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Abstract—Acquiring downlink channel state information (CSI)
at basestation (gNB) is crucial for optimizing performance in
massive MIMO FDD systems. Deep learning (DL) architectures
have shown successes in enabling UE-side CSI feedback and
gNB-side recovery, but often lack flexibility and/or require
volumes of customized training data for specific RF channel
environments and compression ratios. This work proposes a new
CSI feedback architecture called zero-replacement (ZR). ZR is
free from customized training and can be directly applied to
new and unseen channel scenarios without pre-training and/or
customization. It is also scalable and simple to implement, making
it suitable for practical massive MIMO wireless deployment.
We further generalize a Select-ZR algorithm, which switches
between different sparse transformation techniques to enhance
recovery performance. Our numerical results demonstrate that
both proposed ZR and Select-ZR algorithms achieve competitive
CSI recovery accuracy and feedback efficiency across various
channels against highly complex data-driven DL models.

Index Terms—Compressive feedback, model-free, massive
MIMO, CSI recovery.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) improves

spectrum and energy efficiency in wireless systems, but re-

quires accurate downlink channel state information (CSI)

acquisition at the base station (BS) or gNodeB (gNB). In

frequency-division duplexing (FDD) systems, downlink CSI

acquisition depends on UE feedback, which can be costly

due to the large number of parameters. Efficient compressive

CSI feedback is crucial to conserve uplink bandwidth and UE

power for practical deployment of massive MIMO in FDD

wireless networks.

Cellular channel state information (CSI) has a limited

delay spread (DS), which is a characteristic of radio physics.

Efficient user equipment (UE) feedback can take advantage of

this DS sparsity to compress CSI. One approach to efficient

CSI compression and recovery is the use of a deep autoencoder

framework, as demonstrated in [1]. This framework includes

an encoder at the UE and a decoder at the serving gNB.

Other related works have also demonstrated superior CSI
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recovery or lightweight design using various autoencoder

models, such as [2]–[5]. In addition to autoencoders, more

recent works have utilized the underlying channel correlation

to aid and improve the recovery of downlink CSI at BSs.

These approaches include using previous CSI [2], [6], CSI

of nearby UEs [7], and uplink CSI [8]–[10]. Further advances

have focused on reducing model complexity and storage size

to facilitate practical and low-cost deployment of DL-based

CSI compressive feedback architecture in wireless networks,

as demonstrated in [3], [5].

Deploying DL-based frameworks in wireless systems

presents challenges for operators, such as the high cost of

collecting training data required for DL optimization. Mas-

sive MIMO CSI data acquisition necessitates extensive field

measurements, creating a practical challenge as stated in [11].

Wireless networks are typically deployed in a range of RF

environments, necessitating the configuration of numerous

DL models for CSI compression and recovery at various

channel scenarios and compression ratios. These requirements

impose a large memory burden on UEs, necessitate large

training datasets, and increase costs, resulting in inflexibility

and difficulties in practical deployment. Although transfer

learning and online learning concepts [12], [13] have achieved

modest success in reducing training costs, the implementation

of multiple DL models still results in high hardware and

power costs, particularly at the UE side, as channel bandwidth

and antenna numbers increase in future wireless network

generations. As a result, deploying DL models for compressive

CSI feedback faces significant challenges.

In this paper, we propose a novel plug-and-play algorithm

called zero-replacement (ZR) for efficient channel state in-

formation (CSI) feedback. Our approach is simpler, more

scalable, and more flexible than previous methods, and does

not require prior training. Our contributions are as follows:

• We develop a low-complexity, lightweight, scalable and

unified analytical CSI feedback framework that can ac-

commodate different propagation channel types and com-

pression ratios without the need for prior training or fine-

tuning.

• The ZR framework achieves competitive recovery perfor-

mance compared to state-of-the-art DL-based methods.

• We design a modified run-length and Huffman encoding

(mRLE) scheme for efficient compression of the unique

2D patterns of downlink CSI.

• Unlike DL-based models, our algorithm does not require

the collection of training datasets, which can cause sig-

nificant transmission overhead in practical systems
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• We introduce Select ZR, a dynamic-transform CSI feed-

back framework, which achieves better recovery perfor-

mance by selecting the best sparse transformation for

each specific scenario.

II. SYSTEM MODEL

A. Downlink CSI Preprocessing

We consider a single-cell MIMO FDD link in which a gNB

with Na antennas serves a plurality of single-antenna UEs.

