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An isovariant map is an equivariant map between G-spaces
which strictly preserves isotropy groups. We consider an
isovariant analogue of Klein—-Williams equivariant intersection
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reasonable dimension and codimension conditions on H-fixed
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and only if the equivariant Reidemeister trace of the map
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Whitehead’s theorem. In addition, we speculate on the role of
isovariant homotopy theory in distinguishing manifolds up to
homeomorphism.
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1. Introduction

Advances in equivariant homotopy theory have provided important computational

tools for solving problems in the nonequivariant setting. Isovariant maps, which satisfy a

stronger condition than equivariance, naturally occur in surgery theory and classification

questions for manifolds [3]. If X and Y are compactly generated spaces with continuous

left G-actions, an isovariant map is an equivariant continuous function f : X — Y such
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that G, = G, for all z € X. That is, an isovariant map preserves the G-action and
strictly preserves isotropy subgroups.

For example, consider the cyclic group with two elements, C5. The one-point space *
has a trivial Cy-action and the unit disk D? can be given the Cy-action which reflects
across the vertical axis. Any map from * to D? whose image lies in the Co-fixed points
is both equivariant and isovariant. Indeed, any equivariant map which is injective is also
isovariant. The map D? — x is equivariant, but not isovariant. While the disk with
reflection action is equivariantly homotopy equivalent to the trivial one-point space, it
is not isovariantly homotopy equivalent to it.

A compelling reason to study the category of G-spaces with isovariant maps is the ex-
pectation that having isovariant analogues of homotopical equivariant results will provide
stronger techniques for answering questions requiring more rigidity. One such question
involves distinguishing manifolds up to homeomorphism. Let M and N be smooth, com-
pact manifolds. It has been conjectured (see, e.g., [22]) that if the ordered configuration
spaces Conf, (M) and Conf,(IN) are homotopy equivalent for every n, then M and N
are homeomorphic. For example, the lens spaces L(7,1) and L(7,2) are distinguished by
the homotopy types of their configuration spaces [22]. Recent work on rational models of
configuration spaces in [4] suggests that this may not be the case for compact, smooth
manifolds in general; the rational homotopy type of configuration spaces depends only
on the rational homotopy type of the manifold in the simply-connected case, and on
additional data of a partition function otherwise.

Instead, we propose studying the isovariant homotopy types of M™ and N™. The
cartesian product M™ has an action of the permutation group X, given by permuting
the factors, and the subspace on which ¥, acts freely is Conf,,(M). Thus, if M™ and N™
are isovariantly homotopy equivalent for every n, then Conf, (M) and Conf, (N) are ho-
motopy equivalent for every n. The isovariant homotopy type of M™ contains information
about the configuration spaces Conf;(M), but also includes some coherence information
about how they are glued to form M™. Thus, a more plausible form (suggested by Cary
Malkiewich) of the conjecture above might be

Conjecture. If M™ and N™ are X, -isovariantly homotopy equivalent for every n, then
M and N are homeomorphic.

This might also have interesting connections with embedding calculus, as in [11].

To investigate in this direction, we study homotopy theory in the category of G-
spaces with isovariant maps, providing new cell structures with respect to which smooth
manifolds are homotopically well-behaved. As applications, we prove an isovariant White-
head’s theorem and study isovariant fixed point theory.

A common approach in the isovariant setting is to require extra assumptions on the
dimensions of gaps between isotropy subspaces so that isovariant and equivariant ho-
motopy equivalences coincide. The gap hypotheses in this paper are significantly weaker
than those in [31], and additionally weaker than those in [21] (e.g., Definition 4.49 of that
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book). We show that such strong gap hypotheses are not necessary to establish results
in isovariant fixed point theory.

Fixed point theory begins with a very classical question: given a continuous self-map
of a compact space f: X — X is f homotopic to a map without fixed points (elements
x € X such that f(z) = x)? For example, the identity function of S! is homotopic to the
rotation by 7 map, which has no fixed points. Lefschetz defined the Lefschetz number

of f,
L(f) = BZ(=1)'rkH;(f)

and showed that for simplicial complexes X, if f is homotopic to a map without fixed
points, then L(f) = 0. If X is a simply connected, smooth manifold of dimension at
least 3, then the converse also holds: if L(f) =0, then f is homotopic to a map without
fixed points.

If f: M — M is a self-map of a compact, smooth manifold which is not simply
connected, then L(f) is not a complete invariant for the fixed point problem. In [29],
Reidemeister defined the Reidemeister trace, R(f), which Wecken later showed is a
complete invariant if the dimension of M is at least 3 ([37]). That is, R(f) = 0 if and
only if f is homotopic to a map without fixed points (see also [17]). The Reidemeister
trace R(f) can be considered as an element of Ho(LsM), where LyM = {~ : 1 — M :
~v(1) = f(v(0))} is the twisted free loop space; see, e.g., section 10 of [19] or chapter 6 of
[26].

The fixed point problem for equivariant maps has proven to be more complicated.
The equivariant Lefschetz trace, La(f), of a G-equivariant map f : M — M can be
considered as an element of the Burnside ring of G (see, e.g., Remark 8.5.2 of [34]). In
the case of the identity map, L (id) recovers the equivariant Euler characteristic of M.
A complete invariant in this case is given by the equivariant Reidemeister trace, Rg(f),
which can be considered as an element of H§'(L;M). Showing that Rg(f) is a complete
invariant is substantially more difficult than doing the same for R(f), in large part due to
issues of equivariant transversality. Results of this flavor are proven in [10], [38], [9], [36],
and [20]. In [19] and [20], Klein and Williams develop a homotopy theoretic approach
to intersection theory, and use it to address the equivariant fixed point problem using
equivariant homotopy theory rather than equivariant transversality. They prove:

Theorem H. [20] Let G be a finite group, and let M be a compact smooth G-manifold
such that

o dim MH >3 for all H that appear as isotropy groups in M, and
e for H < K that appear as isotropy groups in M, dim MH — dim M* > 2.

Let f : M — M be an equivariant map. Then f is equivariantly homotopic to a map
without fized points if and only if Rg(f) is trivial.
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Here, M* denotes the points in M fixed by the subgroup H.
In this paper, we address the fixed point problem for isovariant maps:

Question. Given a compact, smooth G-manifold M and an isovariant map f: M — M,
when can we find an isovariant map f; : M — M, isovariantly homotopic to f, such that
f1 has no fixed points?

Motivated by the impressive effectiveness of equivariant homotopy theory in [20],
we further the study of isovariant homotopy theory by providing analogues of certain
important equivariant results, described below. This allows us to prove:

Theorem 4.1. Let G be a finite group and suppose that M is a compact smooth G-
manifold such that

o dim MH >3 for all H that appear as isotropy groups in M, and
e For H < K that appear as isotropy groups in M, dim MH — dim MK > 2

Let f : M — M be an isovariant map. If the fixed points of f can be removed equivariantly
(equivalently, if Ra(f) =0), then they can be removed isovariantly.

That is, we obtain the result that equivariant fixed point theory and isovariant fixed
point theory for such manifolds coincide. The equivariant Reidemeister trace Rg(f)
completely determines whether an isovariant self-map of such manifolds can be modified
by an isovariant homotopy to a fixed point free map.

To obtain the theorem above, we use the homotopical techniques of Klein—Williams
in the isovariant setting, which requires the presence of a homotopy theory for the iso-
variant category. In [39], the second author constructed a Quillen model structure on the
category of G-spaces with isovariant maps. While this model structure provides a way
to combinatorially represent GG-spaces as presheaves on a category, we cannot apply the
techniques of [20] to G-manifolds with this homotopy theory, because not all G-manifolds
are cofibrant. In this paper, we develop a more robust homotopy theory of the isovariant
category (for G a finite group), which involves defining new kinds of isovariant cells (see
Definition 3.1). With these new isovariant cell structures, we prove

Theorem 3.6 and 3.9. Let G be a finite group. Smooth G-manifolds are built out of iso-
variant cells, and they satisfy lifting properties with respect to isovariant cell inclusions.

Theorem 3.9 is closely related to the fact that conically stratified spaces are fibrant, a
result of [6, 4.12] that relies on Theorem A.6.4 of [23]. We carry out a similar argument
in the equivariant setting, considering smooth G-manifolds instead of the more general
notion of conically stratified spaces. More work on conically stratified spaces can be
found, for example, in [1].

In the presence of a model structure, the theorems above would mean that manifolds
are cofibrant and fibrant. While we do not provide a new Quillen model structure on
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isovariant spaces, we are able to obtain the main results that would follow from a suitable
one. These results can be interpreted as arising from a weak model structure in the sense
of [14].

Theorem 5.3. Let G be a finite group. There is a weak model structure on isvt-Top in
which smooth G-manifolds are cofibrant and fibrant.

Proposition A.1 of Douteau-Waas [8] indicates that the Quillen model structure on
isovariant spaces that we nearly construct in this paper would need to rely on more than
the stratification by isotropy. While their counterexample cannot arise in the isovariant
setting, we are currently unable to prove that J-cell C W (where J-cell and W are
defined in section 3).

