
Advances in Mathematics 433 (2023) 109298
Contents lists available at ScienceDirect

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

Isovariant homotopy theory and fixed point 

invariants
Inbar Klang ∗, Sarah Yeakel ∗

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2021
Received in revised form 9 August 
2023
Accepted 25 August 2023
Available online 20 September 2023
Communicated by A. Blumberg

Keywords:
Isovariance
Homotopy
Manifold
Fixed points

An isovariant map is an equivariant map between G-spaces 
which strictly preserves isotropy groups. We consider an 
isovariant analogue of Klein–Williams equivariant intersection 
theory for a finite group G. We prove that under certain 
reasonable dimension and codimension conditions on H-fixed 
subspaces (for H ≤ G), the fixed points of a self-map of a 
compact smooth G-manifold can be removed isovariantly if 
and only if the equivariant Reidemeister trace of the map 
vanishes. In doing so, we study isovariant maps between 
manifolds up to isovariant homotopy, yielding an isovariant 
Whitehead’s theorem. In addition, we speculate on the role of 
isovariant homotopy theory in distinguishing manifolds up to 
homeomorphism.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

Advances in equivariant homotopy theory have provided important computational 
tools for solving problems in the nonequivariant setting. Isovariant maps, which satisfy a 
stronger condition than equivariance, naturally occur in surgery theory and classification 
questions for manifolds [3]. If X and Y are compactly generated spaces with continuous 
left G-actions, an isovariant map is an equivariant continuous function f : X → Y such 
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that Gx = Gf(x) for all x ∈ X. That is, an isovariant map preserves the G-action and 
strictly preserves isotropy subgroups.

For example, consider the cyclic group with two elements, C2. The one-point space ∗
has a trivial C2-action and the unit disk D2 can be given the C2-action which reflects 
across the vertical axis. Any map from ∗ to D2 whose image lies in the C2-fixed points 
is both equivariant and isovariant. Indeed, any equivariant map which is injective is also 
isovariant. The map D2 → ∗ is equivariant, but not isovariant. While the disk with 
reflection action is equivariantly homotopy equivalent to the trivial one-point space, it 
is not isovariantly homotopy equivalent to it.

A compelling reason to study the category of G-spaces with isovariant maps is the ex-
pectation that having isovariant analogues of homotopical equivariant results will provide 
stronger techniques for answering questions requiring more rigidity. One such question 
involves distinguishing manifolds up to homeomorphism. Let M and N be smooth, com-
pact manifolds. It has been conjectured (see, e.g., [22]) that if the ordered configuration 
spaces Confn(M) and Confn(N) are homotopy equivalent for every n, then M and N
are homeomorphic. For example, the lens spaces L(7, 1) and L(7, 2) are distinguished by 
the homotopy types of their configuration spaces [22]. Recent work on rational models of 
configuration spaces in [4] suggests that this may not be the case for compact, smooth 
manifolds in general; the rational homotopy type of configuration spaces depends only 
on the rational homotopy type of the manifold in the simply-connected case, and on 
additional data of a partition function otherwise.

Instead, we propose studying the isovariant homotopy types of Mn and Nn. The 
cartesian product Mn has an action of the permutation group Σn given by permuting 
the factors, and the subspace on which Σn acts freely is Confn(M). Thus, if Mn and Nn

are isovariantly homotopy equivalent for every n, then Confn(M) and Confn(N) are ho-
motopy equivalent for every n. The isovariant homotopy type of Mn contains information 
about the configuration spaces Confi(M), but also includes some coherence information 
about how they are glued to form Mn. Thus, a more plausible form (suggested by Cary 
Malkiewich) of the conjecture above might be

Conjecture. If Mn and Nn are Σn-isovariantly homotopy equivalent for every n, then 
M and N are homeomorphic.

This might also have interesting connections with embedding calculus, as in [11].
To investigate in this direction, we study homotopy theory in the category of G-

spaces with isovariant maps, providing new cell structures with respect to which smooth 
manifolds are homotopically well-behaved. As applications, we prove an isovariant White-
head’s theorem and study isovariant fixed point theory.