Following 3GPP technical specifications, sparse pilot symbols

(CSI-RS) are distributed in frequency domain for downlink

transmission. Assuming each subband contains Nf subcarriers

with spacing of Δf and a pilot spacing of DRf subcarriers,

adjacent pilots are seperated by DRf ·Δf Hz. We denote hi ∈
C

Mf×1 as downlink CSI of the i-th gNB at Mf pilot positions.

Let superscript (·)H denote conjugate transpose. By collecting

CSI of each gNB, a pilot sampled downlink CSI matrix H̃

relates to the full downlink CSI matrix H̄ via

H̃ = H̄QDRf
=

[
h1 h2 · · · hNa

]H
∈ C

Na×Mf , (1)

where QDRf
is a downsampling matrix with pilot rate DRf .

To reduce feedback overhead, we exploit physical angular

and multipath delay sparsity of CSI by transforming full

downlink CSI into angle-delay (AD) domain through discrete

Fourier transform (DFT) or discrete cosine transform (DCT).

We then truncate the insignificant near-zero elements in trail-

ing delay indices as follows:

M = H̃ · FD ·

[
INt×Nt

0

]

︸ ︷︷ ︸
T

∈ C
Na×Nt , (2)

where FD ∈ C
Mf×Mf denotes a sparse transformation matrix

such as IDFT or DCT matrix whereas T denotes delay domain

truncation. Note that the matrix T may be controlled according

to transformation and CSI properties. Matrix T in Eq. (2) is an

example for DCT transformation that drops the last Mf −Nt

columns of H̃ · FD corresponding to long (but negligible)

multipath delays.

B. DL Compression

Autoencoder has shown successes for CSI compression.

An encoder at UE compresses its estimated downlink CSI

for uplink feedback and a decoder at gNB recovers the

estimated CSI according to the feedback from UE. Assuming

negligible CSI elements at large delays, many have exploited

convolutional and fully connected layers to compress and

recover the truncated downlink pilot CSI via

Encoder: q = fen(M), (3)

Decoder: M̂ = fde(q). (4)

We note that the size of the codeword q for uplink feedback is

determined by a specific compression ratio. However, in practi-

cal systems, multiple DL models are necessary to meet diverse

uplink feedback requirements, resulting in computational and

storage burdens, particularly for low-cost UEs.. The decoder

then replaces the truncated downlink CSI M̂ via zero-padding

to transform CSI back from BD domain to estimate downlink

CSI matrix H̃ in the subcarrier domain as follows:

̂̃
H =

[
M̂ 0Na×Mf−Nt

]
FH

D ∈ C
Na×Mf . (5)

The CSI recovery accuracy can be measured by the normal-

ized mean square error (NMSE) of the full downlink CSI:

NMSE(
̂̃
H, H̃) =

D∑

d=1

∥∥∥∥
̂̃
Hd − H̃d

∥∥∥∥
2

F

/
∥∥∥H̃d

∥∥∥
2

F
, (6)

where subscript d denotes the d-th random test.

III. ZR CSI FEEDBACK FRAMEWORK

DL-based CSI feedback frameworks have shown promising

results in compressing CSI at the UE and recovering it

at the BS. However, customizing multiple DL models for

different channel scenarios and compression levels makes

them inflexible and difficult to apply in practical gNBs with

different array sizes. This also poses a challenge for UEs to

store multiple pre-trained DL models, hindering widespread

deployment, especially for low-cost UEs. Training different

DL configurations for various scenarios would require suitable

channel models and large amounts of training data.

Our aim is to create a compressive CSI feedback algorithm

that is simple, flexible, and widely applicable. It is worth

noting that 2D CSI matrices bear resemblance to image data.

CSI demonstrates distinct delay and angular sparsity properties

that can be revealed by sinusoidal sparse transformations. To

enable efficient CSI feedback, we capitalize on this similarity

and adapt the entropy encoding technique used in JPEG

compression. JPEG compression is renowned for its efficiency,

universality, and cost-effectiveness. We customize this tech-

nique based on the sparsity distribution of CSI. The step-by-

step procedures are summarized below:

A. Ordering Real/Imaginary CSI

Since the real and imaginary parts of the preprocessed

DL CSI M exhibit similar sparsity distributions in the delay

domain, this algorithm compresses their sparsity distributions

together and feeds back the values separately. We first separate

the processed DL CSI M ∈ C
Na×Nt into real and imaginary

parts, Mreal = Real(M) ∈ R
Na×Nt and Mimag = Imag(M) ∈

R
Na×Nt .