As a result of our study of this more robust isovariant homotopy theory, we are able
to prove an isovariant Whitehead’s theorem.

Theorem 3.10. (Isovariant Whitehead’s theorem) Let G be a finite group, let X andY be
smooth G-manifolds, and let f : X — Y be an isovariant map. Then f is an isovariant

homotopy equivalence if and only if f is an isovariant weak equivalence (in the sense of
Definition 2.3).

In [7], an isovariant version of Whitehead’s theorem was proven for manifolds with
“treelike isotropy structure”; we show that Theorem 3.10 extends and strengthens The-
orem 4.10 of [7]. That is, we show

Proposition 3.11. Let G be a finite group and let f : X — Y be an isovariant map
between smooth G-manifolds with treelike isotropy structure satisfying the conditions of
Theorem 4.10 in [7]. Then f is an isovariant weak equivalence.

Further, we characterize isovariant weak equivalences between G-manifolds in terms
of simpler data. That is, instead of checking that f induces a weak equivalence on
isovariant mapping spaces of infinitely many higher dimensional simplices, we show that
f is an isovariant weak equivalence of G-manifolds if it induces a weak equivalence on
the isovariant mapping spaces of zero and one dimensional linking simplices.

Structure of the paper

In section 2, we cover necessary preliminaries, such as background on the category of
isovariant spaces and on homotopical fixed point theory. In section 3, we define classes
of maps out of which isovariant cell complexes are built, and which govern the homotopy
extension and lifting properties we are interested in. We then show that all smooth
G-manifolds are isovariant cell complexes and satisfy lifting properties with respect to
isovariant cell inclusions. We use this to prove the isovariant Whitehead’s theorem. In
section 4, we apply our results on isovariant homotopy theory to isovariant fixed point
theory; we prove that for smooth G-manifolds with assumptions as in [20], the isovariant
fixed point problem reduces to the equivariant fixed point problem. We also give a
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counterexample showing that this is not necessarily the case for G-spaces which are not
manifolds. In section 5, we provide a weak model structure on isvt-Top in which smooth
G-manifolds are cofibrant and fibrant.
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2. Preliminaries

We assume familiarity with the basics of cofibrantly generated model structures as
presented in [16]. In particular, we use the following notation for classes of maps with
certain lifting properties. Let Z be a class of maps in a category C containing all small
colimits.

Z-inj is the class of maps with the right lifting property with respect to maps in Z.

Z-cof is the class of maps with the left lifting property with respect to maps in Z-inj.

T-cell is the class of relative Z-cell complexes. A relative Z-cell complex is a transfinite
composition of pushouts of coproducts of elements of Z. Note that Z-cell C Z-cof, and
in fact, Z-cof consists of retracts of maps in Z-cell.

2.1. Isovariance

Let G be a finite group. We denote by eqvt-Top the category of G-spaces (compactly
generated spaces with continuous left G-action) with equivariant maps, and we denote
by isvt-Top the category of G-spaces with isovariant maps with an added formal terminal
object. (We note that in [39], this category is denoted isvt-Top”.) The category eqvt-Top
is enriched in spaces, and thus isvt-Top is also enriched in spaces using the subspace
topology. We will denote the space of equivariant maps from X to ¥ by Mapequt(X,Y")
and the space of isovariant maps by Mapiet(X,Y).

Let s, : S — D"! be the usual boundary inclusion and denote io : {0} — [0, 1].
There is a cofibrantly generated model structure on the category Top of compactly
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generated spaces where the generating cofibrations Z™ are given by {s, : S™ — D"*1}
and generating acyclic cofibrations 7 T°P are given by {D" x iy : D" x {0} — D" x [0, 1]}
[16, 2.4]. The family of adjunctions below, where H runs over all subgroups of G, allows
this model structure to transfer to eqvt-Top [33].

{G/H X — eqvt-Top : Mapequ(G/H, —)}

Top,
Pe—0o H<G

In particular, the cofibrantly generated model structure on eqvt-Top has generating cofi-
brations given by {s,, x G/H}, generating acyclic cofibrations given by {D" xigx G/H},
and f : X — Y is a weak equivalence if and only if Mapeqwt (G/H, f) is a weak equivalence
of spaces for all subgroups H < G.

In [39], similar techniques are used to transfer the model structure of Top to isvt-Top.
We will refer to this model structure as the elementary model structure. To define the
generating (acyclic) cofibrations and weak equivalences, we need to introduce linking sim-
plices. Because isovariant maps between G-spaces preserve the stratification by isotropy
groups, we will consider chains of subgroups of G. Let H = Hy < --- < H,, be a strictly
increasing chain of subgroups of G.

Let A™ be the standard n-simplex in Top, that is,

A" = {(to,...,tn) e o, 1]+t Zti - 1}_
=0

Definition 2.1. The linking simplex A is the quotient of G x A™ where (g,z) ~ (¢, )
if and only if gHy, = ¢’ Hy, when = = (tg,...,tn—%,0,...,0), 0 < k < n. Let G x A™ —
Ag°<'“<H" be the natural projection and denote the image of (g,2) € G x A™ under
the projection by (g, ). The space AH has a left G-action given by ¢ - (g, x) = (¢'g, z);
points of the form (g, (to,...,tn_k,0,...,0)) where t,,_ # 0 are fixed by gHg~' under
the G-action.

Example 2.2. If H = {H,}, then AE = G/Hy. This will also be denoted Ao,

We note that Ag“<"'<H" is the same as the “equivariant simplex” Ay (G; H,, ..., Hy)
defined in [18], although in the equivariant simplex, subgroups may be repeated. Illman
shows that the equivariant simplex is a compact Hausdorff space with orbit space A™.
We will often consider a fundamental domain of a linking simplex, denoted fd(AH).
When G is clear from context, we drop it from the notation.

The boundary of a linking simplex, BAE, is the image of 9A™ x G (in the usual sense)
under the identifications. This can also be identified with

OAE = colimegg AL,

where o < H denotes all proper subchains of H. Denote the boundary inclusion of a
linking simplex by bt : 9AH — AH,
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Let H < G be a subgroup. In the equivariant setting, Mapeqw(G/H, X) is equiv-
alent to X, the subspace of elements which are H-fixed. In the isovariant setting,
Mapigt (A, X) picks out the subspace of X fixed by exactly H, denoted Xp.

Definition 2.3. The elementary model structure for isovariant spaces has generating
cofibrations T°™ given by {s, x AH : g7 x AH — Dntl s« AHY and generating
acyclic cofibrations J°°™ given by {D"F1 x AH x i} (or equivalently (s,0ig) x AH).
The weak equivalences of isvt-Top are the isovariant maps f : X — Y such that
I\/Iapisvt(AH,X) — Mapisvt(AH,Y) are weak equivalences of spaces for all strictly in-
creasing chains H = Hy < --- < H,,. We call these maps isovariant weak equivalences.

The formal terminal object T is isovariantly contractible. Thus a map f : X — T is
a weak equivalence if Mapio,t(AH, f) is a weak equivalence of spaces for each H. The
elementary model structure is Quillen equivalent to the category of presheaves on the
link orbit category with the projective model structure. For more details, see [39].

Remark 2.4. An isovariant homotopy equivalence f is in particular an isovariant weak
equivalence, since Mapis,t(AH, f) is a homotopy equivalence for all H.

One drawback of the elementary model structure on isvt-Top is that not all G-
manifolds are cofibrant. For example, the 2-sphere with a rotation action (sometimes
denoted S*) is not cofibrant. In section 3, we develop more robust homotopy theoretic
tools for the isovariant category, with which G-manifolds are particularly well-behaved.
In order to define the relevant classes of maps in section 3, we use the pushout-product
of maps in Top with maps in isvt-Top. We rely heavily on the relationship between
pushout-products and pullback-homs described below.

Let C,D, and £ be categories with all small colimits, and let ® : C x D — £ be a
colimit-preserving functor. Then the pushout-product of a map f : K — X in C and
g: L — Y in D is the map fOg in &£ from the pushout of the first three terms in the
following square to the final vertex.

1d®
KoL Y Key

f®idl l f®id
1d®g

XL — X®Y

If C also has all small limits and there is a functor Homp : D°? x £ — C with an
adjunction between — ® d and Homp(d, —) for every object d € D, then the pullback-
hom Homp(g,h) of g: L =Y in D and h: M — Z in £ is the map in C from the initial
vertex to the pullback of the last three vertices of the square below.
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Hom(Y, M) —— Hom(L, M)

J |

Hom(Y, Z) —— Hom(L, Z)

An adjunction between pushout-products and pullback-homs is described in [24, 3.2.3],
which yields the following useful relationship between lifts.

Lemma 2.5. For maps as described above, a lift exists in the first diagram below if and
only if a lift exists in the second diagram [30, 19.5].

