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Abstract

Assume that a ground-based vehicle moves in a room

with walls or other planar surfaces. Can the vehicle

reconstruct the positions of the walls from the echoes of

a single sound event? We assume that the vehicle car-

ries some microphones and that a loudspeaker is either

also mounted on the vehicle or placed at a fixed loca-

tion in the room. We prove that the reconstruction is

almost always possible if (1) no echoes are received from

floors, ceilings, or sloping walls and the vehicle carries

at least three noncollinear microphones, or if (2) walls

of any inclination may occur, the loudspeaker is fixed in

the room and there are four noncoplanar microphones.

The difficulty lies in the echo-matching problem:How to

determine which echoes come from the same wall. We

solve this by using a Cayley–Menger determinant. Our

proofs use methods from computational commutative

algebra.
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1 INTRODUCTION

This paper is concerned with the problem of reconstructing the position of walls and other pla-

nar surfaces using echoes. More specifically, an omnidirectional loudspeaker produces a short,

high-frequency impulse. The echoes of the impulses are captured by some microphones. The

loudspeaker and the microphones are assumed to be synchronized. The walls are modeled using

mirror points, which are the reflections of the loudspeaker with respect to the planar surfaces. The

times of arrival of an echo give us the total distance traveled by the sound, which is equal to the

distance from the microphone to a mirror point. An illustration can be found in Figures 2, 3. We

are interested in determining towhat extent it is theoretically possible to reconstruct thewall posi-

tions from the distancemeasurements obtained in this fashion. All measurements are assumed to

be exact, and the computations are assumed to be performed with infinite precision. Yet, even in

this theoretical scenario, it may be impossible, at least in some circumstances, to correctly recon-

struct the wall positions. One of the goals of our work is to narrow down the problematic cases

and show that one can expect to avoid them in some common application scenarios. Here, we are

thinking of a vehicle carrying the microphones and having the ability to move more or less freely

on the ground, for example, a robot rolling on the floor inside a warehouse.

In previous work,1 we considered the case of a drone or, more generally, a vehicle with all six

degrees of freedom (the three coordinate axes and yaw, pitch, and roll). If there are four micro-

phones mounted on the vehicle and there is a loudspeaker either on the vehicle or at a fixed

location in the room, then our algorithm1 reconstructs the position of every wall from which an

echo is received by all microphones. But it cannot be avoided that for certain <bad= vehicle posi-

tions, a <ghost wall,= one which is not really there, is detected. Our main result states that the

bad positions are rare. However, to get out of a possibly bad position, the vehicle may need to use

all six degrees of freedom, including pitch and roll. For a drone, this means that being in a good

(i.e., not bad) position may result in receiving a thrust in some direction, so the drone cannot

hover while carrying out the wall reconstruction. So we are interested in investigating whether

our results carry over to a situation where the degrees of freedom are restricted to the coordi-

nate axes and yaw. Perhaps more interesting is the case of a ground-based vehicle. These are the

scenarios considered in this paper.

The restriction of degrees of freedom not only makes the mathematical arguments harder but

also yields somewhat weaker results. In fact, in Section 3, we exhibit <unlucky= wall arrange-

ments for which it is not true that almost all vehicle positions are good, if the degrees of freedom

are restricted as stated above. So the cases of a <hovering drone= and a ground-based vehicle really

are different from the case of a freelymoving drone, andmore difficult. The first main result (The-

orem 3) deals with the case of a ground-based vehicle and a loudspeaker placed at a fixed position

in the room, and gives a precise characterization of the wall arrangements for which it is not true

that almost all vehicle positions are good. These are the arrangements where an <unlucky stack

of mirror points,= as defined in Section 3, occurs, and they are themselves very rare. The second

main result (Theorem 4) treats the case of a hovering drone (four degrees of freedom) and, per-

haps surprisingly, reaches the same conclusion: The additional degree of freedom does not result

in fewer exceptional wall arrangements. Both results are first stated and proved in purely mathe-

matical terms (Theorem 1). The proofs of these results are similar in spirit to the proofs in Ref. 1,

and in particular involve large computations in ideal theory done by computer. But apart from

the new aspect of exceptional wall arrangements, there arise further theoretical difficulties that

are explained after the statement of Theorem 1. Analyzing our proof method shows that for each
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degree of freedom taken away, the final computation requires roughly two additional variables.

This is why computational bottlenecks prevented us from achieving general results in the case

that the loudspeaker is mounted on the vehicle.

In the first result of this paper, the vehicle moves in two dimensions, but still lives in three-

dimensional space, meaning that the walls it detects may be floors, ceilings, and sloping walls.

The last result (Theorem 5) of this paper concerns the truly two-dimensional case. In real-world

terms, this means that no echoes should be received from floors, ceilings, and sloping walls,

since they cannot be dealt with. This case is much easier, has no exceptional wall arrangements,

only requires three microphones, and also allows for the loudspeaker to be mounted on the

vehicle.

In this paper, a room is just a spacial arrangement of walls, and a wall is just a plane surface.We

only consider first-order echoes, meaning that the sound has not bounced twice or more often. A

further assumption is that the sound frequency is high enough to justify the use of ray acoustics.

When we say that almost all vehicle positions are good, we mean that within the configuration

space of all vehicle positions, the bad ones form a subset of volume zero. In fact, we use this

language only if the bad positions are contained in a subvariety of lower dimension. Intuitively

<almost all= can be thought of as <with probability one.=

2 RELATEDWORK

The relationship between the geometry of a room and the source-to-receiver acoustic impulse

response has long been a subject of interest, in particular for the design of concert halls with desir-

able acoustic properties. For example, the two-point impulse response within rectangular rooms

was analyzed in Ref. 2. The results were later extended to arbitrarily polyhedral rooms in Ref. 3.