B. ZR Encoding

The goal of ZR encoding is to efficiently encode a large

sparse matrix by extracting only the significant elements

and representing their corresponding positions in a compact

format. Figure 1 shows a toy example to implement the

operation of the proposed ZR encoder with CR = 5 and the

input matrices Mreal and Mimag are of size 5× 5. The output

bit stream is [ΩB Ωm]. We introduce ZR encoding in a step-

by-step procedure as follows:

• Significant Element Extraction: Mreal and Mimag are

fed into significant element extraction block for sam-

pling the top-�NaNt/CR� significant elements mreal ∈
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TABLE I
MODIFIED HUFFMAN CODING TABLE.

Bits (K) Number of zeros (N0) Prefix (p)

0 0 0

1 1 (0) EOS (1) 10

1 2 (0) 3 (1) 110

2 4(00) 5(01) 6(10 7(11) 1110

3 8 9 . . . 14 15 11110

4 16 17 . . . 30 31 111110

5 32 33 . . . 62 63 1111110

6 64 65 . . . 126 127 11111110

7 128 129 . . . 254 255 111111110

8 256 257 . . . 510 511 1111111110

9 512 513 . . . 1022 1023 11111111110

R
�NaNt/CR� and mimag ∈ R

�NaNt/CR� for real and

imaginary parts, respectively. Additionally, it also outputs

a binary position map B ∈ 0, 1Na×Nt , which contains

only 1’s and 0’s corresponding to sampled and discarded

elements, respectively.

• Significant Element Quantization: For effective binary

representations, we express the downsampled sequences

mreal and mimag as bit stream Ωm by μ-law companding

entropy encoding with B bits.

• mRLE of Binary Position Map: To compactly represent

the position map B, we propose a modified RLE (mRLE)

which is shown by the pseudo code (Alg. 1). The goal of

mRLE is to find a symbol list ΩS marking the numbers

of consecutive zeros between ones in a back-and-forth

scanning pattern shown in Figure 1. The final entry EOS

in the symbol list ΩS denotes ”end of symbols” and also

means that no more 1’s in the remaining sequence.

• Huffman Encoding of Binary Position Map: In order to

efficiently convert the symbol list ΩS into a bit stream

ΩB , we have introduced a modified Huffman coding. As

shown in the histogram of the symbol list ΩS (Figure 3),

the majority of cases involve only a few consecutive

0’s between 1’s. To reduce transmission costs, we have

designed a modified Huffman coding presented in Table

I. The frequently used symbols are presented in a com-

pact bit stream, and prefix bit streams are designed for

unambiguous decoding. Additionally, it should be noted

that we represent EOS with a short bit stream (101) since

it almost always appear in ΩS for each DL CSI.

C. ZR Decoding

In ZR decoding, the first step is to separate ΩB and Ωm

using a Huffman coding table. Next, we obtain B from ΩB

by reversing mRLE, and estimate m̂real and m̂imag from Ωm

using dequantization and μ-law decompression. Finally, we

merge the binary position map B and the estimated real and

imaginary significant elements m̂real and m̂imag to obtain M̂real

and M̂imag. We provide a detailed description of the above

procedures in Algorithm 2.

D. Select ZR

We find that the pre-processing of DL CSI (i.e., sparse trans-

formation) affects the final recovery performance for the ZR

Algorithm 1 Modified RLE

Require: B, ΩS = [·]
Ensure: ΩS

i ← B-F-vec(B) � Vectorize in a back-forth way (Figure

1)

N0 ← 0 � Initialize zero counter

for k = 1 : 1 : length(i) do

if i(k) = 1 then

ΩS ← {ΩS , N0} � Record consecutive zeros

N0 ← 0 � Clear zero counter

else

N0 ← N0 + 1 � Accumulate zero counter

end if

end for

if N0 ≥ 1 then ΩS ← {ΩS ,EOS} � If no more 1’s,

marked with EOS

end if

Algorithm 2 ZR Decoding

Require: b = [ΩB Ωm]