X©L]lxo K@Y —— M K Hom(Y, M)
- >
fﬂgl _ J/h lf _ - - J/Homm(g,h)
XYy — 7 X =" Hom(L, M) X tiom(z.z) Hom(Y, Z)

2.2. Homotopical fixed point theory

In [19] and [20], Klein and Williams use a homotopy theoretic approach to define fixed
point invariants in a way that does not rely on transversality. In this subsection, we review
the aspects of their approach that will appear in this paper. Given an equivariant self-map
of a compact smooth G-manifold f : M — M, the problem of finding an equivariantly
homotopic map f; : M — M such that f; has no fixed points reduces to the problem of
finding a lift up to equivariant homotopy of

dx f:M—MxM

to M x M — A, where A denotes the diagonal. Replacing the inclusion map M x M —A —
M x M with an equivariant fibration £’ — M x M and pulling this back along the map
idx f: M — M x M yields an equivariant fibration p : E — M. Note that the problem
of finding a map f; as above then transforms into finding a section of the equivariant
fibration p: B — M.

Denote by Sy, E the unreduced fiberwise suspension of E over M. That is,

SME = MUEXO (E X I) Urpx1 M.
We can consider Sy, F as a retractive G-space over M, with section M — Sy, E given by

inclusion into the 0-copy of M. The space M II M is a retractive G-space over M, with
section M — M II M given by the inclusion as the left summand. Then

s:MUIOM — Sy FE
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given by inclusion of the 0-copy and the 1-copy defines a map of retractive G-spaces over
M. One of the central ideas of [19] and [20] converts the problem of finding a section
of p: £ — M into the problem of determining whether s is trivial. The following is
obtained by combining Proposition 3.1 with Lemmas 10.1 and 10.2 of [20].

Theorem 2.6. Suppose that M is a compact smooth G-manifold such that

o dim MH >3 for all H that appear as isotropy groups in M, and
o for H < K that appear as isotropy groups in M, dim MH — dim MK > 2.

Then the fibration p : E — M has an equivariant section if and only if the homotopy
class of s: M II M — Sy E in retractive G-spaces over M,

[s] € [M II M, Sy E]S,,
s trivial.

Thus, under the above conditions, [s] provides a complete invariant for equivariantly
eliminating fixed points. The class [s] € [M 11 M, Sy FE]§; is denoted by Rg(f) and called
the equivariant Reidemeister trace of f. In [20], Rg(f) is considered as an element of
7§ (8 Ly M), via stabilizing to parametrized G-spectra and applying Poincaré duality.
Here LyM = {~v:1 — M : f(7(0)) = v(1)} denotes the twisted free loop space. In this
paper, we will not need this stabilized version.

The proof of Theorem 2.6 in [20] proceeds by induction on the fixed submanifolds
M*H. Write (H) < (K) if H is properly subconjugate to K, and let

(Hy) > ... > (Hp)

be a total ordering of the subgroups appearing as isotropy groups of elements of M,
which extends the subconjugacy order. For 1 < k < n, denote by My, = UiSkM(H’?) the
subspace of M consisting of all points fixed by a subgroup conjugate to some H;, i < k.
For example, M; = M (if M© is nonempty) and M,, = M.

If f: M — M is an equivariant map that has no fixed points on a G-invariant
subcomplex A C M, the obstruction for removing its fixed points on a G-invariant
subcomplex B C M such that A C B is a “local Reidemeister trace”

Re(f|a,p) € [Cu (B, A), SME]S;
where
CM(B7A) =MUywoAXxITUgx1 B

is a homotopy cofiber of MIIA — MIIB over M. See Theorem D of [20], Proposition 8.2
and Lemma 8.4 of [27], or Theorem 1.6 of [28]. For example, condition (ii) in Theorem



I. Klang, S. Yeakel / Advances in Mathematics 433 (2023) 109298 11

1.6 of [28] is a Blakers—Massey condition, which is satisfied if dim M# > 3 for all H
that appear as isotropy groups in M, by the equivariant Blakers—Massey theorem (see,
e.g., [5]). In the inductive approach of [20], it is therefore crucial to show that the local
Reidemeister traces R (f|ar, M, ) vanish.

Theorem E, along with Lemmas 10.1 and 10.2 of [20], provides the necessary “global-
to-local” theorem:

Theorem 2.7. Suppose that M is a compact smooth G-manifold such that

o dim M¥ >3 for all H that appear as isotropy groups in M, and
o for H < K that appear as isotropy groups in M, dim MH — dim M* > 2.

Suppose that f : M — M is an equivariant map. If Rg(f) is trivial, then Ra(f|m, . my)
is trivial for all k.

This global-to-local theorem allows for removing fixed points on M inductively, at
each step proceeding from Mj_; to the subsequent M. This will also be our method of
isovariantly removing fixed points in Section 4.

3. Homotopy extension and lifting for isovariant spaces

In order to study isovariant fixed point theory for G-manifolds and prove an isovariant
Whitehead theorem, we will show that manifolds satisfy certain homotopy extension
and lifting properties for isovariant maps. This almost amounts to a new Quillen model
structure on isovariant spaces, but there are subtle technicalities in building the model
structure that we are unable to resolve. We are thankful for work of Douteau—Waas
[8], whose Proposition A.1 alerted us to the stratified version of this issue. While their
counterexample A.4 cannot arise in the isovariant setting, we are currently unable to
prove that J-cell C W (where J-cell and W are defined below). Nevertheless, as in work
of Douteau and Douteau—Waas [6,8] on stratified spaces, we are able to obtain the main
results that would follow from a suitable model structure.

We will define three classes of maps Z, J and W. The class Z generates the isovari-
ant cell inclusions. In a Quillen model structure, Z would be the class of generating
cofibrations, and J would be the class of generating acyclic cofibrations. Recall that
$p 1 S™ — D"Fand B2 9AE — A are the boundary inclusions, and AY is the
linking simplex of Definition 2.1.

Definition 3.1. Define 7 as the class of pushout-products of s,_; with b, that is,

T = {sn,lmbH (5" % ABY Ugu 1 ypnn (D" x 0AH) = D x Ag}

Hn

Define J as pushout-products of the maps in Z with ig : {0} — [0, 1], that is,
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T = {s0-100" Do}y ,

Let W be the class of isovariant weak equivalences, that is, the maps f : X — Y such
that the induced map Mapig,t(AH, X) — Mapis,:(AH,Y) is a weak equivalence of spaces
for all strictly increasing chains of subgroups H = Hy < --- < H,,.

We will prove a series of lemmas about the classes Z, J and how they interact with the
isovariant weak equivalences WW. This will enable us to prove an isovariant Whitehead’s
theorem, as well as results on isovariant fixed point theory in section 4.

We begin by showing that cofibrations in the elementary model structure are built out
of maps in Z, that is, Z¢/*™ C Z-cell, and that acyclic cofibrations in the elementary model
structure are built out of maps in 7, that is, J¢¢™ C J-cell (see Definition 2.3). First,
given a poset P of chains of subgroups of G, define PA to be the colimit colimpgep AH.
We say that P is closed under inclusion if whenever H € P and K is a subchain of
H, then K € P. For example, if H is a chain of subgroups, then the poset Py of all
subchains of H is closed under inclusion, and PgA = AH,

Lemma 3.2.

(1) For every P closed under inclusion, the maps s, x PA : S x PA — D"t x PA
are in Z-cell. That is, they are obtained by composition of pushouts of coproducts of
elements of T.

(2) For every P closed under inclusion, the maps D™ X ig x PA : D™ x 0 x PA —
D™ x[0,1] x PA are in J-cell. That is, they are obtained by composition of pushouts
of coproducts of elements of J.

In particular, s,, x A" € Z-cell and D" x ig x AH € J-cell.

Proof. We will prove (1) by induction on the lengths of the chains in P. If all chains in
P are of length 0, then

PA = AHoIT . 1T AHm,

If H = {Hp} has length 0, then s,, x AHo is equal to s,,0b™°, so it is in Z for all n. The
coproduct of maps in Z is in Z-cell, therefore s, x PA € Z-cell.

Now suppose the statement is true for P, and let K be a chain of subgroups which is
not in P. Define P’ = P U {K}. Note that P’A is the pushout of the diagram

f
colimpgep AHK —— 5 PA

J

AK
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We may assume that all proper subchains of K are in P, and therefore this diagram
becomes

oAk L pa

L,K

AK
Multiplying by S™ and D™*!, we obtain the map of pushout diagrams

S"x f
S x AR« 97 x 9AK ——— 5 57 x PA

S XbK
LenxAK J/snxaAK lsnx’P’A
Dn+1

D AK e Dl gAK 7 ety pa
D" T xb

The map s,0b% is in Z-cell by definition, and s,, x PA € Z-cell by the induction
hypothesis. Therefore by Corollary 2.2.2 of [24], the map between the pushouts, s, x P'A,
is also in Z-cell, as required.

The proof of (2) is similar, using the fact that D™ X ig is s,—104p composed with a
homeomorphism. 0O

Next, we prove a lemma about cubical limits of maps, which will be applied in the
proof of Lemma 3.4 to Z'P-inj. Recall that an S-cube in a category C is a functor
X :P(S) — C, where S is a finite set and P(.S) is the poset of all subsets of S. The finite
set n = {1,2,...,n} will define an n-cube. For an S-cube X, and subsets U C T C S,
we use 95X to denote the (T — U)-cube {V — X(VUU):V C T — U}. For a subset
U C S, we define the U-corner map of X to be the restriction map

lim X(T) — lim X(T)
UucT UgT

and limycr X(T) = X(U). For the following lemma, note that a map of n-cubes X — Y
defines an (n 4 1)-cube.

