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Abstract
We prove the Kudla–Rapoport conjecture for Krämer models of unitary Rapoport–
Zink spaces at ramified places. It is a precise identity between arithmetic intersection
numbers of special cycles on Krämer models and modified derived local densities
of hermitian forms. As an application, we relax the local assumptions at ramified
places in the arithmetic Siegel–Weil formula for unitary Shimura varieties, which is in
particular applicable to unitary Shimura varieties associated to unimodular hermitian
lattices over imaginary quadratic fields.
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1 Introduction

1.1 Background

The classical Siegel–Weil formula ([31, 32, 35]) relates certain Siegel Eisenstein se-
ries to the arithmetic of quadratic forms, namely it expresses special values of these
series as theta functions — generating series of representation numbers of quadratic
forms. Kudla ([13, 14]) initiated an influential program to establish the arithmetic
Siegel–Weil formula relating certain Siegel Eisenstein series to objects in arithmetic
geometry, which among others, aims to express the central derivative of these series
as the arithmetic analogue of theta functions — generating series of arithmetic inter-
section numbers of n special divisors on Shimura varieties associated to SO(n−1,2)

or U(n− 1,1).
For U(n− 1,1)–Shimura varieties with hyperspecial level at an unramified place,

Kudla–Rapoport [16] conjectured a local arithmetic Siegel–Weil formula, now known
as the (local) Kudla–Rapoport conjecture. It is a precise identity between the central
derivative of local representation densities of hermitian forms (the analytic side) and
the arithmetic intersection number of special cycles on unitary Rapoport–Zink spaces
(the geometric side). This conjecture was recently proved by Zhang and one of us
[20], and we refer to the introduction of [20] for more background and related results.

It is a natural question, which is also important for global applications, to formu-
late and prove an analogue of the Kudla–Rapoport conjecture at a ramified place. At a
ramified place, there are two well-studied level structures for unitary Rapoport–Zink
spaces, one gives rise to the exotic smooth model which has good reduction, and the
other one gives rise to the Krämer model which has bad (semistable) reduction. For
the even dimensional exotic smooth model, the analogue of Kudla–Rapoport conjec-
ture was formulated and proved by Liu and one of us [19] using a strategy similar to
[20].

For the Krämer model, however, the situation is more complicated — it is ex-
pected that the analytic side of the conjecture requires nontrivial modification, by
a certain linear combination of central values of local representation densities. The
necessity of such modification in the presence of bad reduction was first discovered
by Kudla–Rapoport [15] via explicit computation in the context of the Drinfeld p-
adic half plane. In [10], three of us formulated the Kudla–Rapoport conjecture for
Krämer models (recalled in §1.2) by providing a conceptual recipe for the precise
modification needed for the analytic side. Moreover, this conjecture was proved for
n = 2 (based on the previous works [9, 29]) and n = 3 in [10].

The main theorem of the present paper settles this conjecture for any n (and the
proof is new even for n = 2,3). As a first application, we relax the local assumptions



A proof of the Kudla–Rapoport conjecture for Krämer models 723

in the arithmetic Siegel–Weil formula for U(n− 1,1)–Shimura varieties by allowing
Krämer models at ramified places. The main theorem should also be useful to relax
the local assumptions at ramified places in the arithmetic inner product formula [18,
19] and its p-adic avatar by Disegni–Liu [6].

1.2 Kudla–Rapoport conjecture for Krämer models

Let p be an odd prime. Let F0 be a finite extension of Qp with residue field κ = Fq .
Let F be a ramified quadratic extension of F0. Let π be a uniformizer of F such that
TrF/F0(π) = 0. Then π0 = π2 is a uniformizer of F0. Let F̆ be the completion of
the maximal unramified extension of F . Let OF , O

F̆
be the ring of integers of F , F̆

respectively.
Let n ≥ 2 be an integer. To define the Krämer model of the unitary Rapoport–

Zink space, we fix a (principally polarized) supersingular hermitian OF -modules X

of signature (1, n − 1) over κ̄ (Definition 2.1). The Krämer model N = Nn is the
formal scheme over SpfO

F̆
parameterizing hermitian formal OF -modules X of sig-

nature (1, n− 1) within the quasi-isogeny class of X, together with a rank 1 filtration
F ⊂ LieX satisfying the Krämer condition (Definition 2.2). The space N is locally
of finite type, and semistable of relative dimension n − 1 over SpfO

F̆
. There are

two choices of the framing object X (up to quasi-isogeny), giving rise to two non-
isomorphic (resp. isomorphic) spaces N when n is even (resp. odd) (§2.2).

Let Y be the framing hermitian OF -modules of signature (0,1) over κ̄ defined as
in Definition 2.1. The space of quasi-homomorphisms V=Vn := HomOF

(Y,X)⊗OF

F carries a natural F/F0-hermitian form, which makes V a non-degenerate F/F0-
hermitian space of dimension n (§2.2). The two choices of the framing object X
exactly correspond to the two isomorphism classes of V, classified by χ(V) :=
χ((−1)

n(n−1)
2 det(V)) ∈ {±1}, where χ : F×

0 → {±1} is the quadratic character as-
sociated to F/F0. For any subset L ⊂ V, the special cycle Z(L) (§2.3) is a closed
formal subscheme of N , over which each quasi-homomorphism x ∈ L deforms to a
homomorphism.

Let L ⊂ V be an OF -lattice (of full rank n). We will associate to L two inte-
gers: the arithmetic intersection number Int(L) and the modified derived local density
∂Den(L).

Definition 1.1 Let L ⊂ V be an OF -lattice. Let x1, . . . , xn be an OF -basis of L.
Define the arithmetic intersection number

Int(L) := χ(N ,OZ(x1) ⊗L · · · ⊗L OZ(xn)) ∈ Z, (1.1)

where OZ(xi ) denotes the structure sheaf of the special divisor Z(xi), ⊗L denotes the
derived tensor product of coherent sheaves on N , and χ denotes the Euler–Poincaré
characteristic (Definition 2.10). By Howard [11, Corollary D]), we know that Int(L)

is independent of the choice of the basis x1, . . . , xn and hence is a well-defined in-
variant of L itself.

For another hermitian OF -lattice M (of arbitrary rank), denote by HermL,M the
OF0 -scheme of hermitian OF -module homomorphisms from L to M (Definition 5.1)
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and define its local density to be

Den(M,L) := lim
d→+∞

|HermL,M(OF0/π
d
0 )|

qd·dL,M
,

where dL,M is the dimension of HermL,M ⊗OF0
F0. Let H be the standard hyperbolic

hermitian OF -lattice of rank 2 (given by the hermitian matrix
(

0 π−1

−π−1 0

)
). It is well-

known that there exists a local density polynomial Den(M,L,X) ∈ Q[X] such that
for any integer k ≥ 0,

Den(M,L,q−2k) = Den(Hk
kM,L). (1.2)

When M has also rank n and χ(M) =−χ(L), we have Den(M,L) = 0 (Lemma 5.7)
and in this case we write

Den′(M,L) := −2 · d

dX

∣∣∣∣
X=1

Den(M,L,X).

Define the (normalized) derived local density

Den′(L) := Den′(In,L)

Den(In, In)
∈Q. (1.3)

Here In is the unimodular lattice of rank n with χ(In) = −χ(L). Recall that a her-
mitian OF -lattice L is unimodular1 if L = L�, where L� is the dual lattice of L with
respect to the hermitian form (see §1.5 for notation).

The naive analogue of the Kudla–Rapoport conjecture for Krämer model states
that

Int(L)
?= Den′(L).

However, as explained in [10] this naive analogue does not hold for trivial reasons. In
fact, by definition Int(L) vanishes unless L is integral (i.e., L ⊂ L�), while Den′(L)

does not vanish for non-integral lattices L which are dual to vertex lattices. More
precisely, recall that an integral OF -lattice � ⊂V is called a vertex lattice (of type t)
if ��/� is a κ-vector space (of dimension t). For a vertex lattice � ⊂V of type t > 0,
�� is non-integral and so Int(��) = 0, while Den′(��) 	= 0 in general (see e.g. (5.7)).
In general, we define the type t (L) of L to be the number of positive fundamental
invariants of L (see §1.5).

To account for these discrepancies, we will define ∂Den(L) by modifying Den′(L)

with a linear combination of the (normalized) local densities (Corollary 5.8)

Dent (L) := Den(�
�
t ,L)

Den(�
�
t ,�

�
t )

∈ Z. (1.4)

1We refrain from using the terminology self-dual in the ramified case to avoid possible confusion with a
lattice L such that L = L∨, where L∨ is the dual lattice with respect to the underlying quadratic form, see
§4.2.
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Here �t ⊂ V is a vertex lattice of type t (in particular χ(�
�
t ) = χ(L)). Recall that

the possible vertex type t is given by any even integer such that 0 ≤ t ≤ tmax, where

tmax =

⎧⎪⎨
⎪⎩

n, ifn even, χ(V) =+1,

n− 1, ifn odd,

n− 2, ifn even, χ(V) =−1.

Definition 1.2 Let L ⊂V be an OF -lattice. Define the modified derived local density
(Corollary 7.2)

∂Den(L) := Den′(L) +
tmax/2∑
j=1

c2j · Den2j (L) ∈ Z. (1.5)

Here the coefficients c2j ∈Q are chosen to satisfy

∂Den(�
�
2i ) = 0, 1 ≤ i ≤ tmax/2, (1.6)

which turns out to be a linear system in (c2, c4, . . . , ctmax) with a unique solution ([10,
Theorem 6.1].

The main purpose of this paper is to prove the following local arithmetic Siegel-
Weil formula, settling the main conjecture of [10]. We will prove this theorem in
§9.

Theorem 1.3 (Kudla–Rapoport conjecture for Krämer models) Let L ⊂V be an OF -
lattice. Then

Int(L) = ∂Den(L).

1.3 The arithmetic Siegel–Weil formula

Next let us describe some global applications of our main theorem, following the set-
ting of [20, §1.3]. We now switch to global notations. Let F be a CM number field
with maximal total real subfield F0. Fix an embedding Q ↪→ C and fix a CM type
	 ⊂ Hom(F,Q) = Hom(F,C) of F . We also identify the CM type 	 with the set
of archimedean places of F0. Let V be an F/F0-hermitian space of dimension n and
G = ResF0/Q U(V ). Assume the signatures of V are {(n − 1,1)φ0, (n,0)φ∈	−{φ0}}
for some distinguished element φ0 ∈ 	. Define a torus ZQ = {z ∈ ResF/QGm :
NmF/F0(z) ∈ Gm}. Associated to G̃ := ZQ × G there is a natural Shimura datum
(G̃, {hG̃}) of PEL type ([20, §11.1]). Let K = KZQ × KG ⊂ G̃(Af ) be a compact
open subgroup. Then the associated Shimura variety ShK = ShK(G̃, {hG̃}) is of di-
mension n− 1 and has a canonical model over its reflex field E.

Assume that KZQ ⊂ ZQ(Af ) is the unique maximal open compact subgroup.
Assume that KG =∏v KG,v , where v runs over the finite places of F0 such that
KG,v ⊂ U(V )(F0,v) is given by

• the stabilizer of a self-dual or almost self-dual lattice �v ⊂ Vv if v is inert in F ,
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• the stabilizer of a unimodular lattice �v ⊂ Vv if v is ramified in F ,
• a principal congruence subgroup of U(V )(F0,v) � GLn(F0,v) if v is split in F .

Let Vram (resp. Vasd) be the set of finite places v of F0 such that v is ramified in F

(resp. v is inert in F and �v is almost self-dual). Further assume that all places of
E above Vram ∪ Vasd are unramified over F . Then we obtain a global regular integral
model MK of ShK over OE as in [20, §14.1-14.2], which is semistable at all places
of E above Vram ∪ Vasd (for more precise technical conditions required, see (G0)-
(G5)). When KG is the stabilizer of a global unimodular lattice, the regular integral
model MK recovers that in [10], and that in [2] if F0 =Q.

Let V be the incoherent hermitian space over AF associated to V , namely V is
totally positive definite and Vv

∼= Vv for all finite places v. Let ϕK ∈ S (Vn
f ) be a

K-invariant (where K acts on Vf via the second factor KG) factorizable Schwartz
function such that ϕK,v = 1(�v)n at all v nonsplit in F . Let T ∈ Hermn(F0) be a
nonsingular F/F0-hermitian matrix of size n. Associated to (T ,ϕK) we have arith-
metic special cycles Z(T ,ϕK) over MK ([20, §14.3]) generalizing the Z(T ) in [17].
Analogous to the local situation (1.1), we can define its local arithmetic intersec-
tion numbers IntT ,v(ϕK) at finite places v. Using the star product of Kudla’s Green
functions, we can also define its local arithmetic intersection number IntT ,v(y, ϕK)

at infinite places ([20, §15.3]), which depends on a parameter y ∈ Hermn(F∞)>0

where F∞ = F ⊗Q R. Combining all the local arithmetic numbers together, define
the global arithmetic intersection number, or the arithmetic degree of the special
cycle Z(T ,ϕK) in the arithmetic Chow group of MK ,

d̂egT (y, ϕK) :=
∑

v�∞
IntT ,v(ϕK) +

∑
v|∞

IntT ,v(y, ϕK).

On the other hand, associated to ϕ := ϕK ⊗ ϕ∞ ∈ S (Vn), where ϕ∞ is the Gaus-
sian function, there is a classical incoherent Eisenstein series E(z, s, ϕ) ([20, §12.4])
on the hermitian upper half space

Hn = {z = x + iy : x ∈ Hermn(F∞), y ∈ Hermn(F∞)>0}.

This is essentially the Siegel Eisenstein series associated to a standard Siegel–Weil
section of the degenerate principal series ([20, §12.1]). The Eisenstein series here has
a meromorphic continuation and a functional equation relating s ↔ −s. The central
value E(z,0, ϕ) = 0 by the incoherence. We thus consider its central derivative

Eis′(z, ϕK) := d

ds

∣∣∣∣
s=0

E(z, s, ϕ).

Analogous to the local situation, we need to modify Eis′(z, ϕK) by central values
of coherent Eisenstein series. For v ∈ Vram ∪ Vasd, let vV be the coherent hermitian
space over AF nearby V at v, namely (vV)w � Vw exactly for all places w 	= v.
For any vertex lattice �t,v ⊂ (vV)v of type t , the Schwartz function ϕv ⊗ 1

(�
�
t,v)

n ∈
S ((vV)n) gives a classical coherent Eisenstein series E(z, s, ϕv ⊗ 1

(�
�
t,v)

n). Analo-
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gous to (1.4), define the (normalized) central values

vEist (z, ϕK) := vol(KG,v)

vol(K
�

�
t,v

)
· E(z,0, ϕv ⊗ 1

(�
�
t,v)

n). (1.7)

Here K
�

�
t,v

⊂ U(vV)(F0,v) is the stabilizer of �
�
t,v , and the volumes are taken with

respect to the Haar measures on U(V )(F0,v) and U(vV)(F0,v) as defined in [18, Def-
inition 3.8]. When v ∈ Vram, analogous to (1.5), define the linear combination

vEis(z, ϕK) :=
tmax,v/2∑

j=1

c2j,v · vEis2j (z, ϕK) · logqv, (1.8)

where qv is the size of the residue field of F0,v , and tmax,v and c2j,v are the numbers
tmax and c2j respectively in (1.5) for the local hermitian space (vV)v over the ramified
extension Fv/F0,v . When v ∈ Vasd, define

vEis(z, ϕK) := c0,v · vEis0(z, ϕK) · logq2
v , (1.9)

where c0,v =− 1
1+qv

. Define the modified central derivative

∂Eis(z, ϕK) := Eis′(z, ϕK) + (−1)n
∑

v∈Vram∪Vasd

vEis(z, ϕK). (1.10)

Associated to an additive character ψ : AF0/F0 → C× (as explained in [20, §12.2]
we assume that ψ is unramified outside the set of finite places of F0 split in F ), it has
a decomposition into Fourier coefficients

∂Eis(z, ϕK) =
∑

T ∈Hermn(F0)

∂EisT (z, ϕK). (1.11)

The following result asserts an identity between the arithmetic degrees of special
cycles and the nonsingular Fourier coefficients of the modified central derivative of
the incoherent Eisenstein series, which generalizes [20, Theorem 1.3.1] from inert
places to all nonsplit places. In particular, when F is an imaginary quadratic field of
discriminant d ≡ 1 (mod 8), we have an unconditional arithmetic Siegel-Weil for-
mula for all unimodular lattices of signature (n − 1,1) at non-singular coefficients,
i.e., [10, Theorem 1.5] holds without conditions.

Theorem 1.4 (Arithmetic Siegel–Weil formula: nonsingular terms) Let Diff(T ,V)

be the set of places v such that Vv does not represent T ([20, §12.3]). Let T ∈
Hermn(F0) be nonsingular such that Diff(T ,V) = {v} where v is nonsplit in F and
not above 2. Then

d̂egT (y, ϕK)qT = cK · ∂EisT (z, ϕK),

where qT := ψ∞(TrT z), cK is a nonzero constant independent of T and ϕK (to be
specified in Theorem 10.1).
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We form the generating series of arithmetic degrees

d̂eg(z, ϕK) :=
∑

T ∈Hermn(F0)
detT 	=0

d̂egT (y, ϕK)qT . (1.12)

The following result relates this generating series to the modified central derivative
of the incoherent Eisenstein series, which removes the assumption that F/F0 is un-
ramified at all finite places from [20, Theorem 1.3.2].

Theorem 1.5 (Arithmetic Siegel–Weil formula) Assume that F/F0 is split at all
places above 2. Further assume that ϕK is nonsingular ([20, §12.3]) at two places
split in F . Then

d̂eg(z, ϕK) = cK · ∂Eis(z, ϕK).

In particular, d̂eg(z, ϕK) is a nonholomorphic hermitian modular form of genus n.

1.4 Strategy and novelty of the proof of the main Theorem 1.3

Our general strategy is closest to the unramified orthogonal case proved in [21]. More
precisely, fix an OF -lattice L
 ⊂ V of rank n − 1 and denote by W = (L



F )⊥ ⊂ V.

Consider functions on V \ L


F ,

IntL
(x) := Int(L
 + 〈x〉), ∂DenL
(x) := ∂Den(L
 + 〈x〉).
Then it remains to show the equality of the two functions IntL
 = ∂DenL
 . To show
this equality, we find a decomposition

IntL
 = IntL
,H + IntL
,V , ∂DenL
 = ∂DenL
,H + ∂DenL
,V

into “horizontal” and “vertical” parts such that the horizontal identity IntL
,H =
∂DenL
,H holds and that the vertical parts IntL
,V and ∂DenL
,V behaves well under

Fourier transform along L


F .

The horizontal identity essentially reduces to the horizontal computation for n = 2
in [9, 29]. For the vertical identity, we perform a partial Fourier transform along L



F

and consider new functions on W \ {0},

Int⊥
L
,V (x) :=

∫

L


F

IntL
,V (y + x)dy, ∂Den⊥
L
,V (x) :=

∫

L


F

∂DenL
,V (y + x)dy.

The key is to show that Int⊥
L
,V

and ∂Den⊥
L
,V

are both constant on W≥0 \ {0} :=
{x ∈ W \ {0} : val(x) ≥ 0} of W (see §1.5 for notation) as in Theorem 4.16 and
Theorem 8.2. Using an induction on the valuation of L
, we show that the difference
Int⊥

L
,V
−∂Den⊥

L
,V
vanishes on W≤0 := {x ∈W : val(x) ≤ 0}, and hence it vanishes

identically and allows us to conclude that IntL
,V = ∂DenL
,V .
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On the geometric side, we prove a Bruhat–Tits stratification for the Krämer model
(Theorem 3.19), analogous to the case of the Pappas model treated in Rapoport–
Terstiege–Wilson [26]. We make use of the linear invariance of special cycles [11]
to express IntL
,V as a linear combination of functions on V which are translation
invariant under vertex lattices. A new observation in our ramified case is that the
translation invariance already allows us to control the support of its Fourier trans-
form well enough (Lemma 4.13) to conclude the desired key constancy of Int⊥

L
,V
on

W≥0. Compared to the unramified case, we completely avoid the Tate conjecture of
generalized Deligne-Lusztig varieties and explicit computation of their intersections
with special divisors. It is not clear that the Deligne-Lusztig subvarieties span the Tate
classes in this case. §3 studies the structure of Nred and special cycles, and should be
of independent interest (in addition to preparation for §4).

On the analytic side, we make use of the primitive decomposition of the local den-
sity polynomial into primitive local density polynomials and obtain a decomposition.

∂Den(L) =
∑
L⊂L′

∂Pden(L′), (1.13)

where L′ runs over OF -lattices in LF containing L, and the symbol Pden stands for
the primitive version of Den (Corollary 5.4). Unlike the unramified or exotic smooth
case, the primitive local density polynomial itself seems rather complicated (see e.g.
Corollary 6.2). Nevertheless we manage to prove a simple formula for its modified
central derivative ∂Pden(L), which we find quite striking.

Theorem 1.6 (Theorem 7.1) Let L ⊂V be an OF -lattice (of full rank n).

(1) If L is not integral, then ∂Pden(L) = 0.
(2) If L is unimodular, then

∂Pden(L) =
{

1, if n is odd,

0, if n is even.

(3) If L is integral and of type t > 0, then

∂Pden(L) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t−1
2∏

�=1

(1 − q2�), if t is odd,

(1 − χ(L′)q
t
2 )

t
2−1∏
�=1

(1 − q2�), if t is even.

Here we write L � In−t kL′ with In−t unimodular of rank n− t .

The proof of this theorem occupies the entire §6 and §7, and is our major tech-
nical innovation. One key difference between our case and the unramified or exotic
smooth case is that in our case In and H (see (1.2) and (1.3)) have different funda-
mental invariants, hence it is not clear how to reduce the calculation of ∂Pden into
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the embedding-counting problems over finite fields in the style of [5, §3]. To deal
with this difficulty, we first decompose ∂Pden(L) according to orbits of Hermitian
embeddings (Theorem 6.1). Now a new observation is that the primitive local density
polynomial becomes simpler when L is “very integral” (i.e., when its fundamental
invariants are all ≥ 1, see Proposition 7.6) in which case the decomposition in Theo-
rem 6.1 is simple. The primitive local density polynomial vanishes when L is “very
non-integral” (e.g., when one of its fundamental invariants is ≤−2, see the proof of
Lemma 5.2). When L is the dual of a vertex lattice of positive type, this is just our
assumption (1.6). The remaining cases (in particular the unimodular lattice case) are
much trickier to handle, whose proof occupies most of §7 and is summarized in §7.2.
The proof relies on a series of non-trivial polynomial identities (e.g., Lemma 7.15
and Lemma 7.16) involving algebraic combinatorics of quadratic spaces over finite
fields, which should be of independent interest.

With the simple formula for ∂Pden(L) at hand, we finally prove the desired key
constancy of ∂Den⊥

L
,V
on W≥0 \ {0} via involved lattice-theoretic computation in

§8, in a fashion similar to [21]. The techniques developed here on the analytic side
seem to have wide applicability and we hope that they may shed new light on the
Kudla–Rapoport conjecture in the context of more general level structures, e.g., for
minuscule parahoric levels at unramified places formulated by Cho [4].

1.5 Notation and terminology

In this paper, a lattice means a hermitian OF -lattice without explicit mentioning.
Unless otherwise stated, L always means a non-degenerate lattice of rank n with a
hermitian form ( , ).

• We say a sublattice L
 of a hermitian space is non-degenerate if the restriction of
the hermitian form to it is non-degenerate.

• We define L� to be the dual lattice of L with respect to the hermitian form ( , ). If
L ⊂ L�, we say L is integral.

• Following [19, Definition 2.11], for a lattice L with hermitian form ( , ), we say
that a basis {�1, . . . , �n} of L is a normal basis (which always exists by [19, Lemma
2.12]) if its moment matrix T = ((�i, �j

))
1≤i,j≤n

is conjugate to

(
β1π

2b1
)
⊕ · · · ⊕

(
βsπ

2bs

)
⊕
(

0 π2c1+1

−π2c1+1 0

)
⊕ · · ·

⊕
(

0 π2ct+1

−π2ct+1 0

)

by a permutation matrix, for some β1, . . . , βs ∈ O×
F0

and b1, . . . , bs, c1, . . . , ct ∈ Z.
Moreover, we define its (unitary) fundamental invariants (a1, . . . , an) to be the
unique nondecreasing rearrangement of (2b1, . . . ,2bs,2c1 + 1, . . . ,2ct + 1).

• We define the type t (L) of L to be the number of positive fundamental invariants of
L. We use r(L) to denote the rank of L and call L a full type lattice if r(L) = t (L).

• We define the valuation of L to be val(L) :=∑n
i=1 ai , where (a1, . . . , an) are the

fundamental invariants of L. For x ∈ L, we define val(x) = val((x, x)), where
val(π0) = 1.
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• For a hermitian space V, we let V?i := {x ∈ V | val(x)?i} where ? can be ≥, ≤ or
=.

• For a ring R, we use 〈�1, . . . , �n〉R to denote SpanR{�1, . . . , �n}. When R = OF ,
we simply write 〈�1, . . . , �n〉. We use LF to denote L⊗OF

F .
• For a hermitian lattice of rank n, we define its sign as

χ(L) := χ((−1)
n(n−1)

2 det(L)) =±1

where χ is the quadratic character of F×
0 associated to F/F0. Without explicit

mentioning, we always use ε to denote χ(L).
• Let I ε

m denote a unimodular lattice of rank m with χ(I ε
m) = ε. We also simply

denote a unimodular lattice of rank m by Im if we do not need to remember its sign
or its sign is clear in the context. In particular, when we consider Den′(In,L), we
mean In = I−ε

n .
• We call a sublattice N ⊂ M primitive in M if dimFq

N = r(N), where N = (N +
πM)/πM . We also use L to denote L⊗OF

OF /(π).
• For two lattices L, L′ of same rank, let n(L′,L) = #{L′′ ⊂ LF | L ⊂ L′′,L′′ ∼= L′}.
• We let δodd(n) = 1 if n is an odd integer and δodd(n) = 0 if n is an even integer.

2 Krämer models of Rapoport-Zink spaces and special cycles

We denote ā the Galois conjugate of a ∈ F over F0. Denote by NilpO
F̆

be the cate-
gory of O

F̆
-schemes S such that π is locally nilpotent on S. For such an S, denote its

special fiber S ×SpfO
F̆

Spec κ̄ by S̄. Let σ ∈ Gal(F̆0/F0) be the Frobenius element.
We fix an injection of rings i0 : OF0 →O

F̆0
and an injection i : OF → O

F̆
extending

i0. Denote by ī : OF → O
F̆

the map a �→ i(ā).

2.1 RZ spaces

Let S ∈ NilpO
F̆

. A p-divisible strict OF0 -module over S is a p-divisible group over

S with an OF0 -action whose induced action on its Lie algebra is via OF0

i0−→ O
F̆0

→
OS .

Definition 2.1 A formal hermitian OF -module of dimension n over S is a triple
(X, ι, λ) where X is a supersingular p-divisible strict OF0 -module over S of dimen-
sion n and F0-height 2n (supersingular means the OF0 -relative Dieudonné module
of X at each geometric point of S has slope 1

2 ), ι : OF → End(X) is an OF -action
and λ : X → X∨ is a principal polarization in the category of strict OF0 -modules
such that the Rosati involution induced by λ is the Galois conjugation of F/F0 when
restricted on OF .

Definition 2.2 Fix a formal hermitian OF -module (X, ιX, λX) of dimension n over κ̄ .
The moduli space Nn is the functor such that Nn(S) for any S ∈ NilpO

F̆
is the set of

isomorphism classes of quintuples (X, ι, λ,ρ,F) such that
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(1) (X, ι, λ) is a formal hermitian OF -module over S.
(2) ρ : X ×S S̄ →X×Spec κ̄ S̄ is a quasi-isogeny of formal OF -modules of height 0.
(3) F satisfies Krämer’s ([12]) signature condition: it is a local direct summand of

LieX of rank n − 1 as an OS -module such that OF acts on F by OF
ī−→ O

F̆
→

OS and acts on LieX/F by OF
i−→ O

F̆
→OS .

An isomorphism between two such quintuples (X, ι, λ,ρ,F) and (X′, ι′, λ′, ρ′,F ′)
is an isomorphism α : X → X′ such that ρ′ ◦ (α ×S S̄) = ρ, α∗(λ′) is a O×

F0
-multiple

of λ and α∗(F) =F ′.

Notice that Nn is a relative Rapoport-Zink space in the sense of [23]. By [11,
Proposition 2.2], Nn is representable by a flat formal scheme of relative dimension
n− 1 over SpfO

F̆
. We drop the subscript n in Nn when there is no ambiguity.

