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Training-free Cost-efficient Compression for
Massive MIMO Channel State Feedback

Yu-Chien Lin, Ta-Sung Lee, and Zhi Ding

Abstract—Acquiring downlink channel state information (CSI)
at basestation (gNB) is crucial for optimizing performance in
massive MIMO FDD systems. Deep learning (DL) architectures
have shown successes in enabling UE-side CSI feedback and
gNB-side recovery, but often lack flexibility and/or require
volumes of customized training data for specific RF channel
environments and compression ratios. This work proposes a new
CSI feedback architecture called zero-replacement (ZR). ZR is
free from customized training and can be directly applied to
new and unseen channel scenarios without pre-training and/or
customization. It is also scalable and simple to implement, making
it suitable for practical massive MIMO wireless deployment.
We further generalize a Select-ZR algorithm, which switches
between different sparse transformation techniques to enhance
recovery performance. Our numerical results demonstrate that
both proposed ZR and Select-ZR algorithms achieve competitive
CSI recovery accuracy and feedback efficiency across various
channels against highly complex data-driven DL models.

Index Terms—Compressive feedback, model-free, massive
MIMO, CSI recovery.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) improves
spectrum and energy efficiency in wireless systems, but re-
quires accurate downlink channel state information (CSI)
acquisition at the base station (BS) or gNodeB (gNB). In
frequency-division duplexing (FDD) systems, downlink CSI
acquisition depends on UE feedback, which can be costly
due to the large number of parameters. Efficient compressive
CSI feedback is crucial to conserve uplink bandwidth and UE
power for practical deployment of massive MIMO in FDD
wireless networks.

Cellular channel state information (CSI) has a limited
delay spread (DS), which is a characteristic of radio physics.
Efficient user equipment (UE) feedback can take advantage of
this DS sparsity to compress CSI. One approach to efficient
CSI compression and recovery is the use of a deep autoencoder
framework, as demonstrated in [1]. This framework includes
an encoder at the UE and a decoder at the serving gNB.
Other related works have also demonstrated superior CSI
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recovery or lightweight design using various autoencoder
models, such as [2]-[5]. In addition to autoencoders, more
recent works have utilized the underlying channel correlation
to aid and improve the recovery of downlink CSI at BSs.
These approaches include using previous CSI [2], [6], CSI
of nearby UEs [7], and uplink CSI [8]-[10]. Further advances
have focused on reducing model complexity and storage size
to facilitate practical and low-cost deployment of DL-based
CSI compressive feedback architecture in wireless networks,
as demonstrated in [3], [5].

Deploying DL-based frameworks in wireless systems
presents challenges for operators, such as the high cost of
collecting training data required for DL optimization. Mas-
sive MIMO CSI data acquisition necessitates extensive field
measurements, creating a practical challenge as stated in [11].
Wireless networks are typically deployed in a range of RF
environments, necessitating the configuration of numerous
DL models for CSI compression and recovery at various
channel scenarios and compression ratios. These requirements
impose a large memory burden on UEs, necessitate large
training datasets, and increase costs, resulting in inflexibility
and difficulties in practical deployment. Although transfer
learning and online learning concepts [12], [13] have achieved
modest success in reducing training costs, the implementation
of multiple DL models still results in high hardware and
power costs, particularly at the UE side, as channel bandwidth
and antenna numbers increase in future wireless network
generations. As a result, deploying DL models for compressive
CSI feedback faces significant challenges.

In this paper, we propose a novel plug-and-play algorithm
called zero-replacement (ZR) for efficient channel state in-
formation (CSI) feedback. Our approach is simpler, more
scalable, and more flexible than previous methods, and does
not require prior training. Our contributions are as follows:

o« We develop a low-complexity, lightweight, scalable and
unified analytical CSI feedback framework that can ac-
commodate different propagation channel types and com-
pression ratios without the need for prior training or fine-
tuning.

o The ZR framework achieves competitive recovery perfor-
mance compared to state-of-the-art DL-based methods.

o We design a modified run-length and Huffman encoding
(mRLE) scheme for efficient compression of the unique
2D patterns of downlink CSL

o Unlike DL-based models, our algorithm does not require
the collection of training datasets, which can cause sig-
nificant transmission overhead in practical systems
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o We introduce Select ZR, a dynamic-transform CSI feed-
back framework, which achieves better recovery perfor-
mance by selecting the best sparse transformation for
each specific scenario.