Subsequent work used the impulse response of a room to reconstruct its geometry, including that

of objects within the room (e.g., Ref. 4).

Some reconstruction methods are focused on 2D room geometry (e.g., Refs. 5–7) while others

consider a more general but still constrained 3D geometry. For example, Park and Choi8 recon-

struct thewall surface for a convex, polyhedral, and bounded roomusing several loudspeakers and

microphones in known positions. Other methods are applicable to reconstructing of arbitrarily

planar surfaces in 3D (e.g., Ref. 9).

Some methods reconstruct wall points directly (e.g., Refs. 7, 8, 10–12) while others, like us,

reconstruct mirror points representing the reflection of a loudspeaker with respect to a wall plane

(e.g., Refs. 9, 13–16). Some, like us, assume that the microphones are synchronized (e.g., Refs. 9,

13, 17, 18), while others do not (e.g., Refs. 6, 19, 20).

In certain setups, the microphones are placed on a vehicle such as a robot (e.g., Ref. 21) or a

drone.1 Recent work uses cell phones as a cheaper alternative. For example, Shih and Rowe22

place an omnidirectional speaker at a known position in a polyhedral room and use a cell phone

to record the echoes while Zhou et al.23 assume a smart phone is held horizontally by a person

walking along rooms and corridors.

The vast majority of the work in the literature is focused on the numerical reconstruction of the

room, including the difficult problem of labeling echoes coming from the same surface. However,

from a theoretical standpoint, there is still a lot to be understood regarding the well-posedness

of different reconstruction setups, especially for nongeneric room geometries or receiver and

source placements.
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3 UNLUCKY STACKS OFMIRROR POINTS

As mentioned above, the primary challenge in wall detection from echoes is the matching of

echoes heard by different microphones, that is, determining which echoes come from the same

wall and which ones do not.

Let us recall an example from Ref. 1 where this matching inevitably goes wrong, leading to a

ghost wall. As it turns out, this type of example will play a crucial role in this paper.

Figure 1 shows three microphones in a plane at positions �1, �2, �3 that hear echoes from

three walls�� , but the time elapsed between sound emission and echo detection is the same as if

they were hearing echoes from one single wall�ghost, which does not exist. This arises because

(1) the walls �� are all horizontal, (2) the distances between �� and �� are the same for all �,

and (3) each�� can hear the echo from�� . It is easy to add a fourth microphone outside of the

drawing plane, together with a wall possibly also outside of the plane, such that (1)–(3) extend

to the fourth microphone and wall. (We find it harder to include that in our two-dimensional

sketch in Figure 1.) Since the echoes heard by the microphones behave precisely like echoes from

the single wall�ghost, any matching procedure will falsely assume that they have, in fact, come

from�ghost, giving rise to a ghost wall. The situation is particularly severe since the ghost wall

has some persistence properties. In fact, the conditions (1)–(3), and therefore the emergence of a

ghost wall, will be preserved if

(a) the microphones are moved, independently and within a certain range, in directions parallel

to the walls;

(b) the microphones are moved, together and within a certain range, along the �-axis, or, less

importantly;

(c) the loudspeaker is moved, within a certain range, in any direction.

Our sketch does not contain any vehicle that carries the microphones. Let us now imagine

there is such a vehicle, and that it is ground based, in the sense that its movement (rotation and

translation) is restricted to the �-�-plane, where the �-axis is perpendicular to the drawing plane.

The vehicle may also be allowed to move up or down along the �-axis, like a hovering drone.

Then, the persistence properties imply that within a certain range, vehicle movements will not

F IGURE 1 The microphones�� think they are hearing echoes from the wall�ghost. The dotted lines stand

for sound rays, � for the loudspeaker.
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F IGURE 2 The sound comes from the loudspeaker � and is reflected to the microphones�� . But virtually,

it comes from the mirror points 	� . So the loudspeaker and walls might as well be left out of the sketch.

make the ghost wall disappear. For this, it does not matter whether the loudspeaker is mounted

on the vehicle or at a fixed position. In all cases, there is a region of positive volume within the

space of all vehicle movements, in which the vehicle remains in a bad position. So it is not true

that almost all vehicle positions are good. Thus, here we hit a limitation to what can possibly be

shown formicrophonesmounted on ground-based vehicles, or vehicles with an additional degree

of freedom ofmoving up or down. (In comparison, a drone has two additional degrees of freedom:

pitch and roll.)

Since we are using ray acoustics, an echo reflected at a wall arrives with the same time delay

as if it were emitted at what we call themirror point, which is the reflection of the loudspeaker

position at the wall or, more precisely, at the plane containing the wall surface. Figure 2 shows

the mirror points 	� in the situation of Figure 1.

If we have mirror points as in the right sketch of Figure 2, then we have the persistence proper-

ties (a) and (b) of the ghost wall discussed above. For this, it is not necessary that the loudspeaker

be situated on the same vertical line as the mirror points, so the walls may be nonhorizontal.

Figure 3 illustrates that. In fact, it is only if the loudspeaker is moving as well that we need hor-

izontal walls to achieve the persistence properties of the ghost wall. It is useful to introduce a

catchphrase for the situation shown in Figures 2, 3, which is done in the following definition.

From now on, we will only consider the case in which the loudspeaker is at a fixed position and

not moving with the vehicle.