A common approach in the isovariant setting is to require extra assumptions on the 
dimensions of gaps between isotropy subspaces so that isovariant and equivariant ho-
motopy equivalences coincide. The gap hypotheses in this paper are significantly weaker 
than those in [31], and additionally weaker than those in [21] (e.g., Definition 4.49 of that 
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book). We show that such strong gap hypotheses are not necessary to establish results 
in isovariant fixed point theory.

Fixed point theory begins with a very classical question: given a continuous self-map 
of a compact space f : X → X, is f homotopic to a map without fixed points (elements 
x ∈ X such that f(x) = x)? For example, the identity function of S1 is homotopic to the 
rotation by π map, which has no fixed points. Lefschetz defined the Lefschetz number 
of f ,

L(f) = Σ∞
i=0(−1)irkHi(f)

and showed that for simplicial complexes X, if f is homotopic to a map without fixed 
points, then L(f) = 0. If X is a simply connected, smooth manifold of dimension at 
least 3, then the converse also holds: if L(f) = 0, then f is homotopic to a map without 
fixed points.

If f : M → M is a self-map of a compact, smooth manifold which is not simply 
connected, then L(f) is not a complete invariant for the fixed point problem. In [29], 
Reidemeister defined the Reidemeister trace, R(f), which Wecken later showed is a 
complete invariant if the dimension of M is at least 3 ([37]). That is, R(f) = 0 if and 
only if f is homotopic to a map without fixed points (see also [17]). The Reidemeister 
trace R(f) can be considered as an element of H0(Lf M), where Lf M = {γ : I → M :
γ(1) = f(γ(0))} is the twisted free loop space; see, e.g., section 10 of [19] or chapter 6 of 
[26].

The fixed point problem for equivariant maps has proven to be more complicated. 
The equivariant Lefschetz trace, LG(f), of a G-equivariant map f : M → M can be 
considered as an element of the Burnside ring of G (see, e.g., Remark 8.5.2 of [34]). In 
the case of the identity map, LG(id) recovers the equivariant Euler characteristic of M . 
A complete invariant in this case is given by the equivariant Reidemeister trace, RG(f), 
which can be considered as an element of HG

0 (Lf M). Showing that RG(f) is a complete 
invariant is substantially more difficult than doing the same for R(f), in large part due to 
issues of equivariant transversality. Results of this flavor are proven in [10], [38], [9], [36], 
and [20]. In [19] and [20], Klein and Williams develop a homotopy theoretic approach 
to intersection theory, and use it to address the equivariant fixed point problem using 
equivariant homotopy theory rather than equivariant transversality. They prove:

Theorem H. [20] Let G be a finite group, and let M be a compact smooth G-manifold 
such that

• dim MH ≥ 3 for all H that appear as isotropy groups in M , and
• for H < K that appear as isotropy groups in M , dim MH − dim MK ≥ 2.

Let f : M → M be an equivariant map. Then f is equivariantly homotopic to a map 
without fixed points if and only if RG(f) is trivial.
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Here, MH denotes the points in M fixed by the subgroup H.
In this paper, we address the fixed point problem for isovariant maps:

Question. Given a compact, smooth G-manifold M and an isovariant map f : M → M , 
when can we find an isovariant map f1 : M → M , isovariantly homotopic to f , such that 
f1 has no fixed points?

Motivated by the impressive effectiveness of equivariant homotopy theory in [20], 
we further the study of isovariant homotopy theory by providing analogues of certain 
important equivariant results, described below. This allows us to prove:

Theorem 4.1. Let G be a finite group and suppose that M is a compact smooth G-
manifold such that

• dim MH ≥ 3 for all H that appear as isotropy groups in M , and
• For H < K that appear as isotropy groups in M , dim MH − dim MK ≥ 2

Let f : M → M be an isovariant map. If the fixed points of f can be removed equivariantly 
(equivalently, if RG(f) = 0), then they can be removed isovariantly.