Lemma 3.3. Let C be a category with all limits and a class of maps F which are preserved
by pullbacks and compositions. Assume also that isomorphisms are in F. Let X — ) be
a map of cubical diagrams in C such that the corner maps of all possible subcube maps
X' — Y are in the class F. Then lim X — lim Y is in the class F.

We note that the corner map condition in the lemma is slightly weaker than the
fibration cube condition in Definition 1.13 of [13], since we do not require corner maps of
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subcubes of X or ) to be in F. We are unaware of a proof of this lemma in the literature,
so we provide one now.

Proof. We will factor the map lim X — lim ) through maps of F. Let X and Y be cubes
in C indexed by the poset P(n) on n = {1,2,...,n}.
Let Xp denote the final vertex X'(n) of the cube X, and let X; denote the diagram
Ui 1677 U }X for 1 < ¢ < n. For example, X, is the full subdiagram of X’ containing all
vertices of distance at most 1 from the final vertex. We continue this process to define
X; for all n < ¢ < 2™ — 1 by incrementally adding vertices of distance 2,3,..., and
finally n from the final vertex. We apply the same vertex ordering to define )); for all
0 < i < 2™ — 1. Note this process extends the partial order on the poset P(n) to a total
order, although we do not add extra maps to the associated domain category of the
diagrams.

We define L; for 0 < i < 2™ — 1 to be the limit of the diagram containing X; and
Y and the maps between them (that is, the diagram maps X; — );). We denote this
by L, = lim(X; — ). The limit L; can be rewritten as the pullback of the following
diagram for ¢ > 1:

lim(Xi — yz)

B

Li_1 —— hm(.)(‘i,1 — yl)

The map L; — L;_1 is in F if the right vertical map 6; is in F. For ¢ = 0, L is the
pullback of the diagram

Xo

[

limY — Yy

Thus the map Ly — lim )Y is in F if Xy — )y is in F.

We will now show that the right vertical maps 6; of the previous diagrams are in F.
First, 6y is the corner map of the subdiagram Xy — ).

Adding the jth vertex, Y(n—U) (where U depends on the total order chosen above), to
the diagram Y;_; completes the |U|-cube 8 ;Y (a subdiagram of Y;). Then X;—&X;_; =
X(n —U) is the limit of the diagram 9, X — 97y Y. The map 0; : lim(X; — Y;) —
lim(X;—1 — J);) is the pullback of the map from X(n — U) to the punctured cube
(O _yX)p = Oy_yY, where Z,, indicates removing the initial vertex from the cube Z.
Since the latter map is a corner map for a subcube X’ — ), it is in F by hypothesis.
Since F is preserved by pullbacks, §; € F, and thus L; — L;_; is also in F.

Finally, Lon_1 = lim(X — Y) = lim(X’), so we have factored the map lim X — lim )
as a composition of maps of F
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imX =Lon_1—--+-— L1 —Log—1lm)Y. O

We note that if X and Y are punctured cubes (with initial vertex missing), we can
complete them into cubical diagrams by setting

X(0) = [1]17% X(U)
and similarly for ). Then the corner map of the whole cube map X — ) is an isomor-
phism, and is thus in F.

We will now continue to prove results about the classes of maps Z, J, and W, and
the extension and lifting properties that they satisfy. Recall that Z-cell is the collection
of morphisms obtained by transfinite composition of pushouts of coproducts of elements
of Z, Z-inj is the collection of morphisms with the right lifting property with respect to
elements of Z, and Z-cof is the collection of morphisms with the left lifting property with
respect to maps in Z-inj.

Lemma 3.4. The classes Z, J, W satisfy W N J-inj C Z-inj.

Proof. Let f: X — Y be in WnN J-inj. We will show f € Z-inj, that is, f has the right
lifting property with respect to s, 0b™ for all H and all n by inducting on the length of
H.

Let H = {Hy} be a chain of length 0. By part (2) of Lemma 3.2, the generating acyclic
cofibrations in the elementary model structure are in J-cell. Thus J-inj C J°*™-inj, so
fEWN J-inj C W N Jeeminj = Z¢°™.inj. Thus f has the right lifting property with
respect to s, x Ao =5, opto.

Suppose for induction that for all K = Ky < -+ < K, of length less than m, f has the
right lifting property with respect to s, 0b¥. Suppose H = Hy < --- < H,, has length
m.

In the adjunction of pushout-product with pullback-hom from Lemma 2.5, let C = Top
and D = £ = isvt-Top, let ® be the cartesian product and Homp = Mapjs,:. We will
show f has the right lifting property with respect to s,,0bH by showing that the map of
spaces

Mapisvtu(bva) : Mapisvt(AHaX) — Mapisvt(AHyy) xMap;svt(BAH,Y) Mapisvt(aAHyX)

is in ZT°P-inj = WToP 0 JToP_inj.

Since f has the right lifting property with respect to s,0b’0iy for all J (of any
length) and all n, the map Mapigg (b, f) has the right lifting property with respect to
sp,0ip = D" x ig € JT°P. That is, Mapisp (b, f) is in J T°P-inj. We need only show
that Mapisvey (b5, f) € WTeP.

Since the map Mapis,t(AH, f) € W is factored by Mapisy (b, f), the 2-out-of-3
property for weak equivalences implies Mapis,, (b, f) is a weak equivalence in Top if
the left vertical map of the following pullback is a weak equivalence in Top.
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MapiSVt(AH7Y) X Mapis: (OAH,Y) Mapisvt(aAHvX) E— Mapisvt(aAH7X)

J/ lMapis\,t(aAH,f)

Mapis,:(AH,Y) Mapis,:(OAH V)

It suffices to show that the right vertical map Mapig,:(OAH, f) is an acyclic fibration
of topological spaces (that is, Mapis,t(OAH, f) € ZT°P-inj). We will use Lemma 3.3 and
the fact that OA™ = colime.pgA®.

Let F = ZTP-inj, which is closed under pullbacks and composition and contains
isomorphisms. Let X be the punctured cube defined by {K ~ Mapi,:(A¥, X)} and let )
be the punctured cube defined by {K + Mapis,:(A¥,Y)} where K ranges over the proper
subchains of H (including the empty subchain). The map of cubical diagrams X — Y
is given by Mapist(AK, f). Because each Mapisy, (0%, f) € ZT°P-inj by the induction
hypothesis, all corner maps of subcube maps X’ — )’ are in F. Then by the lemma,
lim X — lim Y is an acyclic fibration of spaces, where im X' = lime <11 Mapig,t (A®, X) =
Mapie,t (OAH] X). We have shown that Mapie,: (A, f) is an acyclic fibration of spaces, so
Mapigvt (BH, f) is an acyclic fibration of spaces, ensuring f has the right lifting property
with respect to s, 00", O

3.1. Manifolds are built out of isovariant cells

We will now show that manifolds are built out of maps in Z. That is, we will show
that ) — M € Z-cell for all smooth G-manifolds M. This is not true in the elementary
model structure.

Example 3.5. Consider the disk D? with the Cy-action which rotates the disk around the
origin by m. We can build this as a Cs-isovariant cell complex with two mixed cells and
one free cell: DO x A°<¢ D! x A¢ and D' x A°<C where the free 1-cell is glued to x
and 7z and the mixed 1-cell is glued by collapsing the entire D' x A% to z and sending
{0} x fd(A°<%) to a and {1} x fd(A*<Y) to Ta.

T

TQ

TX

This is an example of a Cy-space for which () — D? € Z-cell, but it is not cofibrant in
the elementary model structure on isvt-Top, so () — D? ¢ T¢em_cell.
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To prove that ) — M € Z-cell, we show that an equivariant triangulation gives an
isovariant cell structure. In [18], Illman proves that smooth G-manifolds are cofibrant in
eqvt-Top. We build on his proof in this section. Illman defines the equivariant simplex
A,(G; Hy, ..., H,) the same way we define the linking simplex AZ" << 'but he allows
redundancies in the subgroups. Illman’s key result is Theorem 4.1, which proves that if
X is a G-space with a homeomorphism u : A™ — X/G which has constant isotropy
type in each of the sets A™ — A™~1 for 0 < m < n, then there exist closed subgroups
Hy > --- > H, of G and a G-homeomorphism « : A, (G; Hy,...,H,) — X which
induces u on orbits.

An equivariant triangulation on a G-space X consists of a triangulation t : K — X/G
of the orbit space such that for each n-simplex s of the simplicial complex K, there are
closed subgroups Hy,...,H, of G and a G-homeomorphism « : A, (G; Hy,...,H,) —
7~ 1(t(s)) which induces a linear homeomorphism on orbit spaces ([18, 5.1]). Illman shows
in Proposition 6.1 that if a G-space X has an equivariant triangulation, then it has the
structure of a G-CW complex. That is, X is cofibrant in eqvt-Top and can be built from
the equivariant generating cofibrations. Illman cites [35] to prove that if M is a smooth
G-manifold, then M has an equivariant triangulation.