II. SYSTEM MODEL

A. Downlink CSI Preprocessing

We consider a single-cell MIMO FDD link in which a gNB
with N, antennas serves a plurality of single-antenna UEs.
Following 3GPP technical specifications, sparse pilot symbols
(CSI-RS) are distributed in frequency domain for downlink
transmission. Assuming each subband contains Ny subcarriers
with spacing of Af and a pilot spacing of DR subcarriers,
adjacent pilots are seperated by DR¢-A f Hz. We denote h; €
CM;s>1 as downlink CSI of the i-th gNB at M pilot positions.
Let superscript (-)* denote conjugate transpose. By collecting
CSI of each gNB, a pilot sampled downlink CSI matrix H
relates to the full downlink CSI matrix H via

H= HQpg, = [h1 hy -+ hy, ]H e CNxMs (1)

a

where Qpg, is a downsampling matrix with pilot rate DR;.
To reduce feedback overhead, we exploit physical angular
and multipath delay sparsity of CSI by transforming full
downlink CSI into angle-delay (AD) domain through discrete
Fourier transform (DFT) or discrete cosine transform (DCT).
We then truncate the insignificant near-zero elements in trail-
ing delay indices as follows:
MZﬁ’FD' { INt(>)<Nt ] E(CNath7 (2)
T
where Fp € CMs*Ms denotes a sparse transformation matrix
such as IDFT or DCT matrix whereas T denotes delay domain
truncation. Note that the matrix T may be controlled according
to transformation and CSI properties. Matrix T in Eq. (2) is an
example for DCT transformation that drops the last My — N;
columns of H - Fpp corresponding to long (but negligible)
multipath delays.

B. DL Compression

Autoencoder has shown successes for CSI compression.
An encoder at UE compresses its estimated downlink CSI
for uplink feedback and a decoder at gNB recovers the
estimated CSI according to the feedback from UE. Assuming
negligible CSI elements at large delays, many have exploited
convolutional and fully connected layers to compress and
recover the truncated downlink pilot CSI via

q = fer(M), 3)
Decoder: M = fae(Q). “4)

Encoder:

We note that the size of the codeword q for uplink feedback is
determined by a specific compression ratio. However, in practi-
cal systems, multiple DL models are necessary to meet diverse
uplink feedback requirements, resulting in computational and
storage burdens, particularly for low-cost UEs.. The decoder

then replaces the truncated downlink CSI M via zero-padding
to transform CSI back from BD domain to estimate downlink
CSI matrix H in the subcarrier domain as follows:

~

H-= [ M O, x My N, ]Fg € CNaxM; )

The CSI recovery accuracy can be measured by the normal-
ized mean square error (NMSE) of the full downlink CSI:

22
Yl o

. D .
NMSE(H, H) = ZHHd —H,
d=1

where subscript d denotes the d-th random test.

III. ZR CSI FEEDBACK FRAMEWORK

DL-based CSI feedback frameworks have shown promising
results in compressing CSI at the UE and recovering it
at the BS. However, customizing multiple DL models for
different channel scenarios and compression levels makes
them inflexible and difficult to apply in practical gNBs with
different array sizes. This also poses a challenge for UEs to
store multiple pre-trained DL models, hindering widespread
deployment, especially for low-cost UEs. Training different
DL configurations for various scenarios would require suitable
channel models and large amounts of training data.

Our aim is to create a compressive CSI feedback algorithm
that is simple, flexible, and widely applicable. It is worth
noting that 2D CSI matrices bear resemblance to image data.
CSI demonstrates distinct delay and angular sparsity properties
that can be revealed by sinusoidal sparse transformations. To
enable efficient CSI feedback, we capitalize on this similarity
and adapt the entropy encoding technique used in JPEG
compression. JPEG compression is renowned for its efficiency,
universality, and cost-effectiveness. We customize this tech-
nique based on the sparsity distribution of CSI. The step-by-
step procedures are summarized below:

A. Ordering Real/Imaginary CSI

Since the real and imaginary parts of the preprocessed
DL CSI M exhibit similar sparsity distributions in the delay
domain, this algorithm compresses their sparsity distributions
together and feeds back the values separately. We first separate
the processed DL CSI M € CMa*Nt into real and imaginary

parts, My = Real(M) € RYo*Nt and Mjn,, = Imag(M) €
RNQ ><Nt.

