchthat L=L;& L, and L; =Ly N L' is a horizontal lattice in Ly r. The
lemma follows from the case n = 2 and Lemma 9.1. O

Lemma 9.4 Ibe C V is horizontal, then

)((./\/,H“Z(Mb)O - Z(x)) = Z oPden(L" )1/ (x),
MPcL'cL'®
L/b:Mb
where “Z(MP)° is as in Definition 4.5.
Proof By Definition 4.7, we have

Intyp () =x N MZMP)°- 20D+ Y. xW B2 2(x). 94)

L'’ eHor(M")
L’b;éMb
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We now prove the lemma by induction on val(M”). When M” is unimodular, the
lemma is the same as Lemma 9.3. In general notice that any integral lattice of rank
n — 1 containing M" is horizontal by Lemma 4.2. Applying the induction hypothesis
to the right hand side of the above formula and applying Lemma 9.3 to the left hand
had, we obtain

> 9Pden(L)1p(x) = x (W “Z(M")° - Z(x))

M°cL'cL?
L'’ eHor(M")

+ ) 9Pden(L)1p(x). 9.5)

M"CL/CL/V
L’b#Mb

Subtract the left hand side by the second term of the right hand side of the equation,
the lemma is proved. g

Theorem 9.5 For a non-degenerate lattice L” C V of rankn — 1, and x € V'\ Lk;, we
have

Il‘ltLb“yf(x) = 8Deanjf(x).
Proof By the definition of Int b, 7 (x), we have

Int;p p(x) = Z XN, EZ(M%)° - Z(x)).
MPeHor (L")

The theorem now follows from (9.1) and Lemma 9.4. O
9.2 Proof of the main theorem
The following is an analogue of Lemma 9.3.1 of [21].

Lemma 9.6 Let L” C V be a non-degenerate lattice of rank n — 1 and W = (L;)J‘.
For x ¢ L" ©'W, there exists an O -lattice L'’ of rank n — 1 and x' € V such that

val(L'") <val(L”) and L'” + (x") = L” + (x).

Proof Assume that L” C V has fundamental invariants (a1, ..., an,—1). Let {£1, ...,
£,_1} be a basis of L’ whose moment matrix is

: b by
Dlag(Hblvag,’~~"Hb2X,1’u2S+17T 25+1:'~7un7177 " I)v
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J
where by, ..., by;_j are odd and H; = <(—701)j 76 ) Notice that {by, ..., b,_1} =
{ai,...,an—1}. The moment matrix of {£{,...,£€,_1,x}1s
Hp, (L1, x)
T= , :
Uyt (ly—1,x)
(x,€1) - (x,lp-1) (x, x)
Assume (aj, ..., ay,) is the fundamental invariants of L+ (x). According to Lemma

2.23 of [19], ai + -4 al’z_1 equals the minimal valuation of the (n — 1) x (n — 1)
minors of 7.

Write x = x” + x1 where x° € L; and xt e W. If xP ¢ L, then we can write

xP = Z?;}aﬂj where o; ¢ OF for some i. First, we assume «; ¢ O for some
i <2s. The valuation of the (n, i)-th minor of T (removing n-th row and i-th column)

equals to

valy ((€ix1,x)) —b; + (b1 +---+b,_1) ifiisodd,
val; ((¢;i—1,x)) —b; + (b1 +---+b,—1) 1ifiiseven.

Since «; ¢ Of, we have val; ((£;4+1,x)) < b; if i is odd and val, ((¢;_1, x)) < b;
if i is even. In particular, i, a} < Z;’_% a j Now if we choose a normal basis
{€,,..., 0.} of L” + (x), then L'* = (€¢),....,€,_} and x" = ¢, satisfy the property
we want.

Now we assume «; ¢ O for some 2s < i <n — 1. The valuation of the (n, i)-th

minor of T equals to
valy (¢;, x) — b + (by + -+ + by—1).