Definition 1. Assume that four microphones are mounted on a vehicle that canmove within the

�-�-plane, and possibly up and down along the �-axis. Assume that the vehicle moves in a scene

that contains several flat walls and a loudspeaker at a fixed position. We say that the microphones

are deceived by an unlucky stack of mirror points if among the walls there are four whose

mirror points 	1, … , 	4 are contained in a common vertical line, such that for �, 
 ∈ {1, … , 4}, the

�-coordinate of the vector 	
 − 	� is twice the �-coordinate of�
 −�� . In particular, this means

that if for some � ≠ 
 the positions �� and �
 share the same �-coordinate, then 	� = 	
; so for

deception by an unlucky stack of mirror points, the mirror points (and the walls) need not be

pairwise distinct.
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F IGURE 3 A different loudspeaker position and different walls produce the exact same unlucky stack of

mirror points as in Figure 2. But here the walls are not horizontal.

A formal statement and proof that an unlucky stack of mirror points leads to deception (i.e., to

ghost wall) is given in Theorem 1(a) in the following section.

4 MATHEMATICAL FORMULATION

Assume we are given four noncoplanar points �1, … ,�4 ∈ ℝ3 (which in our application are

the positions of the microphones on a vehicle). With ��,
 ∶= ‖�� −�
‖2 the squared Euclidean
distances, define the polynomial �� in four variables as the Cayley–Menger determinant

��(�1, … , �4) ∶= det

»¼¼¼¼¼½

0 �1 ⋯ �4 1

�1 �1,1 ⋯ �1,4 1

⋮ ⋮ ⋮ ⋮

�4 �4,1 ⋯ �4,4 1

1 1 ⋯ 1 0

¾¿¿¿¿¿À

. (1)

So by Cayley,24 if 	 ∈ ℝ3, then

��
(‖	 −�1‖2, … , ‖	 −�4‖2

)
= 0. (2)

We need two groups (which in our application model the positions of a hovering drone or a

ground-based vehicle). The first is the group A3SO2 of all maps

� = ��1,…,�5 : ℝ
3 → ℝ3, � ↦

»
¼¼½

�1 �2 0

−�2 �1 0

0 0 1

¾
¿¿À
⋅ � +

»
¼¼½

�3
�4
�5

¾
¿¿À
, (3)

with �� ∈ ℝ such that �21 + �22 = 1 (so the matrix is a rotation acting on the first two coordinates).

The second one is the subgroup ASO2 given by the additional condition �5 = 0. Simultaneously

applying a � ∈ A3SO2 to the�� preserves the squared distances ��,
 .
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Now in addition to the points �� , let  ⊂ ℝ3 be a finite set of points (which in our applica-

tion are the mirror points). Let � ∈ A3SO2. We say that � is good if for all choices of four points

	1, … , 	4 ∈  , not necessarily distinct, the condition

��
(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2

)
= 0 (4)

implies that there is an 	 ∈  such that

‖	 − �(��)‖ = ‖	� − �(��)‖ for � = 1, … , 4. (5)

As we will see in Proposition 1(a), such an 	 ∈ ℝ3, even if it lies outside  , is unique. (In our

application, 	 will be detected as a mirror point, so no ghost walls are detected if the vehicle is in

a position given by a good �.) In contrast, we call � bad if it is not good. (In our application, this

means that a ghost wall will be detected, provided the echoes from the walls making the position

bad are heard.) Notice that if for some 	1, … , 	4 ∈  , there is an 	 ∈ ℝ3 ⧵  satisfying (5), then � is

bad. In fact the converse of this is also true, but we do not need this. Moreover, we call � ∈ A3SO2

really good if it is good and for all choices of four points 	1, … , 	4 ∈  , the 	 ∈  satisfying (5)

is actually one of the 	� . Finally, we call � very good if (4) implies 	1 = 	2 = 	3 = 	4. So we have

implications

<very good= ⟹ <really good= ⟹ <good.=

Example 1. Here are examples for the various flavors of <good.=

(1) From the right sketch of Figure 2 or 3 (which is drawn in two dimensions and therefore with

only three �� ’s and three 	� ’s), various examples can be gleaned. In the <likely= case that

	ghost ∉  , the group element � = id is bad, and so is any horizontal shift. However, in the

<unlikely= case that 	ghost ∈  , these group elements are all good, but not really good. Now

simultaneously shifting the�� vertically until one of them is directly to the left or right of the

corresponding 	� will shift 	ghost into this 	� and thus give a group element that is really good,

but not very good. The group element � = id, or, in fact, any other, can be turned into a very

good one simply by changing the 	� in such away that the relation��
(‖	1 − �(�1)‖2, … , ‖	3 −

�(�3)‖2
)
= 0 is no longer satisfied. Notice that in this examplewe only considered one choice

of points 	1, 	2, 	3 ∈  , while these should really be picked arbitrarily for checking goodness,

and so forth.

(2) Assume that  consists of only the two points
»¼¼½

0

0

�

¾¿¿À
and

»¼¼½

0

0

−�

¾¿¿À
, and that one of the�� , say�1,

lies on the �-�-plane, that is, �1 =
»¼¼½

�

�

0

¾¿¿À
. With 	1 =

»¼¼½

0

0

−�

¾¿¿À
and 	2 = 	3 = 	4 =

»¼¼½

0

0

�

¾¿¿À
, 	1 and 	4

have the same distance to�1, and this remains true after applying a � ∈ ASO2 to the�� . So

‖	4 − �(��)‖ = ‖	� − �(��)‖ for � = 1, … , 4 and for all � ∈ ASO2. (6)

By (2), this implies (4), so we see that no element of ASO2 is very good. But for this choice

of 	1, … , 	4, all elements are really good. To be indeed really good, they must also pass the test
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for other choices of the 	� ∈  , and that may depend on the specific locations of the �� . If,

for instance, also�2 and�3 lie on the �-�-plane, then (6) holds for all choices of 	� ∈  , so

then all � ∈ ASO2 are really good, but none is very good. It is due to examples like this that

we need to consider the idea of really good elements.