B. ZR Encoding
The goal of ZR encoding is to efficiently encode a large
sparse matrix by extracting only the significant elements
and representing their corresponding positions in a compact
format. Figure 1 shows a toy example to implement the
operation of the proposed ZR encoder with CR = 5 and the
input matrices Mcy and Mjy,,, are of size 5 x 5. The output
bit stream is [0 Q,,]. We introduce ZR encoding in a step-
by-step procedure as follows:
o Significant Element Extraction: My and My, are
fed into significant element extraction block for sam-
pling the top-| N, N;/CR| significant elements my, €
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TABLE I
MODIFIED HUFFMAN CODING TABLE.
Bits (K) Number of zeros (Ngp) Prefix (p)
0 0 0
1 1) | EOS (1) 10
1 2 (0) 3 (1) 110
2 4(00) 5(01) 6(10 | 7(11) 1110
3 8 9 14 15 11110
4 16 17 30 31 111110
5 32 33 62 63 1111110
6 64 65 126 127 11111110
7 128 129 254 255 111111110
8 256 257 510 511 1111111110
9 512 513 1022 | 1023 | T1111111110

RIWVeN/R] and mypee € RINaN/RI for real and
imaginary parts, respectively. Additionally, it also outputs
a binary position map B € 0,1%«*Nt which contains
only 1’s and 0’s corresponding to sampled and discarded
elements, respectively.

o Significant Element Quantization: For effective binary
representations, we express the downsampled sequences
Myey and Myp,e as bit stream 2,,, by p-law companding
entropy encoding with B bits.

e mRLE of Binary Position Map: To compactly represent
the position map B, we propose a modified RLE (mRLE)
which is shown by the pseudo code (Alg. 1). The goal of
mRLE is to find a symbol list (g marking the numbers
of consecutive zeros between ones in a back-and-forth
scanning pattern shown in Figure 1. The final entry EOS
in the symbol list g denotes “end of symbols” and also
means that no more 1’s in the remaining sequence.

e Huffman Encoding of Binary Position Map: In order to
efficiently convert the symbol list {2g into a bit stream
Qp, we have introduced a modified Huffman coding. As
shown in the histogram of the symbol list Qg (Figure 3),
the majority of cases involve only a few consecutive
0’s between 1’s. To reduce transmission costs, we have
designed a modified Huffman coding presented in Table
I. The frequently used symbols are presented in a com-
pact bit stream, and prefix bit streams are designed for
unambiguous decoding. Additionally, it should be noted
that we represent EOS with a short bit stream (101) since
it almost always appear in 2g for each DL CSI.

C. ZR Decoding

In ZR decoding, the first step is to separate {25 and €,
using a Huffman coding table. Next, we obtain B from Qp
by reversing mRLE, and estimate My and Mimy, from €2,
using dequantization and p-law decompression. Finally, we
merge the binary position map B and the estimated real and
imaginary significant elements Myey and Mim,g to Obtain My
and ﬁimag. We provide a detailed description of the above
procedures in Algorithm 2.

D. Select ZR
We find that the pre-processing of DL CSI (i.e., sparse trans-
formation) affects the final recovery performance for the ZR

Algorithm 1 Modified RLE
Require: B, Qg =[]
Ensure: Qg

i + B-F-vec(B)

1)

Ny« 0

for £ =1:1:length(i) do

if i(k) = 1 then

> Vectorize in a back-forth way (Figure

> Initialize zero counter

Qg + {Qs, No} > Record consecutive zeros
Ny <0 > Clear zero counter
else
Ny + Ng+1 > Accumulate zero counter
end if
end for

if Ny > 1 then Qg + {Qg,EOS}
marked with EOS
end if

> If no more 1’s,

Algorithm 2 ZR Decoding
Require: b = [Qp Q]
Ensure: M., and M.
flageos = False
Qs =[]
Ng =0 > Initialize number of decoded symbols
while flaggos = False do
1 < Find index of the first 0 in b
Ny +—i—1 > = Prefix length 4 1
Remove prefix p = [11...10] from b > Prefix removal
Find K by Table I according to p
Find Ny by reading the first K bits in b by Table I
Remove the K bits from b > Appended bits removal
Qg «+ [Qs Ny] > Append a symbol to symbol stream
if Ny # EOS then

Ng=Ng+1
else
flaggos = True
end if
end while

B+ mRLE~(Qs) > By following Algorithm 3
breai, bimag < b > b =, since Qp is removed from b
@reala ﬁ\/Emag <~ Q_l (breah bimag)