2.2 Associated Hermitian spaces

For a strict OF0 -module X over κ̄ , let M(X) be the OF0 -relative Dieudonné module
of X. Let (X, ιX, λX) be the framing object as in Definition 2.2, and N = M(X)⊗OF0

F0 be its rational relative Dieudonne module. Then N is a 2n-dimensional F̆0-vector
space equipped with a σ -linear operator F and a σ−1-linear operator V. The OF -
action ιX : OF → End(X) induces on N an OF -action commuting with F and V. We
still denote this induced action by ιX and denote ιX(π) by �. The principal polariza-
tion of X induces a skew-symmetric F̆0-bilinear form 〈 , 〉 on N satisfying

〈Fx, y〉 = 〈x,Vy〉σ , 〈ι(a)x, y〉 = 〈x, ι(ā)y〉,
for any x, y ∈ N , a ∈ OF . Then N is an n-dimensional F̆ -vector space equipped with
a F̆ /F̆0-hermitian form ( , ) defined by (see [30, (2.6)])

(x, y) := δ(〈�x,y〉 + π〈x, y〉), (2.1)

where δ is a fixed element in O×
F̆0

such that σ(δ) =−δ. We can use the relation

〈x, y〉 = 1

2δ
Tr

F̆ /F̆0
(π−1(x, y)) (2.2)

to recover 〈 , 〉. Let τ := �V−1 and C := Nτ . Then C is an F -vector space of dimen-
sion n and N = C⊗F0 F̆0. The restriction of ( , ) to C is a F/F0-hermitian form which
we still denote by ( , ). There are two choices of (X, ιX, λX) up to quasi-isogenies
preserving the polarization on the nose, according to the sign ε = χ(C) of C. Here
χ : F×

0 → {±1} is the character associated to the quadratic extension F/F0 and we
define the sign of C as

χ(C) := χ((−1)n(n−1)/2 det(C)).

When n is odd, two different choices of ε give us isomorphic moduli spaces. When
n is even, two different choices of ε give us two non-isomorphic moduli spaces. See
[30, Remark 2.16] and [26, Remark 4.2].
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Fix a formal hermitian OF -module (Y, ιY, λY) of dimension 1 over Spec κ̄ . Define

Vn = HomOF
(Y,X) ⊗Q. (2.3)

We drop the subscript n of Vn unless we need to specify the dimension. The vector
space V is equipped with a hermitian form ( , )V such that for any x, y ∈V

(x, y)V = λ−1
Y

◦ y∨ ◦ λX ◦ x ∈ End(Y) ⊗Z Q
∼→ F (2.4)

where y∨ is the dual quasi-homomorphism of y. The hermitian spaces (V, ( , )V) and
(C, ( , )) are related by the F -linear isomorphism

b :V→ C, x �→ x(e) (2.5)

where e is a generator of τ -fixed points of the OF0 -relative Dieudonné module M(Y).
The relative Dieudonné module M(Y) is equipped with a hermitian form ( , )Y such
that (e, e)Y ∈ O×

F0
. By [30, Lemma 3.6], we have

(x, x)V · (e, e)Y = (b(x), b(x)). (2.6)

Here the bilinear form ( , )Y is the analogue of the form ( , ) in (2.1) defined on the
rational relative Dieudonné module of Y. By scaling the polarization λY by a factor
in O×

F0
we can assume that

(e, e)Y = 1,

so V and C are isomorphic as hermitian spaces. When the context is clear we often
drop the subscript V in ( , )V.

2.3 Special cycles

We fix a canonical lift (G, ιG, λG) of (Y, ιY, λY) to O
F̆

in the sense of [8] such that the
action of OF on LieG is via the inclusion ī. Such a lift is unique up to isomorphism
by [11, Proposition 2.1].

Definition 2.3 For an OF -lattice L of V, define Z(L) to be the subfunctor of N such
that N (S) is the set of isomorphism classes of tuples (X, ι, λ,ρ,F) ∈ N (S) such
that for any x ∈ L the quasi-homomorphism

ρ−1 ◦ x ◦ ρG :Y×Spec κ̄ S̄ → X ×S S̄

entends to a homomorphism G ×SpfO
F̆

S → X. By Grothendieck-Messing theory
Z(L) is a closed formal subscheme of N . For x ∈ V, we let Z(x) := Z(L) when
L = 〈x〉.
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2.4 Bruhat-Tits stratification of Nred

We say a lattice � ⊂ C (resp. � ⊂ V) is a vertex lattice if π�� ⊂ � ⊂ �� where
�� is dual lattice of � with respect to ( , ) (resp. ( , )V).2 Using the isomorphism of
hermitian spaces (2.5), we often identify � with b−1(�) and use the same notation to
denote both. We call t = dimFq

(��/�) the type of �. Recall from [26, Lemma 3.2]
that t has to be an even integer. To each vertex lattice � of type 2m, we can associate
a subscheme N� which is a subscheme of the minuscule special cycle Z(�), see
Definition 3.4 below. Let V = ��/�, we can define a (modified) Deligne-Lusztig
variety YV over κ̄ , see (3.2) below. We prove that YV is projective and smooth, see
Proposition 3.2. When m 	= 0 the scheme N� is isomorphic to YV,κ̄ , see Theorem
3.16.

For vertex lattices of type 0, we define Exc� following the idea of [11, Appendix].

Definition 2.4 The exceptional divisor Exc of N is the set of all points z =
(X, ι, λ,ρ,F) ∈N (κ̄) such that the action

ι : OF → End(LieX)

factor through OF
i−→ O

F̆
→ κ̄ where O

F̆
→ κ̄ is the quotient map. For a vertex

lattice � in C of type 0, define Exc� to be the set of all points z = (X, ι, λ,ρ,F) ∈
Exc such that ρ(M(X)) = � ⊗OF

O
F̆

. Both Exc and Exc� are closed subset of N
and we endow them the structure of reduced schemes over κ̄ .

The following is a refinement of [11, Proposition A.2].

Lemma 2.5 Each Exc� is a Cartier divisor of N isomorphic to Pn−1
κ̄ . The scheme

Exc is a disjoint union of Exc� over all type 0 lattices � in C.

Proof Let z = (X, ι, λ,ρ,F) ∈ Exc(κ̄) and M = ρ(M(X)) ⊂ N . Then the ac-
tion of ι(π) on LieX is trivial. Hence �M ⊂ VM as LieX = M/VM . Since
dimκ̄ (M/VM) = dimκ̄ (M/�M) = n, we know VM = �M which is equivalent to
τ(M) = M . By [26, Proposition 4.1], M = � ⊗OF

O
F̆

for some vertex lattice �.
Since M is unimodular, � is of type 0. Hence z ∈ Exc�(κ̄). Moreover for any κ̄-
algebra R, every rank n − 1 locally direct summand of LieXR satisfies Krämer’s
signature condition as in Definition 2.2 and determines a point of Exc�(R) uniquely.
So we get an isomorphism Pn−1

κ̄ → Exc�. Since N is regular and Exc� has codi-
mension 1, Exc� is a Cartier divisor in N . By looking at ρ(M(X)), it is clear that
Exc� ∩ Exc�′(k) = ∅ if � 	= �′. Hence Exc is a disjoint union of over all type 0
lattices �. �

Remark 2.6 The proof of Lemma 2.5 shows that the definition of Exc� above agrees
with that of [10, §2].

2Notice that the vertex lattice � in the sense of [9, 26] or [10] corresponds to �� in our convention.
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By Proposition 3.17 below, N� = Exc� for type 0 lattices �. The reduced locus
Nred has a decomposition (see Theorem 3.19)

Nred =
⋃
�

N�,

where the union is over all vertex lattices. The reduced subscheme Z(L)red is a union
of Bruhat-Tits strata (see Proposition 3.20)

Z(L)red =
⋃
�⊃L

N�. (2.7)

2.5 Horizontal and vertical part

A formal scheme X over SpfO
F̆

is called horizontal (resp. vertical) if it is flat over
SpfO

F̆
(resp. π is locally nilpotent on OX). For a formal scheme X over SpfO

F̆
, its

horizontal part XH is canonically defined by the ideal sheaf OX,tor of torsion sections
on OX . If X is noetherian, there exists a m ∈ Z>0 such that πmOX,tor = 0. We define
the vertical part XV ⊂ X to be the closed formal subscheme defined by the ideal
sheaf πmOX . Since OX,tor ∩ πmOX = {0}, we have the following decomposition by
primary decomposition

X = XH ∪ XV (2.8)

as a union of horizontal and vertical formal subschemes. Notice that the horizontal
part XH is canonically defined while the vertical part XV depends on the choice of
m.

Lemma 2.7 For a lattice L
 ⊂ V of rank greater than or equal to n − 1 with non-
degenerate hermitian form, Z(L
) is noetherian.

Proof First we know that Z(L) is locally noetherian since it is a closed formal sub-
scheme of N which is locally noetherian. Since the rank of L is greater than or equal
to n − 1, the number of vertex lattices � containing L is finite. By (2.7), we know
that Z(L)red is a closed subset in finitely many irreducible components of Nred. Since
each irreducible component of Nred is quasi-compact, we know that Z(L) is quasi-
compact, hence noetherian. �

Lemma 2.8 For a rank n − 1 lattice L
 ⊂ V with non-degenerate hermitian form,
Z(L)V is supported on the reduced locus Nred of N , i.e., OZ(L)V is annihilated by
a power of the ideal sheaf of Nred.

Proof We remark here that Nred is exactly the supersingular locus of N . Hence the
proof of the lemma is the same as that of [20, Lemma 5.1.1]. �
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2.6 Derived special cycles

For a locally noetherian formal scheme X together with a formal subscheme Y , de-
note by KY

0 (X) the Grothendieck group of finite complexes of coherent locally free
OX-modules acyclic outside Y . For such a complex A•, denote by [A•] the element
in KY

0 (X) represented by it. We use K0(X) to denote KX
0 (X). Let K ′

0(Y ) be the
Grothendieck group of coherent sheaves of OY -modules on Y . We have a group ho-
momorphism KY

0 (X) → K ′
0(Y ) which is an isomorphism when X is regular.

Denote by FiKY
0 (X) the codimension i filtration on KY

0 (X) and GriKY
0 (X) its

i-th graded piece. When X is regular, we have a cup product · on KY
0 (X)Q defined

by tensor product of complexes. Under the identification KY
0 (X)

∼−→ K ′
0(Y ), the cup

product is nothing but derived tensor product:

[A] · [B] = [A ⊗L

OX
B].

When X is a scheme, the cup product satisfies ([33, Section I.3, Theorem 1.3])

FiKY
0 (X)Q · FjKY

0 (X)Q ⊂ Fi+jKY
0 (X)Q. (2.9)

It is expected that (2.9) is also true when X is a formal scheme, see [36, (B.3)],
however we do not need this fact in this paper. Throughout the paper, we assume
X =N unless stated otherwise.

Recall that for x ∈V, Z(x) is a Cartier divisor ([11, Proposition 4.3]).

Definition 2.9 Let L ⊂V be a rank r lattice with a basis {x1, . . . , xr}. Define LZ(L)

to be

[OZ(x1) ⊗L

ON
· · · ⊗L

ON
OZ(xr )] ∈ K

Z(L)
0 (N ) (2.10)

where ⊗L is the derived tensor product of complexes of coherent locally free sheaves
on N . By [11, Corollary C], LZ(L) is independent of the choice of the basis
{x1, . . . , xr}.
Definition 2.10 When L has rank n, we define the intersection number

Int(L) = χ(N ,LZ(L)), (2.11)

where χ is the Euler characteristic.

Lemma 2.11 When L is a rank n lattice in V, Z(L) is a proper scheme over SpfO
F̆

.
In particular, Int(L) is finite.

Proof By Lemma 2.8 Z(L)V is a scheme. We show that Z(L)H is empty. If not,
there exists z ∈ Z(L)(OK) for some finite extension K of F̆ . Let X be the corre-
sponding formal hermitian OF -module of signature (1, n− 1) over OK . Since L has
rank n and G has signature (0,1), this would imply that X has signature (0, n), which
is a contradiction. Hence Z(L) is a scheme. Since Z(L)red is contained in finitely
many irreducible components of Nred and each irreducible component is proper over
Spec κ̄ , it follows that Z(L) is proper over SpfO

F̆
. The finiteness of Int(L) then

follows from the same argument before [36, (B.4)]. �
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2.7 A geometric cancellation law

Recall that for two lattices L,L′ ⊂V of rank n, we define

n(L′,L) = #{L′′ ⊂ LF | L ⊂ L′′,L′′ ∼= L′}.
Also recall that δodd(n) = 1 or 0 depending on whether n is odd or not.

Proposition 2.12 Let L = I� k L2 ⊂ V where L2 is of rank r , I� is unimodular of
rank � and n = � + r . Let Ir be a unimodular lattice that contains L2. Then

Int(I� kL2) − Int(L2) = n(Ir ,L2) · (δodd(n) − δodd(r)). (2.12)

Moreover,

Int(In) = δodd(n). (2.13)

Proof If L2 is unimodular and r = 2, then Int(L2) = 0 by [29, Theorem 1.3] and [9,
Theorem 1.3]. Combining this with (2.12), we obtain (2.13). In order to prove (2.12),
we prove the following equation,

Int(I1 kL2) − Int(L2) = (−1)rn(Ir ,L2). (2.14)

which is the special case of (2.12) when � = 1. The general case then follows from
an easy induction on n using (2.14) and the fact

n(In, I� kL2) = n(Ir ,L2). (2.15)

By Proposition 3.2 of [10], we have the following decomposition of Cartier divi-
sors on Nn

Z(I1) = Z̃(I1) +
∑

�0⊃I1

Exc�0,

where the summation is over vertex lattices of type 0 in Vn and Z̃(I1) ∼= Nn−1 by
[10, Corollary 2.7]. By the same corollary, we know that

χ(Nn, [OZ̃(I1)
] · LZ(L2)) = χ(Nr ,

LZ(L2)) = Int(L2).

Hence we have

Int(L) − Int(L2) =
∑

�0⊃I1

χ(Nn, [OExc�0
] · LZ(L2)).

If L2 	⊂ �0, then Exc�0 ∩ Z(L2) is empty by Proposition 3.20 below. If L2 ⊂ �0,
then by [10, Corollary 3.6], we have

χ(Nn, [OExc�0
] · LZ(L2)) = (−1)r .
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Hence

Int(L) − Int(L2) =
∑

�0⊃I1kL2

(−1)r .

Combining this with (2.15) finishes the proof of (2.14) and the proposition. �

3 Bruhat–Tits stratification of Krämer models

We prove a Bruhat–Tits stratification for the Krämer model (Theorem 3.19), analo-
gous to the case of the Pappas model (proposed in [24]) treated in [26]. More pre-
cisely, we define closed subschemes N� (Definition 3.4) and show that the reduced
locus of N is stratified by N� (Theorem 3.19). From this stratification we obtain a
stratification of the reduced locus of Z(L) (Proposition 3.20). We also show that N�

is isomorphic to the (modified) Deligne-Lusztig variety YV,κ̄ defined in §3.1 (Theo-
rem 3.16), and is in particular a smooth projective variety over κ̄ . We remark here that
for the purpose of our main result (Theorem 9.7), only a weaker version of Propo-
sition 3.20 is needed (namely we do not need the reducedness of N�). However we
believe the rest of this section contributes to the theory of Rapoport-Zink space and
is of independent interest.

3.1 Deligne-Lusztig varieties

Throughout this subsection we assume m ≥ 1. Let V be a 2m-dimensional symplec-
tic space over κ = Fq equipped with the symplectic form 〈 , 〉. Let Vκ̄ = V ⊗κ κ̄ and
denote the bilinear extension of 〈 , 〉 to Vκ̄ still by 〈 , 〉. Let Gr(i,V ) be the Grassman-
nian variety parametrizing rank i locally direct summands of VR for any κ-algebra
R. Let SGr(i,V ) be the subvariety of Gr(i,V ) whose κ̄-points are specified by

SGr(i,V )(κ̄) = {z ∈ Gr(i,V )(κ̄) | z is isotropic with respect to 〈 , 〉}.
Let SV be the subvariety of SGr(m,V ) as in [26, Equation (5.3)] whose κ̄-points are
specified by

SV (κ̄) = {U ∈ SGr(m,V )(κ̄) | dim(U ∩ 	(U)) ≥ m − 1}, (3.1)

where 	 is the Frobenius endormophism. By [26, Proposition 5.3] and its remark, SV

has isolated singularities which are exactly the points where U = 	(U). We denote
by U the nonsingular locus of SV . By Proposition 5.5 of loc.cit., SV,κ̄ is irreducible
of dimension m. To resolve the singularities of SV , define YV to be the subvariety of
SGr(m,V ) × SGr(m − 1,V ) whose κ̄-points are specified by

YV (κ̄) = {(U,U ′) ∈ (SGr(m,V ) × SGr(m − 1,V ))(κ̄) | U ′ ⊂ U ∩	(U)}. (3.2)

Then the variety YV is a projective subvariety of Gr(m,V ) × Gr(m − 1,V ). The
forgetful map (U,U ′) → U defines a morphism πm : YV → SV .
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Lemma 3.1 The morphism πm is a projective morphism. It is an isomorphism outside
the singular locus of SV . For a singular point z of SV , π−1

m (z) ∼= Pm−1
κ̄ .

Proof First we know πm is projective as it is a morphism between projective schemes.
Consider a κ̄-point z = U in U(κ̄). Then U ∩	(U) has dimension m− 1, this entails
U ′ = U ∩ 	(U). This shows that the morphism has an inverse when restricted on
π−1

m (U), hence πm|
π−1

m (U)
is an isomorphism of varieties.

If z = U is a singular κ̄-point, then U = 	(U) and U ′ can be any element in
Gr(m − 1,U) ∼= Pm−1

κ̄ . This finishes the proof of the lemma. �

Proposition 3.2 The projective variety YV,κ̄ is irreducible and smooth of dimension
m.

Proof Define SGr(m,m − 1,V ) to be the sub flag variety of SGr(m,V ) × SGr(m −
1,V ) whose κ̄-points are specified by

SGr(m,m − 1,V )(κ̄) = {(U,U ′) ∈ (SGr(m,V ) × SGr(m − 1,V ))(κ̄) | U ′ ⊂ U}.
Then YV,κ̄ is the intersection of the image of the closed immersion

(SGr(m,m − 1,V )κ̄ )2 → (SGr(m,V )κ̄ × SGr(m − 1,V )κ̄ )2 :
(U1,U

′
1,U2,U

′
2) �→ (U1,U

′
1,U2,U

′
2),

with the image of the closed immersion

SGr(m,V )κ̄ × SGr(m − 1,V )κ̄ → (SGr(m,V )κ̄ × SGr(m − 1,V )κ̄ )2 :
(U3,U4) �→ (U3,U4,	(U3),U4).

Since (SGr(m,m− 1,V )κ̄ )2 and SGr(m,V )κ̄ ×SGr(m− 1,V )κ̄ are smooth (as they
are homogeneous varieties), and 	 induces the zero map on the tangent space, one
can see immediately that the intersection is transversal. Hence YV,κ̄ is smooth. Since
SV,κ̄ is irreducible of dimension m, by Lemma 3.1, we know YV,κ̄ is connected and
has an open subvariety of dimension m. Taking into consideration the smoothness,
we know YV,κ̄ must be irreducible of dimension m. This finishes the proof of the
proposition. �

Remark 3.3 One can show that YV,κ̄ is in fact the blow-up of SV,κ̄ along its singular
locus.

3.2 Minuscule cycle N� and its tangent space

In this section, we often identify a vertex lattice � ⊂ V with b−1(�) using the iso-
morphism of hermitian spaces (2.5) unless otherwise stated.

Definition 3.4 For a vertex lattice � ⊂ V of type t (�) = 2m, define the subfunctor
N� to be the subfunctor of N such that for a O

F̆
-scheme S, N�(S) is the set of

isomorphism classes of tuples (X, ι, λ,ρ,F) satisfying the following conditions.
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(1) (X, ι, λ,ρ,F) ∈Z(�)(S).
(2) If m ≥ 1, we require in addition that x∗(Lie(G ×SpfO

F̆
S)) ⊂F for any x ∈ �.

We first describe the κ̄-points of N and N�.

Proposition 3.5 There is a bijection between Nred(κ̄) and the set of pairs of O
F̆

-
lattices (M,M ′) in N satisfying

M� = M, �M ⊂ τ−1(M) ⊂ �−1M, VM ⊂ M ′ ⊂ τ−1(M) ∩ M, and

length(M/M ′) = 1.

Proof Let (X, ι, λ,ρ,F) be a κ̄-point of N and M(X) be the OF0 -relative Dieudonné
module of X. Define M = ρ(M(X)) ⊂ N and M ′ = ρ(Pr−1(F)) ⊂ N where Pr :
M(X) → LieX = M(X)/VM(X) is the natural quotient map. The condition M� =
M is equivalent to the fact that λ is a principal polarization. The condition �M ⊂
τ−1(M) ⊂ �−1M is equivalent to π0M ⊂ VM ⊂ M . The condition VM ⊂ M ′ ⊂
τ−1(M) ∩M and length(M/M ′) = 1 is equivalent to the condition

VM ⊂ M ′ ⊂ M, �M ′ ⊂ VM, dimκ̄ (M/M ′) = 1,

which is in turn equivalent to

F ⊂ LieX, dimκ̄ (F) = n− 1, � ·F = {0}, � · LieX ⊂F .

Notice that the condition � ·LieX ⊂F is automatic once we know dimκ̄ (F) = n−1
and F is stable under the action of �. Hence the filtration F ⊂ LieX satisfies
Krämer’s signature condition and we have translated all conditions in the defini-
tion of N in term of relative Dieudonné modules. The proposition now follows from
Dieudonné theory. �

For a vertex lattice � in V or C, define

�̆ := � ⊗OF
O

F̆
, �̆� := �� ⊗OF

O
F̆
. (3.3)

Corollary 3.6 Let � be a vertex lattice in C. There is a bijection between N�(κ̄) and
the set of pairs of O

F̆
-lattices (M,M ′) in N satisfying the conditions in Proposition

3.5 and the following condition.

(1) If t (�) = 0, then M = �̆.
(2) If t (�) ≥ 2, then �̆ ⊂ M ′ ⊂ M .

Proof By Dieudonné theory, a point (X, ι, λ,ρ,F) ∈N (κ̄) is in Z(�)(κ̄) if and only
if ρ−1 ◦ x(M(Y)) ⊂ M(X) for any x ∈ b−1(�). Since M(Y) is generated by e, this
is the case if and only if x(e) ∈ M = ρ(M(X)) for any x ∈ b−1(�), if and only if
� ⊂ M (by the definition of b (2.5)), if and only if �̆ ⊂ M . When t (�) = 0, both
M and �̆ are unimodular, thus M = �̆. Similarly (2) is equivalent to Condition (2)
in Definition 3.4 as the Lie algebra of Y is generated by the image of e under the
quotient map M(Y) → LieY= M(Y)/VM(Y). �
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To study the tangent space of N�, we recall the Grothendieck-Messing deforma-
tion theory of N from [11, §3]. We remark here that although [11] deals with the case
F0 =Qp , the argument in fact applies to general F0 using the relative display theory
of [1]. Let R ∈ NilpO

F̆
. For a strict OF0 -module X over SpecR, we denote by D(X)

the OF0 -relative Dieudonné crystal in the sense of [1, §3]. A point z ∈ N (R) cor-
responds to a strict OF0 -module (X, ι, λ) over R together with filtration F ⊂ LieX

satisfying Definition 2.2. We have the following exact sequence of locally free R-
modules

0 → Fil(X) → D(X) → LieX → 0, (3.4)

where Fil(X) and LieX are of rank n and D(X) is of rank 2n. The principal polar-
ization λ induces a symplectic form 〈 , 〉 on D(X) such that

〈ι(a)x, y〉 = 〈x, ι(ā)y〉
for all a ∈ OF and x, y ∈ D(X). With respect to 〈 , 〉 the Hodge filtration Fil(X) is
maximal isotropic. Hence 〈 , 〉 induces a perfect pairing (still denoted by 〈 , 〉):

〈 , 〉 : Fil(X)× LieX → R. (3.5)

The submodule F ⊂ LieX and its perpendicular complement F⊥ (which is locally
a direct summand of Fil(X) of rank one) with respect to (3.5) determine each other.
The condition on F in Definition 2.2 is

OF acts on F by OF
ī−→ O

F̆
→OS and on LieX/F by OF

i−→ O
F̆
→OS. (3.6)

This is equivalent to the condition that OF acts on F⊥ by OF
ī−→ O

F̆
→OS and on

Fil(X)/F⊥ by OF
i−→ O

F̆
→OS . Since OF0 acts on D(X) by i0 and OF = OF0 [π],

(3.6) is further equivalent to

(� + π) ·F⊥ = 0, (� − π) · Fil(X) ⊂F⊥, (3.7)

where we use � to denote the action ι(π) on D(X).

Definition 3.7 Let C be the following category. Objects in C are triples (O,O →
κ̄, d) where O is an Artinian O

F̆
-algebra, O→ κ̄ is an O

F̆
-algebra homomorphism,

and d is a nilpotent OF0 -pd-structure (see [1, Definition 1.2.2]) on Ker(O → κ̄).
Morphisms in C are O

F̆
-algebra homomorphisms compatible with structure maps to

κ̄ and OF0 -pd-structure structures.

Let z = (X, ι, λ,ρ,F) ∈ Z(�)(κ̄) and M = ρ(M(X)) ⊂ N . Then � ⊂ M by
Corollary 3.6. We can identify (3.4) with

0 → VM/π0M → M/π0M → M/VM → 0.

Let F⊥ ⊂ VM/π0M be the perpendicular complement of F as described above.
Denote by Z(�)z (resp. N�,z) the completion of Z(�) (resp. N�) at z. For any
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O ∈ C and z̃ = (X̃, . . .) ∈Z(�)z(O), we can identify D(X̃) with MO := M ⊗O
F̆0

O
and by Grothendieck-Messing theory z̃ corresponds to a filtration of free O-module
direct summands

F̃⊥ ⊂ F̃il ⊂ MO,

which lifts the filtration F⊥ ⊂ Fil ⊂ Mκ̄ = M/π0M . Let fO be the map

fO : z̃ �→ (F̃⊥, F̃il). (3.8)

Lemma 3.8 Let the notations be as above. Denote by �M,O the image of the com-
position of maps �̆ → M → MO , and let �⊥

M,O be its perpendicular complement in
MO under the alternating form 〈 , 〉.
(1) The map fO defines a bijection from Z(�)z(O) to the set consisting of pairs

(F̃⊥, F̃il) lifting (F⊥,Fil) satisfying the following conditions:
(a) F̃⊥ and F̃il are free O-module direct summands of MO of rank 1 and n

respectively and F̃⊥ ⊂ F̃il;
(b) F̃il is isotropic with respect to 〈 , 〉;
(c) (�+ π) · F̃⊥ = 0 and (� − π) · F̃il ⊂ F̃⊥;
(d) F̃il contains F̃il

− := (�+ π) · �M,O .
(2) The restriction of fO to N�,z(O) defines a bijection from N�,z(O) to the set

consisting of pairs (F̃⊥, F̃il) satisfying the above conditions together with the
extra condition:
(e) F̃⊥ ⊂ �⊥

M,O .

Proof Proof of (1): By the previous discussion, (F̃⊥, F̃il) satisfies conditions (a),
(b) and (c) for any z̃ ⊂ Nz(O) (Nz is the completion of N at z). Conversely by
Grothendieck-Messing theory any pair (F̃⊥, F̃il) lifting (F⊥,Fil) satisfying (a), (b)
and (c) gives rise to a unique point z̃ ∈ Nz(O). Since the action of OF on LieG is
via the inclusion ī, the Hodge filtration of GO is SpanO{(� + π) · e ⊗ 1} where e

is a generator of M(Y) as in §2.2. The image of the SpanO{(� + π) · e ⊗ 1} under
elements of � ⊂ V in MO is exactly F̃il

−
. By Grothendick-Messing theory again,

z̃ ∈Z(�)z(O) if and only if condition (d) holds.
(2) is a corollary of (1). For any z̃ = (X̃, . . . , F̃) ∈Z(�)z(O), let F̃ ′ be the preim-

age of F̃ under the quotient map MO → MO/F̃il. Condition (2) in Definition 3.4 is
equivalent to �M,O ⊂ F̃ ′ by the same reasoning as Corollary 3.6. The perpendicular
complement of F̃ ′ with respect to 〈 , 〉 is F̃⊥. Hence condition (2) in Definition 3.4
is equivalent to condition (e). Hence z̃ ∈N�,z(O) if and only if (e) is satisfied. This
finishes the proof of the lemma. �

Lemma 3.9 Let � be a vertex lattice of type 2m in C and M ⊂ N be an O
F̆

-lattice
such that � ⊂ M and M = M�. Then there is an O

F̆
-basis {e1, . . . , en} of M such

that

(eα, eα+m) = 1, (eμ, eμ) ∈ O×
F̆
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for 1 ≤ α ≤ m, 2m + 1 ≤ μ ≤ n, the inner product ( , ) between any other basis
vectors is zero, and

�̆ = SpanO
F̆
{�e1, . . . ,�em, em+1, . . . , en}.

Proof By assumption we have �M ⊂ ��̆� ⊂ �̆ ⊂ M and dimκ̄ (M/�̆) = m. With
respect to the κ̄-valued quadratic form ( , ) (mod π) on M/�M , �̆/�M has a de-
composition

�̆/�M = R kW,

where R is totally isotropic and W is non-degenerate. Then by the nondegeneracy of
( , ) (mod π) on M/�M we know that there is a totally isotropic subspace R′ such
that

M/�M = (R′ ⊕ R)kW,

and ( , ) (mod π) induces a perfect pairing between R and R′. Hence we can find
a basis {ē1, ēn} of M/�M such that R′ = 〈ē1, . . . , ēm〉, R = 〈ēm+1, . . . , ē2m〉, W =
〈ē2m+1, . . . , ēn〉, and

(ēα, ēα+m) = 1 (mod π), (ēμ, ēμ) (mod π) ∈ κ̄×

for 1 ≤ α ≤ m and 2m + 1 ≤ μ ≤ n and the pairing between all other basis vectors
are zero. We can lift the above basis to a basis {e1, . . . , en} of M which will satisfy
the assumptions of the lemma. �

Proposition 3.10 The scheme Z(�) has no O
F̆
/(π2)-point.