Since a; ¢ OF, val; (¢;,x) < b;, hence Z'} } ; < Z";{aj. Now if we choose a
normal basis {’, ..., €/} of L” + (x), then L'” = (€),....€,_,}and x" = £, satisfy

the property we want. g

For any L, we can write it as L” + (x) where L” is a non-degenerate hermitian O p-
lattice of rank n — 1, and x € V'\ L. Therefore, in order to show Int(L) = dDen(L),
it suffices to show the following theorem.

Theorem 9.7 Let L” C V be a non-degenerate lattice of rank n — 1. For any x €
VA L;, we have

Int;»(x) = dDenyp (x).
Proof For x € V \ L?,, let ®;5(x) = Int;p(x) — dDenys»(x). We need to show
®,,(x) = 0. We prove the theorem by an induction on val(L"). If L” is not integral,

then Int;» (x) =0 as Z(L) is empty by Proposition 3.20. Moreover dDenj»(x) =0
by Corollary 7.2. Hence the theorem is true in this case.
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Now we assume L° is integral. By induction hypothesis and Lemma 9.6, we may
assume supp(®;») C L® ®W where W = (Liv)l. Since & (x) is invariant under
the translation of L”, we may write

@0 () =170 ® pw (1), 9.6)
where ¢yy(x) is a function on W \ {0}. Then we have by definition

@7, = vol(L" ).

Theorem 9.5 implies that
(I)Lb (.x) = (DLb’fy/(x) = IntLbyfy/(x) — 8Dean"V(x).
Hence
b _oal
vol(L”)pw = dDLM/. .7

By induction on the rank of L and Lemma 9.1, we may assume ®;,(x) = 0, hence
¢w(x) =0 for x € W=0. Combining this with the non-integral case, we know
dw(x) =0 for x € W=0. As a result, we have CDt) 4 (x) =0 for x € W= by (9.7).

By Theorem 8.2 and Theorem 4.16, we have d>JL-b V/(X) =0 for x € W20 \ {0}. Hence
Qib y(x) =0 for all x € W \ {0}. Consequently, ¢y (x) = 0 by (9.7). Il

Combining this theorem with Theorem 4.15, we have the following corollary.

Corollary 9.8 Let L> C V be a non-degenerate lattice of rank n — 1. Then
dDenp» 4 (x) € <5”(V)Z_l is a Schwartz function.

10 Global applications
10.1 Shimura varieties

In this section, we switch to global situation and will closely follow [27] and [28].
Let F be a CM number field with maximal totally real subfield Fp. We fix a CM type
® C Hom(F, @) of F and a distinguished element ¢y € ®. We fix an embedding
Q = C and identify the CM type ® with the set of archimedean places of F, and
also with the set of archimedean places of Fy. Let V be an F/Fy-hermitian space
of dimension n > 2. Let V, = V ®p ¢ C be the associated C/R-hermitian space for
¢ € ®. Assume the signature of Vj is given by

(n—=1.1), ¢=¢o,

0T =00, ped\ (do).

Define a variant G2 of the unitary similitude group GU(V) by

GY:={g eResg, o GU(V): c(g) € Gpl,

@ Springer



812 Q. Heetal.

where ¢ denotes the similitude character. Define a cocharacter

hgo:C* = GUR)  [[ UV ®) > [ GUG4. rp)(R).
ped ped

where its ¢-component is given by
hgo 4(z) =Diag{z - 1,,,2 - 1,;}

under the decomposition of Vj into positive definite and negative definite parts
Then its G(R)- -conjugacy class defines a Shimura datum (G, {hge)). Let E, =
E(GQ ,{hgo}) be the reflex field, i.e., the subfield of Q fixed by {0 € Aut(Q/Q) :
o*(r) = r} where r : Hom(F, Q) — Z is the function defined by r(¢) =rgp.