M cat; Mimag < Significant element combining

approach. The ZR encoder and decoder at UEs can evaluate
DL CSI recovery performance before sending feedback to the
gNB. This enables UEs to select the most efficient sparse
transformation mechanism to enhance feedback efficiency.
Thus, we provide an extension of the proposed CSI feedback
framework, Select ZR, depicted in Figure 4. Assuming there
are 27 available sparse transformations for the ZR approach,
we evaluate DL CSI recovery performance by applying all
sparse transformations before feedback is sent to the gNB, and
select the best one for feedback. To indicate the transformation
chosen by the UE, an additional P-bit information is appended
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CR Binary Position Map (25 bits) QB
Q (10 bits)
Fo| oo
07[00[00{00[00 ‘ﬂ z - Z 8 8
1 0 ™
-0.8[0.0/0.0[0.0]00 — b i i Mo{]yhed )
M 0100 0 Huffman 0
real [20[00]00]00]00 F T RLE 0 Encoding 0
0510010010000 Significant W N EOC 101
04/ 03[00[00[0.1 - Element > b
- Extraction 5%2*B + 10) bi
03[00[00{00[00 Qm € +10) bits
08[00[00{00[00 Symbol
Symbols
Ml-,m,g 00[00]00]00]00 e ol to
07{00[00]00]00 3 7[-03[03]  [COMPIESSION | Byt Stream
03[0.3]00[0.0]0.1 7R Encodmg m,'mag (5%2*B bits)

Fig. 1. Example of ZR encoding (Note that the numbers 0.0 represent negligible elements in matrx M).
ZR Decoding Remaining Bit Strcam: [ €, ) 07]00[00]00]00
Appended o Bit Stream ] 08/ 0.0{00[00]00|
Bits e PTElX L Aeend LT Holaw 00[00]00]00] 00| M
R al Removal Symbol Symbols decompression real
emova yimbols 05]00]00]00] 00
T i mf‘eal -0.4/03[0.0]00/0.0
b Count Symbol Stream: 1&1‘?3 07]-08]05]04]03 03[00]00]00] 00
— consecutive 0 o —w{ Modilie
Q I's [00100E0S] RLE 03}08]07]-03] 03 / 08]00)00]00/00 M
B .
Bits Number of zeros Prefix mimug¢ 00]00100]00/00 mag
[0010000101 €, ] LU ) 0 Ljojojojo 07]00]00]00] 00
m T T(0) | EOS (1) 0 1lololo]o Significant 3l0sl00T00 00
1 2(0) 3 TT0 -0.31 0.5 A X
X 2 [ 400) | 50D | 6(10 | 71 1110 0j0j0j0j0 ‘Elemem
© | appended 3 ) 9 [} 5 10 1jojofofo Combining
appended ! @ppende T 6 7 30 31 TITT10 Tlololo
bits bit

Fig. 2. Example of ZR decoding (Note that the numbers 0.0 represent negligible elements in matrx M).

Algorithm 3 Inverse mRLE
Require: Qg
Ensure: B
q=[]
for kK =1:1:1length(Qg) do
if Qg[k] # EOS then
q < [q;[0..01]]

0..01
~
Qs k]
else

q<« [q;[ 0.0

~~
N Ny —length(q)

7] > The remaining are 0’s
end if

end for

B « Reshape'(q) > Reshape q to a matrix with size of

N, x N; with a back-and-forth pattern shown in Figure 1

(a) Indoor channels (b) Outdoor channels
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Fig. 3. Accumulative ratio of symbols in symbol list 2g for (a) indoor
channels at 5 GHz and (b) outdoor channels at 300 MHz generated by
QuaDRiGa channel simulator.

to the main feedback. By utilizing this approach, the DL CSI
recovery performance can be significantly improved with only
a few additional feedback bits.

IV. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

Tests were conducted on indoor and outdoor channels
using widely used channel model software, QuaDriGa and
COST2100 [14], [15]. For the indoor setting, a circular cell
with a 30 m radius and a gNB of height 20 m was used,
while a 200 m radius circular cell was used for the outdoor
environment. The simulators consider gNBs with an 8 x4 UPA
and 32-element ULA serving single-antenna UEs, respectively,
with half-wavelength uniform spacing. The scenario features
given in 3GPP TR 38.901 were followed, using Ny = 1024
subcarriers with 15K-Hz spacing and My = 86 pilots with a
downsampling ratio of DRy = 12 and assuming precise CSI
estimates at the UEs. The NMSE metric (Eq. (6)) was used to
assess performance.