Ensure: M̂real and M̂imag

flagEOS = False
ΩS = [·]
NS = 0 � Initialize number of decoded symbols

while flagEOS = False do

i ← Find index of the first 0 in b

N1 ← i− 1 � = Prefix length + 1
Remove prefix p = [11...10] from b � Prefix removal

Find K by Table I according to p

Find N0 by reading the first K bits in b by Table I

Remove the K bits from b � Appended bits removal

ΩS ← [ΩS N0] � Append a symbol to symbol stream

if N0 �= EOS then

NS = NS + 1
else

flagEOS = True
end if

end while

B ← mRLE−1(ΩS) � By following Algorithm 3

breal, bimag ← b � b = Ωm since ΩB is removed from b

m̂real, m̂imag ← Q−1(breal,bimag)

M̂real, M̂imag ← Significant element combining

approach. The ZR encoder and decoder at UEs can evaluate

DL CSI recovery performance before sending feedback to the

gNB. This enables UEs to select the most efficient sparse

transformation mechanism to enhance feedback efficiency.

Thus, we provide an extension of the proposed CSI feedback

framework, Select ZR, depicted in Figure 4. Assuming there

are 2P available sparse transformations for the ZR approach,

we evaluate DL CSI recovery performance by applying all

sparse transformations before feedback is sent to the gNB, and

select the best one for feedback. To indicate the transformation

chosen by the UE, an additional P -bit information is appended
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realM

B

realm

S

B

b

m

imagM

imagm

Fig. 1. Example of ZR encoding (Note that the numbers 0.0 represent negligible elements in matrx M).

b

m

B

m

ˆ
realM

ˆ
imagM

realm

imagm

Fig. 2. Example of ZR decoding (Note that the numbers 0.0 represent negligible elements in matrx M).

Algorithm 3 Inverse mRLE

Require: ΩS

Ensure: B

q = [·]
for k = 1 : 1 : length(ΩS) do

if ΩS [k] �= EOS then

q ← [q; [0...0︸︷︷︸
ΩS [k]

1]T ]

else

q ← [q; [ 0...0︸︷︷︸
NaNt−length(q)

]T ] � The remaining are 0’s

end if

end for

B ← Reshape†(q) � Reshape q to a matrix with size of

Na ×Nt with a back-and-forth pattern shown in Figure 1

Fig. 3. Accumulative ratio of symbols in symbol list ΩS for (a) indoor
channels at 5 GHz and (b) outdoor channels at 300 MHz generated by
QuaDRiGa channel simulator.

to the main feedback. By utilizing this approach, the DL CSI

recovery performance can be significantly improved with only

a few additional feedback bits.

IV. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

Tests were conducted on indoor and outdoor channels

using widely used channel model software, QuaDriGa and

COST2100 [14], [15]. For the indoor setting, a circular cell

with a 30 m radius and a gNB of height 20 m was used,

while a 200 m radius circular cell was used for the outdoor

environment. The simulators consider gNBs with an 8×4 UPA

and 32-element ULA serving single-antenna UEs, respectively,

with half-wavelength uniform spacing. The scenario features

given in 3GPP TR 38.901 were followed, using Nf = 1024
subcarriers with 15K-Hz spacing and Mf = 86 pilots with a

downsampling ratio of DRf = 12 and assuming precise CSI

estimates at the UEs. The NMSE metric (Eq. (6)) was used to

assess performance.

For DL-based models, we conducted training with a batch

size of 200 for 1000 epochs, starting with a learning rate

of 0.001 and reducing it to 5×10−4 after 300 epochs. We

generated both indoor and outdoor datasets using channel

simulators, each consisting of 100,000 randomly generated

channels. We used one-seventh of the channels for testing and

divided the remaining channels into two-thirds for training

and one-third for validation. In Section IV.C, we compared

different sparse transformations with ZR approaches in various
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scenarios and evaluated their performance against the proposed

method, Select ZR, which outperformed AE-based models in

different scenarios. In Section IV.D, we conducted a compre-

hensive evaluation of our proposed method by comparing it

with SOTAs and more conventional alternatives.