Proof Let O = O
F̆
/(π2) with the reduction map O → κ̄ and the natural OF0 -

pd structure on πO. Then O ∈ C . Let z = (X, ι, λ,ρ,F) ∈ Z(�)(κ̄) and M =
ρ(M(X)) ⊂ N as in Proposition 3.5. Then by Corollary 3.6 �̆ ⊂ M , and we can
assume there is an O

F̆
-basis {e1, . . . , en} of M as in Lemma 3.9. Denote the image

of ei in MO still by ei . Then {e1, . . . , en,�e1, . . . ,�en} is an O-basis of MO . With
respect to the alternating form 〈 , 〉, we have by (2.2)

〈eα,�em+α〉 = −1/δ, 〈em+α,�eα〉 = −1/δ, 〈eμ,�eμ〉 ∈ O×
F̆0

, (3.9)

for 1 ≤ α ≤ m, 2m+1 ≤ μ ≤ n, and all other pairings between basis vectors are zero.
Assume that z can be lifted to a point z̃ ∈Z(�)z(O), which corresponds to a pair

(F̃⊥, F̃il) as in Lemma 3.8. First notice that

F̃il
− = (�+ π) · �M,O

= SpanO
F̆
⊗O

F̆0
O{π�e1, . . . , π�em, (� + π)em+1, . . . , (� + π)en}. (3.10)
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With respect to the alternating form 〈 , 〉, its perpendicular complement (F̃il
−
)⊥ in

�M,O is generated by

{(�+ π)e1, . . . (� + π)em,�em+1,πem+1, . . . ,

�e2m,πe2m, (�+ π)e2m+1, . . . , (� + π)en}. (3.11)

By Lemma 3.8 (c), F̃⊥ is annihilated by �+ π , hence it is spanned by a vector

v =
n∑

i=1

ai(� − π)ei,

where ai ∈ O× for some i as F̃⊥ is a direct summand of MO . By Lemma 3.8, we
must have F̃il

− ⊂ F̃il, F̃⊥ ⊂ F̃il and F̃il is isotropic. Hence F̃il ⊂ (F̃il
−
)⊥. Moreover

〈F̃il
−
, F̃⊥〉 = 0, which implies ai ∈ πO for 1 ≤ i ≤ m and 2m + 1 ≤ i ≤ n. Hence

without loss of generality we can assume that am+1 = 1.
Since F̃il is a direct summand of MO we have MO = F̃il ⊕ S where S is an O-

module. We can write �e1 = w+w′ where w ∈ F̃il and w′ ∈ S. Since π�e1 ∈ F̃il
− ⊂

F̃il, we must have πw′ = 0. This implies that w′ ∈ πMO and w is of the form

w = (�+ bπ)e1 + x

where b ∈O and x ∈ π · SpanO{e2,�e2, . . . , en,�en}. Since w ∈ F̃il ⊂ (F̃il
−
)⊥, by

(3.11), we must have b = 1 and x is of the form

x =
m∑

i=2

di(� + π)ei +
2m∑

i=m+1

(ci + di�)ei +
n∑

i=2m+1

di(� + π)ei,

where ci ∈ πO for m+1 ≤ i ≤ 2m and di ∈ πO for 2 ≤ i ≤ n. Since (�+π)ei ∈ F̃il
for 2m+1 ≤ i ≤ n, by changing w and x at the same time if necessary we can assume
that di = 0 for 2m+ 1 ≤ i ≤ n. By (3.9), we have

〈(�+ π)e1, (� − π)em+1〉 = 2π〈e1,�em+1〉 	= 0.

Moreover

〈x, v〉 =
m∑

i=2

〈di(� + π)ei, am+i (� − π)em+i〉

+
2m∑

i=m+1

〈(ci + di�)ei, ai−m(�− π)ei−m〉

= 0

Here we have used the fact that ai ∈ πO for 1 ≤ i ≤ m, ci ∈ πO for m+ 1 ≤ i ≤ 2m

and di ∈ πO for 2 ≤ i ≤ 2m. Then 〈w,v〉 	= 0 which contradicts the fact that F̃il is
isotropic. Hence there is no lift of z into Z(�)(O). This proves the lemma. �
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As N� is a formal subscheme of Z(�), the following corollary is immediate.

Corollary 3.11 N� has no O
F̆
/(π2)-point.

Proposition 3.12 Let � be a vertex lattice of type 2m (m ≥ 1) in V and z ∈N�(κ̄).
Then the tangent space Tz(N�,κ̄ ) has dimension less than or equal to m.

Proof Let z = (X, ι, λ,ρ,F) ∈ N�(κ̄) and M = ρ(M(X)) ⊂ N as in Proposition
3.5. Let O = κ̄[ε]/(ε2), then O is an O

F̆
-algebra through the map O

F̆
→ κ̄ → O

and the ideal (ε) ⊂ O is equipped with a natural OF0 -pd structure. Then O ∈ C .
Any point z̃ ∈ Tz(N�,κ̄ ) = N�,z(O) corresponds to a unique pair (F̃⊥, F̃il) lifting
(F⊥,Fil) as in Lemma 3.8. We prove the lemma in two cases.

Case (a): Fil 	= � · Mκ̄ . Since MO is a free OF ⊗OF0
O-modules of rank n, we

have the following exact sequence

0 → � · MO → MO
�−→ � ·MO → 0,

where � ·MO is a free O-module of rank n and the first arrow is the natural injection.
This implies the following sequence is exact.

0 → (� · MO) ∩ F̃il → F̃il
�−→ � · F̃il → 0. (3.12)

Since F̃il 	= � · MO , by (3.12) we know that � · F̃il 	= {0}. By Lemma 3.8, � · F̃il ⊂
F̃⊥ and F̃⊥ has rank 1, we know that � · F̃il = F̃⊥ by Nakayama’s lemma. In particu-
lar F̃⊥ is determined by F̃il. Moreover F̃il is determined by its image in the O-module
(F̃il

−
)⊥/F̃il

−
where F̃il

− = � · �M,O as in Lemma 3.8. Equation (3.10) is still true

and implies that F̃il
−

is an isotropic free O-module direct summand of MO of rank
n−m (notice that π = 0 in O). Notice that by (3.12) and the fact that � · F̃il = F̃⊥ is
free (in particular projective), (� ·MO)∩ F̃il is a free direct summand of F̃il of corank
1. This implies that (� · MO) ∩ F̃il is a free direct summand of � · MO of corank 1
as well. So (� · MO) ∩ F̃il/F̃il

−
is a hyperplane in the O-module � · MO/F̃il

−
of

rank m, and is determined by m − 1 parameters over κ̄ as the tangent space of Pm−1
κ̄

has dimension m− 1. Hence (� ·MO)∩ F̃il is determined by m− 1 parameters over
κ̄ as well. Since F̃il is maximal isotropic, it corresponds to a hyperplane in the rank
two O-module

((� ·MO) ∩ F̃il)⊥/(� · MO) ∩ F̃il,

hence is further determined by one parameter over κ̄ as the tangent space of P1
κ̄ has

dimension 1. This proves case (a).
Case (b): Fil = � · Mκ̄ . By Lemma 3.9, we know � · MO ⊂ �M,O and �M,O is

a free O-module direct summand of MO of corank m. Hence (�M,O)⊥ is a free O-
module of rank m and is in (� ·MO)⊥ = � ·MO . As in [12], we assume that we have
a O ⊗OF0

OF -basis {e1, . . . , en} of MO such that 〈ei,� · ej 〉 = δij for 1 ≤ i, j ≤ n

and all other pairings between these basis vectors are zero. The lift F̃il is spanned by
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x1, . . . , xn where

(x1, . . . , xn) = (e1, . . . , en,�e1, . . . ,�en)

(
Aε

In

)

where A ∈ Mn(κ̄) and A = tA since F̃il is isotropic. Assume F⊥ ⊂ Fil = � · Mκ̄ is
spanned by

n∑
i=1

bn+i� · ei .

Then bn+i 	= 0 for some i and we can assume without loss of generality bn+1 = 1.
The lift F̃⊥ is spanned by

n∑
i=1

b̃iei +
2n∑

i=n+1

b̃i� · ei,

where b̃n+1 = 1 and b̃n+i = bn+i + εci for 2 ≤ i ≤ n and some ci ∈ κ̄ . Let

λ = t (b̃n+1, . . . , b̃2n).

Equations (4.7), (4.8) and (4.10) of [12] tell us that

A = γ1λ · t λ

for some γ1 ∈ κ̄ . Equation (4.5) of loc.cit. tells us

t (b̃1, . . . , b̃n) = Aλ,

which is equal to γ1λ · t λ · λ = 0 as t λ · λ = 0 by (4.9) of loc.cit.. In particular F̃⊥ ⊂
�MO and a point in Tz(N�,κ̄ ) is determined by the n − 1 parameters ci for 2 ≤
i ≤ n together with the additional parameter γ1. Now the condition F̃⊥ ⊂ (�M,O)⊥
(condition (e) of Lemma 3.8) imposes further n − m independent linear equations
on the parameters ci for 2 ≤ i ≤ n. This shows that the tangent space Tz(N�,κ̄ ) has
dimension less than or equal to m. This finishes the proof of the proposition. �

3.3 Isomorphism between N� and YV,κ̄

By [26, Lemma 6.1], the lattices �̆ and �̆� (see (3.3)) are closed under �, V and F,
hence determine supersingular p-divisible strict OF0 -modules with OF -action X−
and X+ (denoted by X�− and X�+ resp. in [26, §6]) of dimension n over κ̄ together
with quasi-isogenies ρ− : X− → X of height m and ρ+ : X+ → X of height −m.
The inclusion �̆ ⊂ �̆� also defines an isogeny ρ� : X− → X+ of height 2m. Since
X− ∼=Yn as an OF -module for any κ̄-scheme S, on the special fiber condition (1) in
Definition 3.4 is equivalent to the condition

(1)′ : The quasi-isogeny ρX,− := ρ−1 ◦ (ρ−)S : (X−)S → X is an isogeny. (3.13)
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This is further equivalent by loc.cit. to the condition

(1)′′ : The quasi-isogeny ρX,+ := (ρ+)−1
S ◦ ρ : X → (X+)S is an isogeny. (3.14)

Lemma 3.13 The functor N�,κ̄ is representable by a projective scheme over κ̄ . The
functor morphism N�,κ̄ →N is a closed immersion.

Proof Z(�)κ̄ is a closed formal subscheme of N . Since for any κ̄-scheme S, Condi-
tion (1) in Definition 3.4 is equivalent to (3.13), the functor Z(�)κ̄ can be represented
by a projective scheme over κ̄ by exact the same argument as that of [34, Lemma 3.2].
Condition (2) of Definition 3.4 defines N�,κ̄ as a closed subscheme of Z(�)κ̄ , hence
is itself projective over κ̄ and a closed formal subscheme of N . This finishes the proof
of the lemma. �

In the following discussion we assume that � has type greater than or equal to 2.
Let V = ��/� and define a symplectic form 〈 , 〉V on V as follows. For x̄, ȳ ∈ V with
lifts x, y ∈ ��, define 〈x̄, ȳ〉V by the image of π0δ〈x, y〉 in Fq (see §2.2). Extend this
form bilinearly to Vκ̄ . Note that τ induces identity on V and the Frobenius 	 on Vκ̄ .
Let R be a κ̄-algebra and (X, ι, λ,ρ,F) ∈N�(R). As in the proof of [34, Corollary
3.9], Image(D((ρ�)R)) is a locally free direct summands of D((X+)R) of corank 2m

and

D((X+)R)/Image(D((ρ�)R)) ∼= �̆�/�̆⊗κ̄ R = VR.

As (ρ�)R = ρX,+ ◦ρX,−, we know ker(ρX,+) = ker((ρ�)R)/ker(ρX,−) as a quotient
of finite group schemes over SpecR. Since ��̆� ⊂ �̆, by relative Dieudonné theory,
we know ker(ρ�) ⊂ X−[ιX−(π)] or equivalently ιX−(π) ·ker(ρ�) = {0}. Hence ι(π) ·
ker(ρX,+) = {0} or equivalently ker(ρX,+) ⊂ X[ι(π)]. Thus there exists an isogeny
ρ̃X,+ : X+ → X such that ρ̃X,+ ◦ ρX,+ is the isogeny ι(π) : X → X. Recall Fil in the
exact sequence (3.4).

Lemma 3.14 D(ρ̃X,+)−1(Fil) is a locally free direct summand of D(X+) that con-
tains D((ρ�)R). Moreover the quotient

U(X) := D(ρ̃X,+)−1(Fil)/Image(D((ρ�)R)) (3.15)

is a locally free direct summand of VR of rank m.

Proof By universality, it suffices to check the case when SpecR is an affine sub for-
mal scheme of N�. In this case, by Nakayama’s lemma, it suffices to check the con-
dition on the κ̄-points of N�. A point z ∈ N�(κ̄) corresponds to a pair (M,M ′) as
in Corollary 3.6. Then the isogeny ρ̃X,+ is induced by the map of relative Dieudonné
modules �̆� → M : x �→ � · x. Recall Fil = VM . So

D(ρ̃X,+)−1(Fil) = �−1VM/π0�̆
� = τ−1(M)/π0�̆

�.

Since �̆ ⊂ M , we have �̆ = τ−1(�̆) ⊂ τ−1(M). So

Image(D((ρ�)R)) = �̆/π0�̆
� ⊂ D(ρ̃X,+)−1(Fil).
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The condition M = M� is equivalent to the fact that 	(U(X)) is Lagrangian in
V , which in turn is equivalent to the fact that U(X) is Lagrangian which implies
dimκ̄ U(X) = m. �

By Condition (2) of Definition 3.4, we know Image(D((ρ�)R)) ⊂
D(ρX,+)(q−1

X (F)) where qX : D(X) → LieX is the natural quotient homomorphism
of R-modules (see the proof of Corollary 3.6). Define

F(X) := D(ρX,+)(q−1
X (F))/Image(D((ρ�)R)).

Then F(X) is a locally free direct summand of U(X) of rank m−1. We define a map
φ :N�,κ̄ → Gr(m,Vκ̄ ) × Gr(m − 1,Vκ̄ ) by

φ : (X, ι, λ,ρ,F) �→ (U(X),F(X)) ∈ (Gr(m,Vκ̄ ) × Gr(m − 1,Vκ̄ ))(R).

Lemma 3.15 φ defines a bijection between N�(κ̄) and YV (κ̄).

Proof A point z ∈N�(κ̄) corresponds to a pair (M,M ′) as in Corollary 3.6. By the
definition of φ we have φ(z) = (U,U ′) where

(U,U ′) = (�−1VM/�̆,M ′/�̆) = (τ−1(M)/�̆,M ′/�̆) = (	−1(M/�̆),M ′/�̆).

As in the proof of Lemma 3.14, the condition M = M� is equivalent to the condi-
tion that U is Lagrangian. The condition M ′ ⊂ M is equivalent to U ′ ⊂ 	(U). The
condition M ′ ⊂ τ−1(M) is equivalent to U ′ ⊂ U . This shows that φ(z) ∈ YV (κ̄).

Conversely assume (U,U ′) ∈ YV (κ̄) and let M = Pr−1(	(U)) and M ′ =
Pr−1(U ′) where Pr : �̆� → �̆�/�̆ is the natural quotient map. Then by definition
�̆ ⊂ M ′ ⊂ M ⊂ �̆�, and M = M� as U is Lagrangian. Since VM ⊂ V�̆� = ��̆� ⊂
�̆ ⊂ M ′, we have VM ⊂ M ′. We also have

�M ⊂ ��̆� ⊂ �̆ = τ−1�̆ ⊂ τ−1(M),

and

τ−1(M) ⊂ τ−1(�̆�) = �̆� ⊂ �−1�̆ ⊂ �−1M. (3.16)

Hence �M ⊂ τ−1(M) ⊂ �−1M . This shows that (M,M ′) satisfies the conditions
in Proposition 3.5 and Corollary 3.6. This defines the inverse of φ on the level of
κ̄-points. Hence φ defines a bijection between N�(κ̄) and YV (κ̄). �

Theorem 3.16 Let � be a vertex lattice of type 2m (m ≥ 1) in V. Then N� is reduced
and the morphism φ defines an isomorphism N� → YV,κ̄ . In particular N� is smooth
of dimension m over κ̄ .

Proof Let N red
� be the underlying reduced κ̄-scheme of N�. Lemma 3.15 shows that

φ induces a morphism φred : N red
� → YV,κ̄ which is a bijection on κ̄-points, in par-

ticular quasi-finite. Since φred is a morphism between projective varieties, it is pro-
jective. Moreover using the theory of relative displays and windows, working with
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Cohen rings instead of the Witt ring, we can show that N red
� (R) = YV (R) for any

field R containing κ̄ by the same proof as that of Lemma 3.15. In particular φred

is birational. Being quasi-finite and proper at the same time, it is an isomorphism
by Zariski’s main theorem since YV,κ̄ is normal. Now Proposition 3.12 implies that
N red

� =N�,κ̄ . By [25, Lemma 10.3] and Corollary 3.11, we have N� =N�,κ̄ . This
finishes the proof of the theorem. �

Proposition 3.17 Let � be a vertex lattice of type 0 in V. Then N� is the exceptional
divisor Exc� and is isomorphic to Pn−1

κ̄ .

Proof Let R be any κ̄-algebra and z be any point in N�(R) and (X, ι, λ,ρ,F) be
the pullback of the universal object of N to z. As � is a unimodular lattice, the
quasi-isogeny ρ− has height 0. Thus the isogeny

ρX,− = ρ−1 ◦ (ρ−)R : (X−)R → X

has height 0 and is an isomorphism, hence we can identify (X, . . . , ρ) with
((X−)R, . . . , (ρ−)R). As �|� = V|� for any vertex lattice �, and LieX− =
M(X−)/VM(X−), the action of ι(π) on LieX− is trivial. The point z is uniquely
determined by the filtration F ⊂ LieX. Hence F can be any rank n − 1 locally free
R-module on LieX. This shows that N� is isomorphic to Pn−1

κ̄ and is in particular
reduced. Moreover if R = κ̄ , then ρ(M(X)) = �̆. This shows that N� is a subscheme
of Exc� according Definition 2.4. By the proof of Lemma 2.5, we know that N� and
Exc� have the same κ̄-points. As they are both reduced subscheme of N , they must
be the same. This proves the proposition. �

3.4 Bruhat-Tits stratification

Lemma 3.18 For any pair (M,F) satisfying the condition in Proposition 3.5, there
is a unique vertex lattice �(M) such that �(M) ⊂ M and �(M) is maximal among
all such vertex lattices.

Proof This is essentially [26, Proposition 4.1] as such M satisfies the conditions in
Proposition 2.4 of loc.cit.. �

Theorem 3.19 There is a stratification of Nred by closed strata N� given by

Nred =
⋃
�

N�. (3.17)

where the union is over all vertex lattices in V. We call this the Bruhat-Tits stratifica-
tion of Nred. In the following, assume that � and �′ are vertex lattices of type greater
than or equal to 2, and �0 and �′

0 are vertex lattices of type 0.

(1) If � ⊂ �′, then N�′ is a subscheme of N�.
(2) The intersection of N�′ ∩N� is nonempty if and only if �′′ = �+�′ is a vertex

lattice, in which case we have N�′ ∩N� =N�′′ .
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(3) The intersection of N�′
0
∩N�0 is always empty if �0 	= �′

0.
(4) The intersection N� ∩ N�0 is nonempty if and only if � ⊂ �0 in which case

N� ∩N�0 is isomorphic to Pm−1
κ̄ where 2m is the type of �.

Proof To prove (3.17), it suffices to check this on κ̄-points. A point z ∈Nred(κ̄) cor-
responds to a pair (M,M ′) as in Proposition 3.5. Take � = �(M) as in Lemma 3.18.
If � has type 0, then both �̆ and M are unimodular and �̆ ⊂ M , so they have to be
equal. Hence z ∈N� by Corollary 3.6. If � is not of type 0, then M is not τ -invariant,
hence M ′ = M ∩ τ−1(M) is uniquely determined. Since � is τ -invariant, �̆ ⊂ M ′.
Hence z ∈N�(κ̄) by Corollary 3.6. This proves (3.17).

(1) follows immediately from Definition 3.4.
(2). If �′′ is a vertex lattice, then N�∩N�′ =N�′′ by Definition 3.4. Conversely if

N�′ ∩N�(κ̄) is nonempty, let (M,M ′) ∈N�′ ∩N�(κ̄). Then �(M) ⊃ �+�′ by the
maximality of �(M). Then � + �′ ⊂ �(M) ⊂ �(M)� ⊂ �� ∩ (�′)� = (� + �′)�.
Hence �+�′ is a vertex lattice.

(3) follows directly from Corollary 3.6.
(4). By Corollary 3.6, a point (M,M ′) ∈ N (κ̄) is in N� ∩ N�0 if and only if

M = �0 ⊗OF
O

F̆
and � ⊂ M ′ ⊂ M . This show that � ⊂ �0 and M ′ corresponds

to a point in P(�0/�)(κ̄). Hence N� ∩N�0(κ̄) = P(�0/�)(κ̄). Similarly one can
show that

N� ∩N�0(R) = P(�0/�)(R)

for any κ̄-algebra R. This finishes the proof of (4). �

Proposition 3.20 For a rank r lattice L ⊂V, the reduced subscheme Z(L)red of Z(L)

is a union of Bruhat-Tits strata:

Z(L)red =
⋃
L⊂�

N�, (3.18)

where the union is taken over all vertex lattices � such that L ⊂ �. Moreover, the
intersection of Z(L) with N� is nonempty if and only if L ⊂ ��.

Proof The proof of (3.18) is the same as that of [30, Proposition 3.8].
If L ⊂ �� and L is integral, define �′ := L + �. Then �′ is a vertex lattice and

� ⊂ �′. By Theorem 3.19 (1) and the definition of Z(L), N�′ is in the intersection
of Z(L) and N�.

Conversely if the intersection of Z(L) and N� is not empty, then by (3.18) and
Theorem 3.19, there exists a vertex lattice �′ such that � ⊂ �′ and L ⊂ �′. Since
�′ ⊂ (�′)� ⊂ ��, we know that L ⊂ ��. This finishes the proof of the lemma. �

4 Fourier transform: the geometric side

4.1 Horizontal and vertical part of LZ(L�)

Definition 4.1 Let L
 be a rank n−1 integral lattice in V. We say that L
 is horizontal
if one of the following conditions is satisfied.
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(1) L
 is unimodular.
(2) L
 is of the form L
 = M kL′ where M is a unimodular sublattice of rank n− 2

such that (MF )⊥ (the perpendicular complement of MF in V) is nonsplit.

We denote the set of horizontal lattices by Hor.

Lemma 4.2 Let L
 be a rank n − 1 lattice in V. Then L
 is horizontal if and only if
there is a unique vertex lattice � which contains L
. If this is the case, � is of type 0.

Proof We first prove the “only if” direction. Let � be any vertex lattice containing
L
. If L
 is unimodular, then � has to be of the form L
 kL′ where L′ is the unique
unimodular lattice in (L



F )⊥. If L
 is of the form MkL′ such that M is of rank n−2

and (MF )⊥ is nonsplit, then the proof of [30, Theorem 3.10] implies that there is a
unique vertex lattice �′ in (MF )⊥ which is of unimodular (this corresponds to the
fact that the Bruhat-Tits building of (MF )⊥ has only one point). Then � must be of
the form M k�′. In both cases, � is unique and is of type 0.

We now prove the “if” direction. If t (L
) ≥ 2, then there exist a type 2 vertex
lattice �2 containing L
 and any type 0 vertex lattice containing �2 (there are q + 1
of them) also contains L
. Hence t (L
) ≤ 1 and L
 is of the form M k L′ such that
M is of rank n−2. If (MF )⊥ is split and val(L′) > 0, then [9, Corollary 3.11] implies
that there are more than one type 0 vertex lattices �′ in (MF )⊥ containing L′. For
any such �′, M k�′ is a vertex lattice of type 0 containing L
. This shows that in
order for such � to be unique, L
 must satisfies the conditions in Definition 4.1. The
lemma is proved. �

For a rank n− 1 lattice L
 in V, define

Hor(L
) := {M
 ∈ Hor | L
 ⊂ M
}. (4.1)

When dim(V) = 2 and χ(V) =−1, for y ∈V, define

Z̃(y)◦ :=
{
Z+

val(y) �Z−
val(y) if val(y) > 0,

Z0 if val(y) = 0.

Here Z0 ∼= SpfO
F̆

and Z+
s

∼=Z−
s

∼= SpfWs are quasi-canonical lifting cycles defined
in [29, §3] where Ws is a totally ramified abelian extension of O

F̆
of degree qs .

When dim(V) = 2 and χ(V) = 1, for y ∈ V=0, define Z̃(y)◦ to be Zh(y), where
Zh(y) ∼= SpfO

F̆
is as in [9, Theorem 4.1]. In all cases, Z̃(y)◦ is a closed subscheme

of N2.
For a M
 ∈ Hor, we can decompose M
 as M k Span{y} where M is unimodular

and val(y) has to be zero if (MF )⊥ is split. By [10, Proposition 2.6], the unimodular
lattice M induces a closed embedding N2 ↪→Nn. We define Z̃(M
)◦ to be the image
of the composed embedding Z̃(y)◦ ↪→N2 ↪→Nn where Z̃(y)◦ is the closed formal
subscheme of N2 defined above. Moreover by loc. cit., the definition of Z̃(M
)◦ is
independent of the choice of M . The following is [10, Theorem 4.2].
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Theorem 4.3 Let L
 be a rank n− 1 non-degenerate integral lattice in V, then

Z(L
)H =
⋃

M
∈Hor(L
)

Z̃(M
)◦. (4.2)

In particular, Z(L
)H is of pure dimension 1. We have the following identity in

Grn−1K
Z(L
)
0 (N ):

[OZ(L
)H
] =

∑

M
∈Hor(L
)

[OZ̃(M
)◦ ]. (4.3)

Lemma 4.4 For any formal subscheme Z of N and 0 ≤ i ≤ n, F iKZ
0 (N ) is an ideal

in K0(N ).

Proof By definition F iKZ
0 (N ) is generated by elements of the form [F•] where F•

is a finite complex of locally free coherent ON -modules acyclic outside a sub formal
scheme Y of Z such that the codimension of Y in N is greater than or equal to i. By
Kunneth formula for chain complexes, the product complex F• ⊗ON K• is acyclic
outside Y as well for any finite complexes of locally free coherent ON -modules K•.
This proves the lemma. �

By Lemma 4.4, for any formal subscheme Z of N , we can define a quotient ring
(not necessary with identity)

Gr′KZ
0 (N ) := KZ

0 (N )/FnKZ
0 (N ). (4.4)

In particular Grn−1KZ
0 (N ) = Fn−1KZ

0 (N )/FnKZ
0 (N ) is a subgroup of Gr′KZ

0 (N ).
Let L
 be a rank n − 1 non-degenerate integral lattice. Since Z(L
)H is

one-dimensional, the intersection Z(L
)H ∩ Z(L
)V must be 0-dimensional if
nonempty. It follows that there is a decomposition

Gr′KZ(L
)
0 (N ) = Gr′KZ(L
)H

0 (N ) ⊕ Gr′KZ(L
)V
0 (N ). (4.5)

Under this decomposition, we have

LZ(L
) = LZ(L
)H + LZ(L
)V ∈ Gr′KZ(L
)
0 (N ), (4.6)

where we denote by the same notation the image of LZ(L
) under the natural quo-

tient map K
Z(L
)
0 (N ) → Gr′KZ(L
)

0 (N ). It follows that the element LZ(L
)V ∈
Gr′KZ(L
)

0 (N ) is canonically defined although Z(L
)V depends on the choice of
a large integer m � 0.

Since Z(L
)H has expected dimension, LZ(L
)H is in fact in Grn−1K
Z(L
)
0 (N )

and is represented by the structure sheaf of Z(L
)H . In order to match the analytic
side of our conjecture, we need to slightly modify LZ(L
)H .
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Definition 4.5 Let L
 be a horizontal lattice in V. Define LZ(L
)◦ ∈ Gr′KZ(L
)
0 (N )

by

LZ(L
)◦ =
{
[OZ̃(L
)◦ ] + 1−(−1)n−1

2 [OP�
] if L
 is unimodular,

[OZ̃(L
)◦ ] + [OP�
] otherwise,

where � is the unique type 0 vertex lattice containing L
 as in Lemma 4.2 and P� is
a projective line over κ̄ in Exc�.

Remark 4.6 LZ(L
)◦ is the difference cycle D(L
) defined in [10, Definition 2.15].

Definition 4.7 Let L
 be a rank n − 1 non-degenerate integral lattice. Define
LZ(L
)∗H ∈ Gr′KZ(L
)

0 (N ) by

LZ(L
)∗H :=
∑

M
∈Hor(L
)

LZ(M
)◦,

where Z(M
)◦H is as in Definition 4.5. Define the modified vertical part of the de-
rived special cycle LZ(L
) by

LZ(L
)∗V := LZ(L
) − LZ(L
)∗H ∈ Gr′KZ(L
)
0 (N ).