Theorem 3.6. Let G be a finite group. Smooth G-manifolds M satisfy ) — M € T-cell.

Proof. We will prove the more general fact that a G-space X with an equivariant trian-
gulation satisfies ) — X € Z-cell. Let X be a G-space with an equivariant triangulation
t: K — X/G. Consider the n-skeleton of K, denoted K™. The n-skeleton of the isovariant
space X is 7 1(¢(K™)), where 7 : X — X/G is the quotient to the orbit space.

The goal is to construct an isovariant characteristic map for each equivariant simplex
7 L(t(s)) of X. Let s be an arbitrary n-simplex of K, and let « : A, (G; Ho, ..., H,) —
7 1(t(s)) be the G-homeomorphism arising from the definition of equivariant trian-
gulation. The map « is also an isovariant homeomorphism because it is an injective
equivariant map with injective equivariant inverse. Then o* : A™ — t(s) is a linear
homeomorphism with a*(0A™) = t(Js) and o* (A”) = t(§), where Os is the boundary of
s and § is its interior. In the isovariant category, we have

~

NG Hy, ... Hy) —— 71 (t(9s))
- )

L

A, (G; Hy, ..., Hy) —— 7 1(t(s)

~

We will show that the left vertical map is a pushout along some s,,0b% € Z. We will
define an isovariant map ¢ : (J] A™) x A¥X — A,,(G; H) by defining ¢ on fundamental
domains of A, (G;H) and A¥, then extending equivariantly. The map ¢ will restrict to

an appropriate map on boundaries which produces the desired pushout, because [[ A™
D™,
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Let H = Hy > --- > H, be the chain of isotropy groups of A, (G; Hy,...,H,), and
let K=Ky > K; > --- > K} be the same chain but with no degeneracies, that is if
H, = H;;, in H, H; is only listed once in K. Let p : n — k be the ordered surjection
recording the collapse from H to K, that is, H; is the same for each j € p~!(4) for all
0<i<k. (Heren={0,1,...,n}.)

Let vg, be the vertex of a fundamental domain of AX which has isotropy group K;.
Denote the vertices of A™ by v, ..., Un,, and for each 0 < i < k, let 0 < ¢; < |[p~1(i)| - 1.
In a fundamental domain of A,,(G;H), denote the ith vertex by w;.

Let ¢ be the map

AlPTHOI=1 o AlPTHRIST FA(AK) = fd(A,(G;H))
defined on vertices by

(’Ufov Veyy v ey Uty 'UKi) — wmin{p_l(i)}+€i .

This map projects to vy in all trivial (with respect to the G-action) simplices except
the ith, leaving a simplex of dimension |p~!(i)|— 1 with isotropy K;, which is isovariantly
homeomorphic to the corresponding face with isotropy K; in A, (G; H). That is, ¢ sends

AlPTTOI=1 5 APTHRI=T gy 3 P AT Ly N span(w,-1 ;).

Here w,-1(;) denotes the subset of vertices {w; : j € p~'(i)} of A,(G;H).

Let n; = [p~1(i)| — 1, and let b : 9A™ — A™ denote the boundary inclusion. Note
that Hf:o A" = D"~k and the boundary (whose inclusion is defined as a pushout prod-
uct, that is, the map b™Q---0b™ : (][ A™) — [[ A™) is homeomorphic to S™~F~1.
Therefore the map b"~*0Ob¥ is isovariantly homeomorphic to the map s,,_,_;0b% € Z.

Note that ¢ restricts to an isovariant map

k k
¢:o(J]Aa™) x A 11 (JTa™) x 0a¥ — 04, (G; H).

=0 a(Hf:o Ami)x 9AK 1=0

Careful consideration shows that A, (G; H, ..., H,) is the pushout

O(ITi—o A™) x A¥ Ly ppe . aniyonx (ITig A™) x IAK —— A (G; Ho, ..., Hy)

lbnkaK J

(15, Am) x AK A (G; Hy, ..., Hy,)

Since all smooth G-manifolds have an equivariant triangulation ([35, 3.8]), the proof
is complete. O
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In section 4, we will need the fact that some subspaces of a G-manifold M have
inclusions which are in Z-cell. We record the result here.

Lemma 3.7. The inclusion of an equivariant subsimplex into a linking simplex is in Z-cell.

Proof. Let H = Hy < --- < Hy and let A be an equivariant subsimplex of the linking
simplex AH. That is, A = Aﬁ, where H is a subchain of H. Let H; ,...,H,;  denote
the subgroups of H which are not in H.

We will build AH from A as a composition of pushouts along maps of Z. When n = 0,
the map s,,_10b% of Z is the map b¥ for any K. Then if Ay = A]_[]_[;”:l A s the
union of A with the orbits of the missing subgroups H;;, the map A — Ag is in Z-cell
because it is a pushout along ]| b ii . Now the length 1 subchains of H containing H;,
have both length 0 subchains represented in Ag; that is, we may glue in the equivariant
1-simplices A <H’ along AT <H' Let Aj be the pushout of Ay along the coproduct

of the generating cofibrations i <H' and pt'<H:

i for j = 1,...,m. By induction, one
can continue in this way until the entire boundary of the linking simplex has been glued
in to A along generating cofibrations of the form b¥. Finally, AH can be obtained by
pushout along b2, so A — AH is a composition of pushouts of maps in Z, so is in

T-cell. O
Corollary 3.8. For all k, the inclusion My — M is in T-cell.

Proof. The equivariant triangulation on M admits M} as an equivariant subtriangula-
tion. By Lemma 3.7, M} — M is in Z-cell. O

3.2. Manifolds satisfy isovariant lifting properties

We will now show that smooth G-manifolds satisfy isovariant lifting properties with
respect to maps in J-cell. Recall that the pushout-product map s,,_10¢g is homeomor-
phic to the map D™ X ig in Top, in the sense that D™ X ig is s,_10i9 composed with
a homeomorphism. Then for a G-space X, there is an isovariant lift in the following
diagram for any map j: A — B of J-cell

— X

A
A
) s
v
B

if and only if there is an isovariant lift in the following diagram for all n and for all chains
of subgroups H:
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I X Dn X 8AH U{O}XD"XBAH {0} X Dn X AH ﬁ X

(ioxD"‘)DbHJ/ _ -

I x D" x AH

Using the adjunction of the pushout-product with the pullback-hom (Lemma 2.5 with
C = Top and D = £ = isvt-Top), such an extension corresponds to a lift in the following
diagram of spaces, or equivalently the condition that Mapis, (b, X) is a Serre fibration
in Top, since s,,_10ig are the generating acyclic cofibrations of Top.

{0} x D™ ——— Mapis,:(AH, X)

P
—~
—~
—
~
—~

I x D" ——— Mapis,: (AR, X)

We will show that if X is a smooth G-manifold, such a lift exists. We need to set up
some notation for the proof. For 0 < € < 1,1et A” be {(tg,...,tn) : D t; =1,1—€ <ty <
1}, as pictured in Fig. 1a. The corresponding equivariant simplex AH is the appropriate
quotient of G x A?. This truncated simplex contains the Oth vertex, which is fixed by
H,, in a fundamental domain of the equivariant simplex.

Let AL, be the face of A? which does not contain the 0 vertex and let AZ, be its
complement in A”. We note that A”_ = A"~! and for the corresponding equivariant
simplices, Afo<<Hn ig jsovariantly homeomorphic to AHo<<Hn-1 Finally, for 0 <
§ <e<1,let Ay denote A\ A s, (pictured in Fig. 1b). Then the boundary is 0As,q =
(0A: \ 0As) U A_s. Denote the inclusion of this boundary by b. For the corresponding
equivariant simplices, isovariantly A5 = A—. x I and the inclusion of the boundary
is isovariantly homeomorphic to the pushout-product b = (01 — I)0(0A=c — A—.) or
equivalently, b & soO0bH0<<Hn-1_ We denote by &y the map A" \ A_, — A" which
includes the boundary components containing the Oth vertex, pictured in Fig. 1lc.

We denote by ¢ the domain of a map bHOiy € J. Let Cce C € be the domain
of the pushout-product of ig : {0} — [0,¢/] with d : A \ A_. — A, pictured for
Hy < H1 < Hy in Fig. 2 on a fundamental domain.

Theorem 3.9. For a finite group G, a smooth G-manifold M, and a map j € J-cell, there
is an isovariant lift in the following diagram:

A—— M

A
. /
|
s

B

We note that having this lifting condition against maps of 7 implies that it holds for
maps j € J-cell.
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AT —
_A"
AZ,

Vo

(c)

Fig. 1. (a) A? C A™ with bold boundary. (b) A5 ; C A™ with bold boundary. (c) The map o : OANA_, —

€-

faalh)

[0, €]

Fig. 2. €. o C fd(ATo<H<H2) s T

The lifting condition above resembles the fibrancy condition for stratified simplicial
sets in [6]. Proposition 4.12 of [6] shows that conically stratified spaces are fibrant, relying
on Theorem A.6.4 of [23]. Our proof below resembles these arguments, but is simplified by
the fact that we only consider smooth manifolds rather than the more general conically
stratified spaces.