Whenwe say that almost all elements of A3SO2 are really good, wemean that there is a subva-

riety of A3SO2 of lower dimension, which contains all � ∈ A3SO2 that are not really good. We use

the same language for other properties and for the group ASO2. Of course, for ASO2, this means

that the exceptional set has lower dimension than ASO2.

Finally, writing �, �, and � for the coordinates of a vector in ℝ3, we say that  contains an

unlucky stack of points if there are 	1, … , 	4 ∈  , not necessarily distinct, that share the same �-

and �-coordinates (i.e., they lie on a vertical line), such that for �, 
 ∈ {1, … , 4}, the �-coordinate of

the vector 	
 − 	� is twice the �-coordinate of�
 −�� .

Our main result, in purely mathematical language, is the following dichotomy.

Theorem 1. Let�1, … ,�4 ∈ ℝ3 be noncoplanar points and let  ⊂ ℝ3 a finite set of points. With

the notation and language just introduced, the following is true.

(a) If  contains an unlucky stack of points, then almost all elements of A3SO2 are bad.

(b) If  does not contain an unlucky stack of points, then almost all elements of A3SO2 are really

good. Moreover, almost all elements of ASO2 are really good.

Remarks on the proof. Before presenting the proof, let us briefly explain how part (b) translates

to a problem in computational commutative algebra. For both groups � = A3SO2 and � = ASO2,

we need to show that for almost all � ∈ � and for all 	1, … , 	4 ∈  , the implication

��(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2) = 0 ⟹ ∃ �: ‖	� − �(�
)‖ = ‖	
 − �(�
)‖ for all 


holds. Since we cannot control which points are in the given set  , we need to show this

for all 	1, … , 	4 ∈ ℝ3 that do not form an unlucky stack. The implication is true if ��(‖	1 −
�(�1)‖2, … , ‖	4 − �(�4)‖2) ≠ 0, which is an open condition (in the Zariski topology). Since �

is irreducible, it is therefore enough to show that this inequality holds for at least one �. In the sit-

uation considered in our earlier paper1, this turned out to be the case for all choices of 	� that

are not all equal. But in the present situation, as shown in Example 1(2), it may happen that

equality holds for all �. In such a case, the right-hand side of the above implication must be sat-

isfied for almost all �. But this is a closed condition, so there needs to be an � ∈ {1, … , 4} such that

‖	� − �(�
)‖ = ‖	
 − �(�
)‖ holds for all 
 and all � ∈ �. In summary, we need to show what

is given as Claim 1 in the proof below, and, as the proof shows, this also suffices. Now it is not

hard to work out equations (in 24 variables) that determine all 8-tuples (�1, … ,�4, 	1, … , 	4) that

satisfy (7) or (8) in Claim 1, respectively, and equations that say that the 	� form an unlucky stack,

and that the�� are coplanar. This reduces the proof to a radical containment test for ideals in a

polynomial ring with 24 variables.

However, running this test is far out of reach of the currently available hardware and soft-

ware, and probably remains so for the foreseeable future. Therefore, a large part of the proof

goes into <preprocessing= the given �� and 	� in order to reduce the number of variables. This

preprocessing can be viewed as a sequence of coordinate transformations, but we frame them

group-theoretically. This way we can guarantee that the steps are permissible in view of the
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problem at hand, which is somewhat subtle. The preprocessing reduces the radical containment

test to 16 variables. Even running this test was not possible without using tricks, such as truncated

Gröbner bases and homogenization. □

Proof of Theorem 1. We start with part (a), so there is an unlucky stack 	1, … , 	4 ∈  . Choose

the coordinates such that 	1 =
»
¼¼½

0

0

0

¾
¿¿À
and write �1, … , �4 for the �-coordinates of the �� , so 	� =

»¼¼½

0

0

2(�� − �1)

¾¿¿À
. Let � ∈ � be given by (3) with �� ∈ ℝ. For a vector " ∈ ℝ3, we write #�(") for the

squared distance between " and the �-axis. Then,

‖	� − �(��)‖2 = #�
(
�(��)

)
+
(
2(�� − �1) − (�� + �5)

)2
,

and with 	� ∶=
»
¼¼½

0

0

2(�1 + �5)

¾
¿¿À

‖	� − �(��)‖2 = #�
(
�(��)

)
+
(
2(�1 + �5) − (�� + �5)

)2
,

so 	� satisfies (5). This means that � is bad whenever 	� ∉  , which happens for all but finitely

many values of �5. This proves (a). Let us also remark that all elements of ASO2 are bad unless

the point
»
¼¼½

0

0

2�1

¾
¿¿À
happens to lie in  .

Part (b) requires much more work. To deal with both statements simultaneously, let � be one

of the groups A3SO2 or ASO2. We have already explained before the proof, why it is necessary to

prove the following claim.

Claim 1. Let 	1, … , 	4 ∈ ℝ3 be points that do not form an unlucky stack. If

��
(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2

)
= 0 for all � ∈ �, (7)

then there exists an � ∈ {1, … , 4} such that

‖	
 − �(�
)‖ = ‖	� − �(�
)‖ for all � ∈ � and all 
 ∈ {1, … , 4}. (8)

Before proving the claim, we show that it is sufficient, that is, that it implies part (b) of the

theorem. For 	1, … , 	4 ∈  , consider the set

	1,…,	4 ∶=
{
� ∈ � ∣ ��

(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2
)
≠ 0

}
.