For any x ∈V \ L


F , define

IntL
,H (x) := χ(N ,LZ(L
)∗H · [OZ(x)]), and

IntL
,V (x) := χ(N ,LZ(L
)∗V · [OZ(x)]).
(4.7)

Lemma 4.8 For a rank n− 1 non-degenerate integral lattice L
, we have

LZ(L
)∗V ∈ Gr′KZ(L
)V
0 (N ).

Proof By the definition of LZ(L
)∗V , the decomposition (4.6) and Theorem 4.3, we
have

LZ(L
)∗V =LZ(L
)V + LZ(L
)H −
∑

M
∈Hor(L
)

LZ(M
)◦

=LZ(L
)V +
∑

M
∈Hor(L
)

([OZ(M
)◦ ] − LZ(M
)◦).

We know all terms in the last expression are in Gr′KZ(L
)V
0 (N ) by the definition of

LZ(L
)V and Definition 4.5. �



754 Q. He et al.

Lemma 4.9 If L
 is a horizontal lattice of rank n− 1 in V, then

LZ(L
)∗H = LZ(L
). (4.8)

In particular for any x ∈V \ L


F we have

IntL
,H (x) = IntL
(x).

Proof Let � be the unique type 0 vertex lattice containing L
 as indicated by Lemma
4.2. Then � ∩ L



F is the unique unimodular lattice in Hor(L
). By Theorem 4.3, we

have

LZ(L
)∗H − LZ(L
) = (m − 1 + 1 − (−1)n−1

2
)[OP�

] − LZ(L
)V ,

where m := |Hor(L
)|. By Proposition 3.20 and Lemma 4.2, we know that
LZ(L
)V ∈ Gr′KN�

0 (N ). [10, Corollary 3.5] implies that in fact LZ(L
)V ∈
Grn−1K

N�

0 (N ), hence

LZ(L
)V = m′[OP�
]

for some integer m′. In order to prove (4.8), it suffices to show

m′ = m− 1 + (−1)n−1

2
. (4.9)

Now assume L
 = MkL′ where M is unimodular and of rank n−2 and val(L′) = a.
Then m = a + 1. By [10, Lemma 4.4], we know that

χ(N ,LZ(L
)H · [ON�
]) = 2a + 1 = 2m − 1.

By [10, Corollary 3.7], we know

χ(N ,LZ(L
)V · [ON�
]) = m′ · χ(N , [OP�

] · [ON�
]) =−2m′.

On the other hand, by [10, Corollary 3.6],

χ(N ,LZ(L
)H · [ON�
]) + χ(N ,LZ(L
)V · [ON�

])
= χ(N ,LZ(L
) · [ON�

]) = (−1)n−1.

Combine the above equations, we get (4.9). �

4.2 Hermitian lattices and Fourier transform

We fix an additive character ψ : F0 → C× whose conductor is OF0 . Recall that the
Fourier transform with respect to ψ is defined by

ϕ̂(x) =
∫

V

ϕ(y) ·ψ(TrF/F0(x, y))dμ(y), (4.10)
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where dμ is the unique self-dual Haar measure on V with respect to this trans-
form. For a lattice L in V we use L∨ to denote its dual under the quadratic form
TrF/F0(( , )). The following lemma is well-known and easy to check.

Lemma 4.10 Let L ⊂ V be a lattice of rank n and 1L ∈ S (V) be its characteristic
function. Then

1̂L = vol(L,dμ) · 1L∨ .

Lemma 4.11 Let L be a rank n lattice in V. A function ϕ ∈ S (V) is L-invariant (in-
variant under the translation of L) if and only if its Fourier transform ϕ̂ is supported
on L∨.

Proof We first prove the “only if” direction. For any μ ∈V, let μ̄ be its image in the
quotient V/L. Define

L(μ̄) := μ +L.

Any L-invariant function φ ∈ S (V) is a linear combination of the characteristic func-
tions 1L(μ̄). So it suffices to assume φ = 1L(μ̄). In this case,

φ̂(x) = ψ(TrF/F0(x,μ)) · 1̂L(x).

So φ̂(x) is supported on L∨ by Lemma 4.10. This proves the “only if” direction.
For the “if” direction. It suffices to show that if ϕ is supported on L∨, then ϕ̂ is

L-invariant. For any z ∈ L, we have

ϕ̂(x + z) =
∫

V

ϕ(y) ·ψ(TrF/F0(x, y)) ·ψ(TrF/F0(z, y))dμ(y).

Since ψ(TrF/F0(z, y)) = 1 for any z ∈ L and y ∈ L∨ and ϕ is supported on L∨, the
above is equal to ϕ̂(x). This finishes the proof of the lemma. �

For an integer m, recall that

V≥m = {x ∈V | val(x) ≥ m}.
Definition 4.12 Define S (V)≥m to be the subspace of S (V) consisting of functions
ϕ such that ϕ̂ is supported on V≥m.

Lemma 4.13 Let � be a vertex lattice in V. Any �-invariant function in S (V) is in
S (V)≥−1.

Proof By Lemma 4.11, it suffices to show that �∨ ⊂ V≥−1. Since � is a vertex
lattice, we have

�� = Ht
k In−2t ,

for some t . Simple calculation gives then

�∨ = 1

π
�� = 1

π
Ht
k

1

π
In−2t ⊂V≥−1. �
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4.3 Fourier transform of IntL�,V

Theorem 4.14 Let � be a vertex lattice and K ∈ K
N�

0 (N ). For any x ∈ V \ {0}, the

function that takes x to K · [OZ(x)] ∈ K
N�

0 (N ) is �-invariant. More precisely, for
any y ∈ � such that x + y 	= 0, we have

K · [OZ(x)] =K · [OZ(x+y)]. (4.11)

Moreover, the function

IntK(x) := χ(N ,K · [OZ(x)])
extends to a �-invariant function in S (V)≥−1.

Proof Any element K ∈ K
N�

0 (N ) ∼= K ′
0(N�) is a sum of elements of the form [F]

where [F] is a coherent sheaf of ON�
-module. Hence it suffices to prove the theorem

for K= [F]. By [11, Corollary C], we know

[OZ(y) ⊗L

ON
OZ(x)] = [OZ(y) ⊗L

ON
OZ(x+y)].

For any y ∈ � with x + y 	= 0, N� is a subscheme of Z(y) by Proposition 3.20.
Hence we have

K · [OZ(x)] =[F ⊗L

ON
OZ(x)]

=[F ⊗L

ON�
ON�

⊗OZ(y)
OZ(y) ⊗L

ON
OZ(x)]

=[F ⊗L

ON�
ON�

⊗OZ(y)
OZ(y) ⊗L

ON
OZ(x+y)]

=K · [OZ(x+y)].
We have proved the �-invariance of K · [OZ(x)]. It follows that IntK(x) is also �-
invariant. Hence we can define IntK(0) to be IntK(x) for any 0 	= x ∈ � and obtain
a (unique) �-invariant function (still denoted by IntK(x)) for all x ∈V. In particular
IntK(x) is locally constant. If x /∈ ��, by Proposition 3.20, the intersection of Z(x)

with N� is empty, which implies IntK(x) = 0. This shows that the function IntK(x)

is compactly supported. Hence it is in S (V) and is in fact in S (V)≥−1 by Lemma
4.13. This finishes the proof of the theorem. �

Theorem 4.15 For every non-degenerate lattice L
 of V of rank n − 1, the function
IntL
,V on V \ L



F can be extended to an element in S (V)≥−1 which we denote by

the same notation.

Proof Lemmas 4.8 and 2.8 imply that LZ(L
)∗V ∈ Gr′KNred
0 (N )∩ Gr′KZ(L
)V

0 (N ).

Lemma 2.7 implies that there exist finitely many classes Ki ∈ Gr′KNred
0 (N )Q to-

gether with Ci ∈Q such that

IntL
,V (x) =
∑

i

Ci · χ(N ,Ki · [OZ(x)]).
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By Theorem 3.19 we may assume that Ki is supported on some N�. Now we can
apply Theorem 4.14 to conclude the proof. �

4.4 Partial Fourier transform

Let L
 be a rank n−1 non-degenerate lattice in V. Let W= (L


F )⊥. For any function

ϕ defined on V \ L


F , we define its partial Fourier transform ϕ⊥ as a function on

W \ {0} by

ϕ⊥(x) :=
∫

L


F

ϕ(x + y)dy, ∀x ∈W. (4.12)

Theorem 4.16 The partial Fourier transform Int⊥
L
,V

∈ S (W)≥−1 and is W≥0-

invariant. In particular it is constant on W≥0.

Proof It is easy to see that partial Fourier transform maps S (V) to S (W). It remains
to show that the Fourier transform of Int⊥

L
,V
∈ S (W) is supported on W≥−1. For

x ∈W, we have

̂Int⊥
L
,V

(x) = ̂IntL
,V (x),

where ̂IntL
,V (x) is the Fourier transform of IntL
,V ∈ S (V). Since ̂IntL
,V is sup-

ported on V≥−1 by Theorem 4.15, we know that ̂Int⊥
L
,V

(x) is supported on W≥−1.

Since W is one-dimensional, W≥m is a full rank lattice in W for any m ∈ Z. By
Lemma 4.11 and what we just proved, Int⊥

L
,V
is invariant under the translation of

(W≥−1)∨ =W≥0. �

5 Review of local densities and primitive local densities

In this section, we recall various explicit formulas of local density polynomials fol-
lowing Sect. 5 of [10].

5.1 Basic properties of local density and primitive local density polynomials

Definition 5.1 Let M and L be two hermitian OF -lattices of rank m and n respec-
tively. Let a be an integer such that (x, y) ∈ π−a

0 ∂−1
F/F0

for x, y ∈ M or x, y ∈ L.
Define the local density of M representing L as

Den(M,L) := lim
d→∞

∣∣∣HermL,M(OF0/(π
d+a
0 ))

∣∣∣
q2(d+a)nm−dn2 ,

which is independent of the choice of a. Here HermL,M(OF0/(π
d+a
0 )) is given by

the set

{φ ∈ HomOF
(L/πd+a

0 L,M/πd+a
0 M) |

(φ(x),φ(y)) ≡ (x, y) mod (πd
0 ∂−1

F/F0
), x, y ∈ L}.
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In this paper, we only deal with the case when we can and will choose a = 0. It is
well-known that there is a local density polynomial Den(M,L,X) ∈Q[X] such that

Den(M,L,q−2k) = Den(M kHk,L). (5.1)

Moreover, we denote Den(M,L) = Den(M,L,1) and

Den′(M,L) := −2 · ∂

∂X
Den(M,L,X)|X=1. (5.2)

Similarly, the primitive local density polynomial Pden(M,L,X) is defined to be the
polynomial in Q[X] such that

Pden(M,L,q−2k) = lim
d→∞q−d(2n(m+2k)−n2)|PhermL,MkHk(OF0/(π

d
0 ))|, (5.3)

where

PhermL,MkHk (OF0/(π
d
0 )) := {φ ∈ HermL,MkHk(OF0/(π

d
0 )) | φ is primitive}.

Here we recall that φ ∈ HermL,MkHk (OF0/(π
d
0 )) is primitive if dimFq

((φ(L) +
π(M k Hk))/π(M k Hk) = n. In particular, we have Pden(M,M) = Den(M,M)

since any φ ∈ HermM,M(OF0/(π
d
0 )) is primitive for large enough d .

Recall that without explicit mentioning, we assume ε = χ(L). As an analogue of
(1.3) and (1.4), we define

Pden′(L) := −2 ·
d

dX

∣∣
X=1Pden(In,L,X)

Den(In, In)
and Pdent (L) := Pden(�

�
t ,L)

Den(�
�
t ,�

�
t )

. (5.4)

To save notation, we simply denote Pden0(L) by Pden(L). We define

∂Pden(L) := Pden′(L) +
tmax

2∑
j=1

c2j · Pden2j (L), (5.5)

where c2j is as in (1.5).

Lemma 5.2 Let L be a lattice. If there exists x ∈ L such val(x) ≤ −1, then
∂Den(L) = Den′(L) = ∂Pden(L) = Pden′(L) = 0.

Proof Assume M ∼= In or M ∼= �2t for some t . Then Den(M k Hk,L) = 0 and
Pden(M kHk,L) = 0 since there is no vector in M with valuation less than or equal
to −1. �

Now we record several results that describe the relation between local density and
primitive local density polynomials.



A proof of the Kudla–Rapoport conjecture for Krämer models 759

Lemma 5.3 [10, Lemma 5.1] Let M and L be lattices of rank m and n. Then we have

Den(M,L,X) =
∑

L⊂L′⊂LF

(qn−mX)�(L
′/L)Pden(M,L′,X),

where �(L′/L) = lengthOF
L′/L. Here Pden(M,L′,X) = 0 for L′ with fundamental

invariant less than the smallest fundamental invariant of M . In particular, the sum-
mation is finite.

Corollary 5.4 Let L be a lattice. We have the following identity:

∂Den(L) =
∑

L⊂L′⊂LF

∂Pden(L′).

Proof Since Pden(In,L
′,1) = Pden(In,L

′) = 0, we have by Lemma 5.3

−2
d

dX

∣∣∣∣
X=1

Den(In,L,X) =−2
∑

L⊂L′⊂LF

d

dX

∣∣∣∣
X=1

Pden(In,L
′,X)

=
∑

L⊂L′⊂LF

Pden′(In,L
′).

Similarly, according to Lemma 5.3, we have

Den(�2j ,L) =
∑

L⊂L′⊂LF

Pden(�2j ,L
′)

for 0 < j ≤ tmax/2. Now the corollary follows from (1.5) and (5.5). �

Conversely, the primitive local density polynomial is a linear combination of local
density polynomials.

Theorem 5.5 [10, Theorem 5.2] Let M and L be lattices of rank m and n. We have

Pden(M,L,X) =
n∑

i=0

(−1)iqi(i−1)/2+i(n−m)Xi
∑

L⊂L′⊂π−1L
�(L′/L)=i

Den(M,L′,X).

Corollary 5.6 Let L be a lattice of rank n. Then

∂Pden(L) =
n∑

i=0

(−1)iqi(i−1)/2
∑

L⊂L′⊂π−1L
�(L′/L)=i

∂Den(L′).

Recall that for two lattices L,L′ ⊂V of rank n,

n(L′,L) = |{L′′ ⊂ LF | L ⊂ L′′,L′′ ∼= L′}|.
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Lemma 5.7 For two lattices L and M of the same rank n, we have

Pden(M,L) =
{

Den(M,L) if M ∼= L,

0 if M � L.
(5.6)

Moreover,

Den(M,L) = n(M,L) · Den(M,M).

In particular, if χ(M) 	= χ(L), then Den(M,L) = 0.

Proof First of all, for M ∼= L, Pden(M,L) = Den(M,L) by the definition of
primitive local density. Now we show that if Pden(M,L) 	= 0, then M ∼= L. If
Pden(M,L) 	= 0, then for any large enough d we have

PhermL,M(OF0/(π
d
0 )) 	= 0.

Let φ ∈ PhermL,M(OF0/(π
d
0 )) be a primitive embedding and L(d) = L ⊗OF0

OF0/(π
d
0 ). Let φ(L(d)) be the image of φ(L(d)) in M(d). Since φ is primitive, we

have φ(L(d)) = M(d). Then by Nakayama’s lemma, we know φ(L(d)) = M(d). Hence
φ is an isometry between L(d)

∼= M(d). Since this holds for any large enough d , we
have L ∼= M .

Now the formula of Den(M,L) follows from (5.6) and Lemma 5.3. �

Corollary 5.8 Let L be a lattice. Then for any even integer t such that 0 ≤ t ≤ tmax,
we have

Dent (L) := Den(�
�
t ,L)

Den(�
�
t ,�

�
t )

∈ Z.

Corollary 5.9 Assume L� �
�
t for any vertex lattice �t with t > 0. Then

∂Pden(L) = Pden′(L).

Corollary 5.10 Let ct be the coefficients in (1.6) with even t and 0 < t ≤ tmax. Then

ct =−Pden′(��
t ).

Proof On the one hand, combining Corollary 5.6 with (1.6), we obtain

∂Pden(�
�
t ) = 0.

On the other hand, by Lemma 5.7 and (1.5),

∂Pden(�
�
t ) = Pden′(��

t ) + ct . �
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Table 1 Examples of ct for
small n, t and ε = 1 n

t

2 3 4 5 6

2 −1
q+1

1
q(q+1)

−1
q2(q+1)

1
q3(q+1)

−1
q4(q+1)

4 0 0 1
q2(q2+1)

−1
q4(q2+1)

1
q6(q2+1)

6 0 0 0 0 − 1
q6(q3+1)

Write �
�
t = Ht/2kL1 where L1 is unimodular of rank n1. Then by Lemma 5.13,

Corollaries 6.2 and 5.10, we have (see the following subsections for the relevant
notations)

ct =−2

∏t/2−1
�=1 (1 − q2�)

Den(In, In)
·

n1∑
i=0

n1−i−1∏
�=0

(1 − q2(�+t/2)) ·
∑

V1∈Gr(i,L1)(Fq )

|O(V1, In)|.

Combining this formula with Lemma 5.16 and Lemma 5.18, we can compute ct ex-
plicitly. We give some examples here.

Example 5.11 If n is odd, we have

ctmax =−Pden′(In,�
�
tmax

)

Den(In, In)
= (−1)

n+1
2

q( n−1
2 )2

(q
n−1

2 + 1)
. (5.7)

If n is even and ε = 1, we have

ctmax =−Pden′(In,�
�
tmax

)

Den(In, In)
= (−1)

n
2

q
n
2 ( n

2 −1)(q
n
2 + 1)

.

We also give a list of ct for small n, t and ε = 1 in Table 1.
In fact, computation suggests that ct has the following simple formula:

ct =
⎧⎨
⎩

(−1)n+t/2(qn/2+1)

qt/2(n−t−1)(qn/2−1)(qt/2+1)
if n is even and ε =−1,

(−1)n+t/2

qt/2(n−t/2−1)(qt/2+1)
otherwise.

(5.8)

We believe this formula can be proved by similar method as in §7. Since this formula
is not needed in our proof, we omit the details.

5.2 Explicit formulas for some simple primitive local density polynomials

Lemma 5.12 ([19, Lemma 2.15]) Assume L is an integral lattice of rank n. Then

Pden(Hk,L) =
n−1∏
�=0

(1 − q−2k+2�).



762 Q. He et al.

Lemma 5.13 [10, Corollary 5.8] Assume L = Hj k L1 where j > 0 and L1 is an
integral lattice of rank n1. Then

Den(Im,L,X) =
( j−1∏

�=0

(1 − q2�X)
)

Den(Im,L1, q
2jX),

Pden(Im,L,X) =
( j−1∏

�=0

(1 − q2�X)
)

Pden(Im,L1, q
2jX).

In particular,

Pden′(Im,L) = 2
( j−1∏

�=1

(1 − q2�)
)

Pden(Im,L1, q
2j ). (5.9)

Proof First, by [10, Corollary 5.8] and Lemma 5.12,

Den(Im,L,X) =
( j−1∏

�=0

(1 − q2�X)
)

Den(Im,L1, q
2jX). (5.10)

Notice that if L ⊂ L′ and L′ is not of the form Hj kL′
1, then there exists v ∈ L′ \ L

such that Pr
H

j
F

(v) 	= 0 and Pr
H

j
F

(v) /∈ Hj . Hence some fundamental invariant of L′

is less than or equal to −2. Hence Den(Im,L′,X) = 0 by Lemma 5.2. Now Theorem
5.5 and (5.10) imply

Pden(Im,L,X)

=
n∑

i=0

(−1)iqi(i−1)/2+i(n−m)Xi
∑

L1⊂L′
1⊂π−1L1

�(L′
1/L1)=i

Den(Im,Hj
kL′

1,X)

=
( j−1∏

�=0

(1 − q2�X)
) n1∑

i=0

(−1)iqi(i−1)/2+i(n−m−2j)(q2jX)i

×
∑

L1⊂L′
1⊂π−1L1

�(L′/L)=i

Den(Im,L′
1, q

2jX)

=
( j−1∏

�=0

(1 − q2�X)
)

Pden(Im,L1, q
2jX)

as expected. �

Definition 5.14 Assume U and V are quadratic spaces over Fq . We define O(U,V )

to be the set of isometries from U into V , and M(U,V ) to be the set of subspaces
V1 ⊂ V such that V1 ∼= U . Moreover, we define m(U,V ) = |M(U,V )|.
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Definition 5.15 We define Uε
i to be the i-dimensional non-degenerate quadratic space

over Fq with χ(Uε
n ) = ε. Moreover, we define 0i to be the i-dimensional totally

isotropic space.

Lemma 5.16 [10, Lemma A.11] Assume L = I
ε1
n−t k L2 where L2 is a lattice of full

type t and n ≤ m. Then

Pden(I ε2
m ,L) = q−mn+n2 · |O(0t kU

ε1
n−t ,U

ε2
m )|.

Specifically, we have by [21, Lemma 3.2.1],

|O(0j kU
ε1
k ,Uε

m)| = q(k+j)(2m−k−j−1)/2
∏

 m−k
2 !+1−j≤l≤ m−1

2 !
(1 − q−2l)

·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + εε1q
−m−k

2 +j ) ifm ≡ k ≡ 1 (mod 2),

1 ifm ≡ k − 1 ≡ 1 (mod 2),

(1 − εq−m
2 ) ifm ≡ k − 1 ≡ 0 (mod 2),

(1 − εq−m
2 )(1 + εε1q

−m−k
2 +j ) ifm ≡ k ≡ 0 (mod 2).

Corollary 5.17 Let In be the unimodular lattice of rank n and sign −ε. Then

Den(In, In) =
⎧⎨
⎩

2q
n(n−1)

2
∏ n−1

2
s=1(1 − q−2s) if n is odd,

2q
n(n−1)

2 (1 + εq− n
2 )
∏ n

2 −1
s=1 (1 − q−2s) if n is even.

5.3 Counting formulas for subspaces of a quadratic space over Fq

The main results of §6 transforms the calculation of primitive local density polyno-
mial into a sum over the subspaces of a quadratic space over Fq . In this subsection,
we count the number of such subspaces with a fixed quadratic form.

Lemma 5.18 Given quadratic spaces U and V over Fq , let M(U,V ) be the set of
subspaces V1 ⊂ V such that V1 ∼= U , and let m(U,V ) = |M(U,V )|. Then

m(0j kU
ε2
k ,Uε

n ) = |O(0j kU
ε2
k ,Uε

n)|
qjk|O(U

ε2
k ,U

ε2
k )| · |GLj (Fq)| .

In particular,

m(0j kU
ε2
k ,Uε

n) = q−jkm(0j ,U
δ(n,k,ε,ε2)
n−k )m(U

ε2
k ,Uε

n ), (5.11)

where

δ(n, k, ε, ε2) =

⎧⎪⎨
⎪⎩

ε if k = 0,

−εε2 if both k and n− k are odd,

εε2 otherwise.

(5.12)
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Proof We prove the first identity first. Fix a subspace V1 of Uε
n such that V1 ∼= 0j k

U
ε2
k . Then by Witt’s theorem we have a surjection

O(0j kU
ε2
k ,Uε

n) → M(0j kU
ε2
k ,Uε

n ), φ → φ(V1).

Moreover, each fiber of this surjection is in bijection with O(0j k U
ε2
k ). Any φ ∈

O(0j k U
ε2
k ) is determined uniquely by φ1 = φ|0j

and φ2 = φ|
U

ε2
k

. The number

of different choices of φ1 is |GLj (Fq)|. The number of different choices of φ2 is
qjk|O(U

ε2
k ,U

ε2
k )|. �

Lemma 5.19 For any ε1, ε2 ∈ {±1}, we have

m(0j kU
ε2
k ,0t kU

ε1
n−t ) =

min{t,j}∑
�=0

(
t

�

)

q

· q(t−�)(j+k−�)m(0j−� kU
ε2
k ,U

ε1
n−t ).

Proof Let V and U be quadratic spaces over Fq such that V ∼= 0t kUε
n−t , and U ∼=

0j kU
ε2
k . Let R ∼= 0t be the radical of V . First, we consider a partition of

M(U,V ) =
min{t,j}⊔

�=0

M�(U,V )

such that

V1 ∈ M�(U,V ) if and only if dimFq
(V1 ∩R) = �.

The number of choices of �-dimensional subspace of R is
(
t
�

)
q
. Now we fix an �-

dimensional subspace W of R. Let R ∼= 0t−� be the radical of the quotient space of
V/W . Then a choice of V1 ∈ M�(U,V ) such that V1 ∩ R = W corresponds to an
element of

S = {V1 ⊂ V/W | V1 ∩ R = {0} and V1 ∼= 0j−� kU
ε2
k }.

Write V/W = R k V2 ∼= 0t−� k U
ε1
n−t . Let Pr : V/W → V̄2 be the natural quotient

map. For V1 ∈ S, the condition V1 ∩ R = {0} implies that Pr(V1) ∼= 0j−� k U
ε2
k by

the rank-nullity theorem. Moreover, the following map

S → M(0j−� kU
ε2
k ,V2), V1 �→ Pr(V1)

is a surjection with each fiber in a bijection with R
j+k−�

. �

Corollary 5.20

|O(0j kU
ε2
k ,0t kUε

n−t )| = qjk|O(U
ε2
k ,U

ε2
k )| · |GLj (Fq)| · m(0j kU

ε2
k ,0t kUε

n−t )

= |GLj (Fq)| ·
min{t,j}∑

�=0

(
t

�

)

q

· q(t−�)(j+k−�)+�k
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· |O(0j−� kU
ε2
k ,Uε

n−t )|
|GLj−�(Fq)| .

We will also need the following lemma later (Sect. 7), which follows from Lem-
mas 5.18 and 5.16.

Lemma 5.21 For integers 0 ≤ r ≤ n and ε1, ε =±1, we have

m(U
−ε1
r ,Uε

n )

m(U
ε1
r ,Uε

n )
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if r ≡ n− 1 ≡ 1 (mod 2),

1−εε1q
− n−r

2

1+εε1q
− n−r

2
if r ≡ n ≡ 1 (mod 2),

1−ε1q
− r

2

1+ε1q
− r

2
if r ≡ n− 1 ≡ 0 (mod 2),

1−εε1q
− n−r

2

1+εε1q
− n−r

2
· 1−ε1q

− r
2

1+ε1q
− r

2
if r ≡ n ≡ 0 (mod 2),

and

m(U
ε1
r+1,U

ε
n )

m(U
ε1
r ,Uε

n )
= qn−2r−1(1 − (−1)n−r εε1q

− n−r
2 !)

1 − (−1)r+1ε1q
− r+1

2 ! .

Lemma 5.22 Assume i ≤ r ≤ n and ε, σ, δ′ ∈ {±1}. Let δ(r, i, δ′, σ ) or δ(n, i, ε, σ )

be as in (5.12). Then

m(Uσ
i ,Uε

n)m(U
δ(r,i,δ′,σ )
r−i ,U

δ(n,i,ε,σ )
n−i ) = m(Uδ′

r ,Uε
n )m(Uσ

i ,Uδ′
r ).

Proof Let V = Uε
n and S be the following set of flags in V ,

S = {0 ⊂ F1 ⊂ F2 ⊂ V | F1 ∼= Uσ
i ,F2 ∼= Uδ′

r }.

We can count the cardinality of S in two ways. One way is to first count the number of

F1 ∈ M(Uσ
i ,V ), then for a fixed F1 count the number of F ′

2 ∈ M(U
δ(r,i,δ′,σ )
r−i , (F1)

⊥)

which has a one-to-one correspondence with F2 = F ′
2 k F1 ∈ M(Uδ′

r , V ). This way
we get

#|S| = m(Uσ
i ,Uε

n )m(U
δ(r,i,δ′,σ )
r−i ,U

δ(n,i,ε,σ )
n−i ).

On the other hand, we can first count the number of F2 ∈ M(Uδ′
r , V ), then count the

number of F1 ∈ M(Uσ
i ,F2) and get

#|S| = m(Uδ′
r ,Uε

n )m(Uσ
i ,Uδ′

r ).

This finishes the proof of the lemma. �
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5.4 q-Binomial theorem

In this subsection we discuss the q-binomial theorem and related results, which are
used repeatedly in §7 to obtain certain vanishing results and transform complicated
linear combinations into simple formulas.

Definition 5.23 The q-analogue of
(
n
i

)
is defined to be

(
n

i

)

q

:= (qn − 1) · · · (qn−i+1 − 1)

(qi − 1) · · · (q − 1)
.

In fact,
(
n
i

)
q

is the number of i-dimensional subspaces of a n-dimensional vector
space over Fq . Now we recall the q-binomial theorem.

Lemma 5.24 (q-binomial theorem) The following identity between polynomials of X

holds:

n−1∏
i=0

(1 − qiX) =
n∑

i=0

(−1)iq
i(i−1)

2

(
n

i

)

q

Xi. (5.13)

Corollary 5.25 Let f be a polynomial of degree ≤ n− 1. Then

n∑
i=0

(−1)iq
i(i−1)

2

(
n

i

)

q

· f (q−i ) = 0.