We similarly define the group Z@ (a torus) associated to a totally positive definite
F / Fy-hermitian space of dimension 1 (i.e., of signature {(1, 0)yc¢}) and a cocharac-
ter h,q of ZQ. The reflex field Ep = E(ZQ, {h zq}) is equal to the reflex field of the
CM type @, i.e., the subfield of @ﬁxed by {0 € Gal(Q/Q) : 0 0 ® = P}.

Now define a Shimura datum (G, {hg}) by

G:=27%xg, GU={(z,8) € ZV x GL|Nmp /£, (2) =c(g)}, hg=(hzo, hgo).

Then G = ZQ x G where G = Res Foy@ U(V). Its reflex field E is equal to the com-
posite E, E¢, and the CM field F becomes a subfield of E via the embedding ¢y.
We remark that £ = F when F/Q is Galois, or when F = Fyx for some imaginary
quadratic «/Q and the CM type @ is induced from a CM type of x/Q (e.g., when
Fo = Q). Assume that K, g C ATY r) is the unique maximal open compact sub-
group, and K¢ =[], K¢.» where v runs over finite places of Fp is a compact open
subgroup of G(Ay). Let K = K0 x Kg C G(A 7). Then the associated Shimura
variety Shx = Shg (G {hg)) is a Deligne-Mumford stack of dimension n — 1 and
has a canonical model over Spec E.

10.2 Integral model

In this subsection we run through the set-up of [20, §14]. Let m = (m,), be a col-
lection of integers m,, > 0 indexed by finite places of Fy such that m, = 0 for all but
finitely many places and m, = O for all places v that are nonsplit in F. Let A be an
Or-lattice of V. Assume that for any finite place v of Fy (with residue characteristic
p), the following conditions are satisfied where ¥ : Q—>0Q p is an embedding that
induces a place v of E.

(GO) If p =2, then v is unramified in F.

(G1) If v is inert in F and V, is split, then A, C V, is self-dual and K¢, is the
stabilizer of A,. If v is further ramified over p and v is any place of E above
v, then the subset {¢ € @ : ¥ o ¢ induces w} C Hom(Fy,, @p) is the pullback of
a CM type ®"" C Hom(F})', @p) of F;'. Here w is the place of F' above v and
Fj' is the maximal subfield of F, unramified over Q.

(G2) If vis inert in F and V,, is nonsplit, then v is unramified over p and A, C V,
is almost self-dual, i.e., A% /A, is a 1 dimensional space over the residue field
of F,,. Moreover K¢, is the stabilizer of A,.
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(G3) If visramified in F, then v is unramified over p and A, C V, is unimodular.

(G4) If v is split in F and m, =0, then U(V)(Fp,,) = GL,(Fp,,) and we assume
Ay C Vyis self-dual. Let K, = GL,(OF,,,) be the stabilizer of A,.

(GS5) If v is split in F and m, > 0, then again U(V)(Fp ) = GL,(Fp,») and we
assume A, C V, is self-dual. Further assume that v splits into w and w in F
and all places v of E above v satisfy the following two conditions.

(a) the place v of E matches the CM type @ (in the sense of [27, §4.3]): i
¢ € Hom(F, Q) induces the p-adic place w of F (via ¥ : Q—=0Q p)s then
¢ d.
(b) the extension E,/E,|, is unramified, where E,|, is the local reflex field as
defined in [27, §4.1]. We remark that this condition holds automatically if
all p-adic places of F are unramified over p.
We remark here that condition (a) is automatically true when F = Fyk for
some imaginary quadratic «/Q and the CM type @ is induced from a CM type
of k/Q (e.g., when Fp = Q), or when v is of degree one over p. Let K¢, be the
principal congruence subgroup modulo 7, inside the stabilizer of A, where
7y 18 a uniformizer of Fop ,.