Since ��
(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2

)
depends polynomially on the coefficients of the ��

defining � according to (3), and since � is an irreducible variety, it follows that if 	1,…,	4 ≠ ∅,

then its complement in � has a smaller dimension than �. Therefore, the intersection
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 ∶=
⋂

	1,…,	4∈ such that
	1,…,	4

≠∅

	1,…,	4 ⊆ �

also has a complement of smaller dimension than �. To prove part (b), it thus suffices to show

that all � ∈  are really good under the hypothesis that there is no unlucky stack of points. So let

� ∈  , and let 	1, … , 	4 ∈  such that ��
(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2

)
= 0. Since � ∈  ,

this implies	1,…,	4 = ∅. Now we apply Claim 1 (which we are assuming to be true). This tells us

that there is an � such that ‖	
 − �(�
)‖ = ‖	� − �(�
)‖ holds for all 
. (The claim makes this

assertion for all elements of �, but we only need it for �.) But this is just what it means for � to be

really good.

So we are left with proving Claim 1. Thus, we are given four noncoplanar vectors�� and four

vectors 	1, 	2, 	3, 	4 ∈ ℝ3 that do not form an unlucky stack. Tomake the computations in the final

part of the proof feasible, we <preprocess= the given data. This preprocessing is best explained and

justified by using yet another group. This is the group �̃ of all maps

* = *-,/,�0 : ℝ
3 → ℝ3, � ↦ / ⋅ -(�) + �0,

where - is an orthogonal map acting on the first two coordinates, 0 ≠ / ∈ ℝ and �0 ∈ ℝ3. It is

crucial but straightforward to check that �̃ normalizes � (for both � = A3SO2 and � = ASO2),

that is, *−1�* ∈ � for * ∈ �̃ and � ∈ �.

Now assume that we have chosen a suitable * = *-,/,�0 ∈ � and a �0 ∈ ASO2 such that we can

prove Claim 1 for 	̃� ∶= *(	�) and �̃� ∶= (�0◦*)(��). To show that Claim 1 then also follows for

the original 	� and�� , we first verify that the 	̃� do not form an unlucky stack. First, if two of the 	�
have different �- or �-coordinates, then the same is true for the 	̃� . Moreover, the �-coordinate of

	̃� − 	̃
 is / times the �-coordinate of 	� − 	
; and, likewise, the �-coordinate of �̃� − �̃
 is / times

the �-coordinate of�� −�
 . It follows that indeed the 	̃� do not form an unlucky stack.

Now assume that ��
(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2

)
= 0 for all � ∈ �. We need to deduce

the assertion (8) of Claim 1 from this. Let �′ ∈ �. Then � ∶= *−1�′�0* ∈ � and �′(�̃�) =

(*◦�)(��). For �, 
 ∈ {1, … , 4}, we obtain

‖	̃� − �′(�̃
)‖2 = ‖*(	�
)
− *

(
�(�
)

)‖2 = /2‖-(	� − �(�
)
)‖2 = /2‖	� − �(�
)‖2. (9)

For the ��,
 = ‖�(��) − �(�
)‖2 that go into the polynomial �� , the same calculation shows

�̃�,
 ∶= ‖�′(�̃�) − �′(�̃
)‖2 = /2��,
 . With (9), we obtain

��̃
(‖	̃1 − �′(�̃1)‖2, … , ‖	̃4 − �′(�̃4)‖2

)
= det

»
¼¼¼¼¼½

0 #̃1 ⋯ #̃4 1

#̃1 �̃1,1 ⋯ �̃1,4 1

⋮ ⋮ ⋮ ⋮

#̃4 �̃4,1 ⋯ �̃4,4 1

1 1 ⋯ 1 0

¾
¿¿¿¿¿À

= /8 det

»¼¼¼¼¼½

0 #1 ⋯ #4 1

#1 �1,1 ⋯ �1,4 1

⋮ ⋮ ⋮ ⋮

#4 �4,1 ⋯ �4,4 1

1 1 ⋯ 1 0

¾¿¿¿¿¿À

= /8��
(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2

)
= 0.
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Sincewe are assumingClaim 1 for the 	̃� and �̃� , there is an � ∈ {1, … , 4} such that ‖	̃
 − �′(�̃
)‖ =
‖	̃� − �′(�̃
)‖ for all 
 and all �′ ∈ �.

Now let � ∈ � and set �′ ∶= *�*−1�−10 ∈ �. Then, (9) yields

‖	
 − �(�
)‖ = |/|−1‖	̃
 − �′(�̃
)‖ = |/|−1‖	̃� − �′(�̃
)‖ = ‖	� − �(�
)‖

for all 
, so indeed Claim 1 follows for the 	� and �� if it is true for the 	̃� = *(	�) and �̃� =

(�0◦*)(��).

We use this to simplify the 	� and �� in five steps. First, writing 	� =
»¼¼½

9�,1
9�,2
9�,3

¾¿¿À
and �� =

»¼¼½

:�,1

:�,2

:�,3

¾¿¿À
,

we use * = *id,1,�0 ∈ �̃ with �0 =
»
¼¼½

−91,1
−91,2
−:1,3

¾
¿¿À
. Then, 	̃1 has �- and �-coordinates 0, and �̃1 has �-

coordinate 0. Hence, without loss, we may assume these things of 	1 and �1. The second step

comes from a QR-decomposition of the top two rows of ; ∶= (9�,
) ∈ ℝ3×4. We have

(
92,1 93,1 94,1
92,2 93,2 94,2

)
= <>

with < ∈ ℝ2×2 orthogonal and > ∈ ℝ2×3 upper triangular. Now forming - ∈ ℝ3×3 with <−1 as

upper left part, and using *-,1,0, we may assume 92,2 = 0. A bit more can be done: If the upper