Proof Let f = an−1x
n−1 + · · · + a0. For 0 ≤ s ≤ n − 1, by evaluating (5.13) at X =

q−s , we have

n∑
i=0

(−1)iq
i(i−1)

2

(
n

i

)

q

· asq
−si = 0.

Hence

n∑
i=0

(−1)iq
i(i−1)

2

(
n

i

)

q

· f (q−i ) =
n−1∑
s=0

n∑
i=0

(−1)iq
i(i−1)

2

(
n

i

)

q

· asq
−si = 0.

�

The following is in some sense an inverse of q-binomial theorem that will be used
in §7.

Lemma 5.26

n∑
i=0

(−1)iq
i(i−1)

2 ·
(

n

i

)

q

·
i−1∏
�=0

(1 + q−�X) = (−X)n.
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Proof Let gi(X) =∏i−1
�=0(q

−�X+1). Since {gi(X)} forms a basis of the vector space
of polynomials of degree ≤ n, there exist an,i ∈C such that

(−X)n =
n∑

i=0

an,i · gi(X).

Notice that gi+1(X) = (1 + q−iX)gi(X), hence Xgi(X) = qi(gi+1(X) − gi(X)).
Then we have

n+1∑
i=0

an+1,i · gi(X) = (−X)n+1 = (−X) · (−X)n

=
n∑

i=0

(−an,i) · Xgi(X)

=
n∑

i=0

(−an,i)q
i · (gi+1(X)− gi(X)).

As a result, we have

an+1,i =

⎧
⎪⎨
⎪⎩

an,0 if i = 0,

qian,i − qi−1an,i−1 if 0 < i < n+ 1,

−an,nq
n if i = n+ 1.

(5.14)

It is easy to check that bn,i = (−1)iq
i(i−1)

2 · (n
i

)
q

satisfies (5.14) and that a1,i = b1,i .
So we have an,i = bn,i . �

6 Decomposition of primitive local densities

This section is devoted to prove the following decomposition of the primitive local
density polynomial, which is a vast generalization of [10, Proposition A.14] and one
of the main tools we use to prove Theorem 7.1.

Theorem 6.1 Assume that L is an integral lattice of rank n. For any m ≥ 0 we have

Pden(Im,L,X) =
n∑

i=0

Pdenn−i (Im,L,X),

where Pdenn−i (Im,L,X) is a polynomial characterized by

Pdenn−i (Im,L,q−2k)

= q−2kiPden(Hk,0n−i )
∑

V1∈Gr(i,L)(Fq )

q(n−i)iPden(Im,LV1), (6.1)



768 Q. He et al.

where 0n−i is a totally isotropic lattice of rank n − i and LV1 ⊂ L is a sublattice of
rank i such that LV1 = V1.

Here, an important special case is when m = n. In this case, Pden0(I−ε
n ,L,X) = 0

since χ(L) 	= χ(I−ε
n ). Hence,

Pden(In,L,X) =
n−1∑
i=0

Pdenn−i (In,L,X).

Applying the formulas of Pden(Hk,0n−i ) and Pden(Im,LV1) given in Lemmas
5.12 and 5.16, we obtain the following corollary.

Corollary 6.2 Let L be an integral lattice of rank n. We have

Pden(Im,L,X)

=
n∑

i=0

(
(qn−mX)i

n−i−1∏
�=0

(1 − q2�X)
)
·

∑

V1∈Gr(i,L)(Fq )

|O(V1, Im)|. (6.2)

In particular,

Pden′(In,L) = 2
n∑

i=0

( n−i−1∏
�=1

(1 − q2�)
)
·

∑

V1∈Gr(i,L)(Fq )

|O(V1, In)|.

When L is a full type lattice of rank n, L is totally isotropic. So we obtain

Corollary 6.3 Let L be a full type lattice of rank n. Then

Pden(Im,L,X) =
n∑

i=0

(
(qn−mX)i

n−i−1∏
�=0

(1 − q2�X)
)
·
(

n

i

)

q

|O(0i , Im)|.

In particular,

Pden′(In,L) = 2
n∑

i=0

( n−i−1∏
�=1

(1 − q2�)
)
·
(

n

i

)

q

|O(0i , In)|.

Here by Lemma 5.16, we have

|O(0i , Im)| = q
i(i−1)

2 ·

⎧⎪⎨
⎪⎩

∏
1≤�≤i

(
qm+1−2� − 1

)
if m is odd,(

qm/2 − χ(Im)
) (

qm/2−i + χ(Im)
)

·∏1≤�<i

(
qm−2� − 1

)
if m is even.

Proof of Theorem 6.1 To save notation, we use M to denote Im in this proof. Recall
that by (5.3),

Pden(M,L,q−2k) = lim
d→∞q−dn(2(m+2k)−n)|PhermL,MkHk(OF0/(π

d
0 ))|.
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First, we define a partition

PhermL,MkHk (OF0/(π
d
0 )) =

⊔
0≤i≤n

Phermi
L,MkHk (OF0/(π

d
0 )),

where

Phermi
L,MkHk (OF0/(π

d
0 ))

:= {φ ∈ PhermL,MkHk(OF0/(π
d
0 )) | dimFq

PrHk (φ(L)) = i}. (6.3)

Here PrHk denote the projection map to Hk , and PrHk (φ(L)) denote the image of

PrHk (φ(L)) in H
k
. As a result, we have

Pden(M,L,X) =
n∑

i=0

Pdeni (M,L,X),

where Pdeni (M,L,X) is the function such that

Pdeni (M,L,q−2k) := lim
d→∞q−(2n(2k+m)−n2)d |Phermi

L,MkHk(OF0/(π
d
0 ))|.

We need to count |Phermi
L,MkHk (OF0/(π

d
0 ))|. For φ ∈ Phermi

L,MkHk(OF0/(π
d
0 )),

it induces

φ : V = L −→ M kHk/π(M kHk), and φHk := Pr
H

k ◦ φ.

By the definition of Phermi
L,MkHk (OF0/(π

d
0 )), For a (n − i)-dimensional subspace

V1 ⊂ L, let

PhermV1
L,MkHk (OF0/(π

d
0 ))

= {φ ∈ Phermi
L,MkHk (OF0/(π

d
0 )) | Ker(φHk ) = V1 ⊂ L}.

Since Ker(φHk ) ⊂ L has dimension n− i for any φ ∈ Phermi
L,MkHk (OF0/(π

d
0 )), we

have

Phermi
L,MkHk (OF0/(π

d
0 )) =

⊔
V1∈Gr(n−i,V )(Fq )

PhermV1
L,MkHk (OF0/(π

d
0 )). (6.4)

We need to show

q−(2(m+2k)n−n2)d |PhermV1
L,MkHk(OF0/(π

d
0 ))|

= q(n−i)iXn−iPden(Hk,LV2) · Pden(M,LV1). (6.5)

Let V2 be a subspace of V such that V = V1 ⊕V2. Let LV1 ⊂ L be a sublattice of rank
n − i such that the image of LV1 in V is V1. Similarly, let LV2 ⊂ L be a sublattice of
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rank i such that the image of LV2 in V is V2. Let φi = φ|LVi
for i ∈ {1,2}. According

to Lemma 6.4, the number of different choices of φ2 is given by

|Phermi
LV2 ,MkHk(OF0/(π

d
0 ))| = qi(2(m+2k)−i)dPden(Hk,LV2). (6.6)

Now for a fixed φ2 ∈ Phermi
LV2 ,MkHk(OF0/(π

d
0 )), let

Phermφ2
LV1 ,MkHk (OF0/(π

d
0 ))

:= {φ1 ∈ PhermLV1 ,MkHk(OF0/(π
d
0 )) | (φ1, φ2) ∈ PhermV1

L,MkHk (OF0/(π
d
0 ))}.

Claim: For any φ2 ∈ Phermi
LV2 ,MkHk (OF0/(π

d
0 )),

|Phermφ2
LV1 ,MkHk (OF0/(π

d
0 ))|

= q(2d−1)(2k−i)(n−i)|PhermLV1 ,M(OF0/(π
d
0 ))| (6.7)

= q(2d−1)(2k−i)(n−i)+(2m(n−i)−(n−i)2)dPden(M,LV1).

Assuming the claim holds, (6.5) follows from (6.6) and (6.7) since for any fixed φ2

we have

|PhermV1
L,MkHk (OF0/(π

d
0 ))|

= |Phermi
LV2 ,MkHk(OF0/(π

d
0 ))| · |Phermφ2

LV1 ,MkHk (OF0/(π
d
0 ))|.

Proof of the claim: For φ1 ∈ Phermφ2
LV1 ,MkHk(OF0/(π

d
0 )), write φ1 = φ1,Hk + φ1,M ,

where φ1,Hk = PrHk ◦ φ1 and φ1,M = PrM ◦ φ1. First, for any g ∈ U(M kHk), one
can directly check the map

Phermφ2
LV1 ,MkHk (OF0/(π

d
0 )) → Phermg◦φ2

LV1 ,g(MkHk)
(OF0/(π

d
0 )), (6.8)

φ1 �→ g ◦ φ1

is well-defined and is in fact a bijection. Then according to Lemma 6.5, we may
assume φ2(LV2) ⊂ Hk .

Now finding φ1 such that (φ1, φ2) ∈ PhermV1
L,MkHk (OF0/(π

d
0 )) is equivalent to

finding φ1 such that φ1,M is primitive, φ1,Hk ∈ πHk ,

(φ1(v),φ2(w)) ≡ (v,w) mod (π2d−1) for any v ∈ LV1 , w ∈ LV2, (6.9)

and

(φ1(v),φ1(w)) ≡ (v,w) mod (π2d−1) for any v ∈ LV1 , w ∈ LV1 . (6.10)
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We consider condition (6.9) first. Since φ2(LV2) ⊂ Hk , we have

(φ1,Hk (v),φ2(w)) ≡ (φ1(v),φ2(w)) for any v ∈ LV1 , w ∈ LV2 .

When k is large enough, we can always find and fix a φ′
1,Hk that satisfies (6.9). Then

finding φ1,Hk that satisfies (6.9) is equivalent to find 	1,Hk = φ1,Hk − φ′
1,Hk , which

satisfies

(	1,Hk (v),φ2(w)) ≡ 0 mod (π2d−1) for any v ∈ LV1 , w ∈ LV2,

Then according to Lemma 6.6, the number of different choices for φ1,Hk is
q(2d−1)(2k−i)(n−i).

Now we consider condition (6.10). Since φ1,Hk (v) ∈ πHk for any v ∈ LV1 , (6.10)
is equivalent to

(φ1,M(v),φ1,M(w)) + πα ≡ (φ1(v),φ1(w))

≡ (v,w) mod (π2d−1) for any v,w ∈ LV1 ,

for some α ∈OF . By Lemma 5.16, for a unimodular lattice M and any integral lattice
N , Pden(M,N) only depends on M and N . Hence, for our purpose, we may replace
(6.10) by

(φ1,M(v),φ1,M(w)) ≡ (φ1(v),φ1(w)) ≡ (v,w) mod (π2d−1) for any v,w ∈ LV1 .

Therefore the number of different choices of primitive φ1,M is given by

q(2m(n−i)−(n−i)2)dPden(M,LV1).

As a result, we have

|Phermφ2
LV1 ,MkHk (OF0/(π

d
0 ))|

= q(2d−1)(2k−i)(n−i) · q(2m(n−i)−(n−i)2)dPden(M,LV1).

This finishes the proof of the claim. �

Lemma 6.4 Assume that L is an integral lattice of rank n and k ≥ n. Then

|Phermn
L,ImkHk (OF0/(π

d
0 ))| = q2mnd |PhermL,Hk (OF0/(π

d
0 ))|.

Proof For φ ∈ Phermn
L,ImkHk (OF0/(π

d
0 )), we may identify φ with (φHk ,φIm) where

φHk = PrHk ◦ φ and φIm = PrIm ◦ φ. As

|HomOF
(L, Im)(OF0/(π

d
0 ))| = q2mnd,

it suffices to show that for any fixed ϕ ∈ HomOF
(L, Im), we have

|{φ ∈ Phermn
L,ImkHk (OF0/(π

d
0 )) | φIm = ϕ}| = |PhermL,Hk (OF0/(π

d
0 ))|. (6.11)
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Let Lϕ be the lattice L equipped with the hermitian form (x, y)Lϕ := (φHk (x),

φHk (y)) where φ is any element in Phermn
L,ImkHk (OF0/(π

d
0 )) such that φIm = ϕ.

Since each such φ is an isometry and φIm is fixed, ( , )Lϕ is independent of the choice
of φ. Then we have a bijection

{φ ∈ Phermn
L,ImkHk (OF0/(π

d
0 )) | φIm = ϕ}→ PhermLϕ,Hk (OF0/(π

d
0 )), (6.12)

φ �→ φHk .

Since L is integral and φ is an isometric embedding, Lφ
Hk

is also integral. Then
according to [19, Lemma 2.16],

|PhermLϕ,Hk (OF0/(π
d
0 ))| = |PhermL,Hk (OF0/(π

d
0 ))|.

Combining with the bijection in (6.12), this proves (6.11), hence finishes the proof of
the lemma. �

Lemma 6.5 Assume that M is a unimodular lattice, L is an integral lattice of rank
n, and φ : L → M kHk is a primitive isometric embedding such that PrHk (φ(L)) is
primitive in Hk . Then there exists a g ∈ U(M kHk) such that g(φ(L)) ⊂ Hk .

Proof Consider the non-degenerate symplectic space over Fq : (H
k
, 〈 , 〉) =

(H
k
,π( , )). Let v denote the image of v ∈ Hk in H

k
. Since PrHk (φ(L)) is primitive

in Hk , V (L) := PrHk (φ(L)) is a n-dimensional subspace. Since M and L are inte-
gral, PrHk (φ(L)) is integral. Hence V (L) is an isotropic subspace. Let {�1, . . . , �n}
be a basis of L, �s,Hk = PrHk (�s) and es = �s,Hk . Since V (L) is an n-dimensional
isotropic space, we have k ≥ n and we can extend {e1, . . . , en} to a standard symplec-

tic basis {e1, f1, . . . , ek, fk} of H
k
, where (es, ft ) = δst , and (es, et ) = (fs, ft ) = 0

for 1 ≤ s, t ≤ k.
Now let {f̃1, . . . , f̃n} be a lifting of {f1, . . . , fn}. In particular, for 1 ≤ s ≤ n, we

have (�s, f̃s) = π−1 +x for some x ∈ OF . Therefore, L⊕〈f̃1 · · · , f̃n〉 ∼= Hn. Hence,
there exists g ∈ U(M kHk) such that g(L ⊕ 〈f̃1 · · · , f̃n〉) ⊂ Hk . �

Lemma 6.6 Let N ⊂ Hk be a primitive integral lattice of rank i. Then

#{w ∈ πHk/πd
0 Hk | (N,w) = 0 mod (π2d−1)} = q(2d−1)(2k−i).

Proof Through this proof, we use L to denote the image of L in H
k

for any sublat-
tice L of Hk . Let N⊥ be the perpendicular lattice of N in Hk . First we show N⊥ is
primitive of rank 2k − i. If N⊥ is not primitive, then there exists v ∈ N⊥ such that
π−1v ∈ Hk \ N⊥. However, (π−1v,N) = 0, hence π−1v ∈ N⊥, which is a contra-
diction.

We claim that for any w ∈ πHk and π(N,w) = 0 mod πa with a ≥ 0, there exists
a x ∈ πaHk such that w − x ∈ N⊥. We prove the lemma by assuming the claim, and
give the proof of the claim in the last paragraph. Taking a = 2d , the claim implies
that

#{w ∈ πHk/πd
0 Hk | (N,w) = 0 mod (π2d−1)}
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= #{w ∈ π(N⊥ + πd
0 Hk)/πd

0 Hk | (N,w) = 0 mod (π2d−1)}.

Since N⊥ is primitive of rank 2k − i, we have

#{w ∈ πN⊥/πd
0 Hk | (N,w) = 0 mod (π2d−1)} = q(2d−1)(2k−i).

This proves the lemma assuming the claim.

Now we prove the claim. Consider the symplectic space over Fq : (H
k
,π( , )).

Since N is integral, N is isotropic in H
k
. Let N be spanned by {e1, . . . , ei}.

Then we may extend {e1, . . . , ei} to a standard symplectic basis {e1, f1, . . . , ek, fk}
of H

k
, where (es, ft ) = δst , and (es, et ) = (fs, ft ) = 0 for 1 ≤ s, t ≤ k. Let

{ẽ1, f̃1, . . . , ẽk, f̃k} be a lifting of {e1, f1, . . . , ek, fk}. By our choice of ẽs , we can
find a basis {w1, . . . ,wi} of N such that ws − ẽs ∈ πHk for any 1 ≤ s ≤ i. Consider
x = a1f̃1 + · · · + ai f̃i ∈ 〈f̃1, . . . , f̃k〉. In order to have w − x ∈ N⊥, we need to solve
the following system of equations:

π(ws, x) = π(ws,w) for 1 ≤ s ≤ i. (6.13)

Let A denote the i × i matrix corresponding to this system of linear equations. Since
ws − ẽs ∈ πHk , we have A ≡ Idi mod (π). Therefore, there exists a unique solution
x of (6.13). Moreover, since π(N,w) = 0 mod πa , we have π(ws,w) ∈ (πa) for 1 ≤
s ≤ i. Then (6.13) implies that as ∈ (πa), hence x ∈ πaHk . The claim is proved. �

7 Explicit formulas for Pden′(L)

7.1 Explicit formulas and consequences

The goal of this section is to establish the following formulas for

∂Pden(L) = Pden′(L) +
tmax/2∑
j=0

c2j Pden2j (L). (7.1)

Here

Pden′(L) = Pden′(In,L)

Den(In, In)

is normalized as in (5.4). Recall, from Lemma 5.9, that

∂Pden(L) = Pden′(L) (7.2)

when L is not dual to some vertex lattice �t of positive type t > 0.

Theorem 7.1 Let L ⊂V be a lattice of rank n.

(1) If L is not integral, then ∂Pden(L) = 0.
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(2) If L is unimodular, then

∂Pden(L) = Pden′(L) =
{

1, if n is odd,

0, if n is even.

(3) If L = In−t kL2 where L2 is of full type t , then

∂Pden(L) = Pden′(L) =
⎧
⎨
⎩
∏ t−1

2
�=1(1 − q2�), if t is odd,

(1 − χ(L2)q
t
2 )
∏ t

2−1
�=1 (1 − q2�), if t is even.

Corollary 7.2 Let L be a lattice. Then ∂Den(L) ∈ Z. Moreover, ∂Den(L) = 0 for
non-integral L.

Proof According to Corollary 5.4, we have

∂Den(L) =
∑

L⊂L′⊂LF

∂Pden(L′).

Now Theorem 7.1 implies that ∂Pden(L′) ∈ Z, hence ∂Den(L) ∈ Z. If L is non-
integral, then ∂Pden(L′) = 0 for each L′ such that L ⊂ L′ by (1) of Theorem 7.1. �

As another corollary, we prove the following cancellation law for ∂Den(L). Recall
that for Hermitian lattices L and L′ of the same rank, n(L′,L) = #{L′′ ⊂ LF | L ⊂
L′′,L′′ ∼= L′}.

Corollary 7.3 Let L = L1 k L2 ⊂ V be a rank n lattice, with L1 being unimodular
and Li of rank ni . Then

∂Den(L) − ∂Den(L2) = n(In2,L2) · (δodd(n) − δodd(n2)). (7.3)

Proof By Corollary 5.4 and Lemma 7.4, we have

∂Den(L) =
∑

L⊂L′⊂LF

∂Pden(L′) =
∑

L2⊂L′
2⊂L2,F

∂Pden(L1 kL′
2).

Similarly,

∂Den(L2) =
∑

L2⊂L′
2⊂L2,F

∂Pden(L′
2).

Hence

∂Den(L) − ∂Den(L2) =
∑

L2⊂L′
2⊂L2,F

(∂Pden(L1 kL′
2) − ∂Pden(L′

2)).
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If L′
2 is not integral, then both ∂Pden(L1 k L′

2) and ∂Pden(L′
2) vanishes by (1) of

Theorem 7.1. If L′
2 is integral but not unimodular, then (3) of Theorem 7.1 implies

∂Pden(L1 kL′
2) − ∂Pden(L′

2) = 0. Hence

∂Den(L) − ∂Den(L2) =
∑

L2⊂L′
2⊂L2,F

L1kL′
2
∼=�0

(∂Pden(L1 kL′
2) − ∂Pden(L′

2)). (7.4)

Combining (7.4) with (2) of Theorem 7.1, we have

∂Den(L) − ∂Den(L2) = n(In2,L2) · (δodd(n) − δodd(n2)).

This proves the corollary. �

Lemma 7.4 Assume L = L1 k L2 is a lattice where L1 is unimodular. If L � L′ ⊂
π−1L and L′ is not of the form L1 kL′

2, then L′ is not integral and ∂Pden(L′) = 0.

Proof Consider the Fq -vector space π−1L/L. Since we assume L′ is not of the form
L1 kL′

2, there exists v ∈ L′ \ L such that Prπ−1L1
(v) 	= 0, which in turn implies that

L′ is not integral. Hence ∂Pden(L′) = 0 by (1) of Theorem 7.1. �

7.2 Proof strategy

The proof of Theorem 7.1 occupies the rest of this section. Since the proof is rather
long and technical, we summarize the main idea of the proof first. When there is some
x ∈ L with val(x) ≤−1, ∂Pden(L) = 0 by Lemma 5.2. Otherwise, write

L = Hj
k In1−t kL2,

where L2 is of full type t . There are four cases.

(a) The case n1 − t = 0 (i.e., L = Hj ⊕L2) is significantly simpler than the general
case, and we will deal with it in next subsection although it is part of the general
case. For example, when L is of full type, the reduction L of L modulo π is a
totally isotropic quadratic space over Fq . Hence, the summation in Corollary 6.2
is simply:

∑

V1∈Gr(i,L)(Fq )

|O(V1, Im)| =
(

n

i

)

q

|O(0i , Im)|.

An application of q-binomial theorem settles this case.
(b) The case j = 0, i.e., L is integral.
(c) The case j > 0 and t > 0.
(d) The case that t = 0 and j > 0 is part of the modification assumption.

In general, the problem becomes harder when n1 − t is larger. In fact, when t > 0, i.e.,
n1 − t < n1, (b) and (c) can be proved via Corollary 6.2 and an involved application
of the induction formulas of Den(In,L) established in [10]. However, when t = 0,
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i.e., L is unimodular, this method fails. To overcome this difficulty and give a uniform
proof of (b) and (c), we introduce a new method which is different from [10] even in
the case n ≤ 3.

To illustrate the idea, we stick to case (b) for now. The first key step is to discover
a finer structure of ∂Pden(L) and prove the following formula (Lemma 7.11):

∂Pden(L) = (∗)
min{n−t,n−1}∑

r=0

n−1∑
i=0

(
n − r

i − r

)

q

(−1)n−1+i+rq
(i−r)(i−r−1)

2 qrt

· g(n,n1, r, q
−i ), (7.5)

where (∗) is some constant number and g(n,n1, r,X) is a linear combination of poly-
nomials of degree n− 1. The second key observation is that there is a lot of cancella-
tion underlying this linear combination. Indeed, we show for r < n that g(n,n1, r,X)

is actually of degree ≤ n − r − 1 and is essentially a simple multiple of some sim-
ple polynomial (denoted by h(n, r,X)) (Lemmas 7.13 and 7.15). This enables us to
apply q-binomial theorem (Corollary 5.25) to the inner sums in (7.5). Consequently,
we obtain

∂Pden(L) = (∗)
m(n,t)∑
r=0

(−1)rq
(n−r)(n−r−1)

2 qrt · g(n,n− t, r, q−n). (7.6)

The last step is to evaluate this sum and the result is given by Lemma 7.16. It is in
this step that the case n1 = n (L is unimodular) becomes different: the sum above is
a sum from r = 0 only to n − 1, not to n1 = n. To make it worse, the ‘missing’ term
g(n,n,n,X) is in fact ill-behaved.

One common strategy in proving Lemmas 7.15 and 7.16 is to express both sides
of the identity as (uniquely) linear combinations of certain basis of polynomials, and
prove that the coefficients satisfy the same recursion formulas and the same initial
conditions. Here we use crucially the combinatorical properties of m(U,V ) (Lemma
5.18) for U and V quadratic spaces over Fq .

In Case (c), the derivative becomes the value of some primitive local density poly-
nomials at some non-central point qj by Lemma 5.13. Strikingly, the formula for this
value (see (7.39)) is very similar to the formula for the derivative Pden(In1−t k L2)

(see (7.40)). Proof of Cases (b) and (c) will be given in Sect. 7.6 after long preparation
in Sects. 7.4 and 7.5.

7.3 The case n1 − t = 0

In this subsection we assume that n1 − t = 0 and divide it further into two subcases:
j = 0 or j > 0.

Proposition 7.5 Assume that L = Hj k L2 where j > 0 and L2 is of full type and
has rank n2 = n − 2j . Then

∂Pden(L) = 0.
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Proof By Lemma 5.13, we have

Pden′(In,L) = 2
( j−1∏

�=1

(1 − q2�)
)

Pden(In,L2, q
2j ).

Hence it suffice to show

Pden(In,L2, q
n−n2) = 0.

We prove the odd n case and leave the even n case to the reader. According to Corol-
lary 6.3, we have

Pden(In,L2, q
n−n2)

=
n2∑
i=0

(−1)n2−iq
i(i−1)

2

(
n2

i

)

q

·
n2−i−1∏

�=0

(q2�+n−n2 − 1) ·
i∏

�=1

(qn+1−2� − 1)

=
n2∑
i=0

(−1)n2−iq
i(i−1)

2

(
n2

i

)

q

·
n+n2

2 −i−1∏

�= n−n2
2

(q2� − 1) ·
n−1

2∏

�= n+1
2 −i

(q2� − 1).

We can factor out
∏ n−1

2

�= n−n2
2

(q2� − 1) so that

Pden(In,L2, q
n−n2)

n−n2
2∏

�= n−1
2

(q2� − 1)−1 =
n2∑
i=0

(−1)n2−iq
i(i−1)

2

(
n2

i

)

q

g(n2, q
−i ),

where

g(n2,X) =
n2+n

2 −1∏

�= n+1
2

(q2�X2 − 1) (7.7)

is a polynomial of X of degree n2 − 1. Now Pden(In,L2, q
n−n2) = 0 by Corollary

5.25. �

Proposition 7.6 Assume that L is a full type lattice of rank n. We have

Pden′(L) =
⎧⎨
⎩
∏ n−1

2
�=1(1 − q2�), if n is odd,

(1 − εq
n
2 )
∏ n

2 −1
�=1 (1 − q2�), if n is even.

Proof First of all, recall that

Pden′(L) = Pden′(In,L)

Den(In, In)
,
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where

Den(In, In) =
⎧⎨
⎩

2q( n−1
2 )2 ∏ n−1

2
�=1(q

2� − 1) if n is odd,

2q( n
2 )( n

2 −1)(q
n
2 + ε)

∏ n
2 −1
�=1 (q2� − 1) if n is even.

(7.8)

We verify the even n case and leave the odd n case to the reader. Direct calculation
using Corollary 6.3 gives

Pden′(In,L)
(
(q

n
2 + ε)

n
2 −1∏
�=1

(q2� − 1)
)−1

= 2

n
2 −1∑
i=0

(−1)n−i−1q
i(i−1)

2

(
n

i

)

q

(q
n
2 −i − ε)

n−i−1∏

�= n
2 −i+1

(q2� − 1)

= 2
n−1∑
i=0

(−1)n−i−1q
i(i−1)

2

(
n

i

)

q

(q
n
2 −i − ε)

n−1∏

�= n
2 +1

(q2�−2i − 1).

According to Corollary 5.25,

n−1∑
i=0

(−1)n−i−1q
i(i−1)

2

(
n

i

)

q

(q
n
2 −i − ε)

n−1∏

�= n
2 +1

(q2�−2i − 1)

= q
n(n−1)

2 (q− n
2 − ε)

n−1∏

�= n
2 +1

(q2�−2n − 1)

= q( n
2 )( n

2 −1)(1 − εq
n
2 )

n
2 −1∏
�=1

(1 − q2�).

Now by (7.8), we conclude that

Pden′(L) = (1 − εq
n
2 )

n
2 −1∏
�=1

(1 − q2�),

as claimed. �

7.4 Preparation

In this subsection, we rewrite Pden′(In,L) as a linear combination of special values
of certain polynomial gε1(n,m, r,X) as in Lemma 7.11. We then express general
gε1(n,m, r,X) as a simple combination of gε3(n, r, r,X), see Lemma 7.13.
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Let L = I
ε1
n−t kL2 where L2 is of full type t . By Corollary 6.2, we have

Pden′(In,L) = 2
n−1∑
i=0

n−i−1∏
�=1

(1 − q2�)
∑

0≤j≤i

∑
ε2∈{±1}

m
(

0j ⊕ U
ε2
i−j ,0t ⊕ U

ε1
n−t

)

×
∣∣∣O
(

0j kU
ε1
i−j ,U

−ε
n

)∣∣∣ . (7.9)

Here and in the following, we interpret
∑

ε2∈{±1} f (U
ε2
0 ) as f (U1

0 ) for a function f

with U
ε2
i as input.