That is, we obtain the result that equivariant fixed point theory and isovariant fixed 
point theory for such manifolds coincide. The equivariant Reidemeister trace RG(f)
completely determines whether an isovariant self-map of such manifolds can be modified 
by an isovariant homotopy to a fixed point free map.

To obtain the theorem above, we use the homotopical techniques of Klein–Williams 
in the isovariant setting, which requires the presence of a homotopy theory for the iso-
variant category. In [39], the second author constructed a Quillen model structure on the 
category of G-spaces with isovariant maps. While this model structure provides a way 
to combinatorially represent G-spaces as presheaves on a category, we cannot apply the 
techniques of [20] to G-manifolds with this homotopy theory, because not all G-manifolds 
are cofibrant. In this paper, we develop a more robust homotopy theory of the isovariant 
category (for G a finite group), which involves defining new kinds of isovariant cells (see 
Definition 3.1). With these new isovariant cell structures, we prove

Theorem 3.6 and 3.9. Let G be a finite group. Smooth G-manifolds are built out of iso-
variant cells, and they satisfy lifting properties with respect to isovariant cell inclusions.

Theorem 3.9 is closely related to the fact that conically stratified spaces are fibrant, a 
result of [6, 4.12] that relies on Theorem A.6.4 of [23]. We carry out a similar argument 
in the equivariant setting, considering smooth G-manifolds instead of the more general 
notion of conically stratified spaces. More work on conically stratified spaces can be 
found, for example, in [1].

In the presence of a model structure, the theorems above would mean that manifolds 
are cofibrant and fibrant. While we do not provide a new Quillen model structure on 
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isovariant spaces, we are able to obtain the main results that would follow from a suitable 
one. These results can be interpreted as arising from a weak model structure in the sense 
of [14].

Theorem 5.3. Let G be a finite group. There is a weak model structure on isvt-Top in 
which smooth G-manifolds are cofibrant and fibrant.

Proposition A.1 of Douteau–Waas [8] indicates that the Quillen model structure on 
isovariant spaces that we nearly construct in this paper would need to rely on more than 
the stratification by isotropy. While their counterexample cannot arise in the isovariant 
setting, we are currently unable to prove that J -cell ⊆ W (where J -cell and W are 
defined in section 3).

As a result of our study of this more robust isovariant homotopy theory, we are able 
to prove an isovariant Whitehead’s theorem.

Theorem 3.10. (Isovariant Whitehead’s theorem) Let G be a finite group, let X and Y be 
smooth G-manifolds, and let f : X → Y be an isovariant map. Then f is an isovariant 
homotopy equivalence if and only if f is an isovariant weak equivalence (in the sense of 
Definition 2.3).

In [7], an isovariant version of Whitehead’s theorem was proven for manifolds with 
“treelike isotropy structure”; we show that Theorem 3.10 extends and strengthens The-
orem 4.10 of [7]. That is, we show

Proposition 3.11. Let G be a finite group and let f : X → Y be an isovariant map 
between smooth G-manifolds with treelike isotropy structure satisfying the conditions of 
Theorem 4.10 in [7]. Then f is an isovariant weak equivalence.

Further, we characterize isovariant weak equivalences between G-manifolds in terms 
of simpler data. That is, instead of checking that f induces a weak equivalence on 
isovariant mapping spaces of infinitely many higher dimensional simplices, we show that 
f is an isovariant weak equivalence of G-manifolds if it induces a weak equivalence on 
the isovariant mapping spaces of zero and one dimensional linking simplices.