2 × 4-part of ; is nonzero and ? ∈ {2, 3, 4} is the number of the first nonzero column, then we

may assume 9?,1 ≠ 0 and 9?,2 = 0. As a third step, we use *id,/,0 with / = 9−1
?,1
. This means we can

additionally assume 9?,1 = 1. Summing up the first three steps, we may assume

; =
(
	1 	2 	3 	4

)
=
»¼¼½

0 1 @1 @2
0 0 @3 @4
@5 @6 @7 @8

¾¿¿À
(10)

with @� ∈ ℝ. (This is for the case ? = 2; for ? = 3 or 4, the upper part hasmore zeroes, and as a last

case, which we indicate by setting ? ∶= 5, it may be all zeroes.) For the�� we have only achieved

:1,3 = 0, but so far, we have only used transformations where �0 = id. Now, as the fourth step,

we set �0 ∈ ASO2 to be the translation by the vector −�1. This yields �̃1 = 0, so we may assume

�1 = 0. The last step uses a QR-decomposition of the upper 2 × 4-part ofC ∶= (:�,
) ∈ ℝ3×4 as

we did before for ;. (Notice that < can be assumed to have determinant 1.) So finally we may

assume

C =
(
�1 �2 �3 �4

)
=
»
¼¼½

0 D1 D2 D3
0 0 D4 D5
0 D6 D7 D8

¾
¿¿À

(11)

with D� ∈ ℝ. The hypothesis that the�� are not coplanar translates into det
»
¼¼½

D1 D2 D3
0 D4 D5
D6 D7 D8

¾
¿¿À
≠ 0. This

concludes the <preprocessing= of the given data.
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For �1, … , �5 ∈ ℝ with �21 + �22 = 1 defining ��1,…,�5 ∈ A3SO2 as in (3), and for ;

and C as in (10) and (11), there are polynomials E(�1, … , �5, �1, … , �8, �1, … , �8) and

E�,
(�1, … , �5, �1, … , �8, �1, … , �8) in 21 indeterminates such that

‖	� − ��1,…,�5(�
)‖2 = E�,
(�1, … , �5, @1, … , @8, D1, … , D8) (�, 
 ∈ {1, … , 4})

and

��
(‖	1 − ��1,…,�5(�1)‖2, … , ‖	4 − ��1,…,�5(�4)‖2

)
= E(�1, … , �5, @1, … , @8, D1, … , D8).

(In the casewhere ? ≥ 3, there are fewer @� and hence fewer �� .) If� = A3SO2, set ∶= {�21 + �22 −

1}, and if� = ASO2, set ∶= {�21 + �22 − 1, �5}. In both cases, is Gröbner basis, with respect to an

arbitrary monomial order, of the vanishing ideal of � as a subvariety of ℝ5. Consider the normal

forms Ẽ ∶= NF(E) and Ẽ�,
 ∶= NF(E�,
). Let F ⊆ ℝ[�1, … , �8, �1, … , �8] be the ideal generated by

the coefficients of Ẽ, viewed as a polynomial in�1, … , �5with coefficients inℝ[�1, … , �8, �1, … , �8].

Moreover, for � = 1, … , 4, let�� ⊆ ℝ[�1, … , �8, �1, … , �8] be the ideals generated by the coefficients

of all Ẽ�,
 − Ẽ
,
 (
 = 1,… , 4). Also set # ∶= det
»¼¼½

�1 �2 �3
0 �4 �5
�6 �7 �8

¾¿¿À
.

Claim 2. If there is an G such that for each ? ∈ {2, … , 5}

(
(#) ⋅ �1⋯�4

)G
⊆ F in the case ? ≤ 4 (12)

or

(
(�6 − �5 − 2�6, �7 − �5 − 2�7, �8 − �5 − 2�8) ⋅ (#) ⋅ �1⋯�4

)G
⊆ F in the case ? = 5, (13)

then Claim 1 and therefore part (b) of the theorem follow. Recall that ? is the number of the

first nonzero column of the upper 2 × 4-submatrix of ;, with ? = 5 indicating that this submatrix

is zero.

In fact, we have already seen by the <preprocessing= that to prove Claim 1, we may assume

the 	� and�� to be given by (10) and (11). Assume that the assertion (8) of Claim 1 is not true, so

for every � = 1, … , 4, there is a 
 ∈ {1, … , 4} and a � = ��1,…,�5 ∈ � such that ‖	
 − ��1,…,�5(�
)‖ ≠

‖	� − ��1,…,�5(�
)‖. Then,

0 ≠ E�,
(�1, … , �5, @1, … , @8, D1, … , D8) − E
,
(�1, … , �5, @1, … , @8, D1, … , D8).

Since E�,
 − Ẽ�,
 vanishes when setting �? = �?, we may replace E�,
 − E
,
 in the above inequality

by Ẽ�,
 − Ẽ
,
 . So there is a 
 such that some coefficient of Ẽ�,
 − Ẽ
,
 , viewed as a polynomial in

�1, … , �5, does not vanish when evaluated at �� = @� and �� = D� . This coefficient is one of the

generators of �� , so each �� contains an element that does not vanish at �� = @� and �� = D� .

Moreover, # does not vanish when evaluated at �� = D� , and we might as well also evaluate it

at �� = @� since the �� do not occur in #. So in the case ? ≤ 4, (12) implies that there exists an

element of F that does not vanish when evaluated at �� = @� and �� = D� .