Let s and n be integers such that 0 ≤ s < n, and let ε2 =±1. For odd n, we define

fε2(n, s,X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏ n+s−2
2

�= n+1
2

(q2�X2) · q n+s
2 X(q

n+s
2 X − εε2)

·∏n−1
�= n+s+2

2
(q2�X2 − 1) if s is odd,

∏ n−1
2 + s

2

�= n+1
2

(q2�X2) ·∏n−1
�= n+1+s

2
(q2�X2 − 1) if s is even.

(7.10)

Similarly, for an even integer n > 0 and 0 ≤ s < n, we define

fε2(n, s,X) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∏ n+s−3
2

�= n
2

(q2�X2)q
n
2 +s−1X

·∏n−1
�= n+s+1

2
(q2�X2 − 1) if s is odd,

∏ n+s−2
2

�= n
2

(q2�X2) · q s
2 (q

n+s
2 X − εε2)

·∏n−1
�= n+s+2

2
(q2�X2 − 1) if s is even.

(7.11)

Here when s = 0, we always take ε2 = 1. Notice that fε2(n, s,X) is a polynomial
of degree n− 1.

Lemma 7.7

(1) Assume 0 ≤ i < n. We have

n−i−1∏
�=1

(1 − q2�)|O(0i−s kUε2
s ,U−ε

n )| = (−1)n−i−1q
i(i−1)

2 Iε(n)fε2(n, s, q−i ),

where

Iε(n) :=
⎧⎨
⎩
∏ n−1

2
�=1(q

2� − 1) if n is odd,

(q
n
2 + ε)

∏ n
2 −1
�=1 (q2� − 1) if n is even.

(2) Assume 0 ≤ i ≤ n, s < n and that n′ − n > 0 is even. We have

n−i−1∏
�=0

(1 − q2�+n′−n)|O(0i−s kUε2
s ,U−ε

n′ )|
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= (−1)n−iq
i(i−1)

2 Iε(n
′, n)fε2(n, s, q

n′−n
2 −i ),

where

Iε(n
′, n) :=

⎧⎪⎪⎨
⎪⎪⎩

∏ n′−1
2

�= n′−n
2

(q2� − 1) if n is odd,

(q
n′
2 + ε)

∏ n′
2 −1

�= n′−n
2

(q2� − 1) if n is even.

Proof This follows from the formula of |O(0i−s kU
ε2
s ,U−ε

n )| given in Lemma 5.16
and a straightforward computation. �

Lemma 7.8 For integers 0 ≤ i, t ≤ n, we have

(
t

i

)

q

=
n−t∑
a=0

(−1)a · qa(t+1−i)q
a(a−1)

2 ·
(

n− t

a

)

q

·
(

n− a

i − a

)

q

. (7.12)

Proof The identity is automatically true for i > t as both sides are zero. Recall the
following analogue of Pascal’s identity for q-binomial coefficients:

(
t

i

)

q

=
(

t + 1

i

)

q

− qt−i+1
(

t

i − 1

)

q

. (7.13)

By this identity, we obtain 2 terms, one with the t-index raised, another with the
i-index lowered. Applying again (7.13) to

(
t+1
i

)
q

and
(

t
i−1

)
q

respectively, we obtain

(
t

i

)

q

=
(

t + 2

i

)

q

− qt−i+2
(

t + 1

i − 1

)

q

− qt−i+1
((t + 1

i − 1

)

q

− qt−i+2
(

t − 1

i − 2

)

q

)
.

We may continue this process and after n − t steps, we obtain 2n−t many terms.
Each term corresponds to a lattice path starting from the origin, going to north and
east as follows. If the �-th step raises the index of t (resp. reduces the index of i),
we define the lattice path goes towards north for the �-th step (resp. east). We use
I = (i1, . . . , in−t ) where i� ∈ {0,1} to denote the path whose �-th step goes towards
north (east) if i� = 0 (i� = 1) and let |I | = i1 + · · · + in−t . We use PI to denote the
term corresponding to I . Now the lemma follows from the following claim.

Claim:

∑
I,|I |=a

PI = (−1)a · qa(t+1−i)q
a(a−1)

2 ·
(

n − t

a

)

q

·
(

n − a

i − a

)

q

.

Indeed a direct calculation shows that

P(1a,0n−t−a) = (−1)a · qa(t+1−i)q
a(a−1)

2 ·
(

n− a

i − a

)

q

.
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Let AI denote the area bounded by the lattice path I , the horizontal axis, and the
vertical line given by x = |I |. Then a direct computation shows that

PI = qAI · P(1a,0n−t−a).

Now the claim follows from the well-known formula of q-binomial coefficient (see
[3, Theorem 6.9] for example):

∑
I,|I |=a

qAI =
(

n − t

a

)

q

.

This proves the claim and the lemma. �

Lemma 7.9 For an integer n ≥ 0 and ε =±1, let

α(n) = q n
2 ! n−1

2 ! =
{

q( n−1
2 )2

if n is odd,

q
n
2 ( n

2 −1) if n is even,
and

βε(n) =

⎧⎪⎨
⎪⎩

(−1)
n−1

2 if n is odd,

ε(−1)
n
2 if n is even,

1 if n = 0.

Then

n∑
j=0

(−1)j q
j(j−1)

2 m(0j ,U
ε
n ) = α(n)βε(n).

Proof If n = 0, the statement both sides are 1 by definition. From now on we assume
n > 0. By [21, Lemma 3.2.2.], we have

|m(0j ,U
ε
n )| =

(
d

j

)

q

·
j∏

l=1

(qd+e−l + 1),

with

d =
{

n−1
2 ifn is odd,

n
2 − 1−ε

2 ifn is even,
and e =

{
1 ifn is odd,

1 − ε ifn is even.

So we have

n∑
j=0

(−1)j q
j(j−1)

2 · m(0j ,U
ε
n) =

d∑
j=0

(−1)j q
j(j−1)

2

(
d

j

)

q

j∏
l=1

(qd+e−l + 1),

which by Lemma 5.26 equals to (−qd+e−1)d . A direct calculation checks that
(−qd+e−1)d = α(n)βε(n). �



782 Q. He et al.

Definition 7.10 For 0 ≤ r ≤ m ≤ n, we define

gε1(n,m, r,X)

:=
r∑

k=0

(−1)kq
k(k−1)

2
∑

ε2∈{±1}
m(U

ε2
k ,Uε1

m )

r−k∑
j=0

(−1)j q
j(j−1)

2 ·
(

m − j − k

r − j − k

)

q

· m(0j ,U
δ
m−k)fε2(n, k,X)

with δ = δ(m, k, ε1, ε2) as defined in (5.12). In the following, when n is clear in the
context, we simply write gε1(m, r,X) for gε1(n,m, r,X).

In particular, gε1(n,m,0,X) = f1(n,0,X) and by Lemma 7.9,

gε1(n, r, r,X) =
r∑

k=0

(−1)kq
k(k−1)

2 ·
∑

ε2∈{±1}
m(U

ε2
k ,Uε1

r )

· α(r − k)βδ(r − k) · fε2(n, k,X). (7.14)

In the rest of this section, we let m = n− t without explicit mentioning.

Lemma 7.11 Assume L is a lattice of rank n and type t .

(1) Let m(n, t) := min{n− t, n − 1}. Then for 0 ≤ i ≤ n− 1, we have

(Pdenn−i )′(In,L) = 2Iε(n) ·
m(n,t)∑
r=0

(
n− r

i − r

)

q

(−1)i−r+n−1q
(i−r)(i−r−1)

2 qr(n−m)

· gε1(n,m, r, q−i ).

(2) Assume that n′ − n is a positive even integer and m < n. Then for 0 ≤ i ≤ n, we
have

Pdenn−i (I−ε
n′ ,L, qn′−n) = Iε(n

′, n)

m∑
r=0

(
n− r

i − r

)

q

(−1)i−r+nq
(i−r)(i−r−1)

2 qr(n−m)

· gε1(n,m, r, q
n′−n

2 −i ).

Proof We prove (1) first. By (7.9), Lemma 7.7 and Lemma 5.19, we have

(Pdenn−i )′(In,L) ·
(

2(−1)n−i−1Iε(n)
)−1

=
t∑

�=0

(
t

�

)

q

i−�∑
k=0

∑
ε2∈±1

q(t−�)(i−�)q
i(i−1)

2 m(0i−k−� kU
ε2
k ,U

ε1
n−t )fε2(n, k, q−i )

=
i∑

s=max{i−t,0}

(
t

i − s

)

q

s∑
k=0

∑
ε2∈±1

q(t−(i−s))sq
i(i−1)

2
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×m(0s−k kU
ε2
k ,U

ε1
n−t )fε2(n, k, q−i ),

where the last identity is obtained by setting s = i − �. Notice that if s > n − t , then
m(0s−kkU

ε2
k ,U

ε1
n−t ) = 0. Hence we may assume s ≤ n− t , or equivalently t ≤ n− s

in the above summation. Now applying (7.12) to i − s ≤ t ≤ n− s and let m = n− t ,
we may rewrite the above summation as

i∑
s=max{i−t,0}

m−s∑
a=0

(−1)a
(

n− s − a

i − s − a

)

q

·
(

m− s

a

)

q

·

s∑
k=0

∑
ε2∈±1

qa(n−m+1−(i−s))+ a(a−1)
2 +(n−m+s−i)sq

i(i−1)
2

×m(0s−k kU
ε2
k ,Uε1

m )fε2(n, k, q−i )

=
i∑

s=max{i−t,0}

m−s∑
a=0

(
n− s − a

i − s − a

)

q

q
(i−(s+a))(i−(s+a+1))

2 q(s+a)(n−m)

· (−1)a
(

m − s

a

)

q

s∑
k=0

∑
ε2∈±1

q(s+a)(s− s+a+1
2 )+ a(a+1)

2

×m(0s−k kU
ε2
k ,Uε1

m )fε2(n, k, q−i ).

Now let r = s + a. Notice that r ≤ m and
(
n−r
i−r

)
q
= 0 for r > i. Rearranging the

summation index, we obtain

(Pdenn−i )′(In,L) ·
(
(−1)n−i−1Iε(n)

)−1

=
m{n,t}∑
r=0

(
n − r

i − r

)

q

q
(i−r)(i−r−1)

2 qr(n−m) · gε1(n,m, r, q−i ),

where

gε1(n,m, r,X)

=
r∑

s=0

(−1)r−s ·
(

m − s

r − s

)

q

·
s∑

k=0

∑
ε2∈±1

q
s(s−1)

2 m(0s−k kU
ε2
k ,Uε1

m )fε2(n, k,X)

=
r∑

k=0

(−1)kq
k(k−1)

2
∑

ε2∈{±1}
m(U

ε2
k ,Uε1

m )

r−k∑
j=0

(−1)j q
j(j−1)

2 ·
(

m − j − k

r − j − k

)

q

·m(0j ,U
δ
m−k)fε2(n, k,X).

Here, we use Lemma 5.18 to obtain the last identity.
Using (2) of Lemma 7.7, the same proof of (1) proves (2). �
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We conclude this subsection by establishing a formula to express gε1(m, r,X) in
terms of gε3(r, r,X), which, as we will see, has a particular simple form (Lemma
7.15). First, we need the following identity which might have independent interest.

Lemma 7.12 For any integers 0 ≤ r ≤ n, we have

r∑
j=0

(−1)j qj (j−1)/2
(

n − j

r − j

)

q

m(0j ,U
ε
n ) =

∑
τ∈{±1}

m(Uτ
r ,Uε

n )α(r)βτ (r), (7.15)

where α(r) and βτ (r) are defined in Lemma 7.9.

Proof We proceed by induction on n. The case n = 1 is obvious. Now recall the
identities

m(0j ,U
ε
n) =

(
n

j

)

q

−
j∑

i=1

∑
σ∈{±1}

m(0j−i kUσ
i ,Uε

n )

=
(

n

j

)

q

−
j∑

i=1

∑
σ∈{±1}

q−(j−i)im(Uσ
i ,Uε

n )m(0j−i ,U
δ(n,i,ε,σ )
n−i ),

by (5.11), and

r∑
j=0

(−1)j qj (j−1)/2
(

n− j

r − j

)

q

(
n

j

)

q

=
r∑

j=0

(−1)j qj (j−1)/2
(

n

r

)

q

(
r

j

)

q

= 0. (7.16)

These imply that

r∑
j=0

(−1)j qj (j−1)/2
(

n− j

r − j

)

q

m(0j ,U
ε
n )

=−
r∑

j=0

(−1)j qj (j−1)/2
(

n− j

r − j

)

q

×
j∑

i=1

∑
σ∈{±1}

q−(j−i)im(Uσ
i ,Uε

n )m(0j−i ,U
δ(n,i,ε,σ )
n−i )

=
r∑

i=1

∑
σ∈{±1}

(−1)i+1qi(i−1)/2m(Uσ
i ,Uε

n)

×
r−i∑
j=0

(−1)j qj (j−1)/2
(

n− i − j

r − i − j

)

q

m(0j ,U
δ(n,i,ε,σ )
n−i ).

where in the last step we switch the order of summation and substitute j by j + i.
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We can now use the induction hypothesis

r−i∑
j=0

(−1)j qj (j−1)/2
(

n − i − j

r − i − j

)

q

m(0j ,U
δ(n,i,ε,σ )
n−i )

=
∑

τ∈{±1}
m(Uτ

r−i ,U
δ(n,i,ε,σ )
n−i )α(r − i)βτ (r − i)

and

m(Uσ
i ,Uε

n)m(Uτ
r−i ,U

δ(n,i,ε,σ )
n−i ) = m(Uδ′

r ,Uε
n )m(Uσ

i ,Uδ′
r ),

where δ′ ∈ {±1} such that τ = δ(r, i, δ′, σ ) (see Lemma 5.22) to obtain

r∑
j=0

(−1)j qj (j−1)/2
(

n − j

r − j

)

q

m(0j ,U
ε
n )

=
r∑

i=1

∑
σ∈{±1}

(−1)i+1qi(i−1)/2

×
∑

τ∈{±1}
m(Uδ′

r ,Uε
n )m(Uσ

i ,Uδ′
r )α(r − i)βτ (r − i) (7.17)

Hence (7.15) is equivalent to

r∑
i=0

∑
σ∈{±1}

(−1)iqi(i−1)/2

×
∑

τ∈{±1}
m(Uδ′

r ,Uε
n )m(Uσ

i ,Uδ′
r )α(r − i)βτ (r − i) = 0 (7.18)

Now applying Lemma 7.9, the left hand side of (7.18) is equal to

r∑
i=0

∑
σ∈{±1}

(−1)iqi(i−1)/2
∑

τ∈{±1}
m(Uδ′

r ,Uε
n )m(Uσ

i ,Uδ′
r )

×
r−i∑
j=0

(−1)j qj (j−1)/2m(0j ,U
τ
r−i )

=
∑

τ∈{±1}
m(Uδ′

r ,Uε
n )

r∑
i=0

r−i∑
j=0

∑
σ∈{±1}

(−1)i+j q(i+j)(i+j−1)/2m(0j kUσ
i ,Uδ′

r )

=
∑

δ′∈{±1}
m(Uδ′

r ,Uε
n )

r∑
k=0

(−1)kqk(k−1)/2
(

r

k

)

q

= 0.

The lemma is proved. �
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Lemma 7.13 For 0 ≤ r ≤ m < n, we have

gε1(m, r,X) =
∑

ε3∈{±1}
m(Uε3

r ,Uε1
m )gε3(r, r,X).

Proof When r = 0, we have by definition

g(m,0,X) = f1(n,0,X) =
∑

ε3∈{±1}
m(U

ε3
0 ,Uε1

m )gε3(0,0,X).

Now we assume r > 0, δ = δ(m, k, ε1, ε2) and δ′ = δ(r, k, ε3, ε2). On the one
hand, by definition

gε1(m, r,X)

=
r∑

k=0

(−1)kq
k(k−1)

2
∑

ε2∈{±1}
m(U

ε2
k ,Uε1

m )

r−k∑
j=0

(−1)j q
j(j−1)

2 ·
(

m − j − k

r − j − k

)

q

· m(0j ,U
δ
m−k)fε2(n, k,X).

On the other hand, we have by (7.14),
∑

ε3∈{±1}
m(Uε3

r ,Uε1
m )gε3(r, r,X)

=
r∑

k=0

(−1)kq
k(k−1)

2 ·
∑

ε2∈{±1}

∑
ε3∈{±1}

m(U
ε2
k ,Uε3

r )m(Uε3
r ,Uε1

m )

· α(r − k)βδ′(r − k) · fε2(n, k,X).

By Lemma 5.22,

m(U
ε2
k ,Uε3

r )m(Uε3
r ,Uε1

m ) = m(U
ε2
k ,Uε1

m )m(Uδ′
r−k,U

δ
m−k).

Hence, in order to prove the theorem, it suffices to show for any k and ε2

r−k∑
j=0

(−1)j q
j(j−1)

2 ·
(

m − j − k

r − j − k

)

q

·m(0j ,U
δ
m−k)

=
∑

δ′∈{±1}
m(Uδ′

r−k,U
δ
m−k) · α(r − k)βδ′(r − k),

which is exactly the content of Lemma 7.12. �

7.5 Some identities between polynomials

Although gε1(r, r,X) by definition is a complicated linear combination of fε2(n,

k,X). We show in this subsection that in fact gε1(r, r,X) has a very simple form
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(Lemma 7.15). Similarly, although Pden′(In,L) is a complicated linear combination
of the special values of gε1(n− t, r,X), certain linear combination of gε1(n− t, r,X)

is of a simple form (Lemma 7.16). By a direct computation, we can check the follow-
ing lemma.

Lemma 7.14 For 0 ≤ s ≤ n− 1, let

hε1(n, s,X) :=
⎧⎨
⎩

∏n−1
l= n+s+1

2
(q2lX2 − 1) if n − s is odd,

(q
n+s

2 X − εε1)
∏n−1

l= n+s+2
2

(q2lX2 − 1) if n − s is even.
(7.19)

Then

hε1(n, j, qX) = hε1(n + 1, j + 1,X), (7.20)

q n+j+2
2 !Xhε1(n + 1, j + 1,X) = hε1(n + 1, j,X)

+ (−1)n+j+1εε1hε1(n+ 1, j + 1,X). (7.21)

Lemma 7.15 For integers 0 < r ≤ n− 1 and ε, ε1 =±1, we have

gε1(r, r,X) = (−1)r(n−1)εn
1 εrα(r)hε1(n, r,X).

In particular, gε1(r, r,X) is a polynomial of degree n− r − 1.

Proof We prove the case when n case is odd and r is even, and leave the other three
cases to the reader. The idea is the same (a little bit more complicated). In this case,
we need to show

gε1(r, r,X)

hε1(n, r,X)

=
r∑

k=0

(−1)kq
k(k−1)

2 ·
∑

ε2∈{±1}
m(U

ε2
k ,Uε1

r ) · α(r − k)βδ(r − k) · fε2(n, k,X)

hε1(n, r,X)

= ε1α(r), (7.22)

where δ = δ(r, k, ε1, ε2). Since n is odd and r is even, we have

fε2(n, k,X)

hε1(n, r,X)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏ n+k−2
2

�= n+1
2

(q2�X2)

· q n+k
2 X(q

n+k
2 X − εε2)

∏ n+r−1
2

�= n+2+k
2

(q2�X2 − 1) if k is odd,

∏ n−1+k
2

�= n+1
2

(q2�X2) ·∏
n+r−1

2

�= n+1+k
2

(q2�X2 − 1) if k is even.
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As a result, dividing (7.22) by q(n+ r−1
2 )( r−1

2 )+ n+r
2 · Xr and setting Y = (q

n+1
2 X)−1,

j = r − k, (7.22) is equivalent to

g̃ε1(r, Y ) :=
r∑

j=0

(−1)r−j q
(r−j)(r−j−1)

2 · α(j) ·
∑

ε2∈{±1}
m(U

ε2
r−j ,U

ε1
r )βδ(j) · f̃ε2(j, Y )

= ε1Y
r, (7.23)

where f̃ε2(j, Y ) is a polynomial of degree j defined as follows:

f̃ε2(j, Y ) :=

⎧⎪⎨
⎪⎩

∏ r−2
2

�= r−j
2

(1 − q−2�Y 2) if j is even,

(1 − εε2q
− r−j−1

2 Y) ·∏
r−2

2

�= r−j+1
2

(1 − q−2�Y 2) if j is odd.

Since {f̃1(j, Y ),0 ≤ j ≤ r} forms a basis of the space of polynomials with degree
≤ r , there exists unique tuples (aj ) and (bj ) such that

f (Y ) = ε1Y
r =

r∑
j=0

aj f̃1(j, Y ), and g̃ε1(r, Y ) =
r∑

j=0

bj f̃1(j, Y ).

We need to show (aj ) = (bj ). It is easy to check

ar = br = (−1)
r
2 ε1α(r).

Now to prove aj = bj for all j , it suffices to prove that both aj and bj satisfy the
recursion formula for j < r

aj =
{
−qj 1−q−j−2

1−qj−r aj+2 if j is even,

0 if j is odd.
(7.24)

We start with aj . First of all, we have

r∑
j=0

q−raj f̃1(j, Y ) = q−rf (Y ) = f (q−1Y) =
r∑

j=0

aj f̃1(j, q
−1Y). (7.25)

Notice that

f̃1(j, q
−1Y) = (1 − q−rY 2)f̃1(j − 2, Y ).

Since

f̃1(j + 1, Y )/f̃1(j, Y ) =
{

1 − εq− r−j−2
2 Y if j is even,

1 + εq− r−j−1
2 Y if j is odd,
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we have

Y f̃1(j, Y ) =
{
−εq

r−j−2
2 (f̃1(j + 1, Y ) − f̃1(j, Y )) if j is even,

εq
r−j−1

2 (f̃1(j + 1, Y ) − f̃1(j, Y )) if j is odd,

Y 2f̃1(j, Y ) =

⎧⎪⎨
⎪⎩

−qr−j−2(f̃1(j + 2, Y ) − f̃1(j, Y )) if j is even,

−qr−j−2(f̃1(j + 2, Y )

+ (q − 1)f̃1(j + 1, Y ) − qf̃1(j, Y )) if j is odd.

Therefore,

f̃1(j, q
−1Y) =

⎧⎪⎨
⎪⎩

q−j f̃1(j, Y ) + (1 − q−j )f̃1(j − 2, Y ) if j is even,

q−j f̃1(j, Y ) + (q − 1)q−j f̃1(j − 1, Y )

+ (1 − q1−j )f̃1(j − 2, Y ) if j is odd.

Plugging this into (7.25), we obtain

(q−r − q−j )aj =
{

(q − 1)q−j−1aj+1 + (1 − q−j−2)aj+2 if j is even,

(1 − q−j−1)aj+2 if j is odd,

with ar+1 = ar+2 = 0. So we have (7.24). We remark that in other cases, we have
similar recursion formula as above but could not be simplified like (7.24).

Now we compute bj for j < r . Recall that r is even. First, if j = 0, we have

∑
ε2∈{±1}

m(U
ε2
r−j ,U

ε1
r )βδ(j) · f̃ε2(j, Y ) = f̃ε1(0, Y ).

It is easy to check that

f̃ε2(j, Y ) =
{

f̃1(j, Y ) if j is even,

(1 − εε2q
− r−j−1

2 )f̃1(j − 1, Y ) if j is odd.
(7.26)

Now Lemmas 5.21 and 7.9 imply for j 	= 0 and δ = δ(r, j, ε1, ε2), we have

∑
ε2∈{±1}

m(U
ε2
r−j ,U

ε1
r ) · βδ(j) · f̃ε2(j, Y )

=

⎧⎪⎨
⎪⎩

2ε1(−1)
j
2 (ε1q

− j
2 +q

− r−j
2 )

(1+ε1q
− j

2 )(1+q
− r−j

2 )

m(U1
r−j ,U

ε1
r )f̃1(j, Y ) if j is even,

2(−1)
j−1

2 m(U1
r−j ,U

ε1
r )f̃1(j − 1, Y ) if j is odd.

Plugging this into the definition of g̃ε1(r,X) as in (7.23), we obtain

g̃ε1(r,X) =
r∑

j=0

bj f̃1(j, Y )
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with bj = 0 for odd j , b0 = q
r(r−1)

2 (1 − 2q−(r−1)m(U1
1 ,U

ε1
r )), and

bj =2(−1)r−
j
2 q

(r−j)(r−j−1)
2

(q− j
2 + ε1q

− r−j
2 )

(1 + ε1q
− j

2 )(1 + q− r−j
2 )

m(U1
r−j ,U

ε1
r )

− 2(−1)r−
j
2 q

(r−j−1)(r−j−2)
2 α(j + 1)m(U1

r−j−1,U
ε1
r )

for even j 	= 0. Applying Lemma 5.21, for even j 	= 0, we have

bj = 2(−1)r−
j
2 q

(r−j)(r−j−1)
2

q− r−j
2 (ε1 + q− r

2 )

(1 + ε1q
− j

2 )(1 + q− r−j
2 )

α(j)m(U1
r−j ,U

ε1
r ).

Now applying Lemma 5.21 twice, we can check that bj satisfy (7.24). �

Recall that m(n, t) := min{n− t, n− 1}.

Lemma 7.16 For 0 ≤ t ≤ n, and m = n − t , we have

m(n,t)∑
r=0

(−1)rq
(n−r)(n−r−1)

2 qrt · gε1(m, r,X) = Fε1(n,m,X), (7.27)

where

Fε1(n,m,X) =
{

q
n(n−1)

2 fε1(n,m,X) if t 	= 0,

(−1)n−1α(n)
∑n−1

�=0(−qnX)� if t = 0.

Proof We treat the case t = 0 first. In this case, ε1 = ε. Before we give the details
of the proof, we summarize the main idea. Since {hε(n, s,X),0 ≤ s ≤ n − 1} forms
a basis of the space of polynomials with degree ≤ n − 1, there exists unique tuples
(an,j ) and (bn,j ) ∈Qn such that

Fε(n,n,X) =
n−1∑
j=0

an,jhε(n, j,X), and

n−1∑
r=0

(−1)rq
(n−r)(n−r−1)

2 · gε(n, r,X) =
n−1∑
j=0

bn,jhε(n, j,X).

(7.28)

We need to show an,j = bn,j for all n and j . We first show that an,j satisfy the
recursion relations (7.32), which gives a description of an+1,j in terms of an,j and
an,j−1. We can directly check a1,0 = b1,0 = 1. Then by an induction on n, it suffices
to show bn,j also satisfies (7.32).

Now we derive (7.32). It is easy to check that

Fε(n + 1, n+ 1,X) = q n
2 !(qn+1X)Fε(n,n, qX)+ (−1)nα(n + 1). (7.29)
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Plugging (7.28) into the above formula and applying Lemma 7.14, we obtain

n∑
j=0

an+1,j hε(n+ 1, j,X)

= q n
2 !(qn+1X)

n−1∑
j=0

an,jhε(n + 1, j + 1,X)

+ (−1)nα(n + 1)hε(n,n− 1,X). (7.30)

Let

γ (n, j) =  n

2
! + n + 1 −  n+ j + 2

2
! =

{
n − j

2 if j is even,

n −  j−(−1)n

2 ! if j is odd.
(7.31)

Then Lemma 7.14 and (7.30) imply

n∑
j=0

an+1,j hε(n+ 1, j,X) =
n−1∑
j=0

an,j q
γ (n,j)hε(n + 1, j,X)

+
n∑

j=1

(−1)n+j an,j−1q
γ (n,j−1)hε(n+ 1, j,X)

+ (−1)nα(n + 1)hε(n+ 1, n,X).

That is

⎧⎪⎨
⎪⎩

an+1,0 = qnan,0,

an+1,j = qγ (n,j)an,j + (−1)n+j qγ (n,j−1)an,j−1, 0 < j < n,

an+1,n = qγ (n,n−1)an,n−1 + (−1)nα(n + 1).

(7.32)

Now we compute bn,j . A direct computation shows that bn,0 = q
n(n−1)

2 . In the
following, we compute bj for j 	= 0.

For r = 0, we have

gε(n,0,X) = f1(n,0,X) =
{

hε(n,0,X) if n is odd,

hε(n,0,X)+ (1 − ε)hε(n,1,X) if n is even.

Now we assume r 	= 0. Recall that by Lemma 7.13, we have

gε(n, r,X) =
∑

ε3∈{±1}
m(Uε3

r ,Uε
n )gε3(r, r,X).
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Notice that when n− r is odd, hε1(n, r,X) is independent of ε1. Then a direct calcu-
lation using Lemma 7.15 and the formula for m(U

ε1
r ,Uε

n ) gives

gε(n, r,X)

= α(r)hε(n, r,X)m(Uε
r ,Uε

n)

⎧⎨
⎩

2q
− r

2

1+εq
− r

2
ifn ≡ r − 1 ≡ 1 (mod 2),

−2ε ifn ≡ r − 1 ≡ 0 (mod 2).

(7.33)

When n− r is even, we have

hε3(n, r,X) = (q
n+r

2 X − εε3)hε(n, r + 1,X). (7.34)

So a direct calculation gives

gε(n, r,X) = α(r)hε(n, r + 1,X)m(Uε
r ,Uε

n )

×
(

q
n+r

2 X − 1 + (−1)n(q
n+r

2 X + 1)
m(U−ε

r ,Uε
n)

m(Uε
r ,Uε

n )

)
. (7.35)

We have by Lemma 5.18

m(U−ε
r ,Uε

n)

m(Uε
r ,Uε

n)
= 1 − q− n−r

2

1 + q− n−r
2

⎧⎨
⎩

1 ifn ≡ r ≡ 1 (mod 2),

1−εq
− r

2

1+εq
− r

2
ifn ≡ r ≡ 0 (mod 2).