Structure of the paper

In section 2, we cover necessary preliminaries, such as background on the category of 
isovariant spaces and on homotopical fixed point theory. In section 3, we define classes 
of maps out of which isovariant cell complexes are built, and which govern the homotopy 
extension and lifting properties we are interested in. We then show that all smooth 
G-manifolds are isovariant cell complexes and satisfy lifting properties with respect to 
isovariant cell inclusions. We use this to prove the isovariant Whitehead’s theorem. In 
section 4, we apply our results on isovariant homotopy theory to isovariant fixed point 
theory; we prove that for smooth G-manifolds with assumptions as in [20], the isovariant 
fixed point problem reduces to the equivariant fixed point problem. We also give a 
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counterexample showing that this is not necessarily the case for G-spaces which are not 
manifolds. In section 5, we provide a weak model structure on isvt-Top in which smooth 
G-manifolds are cofibrant and fibrant.
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2. Preliminaries

We assume familiarity with the basics of cofibrantly generated model structures as 
presented in [16]. In particular, we use the following notation for classes of maps with 
certain lifting properties. Let I be a class of maps in a category C containing all small 
colimits.

I-inj is the class of maps with the right lifting property with respect to maps in I.
I-cof is the class of maps with the left lifting property with respect to maps in I-inj.
I-cell is the class of relative I-cell complexes. A relative I-cell complex is a transfinite 

composition of pushouts of coproducts of elements of I. Note that I-cell ⊂ I-cof, and 
in fact, I-cof consists of retracts of maps in I-cell.

2.1. Isovariance

Let G be a finite group. We denote by eqvt-Top the category of G-spaces (compactly 
generated spaces with continuous left G-action) with equivariant maps, and we denote 
by isvt-Top the category of G-spaces with isovariant maps with an added formal terminal 
object. (We note that in [39], this category is denoted isvt-Top�.) The category eqvt-Top
is enriched in spaces, and thus isvt-Top is also enriched in spaces using the subspace 
topology. We will denote the space of equivariant maps from X to Y by Mapeqvt(X, Y )
and the space of isovariant maps by Mapisvt(X, Y ).

Let sn : Sn → Dn+1 be the usual boundary inclusion and denote i0 : {0} → [0, 1]. 
There is a cofibrantly generated model structure on the category Top of compactly 
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generated spaces where the generating cofibrations ITop are given by {sn : Sn → Dn+1}
and generating acyclic cofibrations J Top are given by {Dn × i0 : Dn ×{0} → Dn × [0, 1]}
[16, 2.4]. The family of adjunctions below, where H runs over all subgroups of G, allows 
this model structure to transfer to eqvt-Top [33].{

G/H × − : Top eqvt-Top : Mapeqvt(G/H, −)
}

H≤G

In particular, the cofibrantly generated model structure on eqvt-Top has generating cofi-
brations given by {sn ×G/H}, generating acyclic cofibrations given by {Dn ×i0 ×G/H}, 
and f : X → Y is a weak equivalence if and only if Mapeqvt(G/H, f) is a weak equivalence 
of spaces for all subgroups H ≤ G.

In [39], similar techniques are used to transfer the model structure of Top to isvt-Top. 
We will refer to this model structure as the elementary model structure. To define the 
generating (acyclic) cofibrations and weak equivalences, we need to introduce linking sim-
plices. Because isovariant maps between G-spaces preserve the stratification by isotropy 
groups, we will consider chains of subgroups of G. Let H = H0 < · · · < Hn be a strictly 
increasing chain of subgroups of G.

Let Δn be the standard n-simplex in Top, that is,

Δn =
{

(t0, . . . , tn) ∈ [0, 1]n+1 :
n∑

i=0
ti = 1

}
.

Definition 2.1. The linking simplex ΔH
G is the quotient of G × Δn where (g, x) ∼ (g′, x)

if and only if gHk = g′Hk, when x = (t0, . . . , tn−k, 0, . . . , 0), 0 ≤ k ≤ n. Let G × Δn →
ΔH0<···<Hn

G be the natural projection and denote the image of (g, x) ∈ G × Δn under 
the projection by 〈g, x〉. The space ΔH

G has a left G-action given by g′ · 〈g, x〉 = 〈g′g, x〉; 
points of the form 〈g, (t0, . . . , tn−k, 0, . . . , 0)〉 where tn−k �= 0 are fixed by gHkg−1 under 
the G-action.