In the case when the above conditions are satisfied, we denote K by K™. Also denote
K™ by K° if m, =0 for all v. In other words K° C G(Af) is the stabilizer of
A ®of 19) r. Define the moduli functor M- as follows. For a locally noetherian
Opg-scheme S, M- (S) is the groupoid of tuples (Ao, tg, Ao, A, ¢, A, F) such that

(1) A (resp. Ap) is an abelian scheme over S;
(2) ¢ (resp. tp) is an action of Of on A (resp. Ag) satisfying the Kottwitz condition

of signature {(ry, rg)pea} (resp. {(1, 0)gea}):

charpol(t(a) | Lie A) = [ [ (T — ¢(@)"* - (T — §(a))"é (10.1)

ped

for any a € OF;

(3) A (resp. Ap) is a polarization of A (resp. Ap) whose Rosati involution induces the
automorphism given by the nontrivial Galois automorphism of F/Fy via ¢ (resp.
t0);

(4) F islocally a direct summand Og-submodule of Lie A which is stable under the
OF-action. Moreover OF acts on F by the structural morphism and on Lie A/F
by the Galois conjugate of the structural morphism.

We further require the following conditions to be satisfied.

(H1) (Ao, 10, %) € M}, where M = MS""* in the notation of [28, §4.1] (where (1)
is the unit ideal in OF) is an integral model of ShKZQ AN 7@) depending on
the choice of a similarity class & of 1 dimensional F'/ Fp-Hermitian spaces.

(H2) For each finite place v of Fp, A induces a polarization A, on the p-divisible
group A[v®°]. We require ker A, C A[t(w,)] and is of rank equal to the size of
Ag/ Ay, where @y, is a uniformizer of Fo ,.

(H3) For each place v of Fy, we require the sign condition and Eisenstein condition
as explained in [27, §4.1]. We remark that the sign condition holds automat-
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ically when v is split in F, and the Eisenstein condition holds automatically
when the places of F' above v are unramified over p.
(H4) We impose the Krimer condition on F as explained in [28, Definition 6.10].

A morphism (Ao, to, Ao, A, t, A, F) = (A, 15, A, AU, A, F') is a pair (fp : Ao —
Ay, f: A — A’) of Op-linear isomorphism of abelian schemes over S such that
) =, fFG) = ro, fx(F) =F'. Let Viam (resp. Vasq) be the set of finite places
v of Fp such that v is ramified in F (resp. v is inert in F' and A, is almost self-
dual). By [27, Theorem 5.2], the moduli problem M ko is representable by a Deligne-
Mumford stack over O which is regular and semistable at all places of E above
Viam U Vasd- The generic fiber of M ko is the Shimura variety Shgo. For a general m,
define M gm to be the normalization of Mo in Shgm. Then by [27, Theorem 5.4],
Mim is representable by a Deligne-Mumford stack over O which is regular and
semistable at all places of E above Viam U Vagq. Its localization at each finite place v
of E agrees with the semi-integral models defined in and [27, §4] or [20, §11].

10.3 Global main theorems

From now on we assume K = K™ and simply denote Mgm by M. Let V be the
incoherent Ar /A f,-hermitian space associated to V, namely V is totally positive
definite and V,, = V), for all finite places v. Let px € . (V’}’) be a K -invariant (where
K acts on V¢ via the second factor K ) Schwartz function. We say ¢k is admissible
if itis K-invariant and ¢k , = 1(a,)» at all v nonsplitin F'.

First, we consider a special admissible Schwartz function of the form

ok =) €SNV, @i=1lg, i=1....m, (10.2)

where ; C Vy is a K-invariant open compact subset such that €; , = A, at all
v nonsplit in F. Given ¢; € F and ¢;, there exists a unique special divisor Z(z, ¢;)
over M such that for each place v of E inducing a non-split place of Fy, the base
change of Z(z, ¢;) to Spec Of () agrees with the special divisor defined as in [20,
§13.3], and for each v inducing a split place of Fyp, it agrees with the Zariski closure
of the special divisor over the generic fiber of M. Then we have the following
decomposition (cf. [17, (11.2)]),

Z(t, o) NN Z (tm, Q) = |_| Z(T, k),
T eHerm,, (F)

where N denotes taking fiber product over Mg, and the indexes T have diagonal
entries f1, ..., ty.