The equation (7.34) gives

Xhε(n, r + 1,X) = q− n+r
2 (hε(n, r,X) + hε(n, r + 1,X)).

So when n ≡ r ≡ 1 (mod 2), we have

gε(n, r,X)

= 2α(r)m(Uε
r ,Uε

n)

(
q− n−r

2

1 + q− n−r
2

hε(n, r,X) + q− n−r
2 − 1

1 + q− n−r
2

hε(n, r + 1,X)

)
,

and when n ≡ r ≡ 0 (mod 2) and r 	= 0, we have

gε(n, r,X)

= 2α(r)m(Uε
r ,Uε

n)

(1 + q− n−r
2 )(1 + εq− r

2 )

×
(
(1 + εq− n

2 )hε(n, r,X) + (1 − q− n−r
2 )(1 − εq− r

2 )hε(n, r + 1,X)
)

.

In summary, we have the numbers bn,j for j 	= 0 are given by the following.
If n and j are odd, then

bn,j = 2(−1)j q
(n−j)(n−j−1)

2 α(j)
m(Uε

j ,Uε
n )

1 + q
n−j

2

.
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If n is odd and j is even, then

bn,j = 2(−1)j q
(n−j)(n−j−1)

2

×
(

α(j)q− j
2

1 + εq− j
2

m(Uε
j ,Uε

n) − qn−jα(j − 1)(q− n−j+1
2 − 1)

1 + q− n−j+1
2

m(Uε
j−1,U

ε
n )

)
.

If n and j are even, then

bn,j = 2(−1)j q
(n−j)(n−j−1)

2 α(j)(1 + εq− n
2 )

(1 + q− n−j
2 )(1 + εq− j

2 )
m(Uε

j ,Uε
n).

If n is even, then for j = 1 we have

bn,1 = q
n(n−1)

2 (1 − ε + 2εq−(n−1))m(U1
1 ,Uε

n ),

and for odd j > 1, bn,j is equal to

2(−1)j+1q
(n−j)(n−j−1)

2

×
(

εα(j)m(Uε
j ,Uε

n ) + qn−jα(j − 1)(1 − q− n−j+1
2 )(1 − εq− j−1

2 )

(1 + q− n−j+1
2 )(1 + εq− j−1

2 )
m(Uε

j−1,U
ε
n)

)
.

Using the explicit formulas, direct calculation shows that bn,j satisfies (7.32).
From now on, we assume t 	= 0 and let m = n − t . The proof is essentially the

same as the proof of Lemma 7.15 and we only prove the case that n is odd and m is
even in detail. According to Lemma 7.13, we have

m(n,t)∑
r=0

(−1)rq
(n−r)(n−r−1)

2 qrt · gε1(m, r,X)

=
m(n,t)∑
r=0

(−1)rq
(n−r)(n−r−1)

2 qrt ·
∑

ε3∈{±1}
m(Uε3

r ,Uε1
m )gε3(r, r,X)

= q
(n−m)(n+m−1)

2

m(n,t)∑
r=0

(−1)rq
(m−r)(m−r−1)

2 ·
∑

ε3∈{±1}
m(Uε3

r ,Uε1
m )gε3(r, r,X).

Assume that n is odd and m is even. Factoring out hε1(n,m,X), replacing X by

q
n−1

2 X, and apply Lemma 7.15, we have that (7.27) is equivalent to

q
(n−m)(n+m−1)

2

m∑
r=0

(−1)rq
(m−r)(m−r−1)

2 ·
∑

ε3∈{±1}
m(Uε3

r ,Uε1
m )α(r)g′

ε3
(m, r,X)

= F ′(n,m,X), (7.36)
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where

g′
ε3

(m, r,X) =

⎧⎪⎨
⎪⎩

εε3(q
r+1

2 X − εε3) ·∏
m
2

�= r+3
2

(q2�X2 − 1) if r is odd,

ε3
∏m

2

�= r+2
2

(q2�X2 − 1) if r is even,

and

F ′(n,m,X) = q
n(n−1)

2

m
2∏

�=1

(q2�X2).

Since g′
ε(r,m,X) forms a basis of the space of polynomials with degree ≤ m, there

exists unique tuples (aj ) and (bj ) such that

LHS of (7.36) =
m∑

j=0

ajg
′
ε(m, j,X), RHS of (7.36) =

m∑
j=0

bjg
′
ε(m, j,X).

It suffices to show that a0 = b0 and both (aj ) and (bj ) satisfy the following recursive
relation for 0 < r ≤ m:

ar =
{

0 if r is odd,
qm−r+2−1
qm−qm−r ar−2 if r is even.

(7.37)

We derive the recursive relation for aj first. Notice that

g′
ε(m, r, qX) = (qm+2X2 − 1)g′

ε(m, r + 2,X).

Moreover,

Xg′
ε(m, r,X) =

{
q− r+1

2 (εg′
ε(m, r − 1,X)− g′

ε(m, r,X)) if r is odd,

q− r
2 (εg′

ε(m, r − 1,X)+ g′
ε(m, r,X)) if r is even.

X2g′
ε(m, r,X) =

⎧⎪⎨
⎪⎩

q−(r+1)(qg′
ε(m, r − 2,X)

+ ε(q − 1)g′
ε(m, r − 1,X)+ g′

ε(m, r,X)) if r is odd,

q−r (g′
ε(m, r − 2,X)+ g′

ε(m, r,X)) if r is even.

Hence if m is even, then

g′
ε(m, r, qX)

=

⎧⎪⎨
⎪⎩

qm−rg′
ε(m, r,X) + ε(q − 1)qm−r−1g′

ε(m, r + 1,X)

+ (qm−r−1 − 1)g′
ε(m, r + 2,X) if r is odd,

qm−rg′
ε(m, r,X) + (qm−r − 1)g′

ε(m, r + 2,X) if r is even.

Hence for 1 < r ≤ m + 1

(qm − qm−r )ar =
{

(qm−r+1 − 1)ar−2 if r is odd,

ε(q − 1)qm−rar−1 + (qm−r+2 − 1)ar−2 if r is even,
(7.38)
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with am+1 = 0, which implies (7.37).
Now we compute bj . First, when r = 0,

∑
ε3∈{±1}

m(Uε3
r ,Uε1

m )g′
ε3

(m,0,X) = εg′
ε(m,0,X).

For r 	= 0,

∑
ε3∈{±1}

m(Uε3
r ,Uε1

m )g′
ε3

(m, r,X)

=
{
−2εm(Uε

r ,U
ε1
m )g′

ε(m, r + 1,X) if r is odd,

ε(m(U1
r ,U

ε1
m ) − m(U−1

r ,U
ε1
m ))g′

ε(m, r,X) if r is even.

Then

br =
{

0 if r is odd,

a′
r−1 + a′

r if r is even,

where

a′
r = q

(n−m)(n+m−1)
2

⎧⎪⎨
⎪⎩

−2(−1)rq
(m−r)(m−r−1)

2 α(r)εm(Uε
r−1,U

ε1
m ) if r is odd,

(−1)rα(r)q
(m−r)(m−r−1)

2

× ε(m(U1
r ,U

ε1
m ) −m(U−1

r ,U
ε1
m )) if r is even.

Finally, a direct calculation shows that a0 = b0 = εq
n(n−1)

2 and br satisfies (7.38). �

7.6 Proof of Theorem 7.1

Now we are ready to prove Theorem 7.1.
Recall that

Pden′(L) = Pden′(In,L)

Pden(In, In)
,

and

Pden(In, In) = 2α(n)Iε(n),

where Iε(n) is defined in Lemma 7.7.
We first assume that L = Hj kL1 with j > 0 where L1 = In1−tkL2 is an integral

lattice of rank n1 and type t > 0 (the other non-integral cases were taken care of in
the summary of the proof at the beginning of this section). By Lemma 5.13, we have

Pden′(In,L) = 2
( j−1∏

�=1

(1 − q2�)
)

Pden(In,L1, q
2j ).
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It suffices to show Pden(In,L1, q
2j ) = 0. By Theorem 6.1 and Lemma 7.11, we have

Pden(In,L,q2j ) =
n1∑
i=0

Pdenn1−i (I−ε
n ,L,q2j )

= Iε(n,n1)

n1−t∑
r=0

n1∑
i=0

(
n1 − r

i − r

)

q

(−1)n1+i−rq
(i−r)(i−r−1)

2 qrt

· gε1(n1, n1 − t, r, qj−i ). (7.39)

Notice that the assumption t > 0 implies that r ≤ n1 − t ≤ n1 − 1. Hence gε1(n1, n−
t, r,X) is a polynomial of degree n1 − r − 1 by Lemma 7.15. Then we may apply
Corollary 5.25 to conclude

n1∑
i=0

(
n1 − r

i − r

)

q

(−1)n1+i−rq
(i−r)(i−r−1)

2 qrt · gε1(n1, n1 − t, r, q
n−n1

2 −i ) = 0.

Hence

Pden′(L) =
2
(∏j−1

�=1(1 − q2�)
)

Pden(In, In)
Pden(In,L,qn−n1) = 0.

Next, we assume L = In−t kL2 is integral of rank n and type t (Cases (2) and (3)
or equivalently Case (b) in the summary of the proof at the beginning of this section).
Similarly, by Theorem 6.1 and Lemma 7.11, we have

Pden′(In,L) =
n−1∑
i=0

(Pdenn−i )′(In,L)

= 2Iε(n)

m(n,t)∑
r=0

n−1∑
i=0

(
n− r

i − r

)

q

(−1)n−1+i+rq
(i−r)(i−r−1)

2 qrt

· gε1(n,n− t, r, q−i ). (7.40)

Here, recall that m(n, t) := min{n− t, n− 1}. Applying Corollary 5.25 as before, we
have

n∑
i=0

(
n − r

i − r

)

q

(−1)r (−1)n−1+iq
(i−r)(i−r−1)

2 qrt · gε1(n,n − t, r, q−i ) = 0.

Hence,

Pden′(In,L) = 2Iε(n)

m(n,t)∑
r=0

(−1)rq
(n−r)(n−r−1)

2 qrt · gε1(n,n− t, r, q−n).
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By Lemma 7.16, if t 	= 0, then

m(n,t)∑
r=0

(−1)rq
(n−r)(n−r−1)

2 qrt · gε1(n,n − t, r, q−n)

= Fε1(n,n − t, q−n)

= α(n) ·
⎧⎨
⎩
∏ t−1

2
�=1(1 − q2�) if t is odd,

(1 − εε1q
t
2 )
∏ t

2−1
�=1 (1 − q2�) if t is even.

Notice that if t is even, then χ(I
ε1
n−t )χ(L2) = ε. Hence εε1 = χ(L2).

If t = 0, then by Lemma 7.16,

m(n,t)∑
r=0

(−1)rq
(n−r)(n−r−1)

2 qrt · gε1(n,n, r, q−n) = Fε1(n,n, q−n)

= α(n) ·
{

1 if n is odd,

0 if n is even.

This proves the theorem.

8 Fourier transform: the analytic side

In this section, we study the partial Fourier transform of the vertical part of the ana-
lytic side following Sect. 8 of [21]. The main result is Theorem 8.2.

Definition 8.1 For a non-degenerate lattice L
 ⊂ V of rank n − 1, and x ∈ V \ L


F ,

we define

∂DenL
,V (x) =
∑

L
⊂L′⊂L′ �
L′ 
 /∈Hor(L
)

∂Pden(L′)1L′(x),

where L′ 
 = L′ ∩L


F .

Theorem 8.2 Let L
 ⊂ V be a non-degenerate lattice of rank n − 1, and let W =
(L



F )⊥ be the perpendicular space of L



F in V. Recall the partial Fourier transform

∂Den⊥
L
,V (x) =

∫

L


F

∂DenL
,V (x + y)dy, x ∈W \ {0}.

Then ∂Den⊥
L
,V

(x) is constant on W≥0 \ {0} and is zero for x ∈W<0.

Proof It suffices to show that if val(x) > 0, then

∂Den⊥
L
,V (x) − ∂Den⊥

L
,V (π−1x) = 0.
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By definition, we have

∂Den⊥
L
,V (x) =

∫

L


F

∑

L
⊂L′⊂L′ �
L′ 
 /∈Hor(L
)

∂Pden(L′)1L′(x + y)dy,

where L′ runs over lattices of rank n in L


F + 〈x〉.

Recall that Pr
L



F

denotes the projection to L


F . We rewrite the summation based

on L′ ∩ L


F and Pr

L


F

(L′). For lattices L′ 
 ⊂ L̃′ 
 in L


F of rank n − 1, let

Lat(L′ 
, L̃′ 
) := {L′ ⊂V | L′ ∩L


F = L′ 
, Pr

L


F

(L′) = L̃′ 
}.

Then by Lemmas 7.2.1 and 7.2.2 of [20], we have

∂Den⊥
L
,V (x) =

∑

L
⊂L′ 

L′ 
 /∈Hor(L
)

∑

L′ 
⊂L̃′ 

L̃′ 
/L′ 
 cyclic

∑

L′∈Lat(L′ 
,L̃′ 
)
∂Pden(L′)

∫

L


F

1L′(x + y)dy.

Here we can switch the order of the sum and integral because there are only finitely
many nonzero terms in the sum for a fixed x. Since L̃′
/L′
 is cyclic, it has a generator
u
 ∈ L



F . Moreover, for L′ ∈ Lat(L′ 
, L̃′ 
), we can write L′ = L′
 + 〈u〉 with u =

u
 + u⊥ ∈V where 0 	= u⊥ ∈W. Moreover, write x = αu⊥ with α ∈ F×, then

x + y = αu + (y − αu
) ∈ L′

if and only if α ∈ OF and y − αu
 ∈ L′ 
. As a result, we have

∫

L


F

1L′(x + y) − 1L′(π−1x + y)dy =
{

vol(L′ 
), if 〈x〉 = 〈u⊥〉,
0, otherwise.

Therefore, we have

∂Den⊥
L
,V (x) − ∂Den⊥

L
,V (π−1x) =
∑

L
⊂L′ 

L′ 
 /∈Hor(L
)

vol(L′ 
)D(L′
)(x), (8.1)

where

D(L′
)(x) =
∑

L′ 
⊂L̃′ 

L̃′ 
/L′ 
 cyclic

∑

u⊥∈〈x〉 generator
L′=L′ 
+〈u
+u⊥〉

∂Pden(L′)

=
∑

u
∈(L′ 
)�/L′ 

val(u
)≥0

∂Pden(L′
 + 〈u
 + x〉). (8.2)

Here the last step uses the fact that L′ = L′
 + 〈u
 + x〉 is integral if and only if
u
 ∈ (L′ 
)�/L′ 
 and val(u
) ≥ 0 (since val(x) > 0).
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It suffices to show D(L′
)(x) = 0 for any L′ 
 such that L
 ⊂ L′ 
 and L′ 
 /∈
Hor(L
). To show this, we write L′ 
 = I

ε1
n1 k L2 where L2 is of full type (of rank

n− 1 − n1). Let u2 be the projection of u
 to L2. Then

(L′ 
)�/L′ 
 = (I ε1
n1
k (L2)

�)/L′ 
 ∼= L
�
2/L2 and L′ 
 +〈u
 + x〉 = L′ 
 +〈u2 + x〉.

We consider a partition of

(L
�
2)

◦/L2 = S+(L2) � S0(L2) � S−(L2)

with

S+(L2) = (πL
�
2)

◦◦/L2, S0(L2) = ((πL
�
2)

◦ − (πL
�
2)

◦◦)/L2,

S−(L2) = ((L
�
2)

◦ − (πL
�
2)

◦)/L2.

Here, for a lattice L,

L◦ := {x ∈ L | val(x) ≥ 0} and L◦◦ := {x ∈ L | val(x) > 0}.
In general, for a full type lattice L2, we also define

μ+(L) := |(πL�)◦◦/L|, μ0(L) := |((πL�)◦ − (πL�)◦◦)/L|,
μ−(L) := |((L�)◦ − (πL�)◦)/L|.

(8.3)

For ν ∈ {±1}, let

μ0,ν(L) := |{u ∈ (πL�)◦ − (πL�)◦◦ : χ((u,u)) = ν}/L|. (8.4)

Since L′ = L′
 +〈u2 + x〉 with u2 integral and val(x) > 0, it is not hard to check that

t (L′) =

⎧⎪⎨
⎪⎩

t (L′ 
) + 1 ifu2 ∈ S+(L2),

t (L′ 
) ifu2 ∈ S0(L2),

t (L′ 
) − 1 ifu2 ∈ S−(L2).

Set t = t (L′
). There are two cases.
When t is odd, we can write

L′ = L′
 + 〈u2 + x〉 =
{

I
ε1
n1 kL′

2 ifu ∈ S+
2 (L2),

I
ε1
n1 k I 1

2 kL′
2 ifu ∈ S−

2 (L2).

In both cases, a simple calculation gives

χ(L′
2) = εε1.

For t > 1, by Theorem 7.1,

∂Pden(L′) = (1 − εε1q
t−1

2 )

t−1
2 −1∏
�=1

(1 − q2�)
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·

⎧⎪⎨
⎪⎩

(1 − εε1q
t+1

2 )(1 + εε1q
t−1

2 ) if u2 ∈ S+(L2),

1 + εε1q
t−1

2 if u2 ∈ S0(L2),

1 if u2 ∈ S−(L2).

For t = 1, S−(L2) is empty and L′
 /∈ Hor(L
) implies that L′ = L
ε1
n1 k L′

2 with
χ(L′

2) = 1, i.e. ε1 = ε. In this case, by Theorem 7.1,

∂Pden(L′) =
{

1 − q ifu ∈ S+(L2),

1 ifu ∈ S0(L2).

Hence by (8.2), we have D(L′
) = 0 if

(1 − εε1q
t+1

2 )(1 + εε1q
t−1

2 )μ+(L2) + (1 + εε1q
t−1

2 )μ0(L2) +μ−(L2) = 0. (8.5)

When t = t (L′
) is even, L′
 /∈ Hor(L
) implies that t > 0. Moreover, if u2 ∈
S0(L2), we have a decomposition (since u2 ∈ L2 is perpendicular to I

ε1
n1 )

L′ = L′
 + 〈u2 + x〉 = I ε1
n1
k 〈u2 + x〉kL′

2

for some full type lattice L′
2 of rank t . Then a direct calculation gives

χ(L′
2) = (−1)n1ε1εχ(u2).

So we have by Theorem 7.1,

∂Pden(L′) =
t
2−1∏
�=1

(1 − q2�) ·

⎧⎪⎨
⎪⎩

(1 − qt ) if u2 ∈ S+(L2),

1 − (−1)n1ε1εχ(u2)q
t
2 if u2 ∈ S0(L2),

1 if u2 ∈ S−(L2).

Hence by (8.2), we have D(L′
) = 0 if

(1 − qt )μ+(L2) + (1 − (−1)n1ε1εq
t
2 )μ0,1(L2)

+ (1 + (−1)n1ε1εq
t
2 )μ0,−1(L2) +μ−(L2) = 0. (8.6)

Now (8.5) follows from Proposition 8.7 and (8.6) follows from Proposition 8.9.
Hence we have D(L′
) = 0 for L′ 
 such that L
 ⊂ L′ 
 and L′ 
 /∈ Hor(L
). Now the
theorem follows from (8.1). �

To complete the proof of Theorem 8.2, we are left to state and prove Propositions
8.7 and 8.9.

Definition 8.3 Let L and L′ be lattices of full type such that L ⊂ L′ ⊂ π−1L. For
? ∈ {+,0,−, {0,+1}, {0,−1}}, define

μ?(L,L′) := μ?(L) − [L′ : L]μ?(L′),

where μ?(L) is defined in (8.3) and (8.4).
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Lemma 8.4 Let L be a full type lattice of rank t . Then

μ+(L) + μ0(L) +μ−(L) = qt · μ+(L).

Let L and L′ be full type lattices of rank t such that L ⊂ L′ ⊂ π−1L. Then

μ+(L,L′) +μ0(L,L′) +μ−(L,L′) = qt · μ+(L,L′).

Proof It suffices to show that the following map

(L�)◦/L→(πL�)◦◦/L, x �→ πx

is surjective and every fiber of this map has size qt . For x ∈ (πL�)◦◦ = π(L�)◦, the
fiber at x is

{π−1(y + x) ∈ (L�)◦ : y ∈ L}.

Since x ∈ π(L�)◦,

π−1(y + x) ∈ (L�)◦ ⇐⇒ (y + x) ∈ π(L�)◦ ⇐⇒ y ∈ π(L�)◦.

Moreover, the assumption that L is a full type lattice implies that L ⊂ π(L�)◦. Hence

|{π−1(y + x) ∈ (L�)◦ : y ∈ L}| = |L| = qt .

This proves the first statement. The second statement follows from the first and the
definition of μ?(L,L′). �

Definition 8.5 Let L be a full type lattice of rank t . We call L maximal of type t if
for any L′ with L� L′ ⊂ LF , we have t (L′) < t .

Lemma 8.6 If L is non-maximal full type lattice of rank t , then there exists a L′ such
that L ⊂ L′ ⊂ π−1L and

μ+(L,L′) +μ0(L,L′) = q ·μ+(L,L′).

Proof We need to find a L′ such that L ⊂ L′ ⊂ π−1L and

|((πL�)◦ − (πL′ �)◦)/L| = q · |((πL�)◦◦ − (πL′ �)◦◦)/L|.
Let (a1, . . . , at ) be the fundamental invariants of L. We consider two cases separately.

(i) If at is even and at ≥ 4, then we may choose a normal basis {�1, . . . , �t } of
L such that 〈�1, . . . , �t−1〉 ⊥ �t . Write (�t , �t ) = ut (−π0)

at
2 . In this case, we choose

L′ = 〈�1, . . . , �t−1,π
−1�t 〉, with fundamental invariants (a1, . . . , at−1, at − 2). Then

πL� = 〈π−a1+1�1, . . . , π
−at+1�t 〉 and

πL′ � = 〈π−a1+1�1, . . . , π
−at−1+1�t−1,π

−at+2�t 〉.
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For a fixed x0 =∑1≤i<t siπ
−ai+1�i where si ∈ OF , let

S◦
x0

:= {x ∈ (πL�)◦ − (πL′ �)◦ : x = x0 + stπ
−at+1�t , st ∈ OF }/L,

S◦◦
x0

:= {x ∈ (πL�)◦◦ − (πL′ �)◦◦ : x = x0 + stπ
−at+1�t , st ∈ OF }/L.

It suffices to show |S◦
x0
| = q · |S◦◦

x0
|. Notice that x = x0 + stπ

−at+1�t ∈ S◦
x0

if and only
if

st ∈ O×
F , (x, x) = ut (−π0)

− at
2 +1(u−1

t (−π0)
at
2 −1(x0, x0) + st s̄t ) ∈ OF0,

and x ∈ S◦◦
x0

if and only if

st ∈ O×
F , (x, x) = ut (−π0)

− at
2 +1(u−1

t (−π0)
at
2 −1(x0, x0) + st s̄t ) ∈ (π0).

Consider the π -adic expansions

st =
∞∑
i≥0

biπ
i, −u−1

t (−π0)
at
2 −1(x0, x0) =

∞∑
i≥0

ciπ
i,

where bi, ci ∈ OF0/(π0). Then x ∈ S◦
x0

if and only if st ∈ O×
F , and

c0 = b2
0,

c1 = b1b0 − b0b1,

c2 = b2b0 − b1b1 + b0b2,

· · ·

cat−3 =
at−3∑
i=0

(−1)ibat−3−ibi .

Similarly, x ∈ S◦◦
x0

if and only if x ∈ S◦
x0

and

cat−2 −
at−3∑
i=1

(−1)ibat−2−ibi = 2bat−2b0.

Since st ∈ O×
F , b0 	= 0 and bat−2 is uniquely determined by the above equation.

Hence |S◦
x0
| = q · |S◦◦

x0
| as a result.

(ii) If at is odd (since L is non-maximal, at > 1 in this case) or at = 2,
then we may choose a normal basis {�1, . . . , �t } of L such that the moment ma-

trix of {�t−1, �t } is Hat , where Hat :=
(

0 πat

(−π)at 0

)
. We may choose L′ =

〈�1, . . . , �t−2,π
−1�t−1, �t 〉 with fundamental invariants (a1, . . . , at−2, at −1, at −1).

In this case,

πL� = 〈π−a1+1�1, . . . , π
−at+1�t 〉 and
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πL′ � = 〈π−a1+1�1, . . . , π
−at+1�t−1,π

−at+2�t 〉.
For a fixed x0 =∑1≤i<t−1 siπ

−ai+1�i where si ∈ OF , let

S◦
x0

:= {x ∈ (πL�)◦ − (πL′ �)◦ : x = x0 + st−1π
−at+1�t−1 + stπ

−at+1�t ,

where st−1, st ∈ OF }/L,

S◦◦
x0

:= {x ∈ (πL�)◦◦ − (πL′ �)◦◦ : x = x0 + st−1π
−at+1�t−1 + stπ

−at+1�t ,

where st−1, st ∈ OF }/L.

It suffices to show |S◦
x0
| = q · |S◦◦

x0
|. Notice that x = x0 + st−1π

−at+1�t−1 +
stπ

−at+1�t ∈ S◦
x0

if and only if

st ∈ O×
F , (x, x) = (x0, x0) + (st−1s̄t + (−1)at s̄t−1st )(−1)−at+1π−at+2 ∈ OF0,

and x ∈ S◦◦
x0

if and only if

st ∈ O×
F , (x, x) = (x0, x0) + (st−1s̄t + (−1)at s̄t−1st )(−1)−at+1π−at+2 ∈ (π0).

Write

st−1 =
∞∑
i≥0

biπ
i, st =

∞∑
i≥0

ciπ
i, −(−1)at−1πat−2(x0, x0) =

∞∑
i≥0

diπ
i,

where bi, ci, di ∈ OF0/(π0). Then x ∈ S◦◦
x0

if and only if x ∈ S◦
x0

and

dat−2 + S =−2bat−2c0,

where S is certain expression involving b0, . . . , bat−3 and c1, . . . , cat−2. Since st ∈
O×

F , c0 	= 0. Hence, for any given S, the number of choices of bat−2 is determined if
x ∈ S◦◦

x0
. As a result, |S◦

x0
| = q · |S◦◦

x0
|. �

Proposition 8.7 Assume that t ≥ 1 is odd and L is a full type lattice of rank t . Then
for any χ ∈ {±1}, we have

(1 − χq
t+1

2 )(1 + χq
t−1

2 )μ+(L) + (1 + χq
t−1

2 )μ0(L) +μ−(L) = 0.

Proof We prove this for maximal L first. We can choose a basis {�1, . . . , �t } of L with

moment matrix Diag(H
t−1

2
1 , ut (−π0)). Set L1 = 〈�1, . . . , �t−1〉 and L2 = 〈�t 〉. Then

we can directly compute that

(πL�)◦◦ = L, (πL�)◦ = L1 k π−1L2, (L�)◦ = π−1L1 k π−1L2.

Hence

μ+(L) = |(πL�)◦◦/L| = 1, μ0(L) = |((πL�)◦ − (πL�)◦◦)/L| = q − 1,
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and

μ−(L) = |((L�)◦ − (πL�)◦)/L| = qt − q.

As a result,

(1 − χq
t+1

2 )(1 + χq
t−1

2 )μ+(L) + (1 + χq
t−1

2 )μ0(L) +μ−(L)

= (1 − χq
t+1

2 )(1 + χq
t−1

2 ) + (1 + χq
t−1

2 )(q − 1)+ qt − q

= 0.

Now we assume L is not maximal and the proposition holds for L′ such that
L� L′ by an induction on val(L). With this assumption, it suffices to show

(1 − χq
t+1

2 )(1 + χq
t−1

2 )μ+(L,L′) + (1 + χq
t−1

2 )μ0(L,L′) +μ−(L,L′) = 0,

which follows from a combination of Lemmas 8.4 and 8.6. �

Lemma 8.8 If L is non-maximal full type lattice of rank t , then there exists a L′ such
that L ⊂ L′ ⊂ π−1L and

μ0,+(L,L′) = μ0,−(L,L′).

Proof Let

Sν := {x ∈ ((πL�)◦ − (πL�)◦◦) − ((πL′ �)◦ − (πL′ �)◦◦) : χ(〈x〉) = ν}/L.

We need to show |S+1| = |S−1|. Let {�1, . . . , �t } be a normal basis of L, and let
{a1, . . . , at } be the set of fundamental invariants of L. We consider two cases sepa-
rately.

(i) If at is even and at ≥ 4, then we may choose a normal basis {�1, . . . , �t } of
L such that 〈�1, . . . , �t−1〉 ⊥ �t . In this case, we choose L′ = 〈�1, . . . , �t−1,π

−1�t 〉,
with fundamental invariants (a1, . . . , at−1, at − 2). Then

πL� = 〈π−a1+1�1, . . . , π
−at+1�t 〉 and

πL′ � = 〈π−a1+1�1, . . . , π
−at−1+1�t−1,π

−at+2�t 〉.