364 BOUTIN and KEMPER

On the other hand, if ? = 5, then all 	� share the same �- and �-coordinates, so the hypothesis

that they do not form an unlucky stack translates into @� − @5 ≠ 2D� for some � ∈ {6, 7, 8}. So one of

the generators of the first ideal in the product in (13) does not vanish when evaluated at �� = @� . In

this case, (13) yields the same conclusion: that F contains an element that does not vanish when

evaluated at �� = @� and �� = D� .

Because of the way F was constructed, this means that at least one coefficient of Ẽ does not

vanish at �� = @� and �� = D� , so

Ẽ(�1, … , �5, @1, … , @8, D1, … , D8) ≠ 0.

The linearity of the normal form map implies

NF
(
E(�1, … , �5, @1, … , @8, D1, … , D8)

)
= Ẽ(�1, … , �5, @1, … , @8, D1, … , D8),

so we conclude that E(�1, … , �5, @1, … , @8, D1, … , D8) has nonzero normal form and therefore does

not lie in the ideal generated by . Since this is the vanishing ideal of �, this means that there

exists a � = ��1,…,�5 ∈ � such that

0 ≠ E(�1, … , �5, @1, … , @8, D1, … , D8) = ��
(‖	1 − �(�1)‖2, … , ‖	4 − �(�4)‖2

)
.

So the hypothesis (7) of Claim 1 is not true under the assumption that the assertion is not true. So

indeed Claim 1 follows from (12) and (13).

It remains to verify Equations (12) and (13), and this can be checkedwith the help of a computer.

For the computation, we used MAGMA25 and proceeded as follows:

∙ We ran the following steps for each ? ∈ {2, … , 5}. We will not introduce any notation to indicate

the cases for different ? below.
∙ It is straightforward to compute the polynomials E, E�,
 , Ẽ, and Ẽ�,
 according to their def-

initions, and to pick out the sets of coefficients I, I�,
 ⊂ ℝ[�1, … , �8, �1, … , �8] of Ẽ and the

Ẽ�,
 .
∙ Using an additional indeterminate J, we computed the set Ihom of homogenizations of the

polynomials in I with respect to J.
∙ We computed truncated Gröbner bases �hom of the ideal generated by Ihom of rising degree.
∙ For each degree, we computed the normal form NF�hom

(
J�#


)
for all � and 
 such that J�#
 has

the degree up to which the Gröbner basis was computed. If at least one of the normal forms is

zero, this shows that J�#
 is an ℝ[�1, … , �8, �1, … , �8, J]-linear combination of the polynomials

in Ihom. Setting J = 1 shows that #
 ∈ F, so Equation 12 holds with G = 
. As it turned out, this

was successful for all ? ≤ 4, and we never needed to go beyond degree 11. This means that in

these cases, the ideals �� are not actually needed in Equation 12.
∙ Finally we dealt with the case ? = 5. Here, thanks to the reduced number of variables, we were

able to directly compute the ideal F0 ∶= F ∶ (#)∞, and then F� ∶= F�−1 ∶ �
∞
�
for � = 1, … , 4. The

result is F4 = (�6 − �5 − 2�6, �7 − �5 − 2�7, �8 − �5 − 2�8), which shows (13).

The total computation time is about 8 min. □

Remark 1. For the group A3SO2, our computations actually yielded a slightly stronger result than

Theorem 1(b): Almost all elements of A3SO2 are very good, not only really good.
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5 A GROUND-BASED VEHICLE AND AHOVERING DRONE

Before stating our main results in a more application-related fashion, it is useful to recall how the

wall detection algorithm from Ref. 1 works. So from now on, the points�1, … ,�4 ∈ ℝ3 will be

the positions of the microphones mounted on a vehicle, and points 	 or 	� will stand for mirror

points, that is, points given by the reflection of the position � ∈ ℝ3 of a single loudspeaker at

various walls�� in a room. Virtually, the sound reflected by a wall comes from a mirror point.

In a nutshell, the detection algorithm uses the relation (2), given by the vanishing of the Cayley–

Menger determinant, for matching those echoes received by the microphones that come from the

same wall. Then, the following result is used to compute the mirror points and from them the

location of the walls. A proof can be found in Ref. 1.

Proposition 1. Let�1, … ,�4 and 	 be points inℝ
3, with the�� not coplanar. Set

C ∶=

(
�1 �2 �3 �4

1 1 1 1

)
∈ ℝ4×4,

which is invertible since the�� are not coplanar.

(a) The point 	 is uniquely determined by the�� and the squared distances #� ∶= ‖	 −��‖2, and
can be computed by

	 =
1

2
C̃ ⋅

»
¼¼½

‖�1‖2 − #1
⋮

‖�4‖2 − #4

¾
¿¿À
, (14)

where C̃ ∈ ℝ3×4 is the upper 3 × 4-part of (C−1)L , the transpose inverse ofC.

(b) Let� ∈ ℝ3 be the position of the loudspeaker. Then, the wall at which the soundwas reflected lies

on the planewith normal vector 	 − � and passing through the point
1

2
(	 + �). Four noncollinear

points on the wall can be found by intersecting the line between 	 and�� (1 ≤ � ≤ 4) with this

plane. These points are given by

(1 − M�)	 + M��� with M� =
‖	 − �‖2

2ï	 − �, 	 −��ð ,

where ï⋅, ⋅ð denotes the standard scalar product.

With this, we can state the wall detection algorithm as Algorithm 1.

Algorithm 1 is guaranteed to detect every wall fromwhich a first-order echo is heard by all four

microphones. But as discussed in Section 3, it may happen that the relation ��(#1, … , #4) = 0 is

satisfied by accident even though the squared distances#� come from sound reflections at different

walls. This can deceive the algorithm into outputtingwalls that donot actually exist. Asmentioned

above, these are called ghost walls. If the algorithm does not output any ghost walls, we say that

the vehicle carrying the microphones (and possibly the loudspeaker) is in a good position.