Let T € Herm, (F) be a nonsingular F/Fy-hermitian matrix of size n. Given
(T, ¢k), we can define an arithmetic degree as follows. First, analogous to the lo-
cal situation (1.1), we can define a local arithmetic intersection numbers Intr ,(¢x)
for any place v of E. First we assume v is finite and let v be the place of Fy under v.
By the same proof of [17, Proposition 2.22], it suffices to consider the case when v is
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nonsplit in . When ¢k is of the form (10.2), define

Int7 ,, (pk)

=i L ET 000 Oz.6, @ -+ @ Oz0,,,) logqu. (103)
where ¢, denotes the size of the residue field k, of E,, Z(T, ¢x), and Z(¢, ¢;),
denote the base change to Og (), Oz, g, denotes the structure sheaf of the
Kudla—Rapoport divisor Z(¢;, ¢;), ®% denotes the derived tensor product of coher-
ent sheaves on M, and x denotes the Euler—Poincaré characteristic. For a general
admissible function ¢, we can extend the definition C-linearly. Using the star prod-
uct of Kudla’s Green functions, we can also define a local arithmetic intersection
number Int7 ,, (y, ¢x) at infinite places ([20, §15.3]), which depends on a parameter
y € Herm,, (Foo) >0 Where Foo = F ®g R. Combining all the local arithmetic numbers
together, define the global arithmetic intersection number, or the arithmetic degree
of the special cycle Z(T, gk) in the arithmetic Chow group of M,

degr(y. @) =Y _Intr,(px) + Y Intr,u(y, 9k).

vfoo v|oo

Theorem 10.1 Let Diff(T', V) be the set of places v such that V,, does not represent
T. Let T € Herm, (F) be nonsingular such that Diff(T, V) = {v} where v is nonsplit
in F and not above 2. Assume ¢ € Y(V’J’Z) is admissible. Then

degy (v, px)q" = ck - 9Eisr (z, 9k),

where g7 = Voo (Tr T2), cx = \Eo_l—(ll)(n) is a nonzero constant independent of T and
vol(K) is the volume of K under a suitable Haar measure. Finally, 0Eist (z, ¢k ) is
the T -th coefficient of the modified central derivative of Eisenstein series in (1.11)

Proof When v is finite and v ¢ Vigm U Vagq, the theorem is proved in [20, Theorem
13.6]. For v € V,4q, our definition of Intr ,, (¢ ) differs from that of [20, (13.5.0.14)].
Correspondingly on the analytic side, our definition of 0Eisr (z, ¢k ) is also modified,
see (1.9) and (1.10). However using [20, Theorem 10.5.1] instead of [20, Theorem
10.3.1], the proof of [20, Theorem 13.6] works the same way in this case. When v is
infinite, the theorem is proved in [22, Theorem 4.17,4.20] and independently in [7,
Theorem 1.1.2]. When v is finite and v € Vyam, the theorem is a corollary of Theorem
9.7 and can be proved in the same way as [10, Theorem 12.3]. g

We say ¢, € L (V7)) is nonsingular if its support lies in {x € V7 : det T (x) # 0},
see [20, §12.3] or [22, Proposition 2.1].

Theorem 10.2 Assume that F/Fy is split at all places above 2. Further assume that
ok is admissible and nonsingular at two places split in F. Then

deg(z, px) = cx - OFis(z, pk),
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where ae\g(z, k) is defined in (1.12). In particular, ae%(z, k) is a nonholomorphic
hermitian modular form of genus n.

Proof The theorem can be derived from Theorem 10.1 by the same way as [20, The-
orem 15.5.1]. O
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