For a fixed x0 =∑1≤i<t siπ
−ai+1�i where si ∈ OF , we set

Sν
x0

:= {x ∈ ((πL�)◦ − (πL�)◦◦) − ((πL′ �)◦ − (πL′ �)◦◦) :
x = x0 + stπ

−at+1�t , st ∈ OF ,χ(〈x〉) = ν}/L.

We need to show |S+1
x0

| = |S−1
x0

|. Write (�t , �t ) = ut (−π0)
at
2 . Notice that x = x0 +

stπ
−at+1�t ∈ Sν

x0
if and only if

st ∈ O×
F , (x, x) ∈ O×

F0
, χ((x, x)) = ν. (8.7)
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Notice that

(x, x) = ut (−π0)
− at

2 +1(u−1
t (−π0)

at
2 −1(x0, x0) + st s̄t ).

Write

st =
∞∑
i≥0

biπ
i, and − u−1

t (−π0)
at
2 −1(x0, x0) =

∞∑
i≥0

ciπ
i,

where bi, ci ∈ OF0/(π0). Then the conditions in (8.7) are equivalent to the following
equations:

c0 = b2
0 	= 0,

c1 = b1b0 − b0b1,

c2 = b2b0 − b1b1 + b0b2,

· · ·

cat−3 =
at−3∑
i=0

(−1)ibat−3−ibi ,

ν = χ
(
ut (−π0)

− at
2 +1(− cat−2 +

at−2∑
i=0

(−1)ibat−2−ibi

))
.

Since at is even by assumption, the last equation is the same with

ν = χ
(
ut (−π0)

− at
2 +1(− cat−2 +

at−3∑
i=1

(−1)ibat−2−ibi + 2b0bat−2
))

.

Notice that the possible choices of {b0, . . . , bat−3} are determined by the first at − 2
equations. And for a given choice of {b0, . . . , bat−3}, the number of choices of bat−2
that satisfies the last equation is clearly independent of ν since b0 	= 0.

(ii) If at is odd or at = 2, then we may choose a normal basis {�1, . . . , �t } of L such

that the moment matrix of {�t−1, �t } is Hat , where Hat :=
(

0 πat

(−π)at 0

)
. We may

choose L′ = 〈�1, . . . , �t−2,π
−1�t−1, �t 〉 with fundamental invariants (a1, . . . , at−2,

at−1 − 1, at − 1). In this case,

πL� = 〈π−a1+1�1, . . . , π
−at+1�t 〉 and

πL′ � = 〈π−a1+1�1, . . . , π
−at−1+1�t−1,π

−at+2�t 〉.
For a fixed x0 =∑1≤i<t−1 siπ

−ai+1�i , we set

Sν
x0

:= {x ∈ ((πL�)◦ − (πL�)◦◦) − ((πL′ �)◦ − (πL′ �)◦◦) :
x = x0 + st−1π

−at−1+1�t−1 + stπ
−at+1�t ,
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st−1, st ∈ OF ,χ(〈x〉) = ν}/L.

It suffices to show |S+1
x0

| = |S−1
x0

|. Notice that x = x0 + st−1π
−at−1+1�t−1 +

stπ
−at+1�t ∈ Sν

x0
if and only if

st ∈ O×
F ,

(x, x) = (x0, x0) + (st−1s̄t + (−1)at s̄t−1st )(−1)−at+1π−at+2 ∈ O×
F0

,

χ((x, x)) = ν.

(8.8)

Write

st−1 =
∞∑
i≥0

biπ
i, st =

∞∑
i≥0

ciπ
i, −(−1)at−1πat−2(x0, x0) =

∞∑
i≥0

diπ
i,

where bi, ci, di ∈ OF0/(π0). Then the condition in (8.8) is equivalent to the following
equations:

d0 = b0c0 + (−1)at b0c0,

d1 = b1c0 − b0c1 + (−1)at (−b1c0 + b0c0),

· · ·
ν = χ

(
(−1)at−1π−at+2(− dat−2 + S + 2bat−2c0

))
,

where S is certain expression involving b0, . . . , bat−3 and c1, . . . , cat−2. Since st ∈
O×

F , c0 	= 0. Hence, for any given S, the number of choices of bat−2 that satisfies the
last equation is clearly independent of ν. �

Proposition 8.9 Assume that t ≥ 1 is even and that L is a full type lattice of rank t .
Then for any χ ∈ {±1}, we have

(1 − qt )μ+(L) + (1 − χq
t
2 )μ0,+1(L) + (1 + χq

t
2 )μ0,−1(L) + μ−(L) = 0.

Proof We prove this for maximal L first. There are two cases we need to consider.

(i) If we can choose a basis {�1, . . . , �t } of L with moment matrix Diag(H
t
2−1

1 ,

ut−1(−π0), ut (−π0)) where χ(−ut−1ut ) = −1, then set L1 = 〈�1, . . . , �t−2〉 and
L2 = 〈�t−1, �t 〉. In this case, a direct computation shows that

(πL�)◦◦ = L, (πL�)◦ = L1 k π−1L2, (L�)◦ = π−1L.

Hence

μ+(L) = |(πL�)◦◦/L| = 1, μ−(L) = |((L�)◦ − (πL�)◦)/L| = qt − q2. (8.9)

Moreover,

μ0,ν(L) = |{(x, y) ∈ F2
q − (0,0) | χ(ut−1x

2 + uty
2) = ν}|.
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It is well known that

|{(x, y) ∈ F2
q − (0,0) | ut−1x

2 + uty
2 = 1}| = q − χ(−ut−1ut ) = q + 1.

Hence

μ0,+1(L) = μ0,−1(L) = q2 − 1

2
. (8.10)

Combining (8.9) and (8.10), we have

(1 − qt )μ+(L) + (1 − χq
t
2 )μ0,+(L) + (1 + χq

t
2 )μ0,−(L) +μ−(L)

= (1 − qt ) + (q2 − 1) + (qt − q2) = 0.

(ii) If we can choose a basis {�1, . . . , �t } of L with moment matrix H
t
2

1 , then we can
directly compute that

(πL�)◦◦ = L, (πL�)◦ = L, (L�)◦ = π−1L.

Hence

μ+(L) = |(πL�)◦◦/L| = 1, μ0(L) = 0,

μ−(L) = |((L�)◦ − (πL�)◦)/L| = qt − 1.

As a result we have

(1 − qt )μ+(L) + (1 − χq
t
2 )μ0,+(L) + (1 + χq

t
2 )μ0,−(L) +μ−(L)

= (1 − qt ) + (qt − 1) = 0.

Now we assume L is not maximal and the proposition holds for L′ such that
L� L′ by an induction on val(L). With this assumption, it suffices to show

(1 − qt )μ+(L,L′) + (1 − χq
t
2 )μ0,+1(L,L′)

+ (1 + χq
t
2 )μ0,−1(L,L′) +μ−(L,L′) = 0,

which follows from a combination of Lemmas 8.4 and 8.8. �

9 Proof of the main theorem

We prove the main theorem in this section by an induction on val(L) using the results
we obtained about the partial Fourier transform in previous sections.
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9.1 Comparison of horizontal intersection numbers

Lemma 9.1 Let L ⊂V be a lattice. If L = L1 kL2 where L1 is unimodular, then

Int(L) − ∂Den(L) = Int(L2) − ∂Den(L2).

Proof The lemma follows from comparing (7.3) with (2.12). �

Definition 9.2 Let L
 ⊂V be a non-degenerate lattice of rank n− 1, and x ∈V \L


F .

Define

∂DenL
,H (x) =
∑

L
⊂L′⊂L′ �
L′ 
∈Hor(L
)

∂Pden(L′)1L′(x). (9.1)

Lemma 9.3 If L
 ⊂V is horizontal, then

IntL
,H (x) = ∂DenL
,H (x),

where IntL
,H is defined in Definition 4.7.

Proof Let L = L
 ⊕ 〈x〉. By Lemma 4.9, we know

IntL
,H (x) = IntL
(x) = Int(L). (9.2)

On the other hand, since L
 is horizontal, by Lemma 4.2 any integral lattice of rank
n− 1 containing L
 is horizontal, hence we have

∂DenL
,H (x) = ∂DenL
(x) = ∂Den(L). (9.3)

So it suffices to prove Int(L) = ∂Den(L).
When n = 2, by (9.2) and (9.3), the lemma is a consequence of [29, Theorem 1.1]

and [9, Theorem 1.1]. When n > 2, L
 has a unimodular direct summand L1 of rank
n− 2 such that L = L1kL2 and L



2 := L2,F ∩L
 is a horizontal lattice in L2,F . The

lemma follows from the case n = 2 and Lemma 9.1. �

Lemma 9.4 If M
 ⊂V is horizontal, then

χ(N ,LZ(M
)◦ ·Z(x)) =
∑

M
⊂L′⊂L′ �
L′ 
=M


∂Pden(L′)1L′(x),

where LZ(M
)◦ is as in Definition 4.5.

Proof By Definition 4.7, we have

IntM
,H (x) = χ(N ,LZ(M
)◦ ·Z(x))+
∑

L′ 
∈Hor(M
)

L′ 
 	=M


χ(N ,LZ(L′ 
)◦ ·Z(x)). (9.4)
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We now prove the lemma by induction on val(M
). When M
 is unimodular, the
lemma is the same as Lemma 9.3. In general notice that any integral lattice of rank
n− 1 containing M
 is horizontal by Lemma 4.2. Applying the induction hypothesis
to the right hand side of the above formula and applying Lemma 9.3 to the left hand
had, we obtain

∑

M
⊂L′⊂L′ �
L′ 
∈Hor(M
)

∂Pden(L′)1L′(x) = χ(N ,LZ(M
)◦ ·Z(x))

+
∑

M
⊂L′⊂L′∨
L′ 
 	=M


∂Pden(L′)1L′(x). (9.5)

Subtract the left hand side by the second term of the right hand side of the equation,
the lemma is proved. �

Theorem 9.5 For a non-degenerate lattice L
 ⊂V of rank n− 1, and x ∈V \L


F , we

have

IntL
,H (x) = ∂DenL
,H (x).

Proof By the definition of IntL
,H (x), we have

IntL
,H (x) =
∑

M
∈Hor(L
)

χ(N ,LZ(M
)◦ ·Z(x)).

The theorem now follows from (9.1) and Lemma 9.4. �

9.2 Proof of the main theorem

The following is an analogue of Lemma 9.3.1 of [21].

Lemma 9.6 Let L
 ⊂ V be a non-degenerate lattice of rank n − 1 and W= (L


F )⊥.

For x /∈ L
 kW, there exists an OF -lattice L′ 
 of rank n− 1 and x′ ∈V such that

val(L′ 
) < val(L
) and L′ 
 + 〈x′〉 = L
 + 〈x〉.

Proof Assume that L
 ⊂ V has fundamental invariants (a1, . . . , an−1). Let {�1, . . . ,

�n−1} be a basis of L
 whose moment matrix is

Diag(Hb1 ,Hb3 , . . . ,Hb2s−1 , u2s+1π
b2s+1 , . . . , un−1π

bn−1),
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where b1, . . . , b2s−1 are odd and Hj =
(

0 πj

(−π)j 0

)
. Notice that {b1, . . . , bn−1} =

{a1, . . . , an−1}. The moment matrix of {�1, . . . , �n−1, x} is

T =

⎛
⎜⎜⎜⎝

Hb1 (�1, x)

. . .
...

un−1π
bn−1 (�n−1, x)

(x, �1) · · · (x, �n−1) (x, x)

⎞
⎟⎟⎟⎠ .

Assume (a′
1, . . . , a

′
n) is the fundamental invariants of L
 +〈x〉. According to Lemma

2.23 of [19], a′
1 + · · · + a′

n−1 equals the minimal valuation of the (n − 1) × (n − 1)

minors of T .
Write x = x
 + x⊥ where x
 ∈ L



F and x⊥ ∈ W. If x
 /∈ L
, then we can write

x
 =∑n−1
j=1 αj�j where αi /∈ OF for some i. First, we assume αi /∈ OF for some

i ≤ 2s. The valuation of the (n, i)-th minor of T (removing n-th row and i-th column)
equals to

{
valπ ((�i+1, x)) − bi + (b1 + · · · + bn−1) if i is odd,

valπ ((�i−1, x)) − bi + (b1 + · · · + bn−1) if i is even.

Since αi /∈ OF , we have valπ ((�i+1, x)) < bi if i is odd and valπ ((�i−1, x)) < bi

if i is even. In particular,
∑n−1

j=1 a′
j <

∑n−1
j=1 aj . Now if we choose a normal basis

{�′1, . . . , �′n} of L
 + 〈x〉, then L′ 
 = 〈�′1, . . . , �′n−1} and x′ = �′n satisfy the property
we want.

Now we assume αi /∈ OF for some 2s < i ≤ n − 1. The valuation of the (n, i)-th
minor of T equals to

valπ (�i, x) − bi + (b1 + · · · + bn−1).

Since αi /∈ OF , valπ (�i, x) < bi , hence
∑n−1

j=1 a′
j <

∑n−1
j=1 aj . Now if we choose a

normal basis {�′1, . . . , �′n} of L
 + 〈x〉, then L′ 
 = 〈�′1, . . . , �′n−1} and x′ = �′n satisfy
the property we want. �

For any L, we can write it as L
+〈x〉 where L
 is a non-degenerate hermitian OF -
lattice of rank n− 1, and x ∈V \L
. Therefore, in order to show Int(L) = ∂Den(L),
it suffices to show the following theorem.

Theorem 9.7 Let L
 ⊂ V be a non-degenerate lattice of rank n − 1. For any x ∈
V \ L



F , we have

IntL
(x) = ∂DenL
(x).

Proof For x ∈ V \ L


F , let 	L
(x) = IntL
(x) − ∂DenL
(x). We need to show

	L
(x) = 0. We prove the theorem by an induction on val(L
). If L
 is not integral,
then IntL
(x) = 0 as Z(L) is empty by Proposition 3.20. Moreover ∂DenL
(x) = 0
by Corollary 7.2. Hence the theorem is true in this case.
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Now we assume L
 is integral. By induction hypothesis and Lemma 9.6, we may
assume supp(	L
) ⊂ L
 kW where W = (L



F )⊥. Since 	L
(x) is invariant under

the translation of L
, we may write

	L
(x) = 1L
 ⊗ φW(x), (9.6)

where φW(x) is a function on W \ {0}. Then we have by definition

	⊥
L
 = vol(L
)φW.

Theorem 9.5 implies that

	L
(x) = 	L
,V (x) := IntL
,V (x) − ∂DenL
,V (x).

Hence

vol(L
)φW = 	⊥
L
,V . (9.7)

By induction on the rank of L and Lemma 9.1, we may assume 	L
(x) = 0, hence
φW(x) = 0 for x ∈ W=0. Combining this with the non-integral case, we know
φW(x) = 0 for x ∈W≤0. As a result, we have 	⊥

L
,V
(x) = 0 for x ∈W≤0 by (9.7).

By Theorem 8.2 and Theorem 4.16, we have 	⊥
L
,V

(x) = 0 for x ∈W≥0 \ {0}. Hence

	⊥
L
,V

(x) = 0 for all x ∈W \ {0}. Consequently, φW(x) = 0 by (9.7). �

Combining this theorem with Theorem 4.15, we have the following corollary.

Corollary 9.8 Let L
 ⊂ V be a non-degenerate lattice of rank n − 1. Then
∂DenL
,V (x) ∈ S (V)≥−1 is a Schwartz function.

10 Global applications

10.1 Shimura varieties

In this section, we switch to global situation and will closely follow [27] and [28].
Let F be a CM number field with maximal totally real subfield F0. We fix a CM type
	 ⊂ Hom(F,Q) of F and a distinguished element φ0 ∈ 	. We fix an embedding
Q ↪→ C and identify the CM type 	 with the set of archimedean places of F , and
also with the set of archimedean places of F0. Let V be an F/F0-hermitian space
of dimension n ≥ 2. Let Vφ = V ⊗F,φ C be the associated C/R-hermitian space for
φ ∈ 	. Assume the signature of Vφ is given by

(rφ, rφ̄) =
{

(n − 1,1), φ = φ0,

(n,0), φ ∈ 	 \ {φ0}.

Define a variant GQ of the unitary similitude group GU(V ) by

GQ := {g ∈ ResF0/Q GU(V ) : c(g) ∈Gm},
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where c denotes the similitude character. Define a cocharacter

hGQ :C× → GQ(R) ⊂
∏
φ∈	

GU(Vφ)(R) �
∏
φ∈	

GU(rφ, rφ̄)(R),

where its φ-component is given by

hGQ,φ(z) = Diag{z · 1rφ , z̄ · 1rφ̄
}

under the decomposition of Vφ into positive definite and negative definite parts.
Then its GQ(R)-conjugacy class defines a Shimura datum (GQ, {hGQ}). Let Er =
E(GQ, {hGQ}) be the reflex field, i.e., the subfield of Q fixed by {σ ∈ Aut(Q/Q) :
σ ∗(r) = r} where r : Hom(F,Q) → Z is the function defined by r(φ) = rφ .

We similarly define the group ZQ (a torus) associated to a totally positive definite
F/F0-hermitian space of dimension 1 (i.e., of signature {(1,0)φ∈	}) and a cocharac-
ter hZQ of ZQ. The reflex field E	 = E(ZQ, {hZQ}) is equal to the reflex field of the
CM type 	, i.e., the subfield of Q fixed by {σ ∈ Gal(Q/Q) : σ ◦ 	 = 	}.

Now define a Shimura datum (G̃, {hG̃}) by

G̃ := ZQ ×Gm
GQ = {(z, g) ∈ ZQ ×GQ | NmF/F0(z) = c(g)}, hG̃ = (hZQ , hGQ).

Then G̃ ∼= ZQ × G where G = ResF0/Q U(V ). Its reflex field E is equal to the com-
posite ErE	, and the CM field F becomes a subfield of E via the embedding φ0.
We remark that E = F when F/Q is Galois, or when F = F0κ for some imaginary
quadratic κ/Q and the CM type 	 is induced from a CM type of κ/Q (e.g., when
F0 = Q). Assume that KZQ ⊂ ZQ(Af ) is the unique maximal open compact sub-
group, and KG =∏v KG,v where v runs over finite places of F0 is a compact open
subgroup of G(Af ). Let K = KZQ × KG ⊂ G̃(Af ). Then the associated Shimura
variety ShK = ShK(G̃, {hG̃}) is a Deligne-Mumford stack of dimension n − 1 and
has a canonical model over SpecE.

10.2 Integral model

In this subsection we run through the set-up of [20, §14]. Let m = (mv)v be a col-
lection of integers mv ≥ 0 indexed by finite places of F0 such that mv = 0 for all but
finitely many places and mv = 0 for all places v that are nonsplit in F . Let � be an
OF -lattice of V . Assume that for any finite place v of F0 (with residue characteristic
p), the following conditions are satisfied where ν̃ : Q̄ → Q̄p is an embedding that
induces a place ν of E.

(G0) If p = 2, then v is unramified in F .
(G1) If v is inert in F and Vv is split, then �v ⊂ Vv is self-dual and KG,v is the

stabilizer of �v . If v is further ramified over p and ν is any place of E above
v, then the subset {φ ∈ 	 : ν̃ ◦φ induces w} ⊂ Hom(Fw,Qp) is the pullback of
a CM type 	ur ⊂ Hom(F ur

w ,Qp) of F ur
w . Here w is the place of F above v and

F ur
w is the maximal subfield of Fw unramified over Qp .

(G2) If v is inert in F and Vv is nonsplit, then v is unramified over p and �v ⊂ Vv

is almost self-dual, i.e., �
�
v/�v is a 1 dimensional space over the residue field

of Fw . Moreover KG,v is the stabilizer of �v .
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(G3) If v is ramified in F , then v is unramified over p and �v ⊂ Vv is unimodular.
(G4) If v is split in F and mv = 0, then U(V )(F0,v) ∼= GLn(F0,v) and we assume

�v ⊂ Vv is self-dual. Let KG,v
∼= GLn(OF0,v) be the stabilizer of �v .

(G5) If v is split in F and mv > 0, then again U(V )(F0,v) ∼= GLn(F0,v) and we
assume �v ⊂ Vv is self-dual. Further assume that v splits into w and w̄ in F

and all places ν of E above v satisfy the following two conditions.
(a) the place ν of E matches the CM type 	 (in the sense of [27, §4.3]): if

φ ∈ Hom(F,Q) induces the p-adic place w of F (via ν̃ : Q ↪→Qp), then
φ ∈ 	.

(b) the extension Eν/Er|v is unramified, where Er|v is the local reflex field as
defined in [27, §4.1]. We remark that this condition holds automatically if
all p-adic places of F are unramified over p.

We remark here that condition (a) is automatically true when F = F0κ for
some imaginary quadratic κ/Q and the CM type 	 is induced from a CM type
of κ/Q (e.g., when F0 =Q), or when v is of degree one over p. Let KG,v be the
principal congruence subgroup modulo π

mv
v inside the stabilizer of �v where

πv is a uniformizer of F0,v .

In the case when the above conditions are satisfied, we denote K by Km. Also denote
Km by K◦ if mv = 0 for all v. In other words K◦ ⊂ G̃(Af ) is the stabilizer of
� ⊗OF

ÔF . Define the moduli functor MK◦ as follows. For a locally noetherian
OE-scheme S, MK◦(S) is the groupoid of tuples (A0, ι0, λ0,A, ι, λ,F) such that

(1) A (resp. A0) is an abelian scheme over S;
(2) ι (resp. ι0) is an action of OF on A (resp. A0) satisfying the Kottwitz condition

of signature {(rφ, rφ̄)φ∈	} (resp. {(1,0)φ∈	}):

charpol(ι(a) | LieA) =
∏
φ∈	

(T − φ(a))rφ · (T − φ̄(a))
rφ̄ (10.1)

for any a ∈ OF ;
(3) λ (resp. λ0) is a polarization of A (resp. A0) whose Rosati involution induces the

automorphism given by the nontrivial Galois automorphism of F/F0 via ι (resp.
ι0);

(4) F is locally a direct summand OS -submodule of LieA which is stable under the
OF -action. Moreover OF acts on F by the structural morphism and on LieA/F
by the Galois conjugate of the structural morphism.

We further require the following conditions to be satisfied.

(H1) (A0, ι0, λ0) ∈Mξ
0 where Mξ

0 =M(1),ξ
0 in the notation of [28, §4.1] (where (1)

is the unit ideal in OF ) is an integral model of ShK
ZQ

(ZQ, hZQ) depending on
the choice of a similarity class ξ of 1 dimensional F/F0-Hermitian spaces.

(H2) For each finite place v of F0, λ induces a polarization λv on the p-divisible
group A[v∞]. We require kerλv ⊂ A[ι(�v)] and is of rank equal to the size of
�

�
v/�v , where �v is a uniformizer of F0,v .

(H3) For each place v of F0, we require the sign condition and Eisenstein condition
as explained in [27, §4.1]. We remark that the sign condition holds automat-
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ically when v is split in F , and the Eisenstein condition holds automatically
when the places of F above v are unramified over p.

(H4) We impose the Krämer condition on F as explained in [28, Definition 6.10].

A morphism (A0, ι0, λ0,A, ι, λ,F) → (A′
0, ι

′
0, λ

′
0,A

′, ι′, λ′,F ′) is a pair (f0 : A0 →
A′

0, f : A → A′) of OF -linear isomorphism of abelian schemes over S such that
f ∗(λ′) = λ, f ∗

0 (λ′
0) = λ0, f∗(F) =F ′. Let Vram (resp. Vasd) be the set of finite places

v of F0 such that v is ramified in F (resp. v is inert in F and �v is almost self-
dual). By [27, Theorem 5.2], the moduli problem MK◦ is representable by a Deligne-
Mumford stack over OE which is regular and semistable at all places of E above
Vram ∪Vasd. The generic fiber of MK◦ is the Shimura variety ShK◦ . For a general m,
define MKm to be the normalization of MK◦ in ShKm . Then by [27, Theorem 5.4],
MKm is representable by a Deligne-Mumford stack over OE which is regular and
semistable at all places of E above Vram ∪ Vasd. Its localization at each finite place ν

of E agrees with the semi-integral models defined in and [27, §4] or [20, §11].

10.3 Global main theorems

From now on we assume K = Km and simply denote MKm by M. Let V be the
incoherent AF /AF0 -hermitian space associated to V , namely V is totally positive
definite and Vv

∼= Vv for all finite places v. Let ϕK ∈ S (Vm
f ) be a K-invariant (where

K acts on Vf via the second factor KG) Schwartz function. We say ϕK is admissible
if it is K-invariant and ϕK,v = 1(�v)m at all v nonsplit in F .

First, we consider a special admissible Schwartz function of the form

ϕK = (ϕi) ∈ S (Vm
f ), ϕi = 1�i

, i = 1, . . . ,m, (10.2)

where �i ⊂ Vf is a K-invariant open compact subset such that �i,v = �v at all
v nonsplit in F . Given ti ∈ F and ϕi , there exists a unique special divisor Z(t, ϕi)

over MK such that for each place ν of E inducing a non-split place of F0, the base
change of Z(t, ϕi) to SpecOE,(ν) agrees with the special divisor defined as in [20,
§13.3], and for each ν inducing a split place of F0, it agrees with the Zariski closure
of the special divisor over the generic fiber of MK . Then we have the following
decomposition (cf. [17, (11.2)]),

Z (t1, ϕ1) ∩ · · · ∩Z (tm,ϕm) =
⊔

T ∈Hermm(F )

Z (T ,ϕK) ,

where ∩ denotes taking fiber product over MK , and the indexes T have diagonal
entries t1, . . . , tm.

Let T ∈ Hermn(F ) be a nonsingular F/F0-hermitian matrix of size n. Given
(T ,ϕK), we can define an arithmetic degree as follows. First, analogous to the lo-
cal situation (1.1), we can define a local arithmetic intersection numbers IntT ,ν(ϕK)

for any place ν of E. First we assume ν is finite and let v be the place of F0 under ν.
By the same proof of [17, Proposition 2.22], it suffices to consider the case when v is
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nonsplit in F . When ϕK is of the form (10.2), define

IntT ,ν(ϕK)

:= 1

[E : F0] · χ(Z(T ,ϕK)ν,OZ(t1,ϕ1)ν ⊗L · · · ⊗L OZ(tn,ϕn)ν ) · logqν, (10.3)

where qν denotes the size of the residue field kν of Eν , Z(T ,ϕK)ν and Z(t, ϕi)ν
denote the base change to OE,(ν), OZ(ti ,ϕi )ν denotes the structure sheaf of the
Kudla–Rapoport divisor Z(ti , ϕi), ⊗L denotes the derived tensor product of coher-
ent sheaves on M, and χ denotes the Euler–Poincaré characteristic. For a general
admissible function ϕK , we can extend the definition C-linearly. Using the star prod-
uct of Kudla’s Green functions, we can also define a local arithmetic intersection
number IntT ,ν(y, ϕK) at infinite places ([20, §15.3]), which depends on a parameter
y ∈ Hermn(F∞)>0 where F∞ = F ⊗QR. Combining all the local arithmetic numbers
together, define the global arithmetic intersection number, or the arithmetic degree
of the special cycle Z(T ,ϕK) in the arithmetic Chow group of M,

d̂egT (y, ϕK) :=
∑

ν�∞
IntT ,ν(ϕK) +

∑
ν|∞

IntT ,ν(y, ϕK).

Theorem 10.1 Let Diff(T ,V) be the set of places v such that Vv does not represent
T . Let T ∈ Hermn(F ) be nonsingular such that Diff(T ,V) = {v} where v is nonsplit
in F and not above 2. Assume ϕK ∈ S (Vm

f ) is admissible. Then

d̂egT (y, ϕK)qT = cK · ∂EisT (z, ϕK),

where qT := ψ∞(TrT z), cK = (−1)n

vol(K)
is a nonzero constant independent of T and

vol(K) is the volume of K under a suitable Haar measure. Finally, ∂EisT (z, ϕK) is
the T -th coefficient of the modified central derivative of Eisenstein series in (1.11)

Proof When v is finite and v /∈ Vram ∪ Vasd, the theorem is proved in [20, Theorem
13.6]. For v ∈ Vasd, our definition of IntT ,ν(ϕK) differs from that of [20, (13.5.0.14)].
Correspondingly on the analytic side, our definition of ∂EisT (z, ϕK) is also modified,
see (1.9) and (1.10). However using [20, Theorem 10.5.1] instead of [20, Theorem
10.3.1], the proof of [20, Theorem 13.6] works the same way in this case. When v is
infinite, the theorem is proved in [22, Theorem 4.17,4.20] and independently in [7,
Theorem 1.1.2]. When v is finite and v ∈ Vram, the theorem is a corollary of Theorem
9.7 and can be proved in the same way as [10, Theorem 12.3]. �

We say ϕv ∈ S (Vn
v) is nonsingular if its support lies in {x ∈ Vn

v : detT (x) 	= 0},
see [20, §12.3] or [22, Proposition 2.1].

Theorem 10.2 Assume that F/F0 is split at all places above 2. Further assume that
ϕK is admissible and nonsingular at two places split in F . Then

d̂eg(z, ϕK) = cK · ∂Eis(z, ϕK),
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where d̂eg(z, ϕK) is defined in (1.12). In particular, d̂eg(z, ϕK) is a nonholomorphic
hermitian modular form of genus n.

Proof The theorem can be derived from Theorem 10.1 by the same way as [20, The-
orem 15.5.1]. �
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