Theorem3 (A ground-based vehicle in a scenewith a fixed loudspeaker).Assume that fourmicro-

phones are mounted on a ground-based vehicle, which can move on the ground plane within a
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ALGORITHM 1 Detect walls from first-order echoes

Input: The delay times of the first-order echoes recorded by four microphones at positions�1, … ,�4 ∈ ℝ3,

and the distances ��,
 between the microphones.

1: For � = 1, … , 4, collect the recorded times of the first-order echoes recorded by the �th microphone in the set

� .

2: Set� ∶= {D2(J − J0)
2 ∣ J ∈ �} (� = 1, … , 4), where D is the speed of sound and J0 is the time of sound

emission.

3: for (#1, #2, #3, #4) ∈ 1 ×2 ×3 ×4 do

4: With �� defined by Equation 1, evaluate ��(#1, … , #4).

5: if ��(#1, … , #4) = 0 then

6: Use Proposition 1(a) to compute the mirror point 	 from (#1, … , #4). Then use Proposition 1(b) to

compute the parameters of the wall.

7: Output the parameters of this wall.

8: end if

9: end for

three-dimensional scene containing N walls and a loudspeaker at fixed positions. Assume the micro-

phones do not lie on a common plane. If the microphones are not deceived by an unlucky stack of

mirror points, according to Definition 1, then almost all vehicle positions are good.

Moreover, if O ∈ {2, 3, 4} is the number of distinct �-coordinates of the four microphone positions,

then within the (3N)-dimensional configuration space of all wall arrangements, the ones where an

unlucky stack of mirror points occurs are contained in a subvariety of codimension 3(O − 1).

Proof. We are given Nwalls and the loudspeaker position � ∈ ℝ3. These do not vary as the vehicle

moves, so neither do the mirror points, which form a finite set  ⊂ ℝ3. We are also given ini-

tial positions�1, … ,�4 ∈ ℝ3 of the microphones mounted on the vehicle. As the vehicle moves,

these are acted on simultaneously by the group ASO2 (see after (3)). Ray acoustics tells us that

the #� occurring in 1 are the ‖	� − �(��)‖2 with 	� ∈  . So we are exactly in the situation of Theo-

rem 1, and part (b) tells us that almost all � ∈ ASO2 are good. This means that almost all vehicle

positions are good.

Let us prove the last statement about the codimension of the wall arrangements with unlucky

stacks of mirror points. To have such a stack, O walls are needed to satisfy the restrictions of Defi-

nition 1. These restrictions leave 3 degrees of freedom for the mirror points of these O walls, which

gives an affine subspace of codimension 3O − 3 = 3(O − 1). The wall arrangements with unlucky

stacks are contained in the (finite) union of these subspaces associated to each choice of O walls,

so we obtain the claimed codimension. □

In the same way, using Theorem 1(b) for the group A3SO2, we obtain the following result.

Theorem 4 (A hovering drone and a fixed loudspeaker). Assume the same situation as in The-

orem 3, except that the vehicle can take positions in the same way as a hovering drone. Then, the

assertions from Theorem 3 hold.

6 THE TWO-DIMENSIONAL CASE

In this section, we briefly consider the purely two-dimensional case: A vehiclemoves in the plane,

and all reflecting walls are also in this plane. A physical example of such a scene is a robot
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navigating in a warehouse, with no echoes coming back from either the ceiling or the floor, or

from any inclined walls. In this case, only three microphones on the vehicle are required. The

loudspeaker can be at a fixed position, but will more typically be mounted on the vehicle. In con-

trast to the case of a ground-based vehicle moving in 3D, we can also handle the case of amounted

loudspeaker here. In fact, this is the two-dimensional variant of the situation considered in Ref. 1,

and everything in that paper carries over directly to other dimensions. This includes the relation,

given as (2) in this paper, and the wall detection algorithm. Moreover, the MAGMA-programs

used for the computational verifications in Ref. 1 were written for general dimension. As it turns

out, if the dimension is set to 2, the entire computations require only about 1 s. (They take about 5

min for the three-dimensional case considered in Ref. 1.) Notice that for a two-dimensional mod-

eling to be admissible, the microphones and the loudspeaker need to be contained in a common

plane, which is parallel to the plane of motion. The following result emerges.

Theorem 5 (A vehicle in a two-dimensional scene). Assume a vehicle can move in a two-

dimensional scene, which contains a finite number of walls. Assume a loudspeaker is either placed at

a fixed position in the scene or mounted on the vehicle, and that three microphones are mounted on

the vehicle, but do not lie on a common line. In any case, the microphones and the loudspeaker need

to be in a common plane, which is parallel to the plane of motion. Then, almost all vehicle positions

are good, again in the sense that all walls whose echoes are heard by every microphone are detected,

but no ghost walls are detected.

In the two-dimensional situation, the issue of unlucky stacks does not occur. Let us also men-

tion that the hypothesis about the microphones and the loudspeaker all lying on a common

horizontal plane is not really necessary. In fact, deviations from a common horizontal plane can

be taken care of by subtracting a corrective term from the measured squared distances.

The case of a fixed loudspeaker in Theorem 5 is very simple to state in purely mathematical

terms: For�1,�2,�3 ∈ ℝ2 noncollinear and ⊂ ℝ2 finite, almost all elements of ASO2 are very

good. This is what we actually proved. Of course the case of a mounted loudspeaker can also be

expressed mathematically, but it is messier, and therefore less appealing, since the mirror points

are not fixed but depend on the group element, which is applied to the loudspeaker position.
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