B. Different Sparse Transformations in Various Scenarios

The DCT and Discrete Wavelet Transform (DWT) are

highly effective for compressing images, making them a

popular choice for classic JPEG-based compression. In

contrast, the DFT is commonly used in CSI compression to

transform complex periodic features into low-dimensional

subspaces. Figure 5 shows the NMSE performance of ZR

with different sparse transformations (DCT, DFT, DCT+DWT,

DFT+DWT) and Select ZR (P = 2) at various compression

ratios (i.e., CR = 4, 8, 16, 32) in indoor and outdoor channels

generated by QuaDRiGa and COST2100. The results

demonstrate that no single sparse transformation performs

best across all scenarios. Some sparse transformations exhibit

better recovery performance at higher compression ratios but

worse recovery at lower ratios compared to other alternatives.

This highlights the advantage of using Select ZR, which can

automatically select the most effective sparse transformation

for CSI feedback before transmitting UL feedback.

Figure 6 displays the NMSE performance of AE-based ap-

proaches (CsiNet [1], CRNet [3], CsiNetPro [6]) and Select ZR

at different BPPs across various channel scenarios. Although

Select ZR may not always outperform DL-based approaches, it

still delivers acceptable performance across different channel

types without requiring any prior training. Notably, previous

work [16] demonstrates that DL-based models are sensitive to

the channel type and typically suffer significant performance

degradation when applied to a new propagation scenario. In

practice, operators must collect new data and customize the

model for new channels through retraining, which poses a

significant practical challenge. In contrast, our approach can be

deployed directly without retraining, providing an acceptable

CSI recovery performance. Furthermore, Table II compares

the computational complexity and storage requirements of the

entire encoding/decoding process, highlighting the computa-

M

H
H

M

Fig. 4. Procedures of Select ZR. This example shows that we adopt 4 sparse
transformations (i.e., P = 2).
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in different test channels at two transmission costs (BPP = 0.375, 0.75).

tional and storage advantages of our approach over DL-based

approaches1.

C. Comparing with the state-of-the-arts (SOTAs)

To evaluate our method in a more comprehensive way,

we compare it with several compressive sensing techniques

such as Iterative Shrinkage Thresholding Algorithm (ISTA),

Fast ISTA (FISTA) [17], and Least Absolute Shrinkage and

1Select ZR is a rule-based approach and only needs to store the modified
Huffman table.

TABLE II
COMPLEXITY AND STORAGE COMPARISON TO AE-BASED CSI FEEDBACK

WHEN CR = 16 AND P = 2.

CR=16 Select ZR CsiNet CRNet CsiNetPro

FLOPs 150K 5M 7M 68 M

Storage (32-bit elements) 21K 28M 28M 144M
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Selection Operator (LASSO [18]), as well as with orthogonal

matching pursuit (OMP and CoSaMP [19]), 3GPP Type I [20],

Type II [21], and a deep-unfolding DL framework [22].

Figure 7 illustrates the NMSE performance for Select

ZR and the aforementioned SOTAs and conventional meth-

ods. Among the compared techniques, DL-based approaches

(CsiNet, CRNet, CsiNetPro, FISTA-Net) and our proposed

method demonstrate lower NMSE than other techniques. It

is worth noting that DL-based approaches exhibit better per-

formance in indoor scenarios, but perform worse in outdoor

scenarios. We hypothesize that the reason behind this is related

to the channel diversity in the delay domain. We find that

DL models have difficulties in recovering data with diverse

characteristics. In outdoor scenarios, the path delay profiles

among different DL CSIs vary significantly. In contrast, Select

ZR performs better than others in outdoor scenarios as the

efficiency of our approach depends on delay sparsity and is

barely related to the delay profile.

V. CONCLUSIONS

We propose ZR, a low-complexity, lightweight, scalable,

and training-free CSI feedback framework for encoding and

recovering downlink CSI in massive FDD MIMO wireless

systems. It is free from customized training for different

propagation channels at various compression ratios, and does

not require high volumes of training data or multiple DL mod-

els for different RF channel environments and compression

ratios. Unlike DL approaches, ZR can be directly applied

to new and unseen channel scenarios without pre-training

or customization. This flexible and scalable framework is

simple to implement and amenable to broad deployment in

practical massive MIMO wireless systems. Additionally, we

provide an extension of ZR, Select ZR, for enhancing recovery

performance by switching between different sparse transfor-

mation techniques. Numerical results demonstrate Select ZR’s

performance to be competitive with complex state-of-the-art

DL models such as CsiNet, CRNet, CsiNet-Pro, and FISTA-

Net in most tested propagation channels. This new framework

heralds a simple and easy-to-deploy CSI feedback approach

that does not require a large dataset and can be rapidly

deployed without any prior training.
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