For DL-based models, we conducted training with a batch
size of 200 for 1000 epochs, starting with a learning rate
of 0.001 and reducing it to 5x10~* after 300 epochs. We
generated both indoor and outdoor datasets using channel
simulators, each consisting of 100,000 randomly generated
channels. We used one-seventh of the channels for testing and
divided the remaining channels into two-thirds for training
and one-third for validation. In Section IV.C, we compared
different sparse transformations with ZR approaches in various
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scenarios and evaluated their performance against the proposed
method, Select ZR, which outperformed AE-based models in
different scenarios. In Section IV.D, we conducted a compre-
hensive evaluation of our proposed method by comparing it
with SOTAs and more conventional alternatives.

B. Different Sparse Transformations in Various Scenarios

The DCT and Discrete Wavelet Transform (DWT) are
highly effective for compressing images, making them a
popular choice for classic JPEG-based compression. In
contrast, the DFT is commonly used in CSI compression to
transform complex periodic features into low-dimensional
subspaces. Figure 5 shows the NMSE performance of ZR
with different sparse transformations (DCT, DFT, DCT+DWT,
DFT+DWT) and Select ZR (P = 2) at various compression
ratios (i.e., CR = 4, 8,16, 32) in indoor and outdoor channels
generated by QuaDRiGa and COST2100. The results
demonstrate that no single sparse transformation performs
best across all scenarios. Some sparse transformations exhibit
better recovery performance at higher compression ratios but
worse recovery at lower ratios compared to other alternatives.
This highlights the advantage of using Select ZR, which can
automatically select the most effective sparse transformation
for CSI feedback before transmitting UL feedback.

Figure 6 displays the NMSE performance of AE-based ap-
proaches (CsiNet [1], CRNet [3], CsiNetPro [6]) and Select ZR
at different BPPs across various channel scenarios. Although
Select ZR may not always outperform DL-based approaches, it
still delivers acceptable performance across different channel
types without requiring any prior training. Notably, previous
work [16] demonstrates that DL-based models are sensitive to
the channel type and typically suffer significant performance
degradation when applied to a new propagation scenario. In
practice, operators must collect new data and customize the
model for new channels through retraining, which poses a
significant practical challenge. In contrast, our approach can be
deployed directly without retraining, providing an acceptable
CSI recovery performance. Furthermore, Table II compares
the computational complexity and storage requirements of the
entire encoding/decoding process, highlighting the computa-

M
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Comparison

Fig. 4. Procedures of Select ZR. This example shows that we adopt 4 sparse
transformations (i.e., P = 2).
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Fig. 5. Plot of NMSE versus bits/pixel for Select ZR and four different sparse
transformations (DCT, DFT, DCT+DWT, DFT+DWT) used with ZR encoding
in different test channels. Each curve shows the performance of ZR methods
under different compression ratios, with the four anchor points on each curve
corresponding to the use of compression ratios CR = 4, 8, 16, 32.
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Fig. 6. NMSE performance for Select ZR and AE-based CSI feedback models
in different test channels at two transmission costs (BPP = 0.375, 0.75).
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tional and storage advantages of our approach over DL-based
approaches’.

C. Comparing with the state-of-the-arts (SOTAs)

To evaluate our method in a more comprehensive way,
we compare it with several compressive sensing techniques
such as Iterative Shrinkage Thresholding Algorithm (ISTA),
Fast ISTA (FISTA) [17], and Least Absolute Shrinkage and

ISelect ZR is a rule-based approach and only needs to store the modified
Huffman table.

TABLE II
COMPLEXITY AND STORAGE COMPARISON TO AE-BASED CSI FEEDBACK
WHEN CR = 16 AND P = 2.

CR=16 Select ZR | CsiNet | CRNet | CsiNetPro
FLOPs 150K M ™ 68 M
Storage (32-bit elements) 21K 28M 28M 144M
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Fig. 7. Plot of NMSE versus bits/pixel for Select ZR and the SOTAs. Note
that FISTA-Net* denotes the result when evaluating FISTA-Net with testing
channels which are different from the training channels.

Selection Operator (LASSO [18]), as well as with orthogonal
matching pursuit (OMP and CoSaMP [19]), 3GPP Type I [20],
Type II [21], and a deep-unfolding DL framework [22].
Figure 7 illustrates the NMSE performance for Select
ZR and the aforementioned SOTAs and conventional meth-
ods. Among the compared techniques, DL-based approaches

DL models such as CsiNet, CRNet, CsiNet-Pro, and FISTA-
Net in most tested propagation channels. This new framework
heralds a simple and easy-to-deploy CSI feedback approach
that does not require a large dataset and can be rapidly
deployed without any prior training.
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