Proof. We will show that M has the extension property with respect to io0bH by induc-
tion on the length of the chain H = Hy < --- < H,. The same proof shows M has the
extension property with respect to (io0b*) x D™, so we omit the disk factor throughout
this proof.

For H = Hp, a length 0 chain, the lifting condition on Mapis(AH, M) —
Mapig,t (OAH M) reduces to fibrancy of the space Mapis,t(G/Ho, M) = My, .
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Assume that the maps igOb70<<Hn-1 extend isovariantly against any G-manifold
M for any length n — 1 chain of subgroups Hy < -+ < H,_1.

We wish to show that the map igOb70 <" <Hn extends against a G-manifold M. Denote
the domain of igObo<""<Hn by ¢ and let ¢ : € — M be the map we wish to extend. By
the equivariant tubular neighborhood theorem, there is a neighborhood of ¢(0 x Af») in
M which is G-homeomorphic to G x g, V where V is a H,-representation. Let €, ., C €
be the domain of the pushout-product of i : {0} — [0, '] with dg : A\ A, = A, (as
pictured in Fig. 2). By continuity, there exist ¢ and €' such that ¢(€. ) C G xg, V.

An extension of ¢ for one connected component of €. mapping to one copy of V'
will define the extension ® : [0,€'] x Afo<=<Hn _ G xpz V for all components by
equivariance. By compactness, this yields an extension of ¢ to I x A, — M; fibrancy of
the space My, yields the extension to all of I x AHo<<Hn

Decompose the H,-representation V as the product V#» x W where W = (V=)L and
WH» = 0. The map ¢ can be written as the product ¢ = ¢f** x 1) with ¢f* : Ceor — VHn
and 1 : €. — W. Isovariance of ¢ implies 1 is isovariant and ([0, €] x Afln) =0 € W.

We will extend ¢ and 1 individually and define the desired extension ® : [0, €] x
AHo<<Hn V' by & = &% x . If ¥ is isovariant, then ® is an isovariant extension
of ¢.

The extension ®/% of ¢/%* is obtained as

oFie

fd(e:ﬁ,e’)

—
. -
’LoDéo _ /qu
R

0,¢) x fd(Afo<<1n)

The vertical map is the pushout-product of ig : {0} — [0, €] with the map Jy : A, \
Aze — A.. Since VI is fibrant as a space and g0y is an acyclic cofibration of spaces,
the extension exists. Once the extension is defined on the fundamental domains, it can
be defined on the whole space by equivariance.

It remains to extend v isovariantly to W : [0, €/] x AHo<<Hn _ 1y

By continuity of ¢, we can choose real numbers p; > ps > -+ > pg > -+ such that
P(€p, ') C Biyp (W), that is, ¢ sends the truncated pushout-product domain to the ball
of radius 1/k centered at 0 in .

Since By (W) is an Hp-manifold, we may apply the inductive hypothesis with H =
Hy < -+ < Hp_1 to isovariantly extend ¢ to each level [0, €] x A_,,.

()

0 x Aljpk e — Bl/k(W)HO

J/ -
—
. —
0 -
- ’
e Pk

[0,€] x AE

=Pk
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Pr Pk
Pr+1 Pk+1
A

~—— ~——

[0,€] [0, €]
(a) (b)

Fig. 3. (a) Domains of extensions v, shown horizontally. (b) Domain of extension 1 shaded in.

A similar diagram extends ¢ : 0 x AE — Wy to ¢ : [0,€] x AHE. — Wy,. The

—¢ =€
result of the steps so far is pictured in Fig. 3a.
Extension to each sector v : [0,€'] X Ap, ., p — Bix(W) is also given by the

inductive hypothesis, using that isovariantly Aggisz]}[ > AHo<<Hn-1 % [ and the

boundary inclusion map b is isovariantly homeomorphic to sqmbfo<<Hn-1,

Y Yk T Yk
][07 6/] X 8A[Pk+1»m] N Bl/k(W)

0 x A[pk+17pk] HOXBA[ g

Phk4+1:Pk

ioDSonH - -
- P

[0, 6/] X A[pk“vpk]

One of these extensions is pictured in Fig. 3b. Similarly, one obtains an isovariant
extension vy : [0,€'] X Ay, g — W.
The union of the extensions 9y yields an isovariant map

T:[0,€] x Affo<<Ho 7y

with W([0,€'] x Affo<<Hn) c By, (W). Since $([0,€'] x Af) = 0, the map ¥ is
continuous on its domain. O

3.8. An isovariant Whitehead’s theorem

Using the results proven in the previous subsections, we can prove that isovariant
weak equivalences between smooth G-manifolds are isovariant homotopy equivalences.

Theorem 3.10. (Isovariant Whitehead’s theorem) Let G be a finite group, let Y and Z be
smooth G-manifolds, and let f :Y — Z be an isovariant map. Then f is an isovariant
homotopy equivalence if and only if f induces weak equivalences Mapist(AR, f) for all
chains of subgroups H = Hy < --- < H, of G.

Proof. Recall from Remark 2.4 that an isovariant homotopy equivalence between G-
spaces is an isovariant weak equivalence. For G-spaces X and Y, let [X, Y]t denote the



24 I. Klang, S. Yeakel / Advances in Mathematics 433 (2023) 109298

set of isovariant homotopy classes of isovariant maps between them. Suppose that Y, Z
are smooth G-manifolds, and f : Y — Z is an isovariant weak equivalence. We will prove
that if M is a smooth G-manifold, then f induces a bijection

f* : [M7 Y]isvt — [M> Z]isvt-

When M = Z, the preimage of idz gives an isovariant homotopy inverse for f.
In order to do this, we will first replace f : Y — Z with an isovariant map f:Y —
Z € J-inj, where Y is isovariantly homotopy equivalent to Y. Define

A~

Y ={(y,7) €Y xMap(l, Z) : f(y) =7(0),Gyu) = GVt € I}

with diagonal G-action and

A

fly,v) =~(1).

This is very similar to the process of replacing a map of topological spaces by a fibration,
except the paths are required to stay in the same isotropy subspace of Z in order for
the evaluation at 1 to be isovariant. Denote by Pg.tZ the paths in Z that remain in the
same isotropy subspace. That is,

PuwZ=4{y:I1—>Z: G'y(t) = G,Y(O)Vt}.

Then Y = {(y,7) € Y X PexZ : f(y) = v(0)}. We will prove a series of claims that will
imply the theorem.

Claim 1: the space Y is isovariantly homotopy equivalent to Y. Define pr : Y Y
by projection onto the first component, and ¢ : Y — Y as ¢(y) = (v, consty(y)). These
maps are isovariant due to the requirement that paths in ¥ remain in the same isotropy
subspace. In addition, pr o ¢ = idy, so it remains to show that c o pr is isovariantly
homotopic to idy. For (y,v) € Y, copr(y,y) = (y,consty,)). For s € [0,1], define
H((y,7),s) = (y,7s), where v5(t) = y(st). Then H is an isovariant homotopy from copr
to idy, as required.

Claim 2: the map evg X evy : PswZ — Z X Z is in J-inj. In the notation of Lemma 2.5,
take C = & = isvt-Top, and D = Top. Here we use the tensoring and cotensoring of
isvt-Top over Top. Note that evg x evy = Homg(io1,tz), where ig1 : {0,1} — [0,1]
denotes the inclusion of the endpoints, and ¢z denotes the map from Z to the terminal
object in isvt-Top. By the adjunction between pushout-product and pullback-hom, a lift
in the diagram

A —_— Pisth

A
. -
b os,, 104 - evo X evy
-
-

B——ZxZ
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is equivalent to a lift in the diagram

A —— 7
pt
bHDSnluioE‘io,lJ/ P 7
v
B

Here A and B denote the source and target of bH0s,,_10iy, and A’ and B’ denote

the source and target of bHDsn,lmiODio,l. Since ig1 = sp, we have s,_10ip1 = Sy,
so bHOs,,_10ig0ip1 € J-cell. By Theorem 3.9, a lift exists in the second diagram, and
therefore in the first. Therefore evy X ev; € J-inj.
Claim 3: the map f is in J-inj. Let A and B denote the source and target of
0s,_10i9 € J, respectively. Any isovariant map A — Y can be written as U X @,
where ¢ : A =Y and ¢ : A — PgnZ are isovariant maps with evg o ¢(a) = f o 1(a) for
all a € A. By Theorem 3.9, there is a lift in the diagram

bH

Y

J@
N
N

bHDSn71Di0

W
N
N
hsy}

Denote this lift ¢ : B — Y. A commutative diagram

A v
bHDSnIDiOJ/ lf
B Z

<
X
©

P

|

gives a commutative diagram

@
— P2

A
bHDSnIDiOJ/ J/€’Ul
B

A

l@

and along with the previously obtained lift ¢ : B — Y, we obtain a commutative diagram

A" Pz

bH\:‘SnlmioJ/ levoxevl
(foh)x @
B

—— I X JZ
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By Claim 2, there is a lift ® : B — Pg.Z in the diagram above. Defining F(z) =
((x), ®(x)) for all z € B then gives a lift F': B — Y in the diagram

A Y
bHDs,,LluiOJ lf
B Z
as required.