Example 2.2. If H = {H0}, then ΔH
G = G/H0. This will also be denoted ΔH0 .

We note that ΔH0<···<Hn

G is the same as the “equivariant simplex” Δk(G; Hn, . . . , H0)
defined in [18], although in the equivariant simplex, subgroups may be repeated. Illman 
shows that the equivariant simplex is a compact Hausdorff space with orbit space Δn. 
We will often consider a fundamental domain of a linking simplex, denoted fd(ΔH). 
When G is clear from context, we drop it from the notation.

The boundary of a linking simplex, ∂ΔH
G , is the image of ∂Δn ×G (in the usual sense) 

under the identifications. This can also be identified with

∂ΔH
G = colim•<H Δ•

G,

where • < H denotes all proper subchains of H. Denote the boundary inclusion of a 
linking simplex by bH : ∂ΔH → ΔH.
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Let H ≤ G be a subgroup. In the equivariant setting, Mapeqvt(G/H, X) is equiv-
alent to XH , the subspace of elements which are H-fixed. In the isovariant setting, 
Mapisvt(ΔH , X) picks out the subspace of X fixed by exactly H, denoted XH .

Definition 2.3. The elementary model structure for isovariant spaces has generating 
cofibrations Ielem given by {sn × ΔH : Sn × ΔH → Dn+1 × ΔH} and generating 
acyclic cofibrations J elem given by {Dn+1 × ΔH × i0} (or equivalently (sn�i0) × ΔH). 
The weak equivalences of isvt-Top are the isovariant maps f : X → Y such that 
Mapisvt(ΔH, X) → Mapisvt(ΔH, Y ) are weak equivalences of spaces for all strictly in-
creasing chains H = H0 < · · · < Hn. We call these maps isovariant weak equivalences.

The formal terminal object T is isovariantly contractible. Thus a map f : X → T is 
a weak equivalence if Mapisvt(ΔH, f) is a weak equivalence of spaces for each H. The 
elementary model structure is Quillen equivalent to the category of presheaves on the 
link orbit category with the projective model structure. For more details, see [39].

Remark 2.4. An isovariant homotopy equivalence f is in particular an isovariant weak 
equivalence, since Mapisvt(ΔH, f) is a homotopy equivalence for all H.

One drawback of the elementary model structure on isvt-Top is that not all G-
manifolds are cofibrant. For example, the 2-sphere with a rotation action (sometimes 
denoted Sλ) is not cofibrant. In section 3, we develop more robust homotopy theoretic 
tools for the isovariant category, with which G-manifolds are particularly well-behaved. 
In order to define the relevant classes of maps in section 3, we use the pushout-product 
of maps in Top with maps in isvt-Top. We rely heavily on the relationship between 
pushout-products and pullback-homs described below.

Let C, D, and E be categories with all small colimits, and let ⊗ : C × D → E be a 
colimit-preserving functor. Then the pushout-product of a map f : K → X in C and 
g : L → Y in D is the map f�g in E from the pushout of the first three terms in the 
following square to the final vertex.

K ⊗ L
id⊗g

f⊗id

K ⊗ Y

f⊗id

X ⊗ L
id⊗g

X ⊗ Y

If C also has all small limits and there is a functor HomD : Dop × E → C with an 
adjunction between − ⊗ d and HomD(d, −) for every object d ∈ D, then the pullback-
hom Hom�(g, h) of g : L → Y in D and h : M → Z in E is the map in C from the initial 
vertex to the pullback of the last three vertices of the square below.
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Hom(Y, M) Hom(L, M)

Hom(Y, Z) Hom(L, Z)

An adjunction between pushout-products and pullback-homs is described in [24, 3.2.3], 
which yields the following useful relationship between lifts.

Lemma 2.5. For maps as described above, a lift exists in the first diagram below if and 
only if a lift exists in the second diagram [30, 19.5].