We will finish the proof of the theorem by showing that for M a smooth G-manifold,
the isovariant weak equivalence f induces a bijection

PXP
—

P
—_

f* : [Ma Y]isvt — [M7 Z]isvt'

Claim 4: f, is surjective. Suppose we have an isovariant map g : M — Z. Note that
f= f oc is an isovariant weak equivalence, and c is an isovariant homotopy equivalence, so
by the 2 out of 3 property for isovariant weak equivalences, f € W. By Claim 3, f € J-inj.
Now, by Lemma 3.4, W N J-inj C Z-inj, and therefore f € Z-inj. By Theorem 3.6,
0 — M € T-cell, so there is a lift §: M — Y in the diagram

Y
|
g
M — Z
Composing with pr: ¥ — Y, we obtain by Claim 1 a preimage pro j: M — Y of g.
Claim 5: f, is injective. Suppose that hg, hy : M — Y are isovariant maps satisfying

fohyg = go,fohy = g1, where gy and g; are isovariantly homotopic. Composing with
¢:Y =Y, we obtain a commutative diagram

cohg)(coh ~
M x {0,1} (cohg)I(cohy) v

L

Mx] —— 7

where H’ is an isovariant homotopy from gg to g1, and the left hand vertical map is the
inclusion. Since one can find an equivariant triangulation of M x I with an equivariant
subtriangulation of M x {0, 1}, by Lemma 3.7, the left vertical map is in Z-cell. Recall
that f € Z-inj. Since M x {0,1} — M € Z-cell, a lift H : M x I — Y exists in the above
diagram. Composing with pr : Y — Y, we obtain an isovariant homotopy from hg to hq,
as required.

This concludes the proof of the theorem. O
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In [7, 4.10], the authors prove an isovariant Whitehead theorem for compact smooth
G-manifolds with treelike isotropy structure. We show that the isovariant Whitehead
theorem above agrees with the theorem of Dula—Schultz in the cases where the latter
applies. That is, we will show

Proposition 3.11. Let X and Y be compact smooth G-manifolds with treelike isotropy
structure, and f : X =Y an isovariant map which satisfies the hypotheses of Theorem
4.10 of [7]. Then f is an isovariant weak equivalence.

A space has treelike isotropy structure if all its isotropy subgroups are normal in G
and for each isotropy subgroup H, the set of isotropy subgroups K such that K C H is
linearly ordered by inclusion. For more details, see section 3 of [7].

In Theorem 4.10 of [7], the hypotheses on the isovariant map f are:

« For every isotropy subgroup H < G, f# : X# — YH is a homotopy equivalence

e For every isotropy subgroup H < G, fg : Xy — Yy is a homotopy equivalence, and

« For every isotropy subgroup H < G, f induces a homotopy equivalence IN(X) —
ONH(Y), where N(X) is a mapping cylinder neighborhood of Sing(X) c X
and Sing(X ) is the set of points in X whose isotropy groups are strictly larger
than H.

Let H' be a minimal subgroup of G strictly containing H which appears as an isotropy
subgroup in X. We denote by tubxu (XH,) a tubular neighborhood of X' in X¥ and
dtubxw (XH/) its boundary. If X has treelike isotropy structure, the space AN (X) is
a disjoint union of spaces of the form dtubyx (XH') for such H’. This is because, if H’
and H' minimally strictly contain H and all three appear as isotropy subgroups, then
XH n XH" =), and we can choose tubular neighborhoods which are also disjoint. We
will use the following convenient model for 9 tubyu (XH'):

dtubyn (XT') ~ Xpgegr = {v:[0,1] = X7 : 4(0) € X' y(t) € XpVt > 0}
Thus we can rephrase the third Dula—Schultz assumption on f as follows:

o For every consecutive pair of isotropy subgroups H < H’, f induces an equivalence

Xu<n — Yu<nr.
We will now prove Proposition 3.11.

Proof. Let X and Y be compact smooth G-manifolds with treelike isotropy structure,
and f: X — Y an isovariant map satisfying the assumptions above. We will prove that f
induces weak equivalences Mapig,:(AH, ) for all chains of subgroups H = Hy < --- < H,
of G by induction on the length of H. For n = 0, if Hy < G is an isotropy subgroup,
then Mapigt (A0, f) = fu, : Xp, — Yu, is an equivalence, by assumption.
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Now take a chain of subgroups H = Hy < --- < H,, and let H} be the smallest
isotropy subgroup appearing in X which strictly contains Hy and is contained in H;. Let
H = H; < --- < H,. We will show that Mapig(AH, X) is naturally weakly equivalent
to the homotopy pullback in the diagram

P Xyy<ny

j [ow

Mapig:(AH, X) ——— X Ho

where the bottom map evaluates on any point in the simplex AH/; these maps are all
homotopic. The homotopy pullback of the diagram above is equivalent to the homotopy
pullback of

P—————— Map(A™1, Xny<my)

l l(evo)*

Mapist(A®', X) ——— Map(An~t, X o)

where the bottom map is the inclusion of isovariant maps into all maps. We claim that evg
is a fibration, and therefore so is (evp)s. Assuming this, the homotopy pullback is equiva-
lent to the pullback. The pullback in this diagram is the space of maps [0, 1] x AH 5 X
which send (0, (;)) € [0,1] x AP to points with isotropy group the corresponding sub-
group in H', and send (s, (¢;)) for s > 0 to points with isotropy group Hy. Thus the
pullback is homeomorphic to the space of isovariant maps, Mapis,t(AH, X).

By the induction hypothesis, f induces weak equivalences X, <y — Yi,<mj, X Hy
YH(J, and Map;s\,t(AH/,X) — Map;s\,t(AH/,Y). Thus it induces a weak equivalence on
the homotopy pullbacks, Mapigt(AH, X) — Mapis:(AF,Y). So Mapigt (AH, f) is a weak
equivalence, as required.

It remains to justify the fact that evo : Xpgy<my — X Hy ig a fibration in Top. In other
words, we want to show that there is a lift in every diagram of the form

D" x0—— AXHO<H('J

D" x [ —— XHp

Adjointing via the path space description of Xy, <, we would like to show that for
every map

¢:D"x0xI |J D™xIx0-— XM
D™ x0x0
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such that ¢(v,s,0) € X for all s € [0,1] and ¢(v,0,t) € Xp, for all t > 0, there is an
extension

&: D" xIxI— XHo

such that ®(v,s,t) € Xp, for all t > 0.

Restricting the G-action on Xp .p; to an Hj-action does not change the space
because the isotropy of X is treelike. As an H{-space, Xp, < m, 1s equivalent to the
1-dimensional link Map;svt(AH°<H3, X). Thus the fact that evy € J-inj follows from the
proof of Theorem 3.9. O

This suggests that for isovariant maps between manifolds, it suffices to check weak
equivalence on isotropy subspaces and on one-dimensional links. The following result
verifies this.

Proposition 3.12. Let f : M — N be an isovariant map between G-manifolds. If
Mapist (AT, f) and Mapigt(AHo<H1 f) are weak equivalences for all H,Hy, H, < G,

then f is an isovariant weak equivalence.

Proof. Notice that M and N are, in particular, stratified spaces, whose strata are the
My for H < G.ForJ = Hy < H, < ... < H,, denote by A’ a fundamental domain of
the isovariant simplex AJ. This agrees with the stratified simplex A’ in the sense of [6,
Section 1]. Note that

Mapisvt(AJ7 M) = Mapstrut(AJ7 M)

and similarly for V. That is, the space of isovariant maps is equal to a space of stratified
maps. Suppose that Mapig.:(A7, f) is a weak equivalence for all J of length 0 or 1.
Then Mapg,,..;(A”7, f) is a weak equivalence for all J of length 0 or 1. The manifolds
M and N with their isotropy stratification are conically stratified spaces which are the
filtered realization of filtered simplicial sets, so by Theorem 5.4 of [6], this implies that
Map,;..: (A7, f) is a weak equivalence for all J of any length. Therefore Mapis,:(AY, f)
is a weak equivalence for all J, so f is an isovariant weak equivalence, as required. O

4. Isovariant fixed point theory
Let G be a finite group, and let M be a compact smooth G-manifold such that

o dim M¥ >3 for all H that appear as isotropy groups in M, and
« for H < K that appear as isotropy groups in M, dim MH — dim M¥ > 2.

Let f: M — M be an isovariant map. In this section, we prove that the equivariant
Reidemeister trace gives a complete invariant for the isovariant fixed point problem:.
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Theorem 4.1. If the fized points of f: M — M can be removed equivariantly, then they
can be removed isovariantly.

Write (H) < (K) if H is properly subconjugate to K, and let
(H1) > ...> (Hp)

be a total ordering of the subgroups appearing as isotropy groups of x € M, which
extends the subconjugacy order. For 1 < k < n, denote by My = J,«; M) the
subspace of M consisting of all points fixed by a subgroup conjugate to some H;, i<k.
Denote by My,) the points fixed exactly by a subgroup conjugate to H;. We prove
Theorem 4.1 inductively.

Proof. We prove by induction on & that f|s, can be isovariantly homotoped to have no
fixed points. For k = 1, the fixed points of f can be eliminated equivariantly, therefore
they can be eliminated on M1, (See, for example, Theorems 5.7 and 10.1 of [25].)

By induction, assume that f|5s, _, has been isovariantly homotoped to a map without
fixed points. Thus we have a homotopy

MUMk71X0 (Mk_]_ X I) - M

Note that the inclusion M Uz, xo0 (Mr—1 X I) — M x I is the pushout-product of
My.—1 — M with i : 0 — [0, 1]. The pushout-product of a map in Z-cell with g is a map
in J-cell, thus by Corollary 3.8, this is a map in J-cell. By Theorem 3.9, we can thus
extend M Uy, xo0 (Mg—1 X I) = M to an isovariant homotopy H : M x I — M. The
map f; = H(—, 1) has no fixed points on Mj_1, and therefore also has no fixed points
on a neighborhood of Mj_;. In particular, f; has no fixed points on a neighborhood of
M1 in My. Denote by U a G-invariant neighborhood of My _; in My, whose closure
U equivariantly deformation retracts to Mj_1, and such that f; has no fixed points on
U. This can be achieved by, for each i < k — 1, taking V; a small enough equivariant
tubular neighborhood of M) in M, and setting U = Ui<r_1 Vi N M. We'll extend
filg isovariantly to a map that has no fixed points on My; it suffices to extend it from
OU to My, — U. As all points in OU and My, — U have isotropy groups conjugate to Hy,
an equivariant extension will provide an isovariant extension. As in [27], [20], or [28], the
obstruction Ra(f|ou,m,—v) for extending the homotopy which removes the fixed points
of fi from QU to My — U lives in

[Car(My — U, 0U), SmE§;.

By excision (e.g., Lemma 7.3.1 of [24]) and by the equivariant deformation retraction
between U and Mj_1,

[Cri(My — U, 0U), S E|S; = [Cri(My, U), SiE)S; = [Car (My, My—1), Si E)S
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and under these isomorphisms, Rg(f|ov,a,—v) maps to Ra(f|g a, ), which maps to
Re(flam,_, ., )- The Reidemeister trace Rg(f) is trivial, and M satisfies the assumptions
of Theorem 2.7, and so the local Reidemeister trace Ra(f|ar,_,,m,) is trivial. Thus we
can extend the homotopy which removes the fixed points of f; from OU to My — U.

Therefore we can extend f; isovariantly to a map with no fixed points on M}, and we
are done. 0O

Corollary 4.2. Let G be a finite group, and M a compact smooth G-manifold such that

o dim MH >3 for all H that appear as isotropy groups in M, and
e For H < K that appear as isotropy groups in M, dim MH — dim MK > 2

Let f : M — M be an isovariant map. Then f is isovariantly homotopic to a map
without fized points if and only if its equivariant Reidemeister trace, Ra(f), is trivial.

However, if X is a compact G-space which is not a manifold and f : X — X is an
isovariant map, Rg(f) is not necessarily a complete invariant for isovariantly removing
fixed points of f:

Example 4.3. Let X = D(sgn)Ujoy S1, the disk in the sign representation of C5 attached
along its fixed point to a circle with trivial action, pictured below. The identity map of
X is isovariant. Equivariantly, this space is equivalent to S! with the trivial action, so
the fixed points of the identity map can be eliminated equivariantly (e.g., by rotation).
But note that any (continuous) isovariant map f : X — X must send the point 0 € X
to itself: this point is the limit of points in X, = D(sgn) — 0, thus f(0) must be in the
closure of D(sgn) — 0. On the other hand, 0 € X2, so it must be sent into X¢2. Thus
f(0) = 0, so any isovariant f : X — X has a fixed point. Therefore the fixed points of
the identity cannot be eliminated isovariantly.

We can build a similar example with dim X > 3 as follows: let X = D(sgn®®) Ug S2,
where S has the trivial action, and take f : X — X the identity map. Equivariantly,
this is equivalent to S with the trivial action, so we can remove the fixed points of the
identity (e.g. by multiplying by a unit quaternion). The same argument as above shows
that the fixed points of the identity cannot be removed isovariantly.

Both of these spaces are “cofibrant”, that is, built out of maps in Z-cell. However,
they are not “fibrant”; they do not satisfy the right lifting property with respect to all
maps in J-cell. A crucial property of smooth G-manifolds which makes them fibrant is
the existence of tubular neighborhoods of X inside larger subspaces X%.
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Possible additional invariants for the isovariant fixed point problem are the equivariant
Reidemeister traces of f on X () for H < G, Rg(f|x ;). We do not know whether these
are complete invariants; however, when X is not a manifold, the equivariant Reidemeister
trace of f on X(g) is not determined by the equivariant Reidemeister trace of f. This
can be seen by considering the equivariant Lefschetz number of id|x, in the examples
above.

5. A weak model structure

In this section, we demonstrate that our results in this paper arise from a weak model
structure in the sense of [14]. Weak model structures still allow for a good notion of
Quillen adjunction (as well as Quillen equivalence), a well-behaved homotopy category,
and most other constructions in categorical homotopy theory. We will use Theorem 3.5
of [14], reproduced below.

Theorem 5.1. Let C be a bicomplete category with two classes of maps Z and J such that:

(1) The classes T and J generate weak factorization systems (Z-cof,Z-inj) and
(T -cof, J-inj);
(2) J C I-cof; and
(3) C admits a left adjoint endofunctor C with natural transformations eg, ey : Id — C,
such that
(a) Ifi: A— BeZ, the map (B B)Uana CA — CB is in -cof;
(b) If i : A — B € Z, the two maps BUs CA — CB have the left lifting property
with respect to all maps in J-inj between J -fibrant objects; and
(¢) If j : A— B € J, then the map (BII B) Uania CA — CB has the left lifting
property with respect to all maps in J-inj between J -fibrant objects.

Then C admits a weak model structure in which J-inj give the fibrations between fibrant
objects, and Z-cof give the cofibrations between cofibrant objects.

Remark 5.2. We say that X € C is J-fibrant if the map from X to the terminal object
is in J-inj.

We will prove that the isovariant category with the classes Z and J as defined in
Definition 3.1 satisfies the conditions of the theorem above.

Theorem 5.3. There is a weak model structure on isvt-Top in which J-inj gives the fibra-
tions between fibrant objects, and Z-cof gives the cofibrations between cofibrant objects.

Proof. The classes Z and J indeed generate weak factorization systems by the small
object argument because their domains are compact and thus small with respect to
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relative cell complexes. To prove the second condition, we will show Z-inj C J-inj, which
implies that J C Z-cof. Let f: X — Y be in Z-inj, so f has right lifting property with
respect to s, 0bH. By the adjunction of pushout-product with pullback-hom, a lift of f
with respect to s, 0b™ is equivalent to a lift in spaces of the map

Map;svtD(bH,f) : Mapisvt(AH,X) — Mapisvt(ﬁAH,X) X Mapis (DA Y) Map;s\,t(AH,Y)

against s, € ZT°P. That is, the pullback-hom map above is in ZT°P-inj C 7 T°P-inj, by the
cofibrantly generated model structure on Top. Thus the pullback-hom map lifts in Top
with respect to 5,019 = D™t! x iy. Using the adjunction again, this implies that f has
the right lifting property with respect to s,0io0bH, so f € J-inj. Thus Z-inj C J-inj,
and therefore J C Z-cof.

For the third condition, take CX = X x I. This is left adjoint to the functor Pg from
subsection 3.3. We take ey : X — X X I to be the inclusion at 0, and e¢; : X — X x [ to
be the inclusion at 1.

Now take i = s,0b" : A — B € 7. Note that the map (BIIB)Uapa(AxI) — (BxI)
is the pushout-product iy ,0i; since 9108, = Sp4+1, this map is in Z-cof, as required.
This proves condition 3(a). In addition, the maps BU4 (A x I) — B x I are the pushout-
products (0 — I)0Oi and (1 — I)04, and are therefore in J-cof, and so satisfy the left
lifting property with respect to all maps in J-inj. This proves condition 3(b). Finally, if
j = 5,000 — I)Ob™ € 7, then the map (BII B)Uana (Ax I) — (B x I) is i9,10j; since
10,108p = Sp41, this is in J-cof, and so satisfies the left lifting property with respect to
all maps in J-inj. This proves condition 3(c). By Theorem 3.5 of [14], there is a weak
model structure on isvt-Top in which [J-inj give the fibrations between fibrant objects,
and Z-cof give the cofibrations between cofibrant objects. O

Remark 5.4. Note that our structure is somewhat stronger than that of a weak model
category; for instance, the maps in 3(b) and 3(c) of the theorem lift against all maps
in J-inj, not just the ones between fibrant objects. We conjecture that this weak model
structure arises from a semi-model structure (specifically, a left model structure as in
[15], [32], and [2]) or even a model structure (specifically, a fibrantly induced model
structure in the sense of [12]).
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