X ⊗ L
∐

K⊗L K ⊗ Y

f�g

M

h

X ⊗ Y Z

K

f

Hom(Y, M)

Hom�(g,h)

X Hom(L, M) ×Hom(L,Z) Hom(Y, Z)

2.2. Homotopical fixed point theory

In [19] and [20], Klein and Williams use a homotopy theoretic approach to define fixed 
point invariants in a way that does not rely on transversality. In this subsection, we review 
the aspects of their approach that will appear in this paper. Given an equivariant self-map 
of a compact smooth G-manifold f : M → M , the problem of finding an equivariantly 
homotopic map f1 : M → M such that f1 has no fixed points reduces to the problem of 
finding a lift up to equivariant homotopy of

id × f : M → M × M

to M ×M −Δ, where Δ denotes the diagonal. Replacing the inclusion map M ×M −Δ →
M × M with an equivariant fibration E′ → M × M and pulling this back along the map 
id × f : M → M × M yields an equivariant fibration p : E → M . Note that the problem 
of finding a map f1 as above then transforms into finding a section of the equivariant 
fibration p : E → M .

Denote by SM E the unreduced fiberwise suspension of E over M . That is,

SM E = M ∪E×0 (E × I) ∪E×1 M.

We can consider SM E as a retractive G-space over M , with section M → SM E given by 
inclusion into the 0-copy of M . The space M � M is a retractive G-space over M , with 
section M → M � M given by the inclusion as the left summand. Then

s : M � M → SM E
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given by inclusion of the 0-copy and the 1-copy defines a map of retractive G-spaces over 
M . One of the central ideas of [19] and [20] converts the problem of finding a section 
of p : E → M into the problem of determining whether s is trivial. The following is 
obtained by combining Proposition 3.1 with Lemmas 10.1 and 10.2 of [20].

Theorem 2.6. Suppose that M is a compact smooth G-manifold such that

• dim MH ≥ 3 for all H that appear as isotropy groups in M , and
• for H < K that appear as isotropy groups in M , dim MH − dim MK ≥ 2.

Then the fibration p : E → M has an equivariant section if and only if the homotopy 
class of s : M � M → SM E in retractive G-spaces over M ,

[s] ∈ [M � M, SM E]GM ,

is trivial.

Thus, under the above conditions, [s] provides a complete invariant for equivariantly 
eliminating fixed points. The class [s] ∈ [M �M, SM E]GM is denoted by RG(f) and called 
the equivariant Reidemeister trace of f . In [20], RG(f) is considered as an element of 
πG

0 (Σ∞
+ Lf M), via stabilizing to parametrized G-spectra and applying Poincaré duality. 

Here Lf M = {γ : I → M : f(γ(0)) = γ(1)} denotes the twisted free loop space. In this 
paper, we will not need this stabilized version.

The proof of Theorem 2.6 in [20] proceeds by induction on the fixed submanifolds 
MH . Write (H) < (K) if H is properly subconjugate to K, and let

(H1) > ... > (Hn)

be a total ordering of the subgroups appearing as isotropy groups of elements of M , 
which extends the subconjugacy order. For 1 ≤ k ≤ n, denote by Mk = ∪i≤kM (Hi) the 
subspace of M consisting of all points fixed by a subgroup conjugate to some Hi, i ≤ k. 
For example, M1 = MG (if MG is nonempty) and Mn = M .

If f : M → M is an equivariant map that has no fixed points on a G-invariant 
subcomplex A ⊆ M , the obstruction for removing its fixed points on a G-invariant 
subcomplex B ⊆ M such that A ⊆ B is a “local Reidemeister trace”

RG(f |A,B) ∈ [CM (B, A), SM E]GM

where

CM (B, A) = M ∪A×0 A × I ∪A×1 B

is a homotopy cofiber of M �A → M �B over M . See Theorem D of [20], Proposition 8.2 
and Lemma 8.4 of [27], or Theorem 1.6 of [28]. For example, condition (ii) in Theorem 
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1.6 of [28] is a Blakers–Massey condition, which is satisfied if dim MH ≥ 3 for all H

that appear as isotropy groups in M , by the equivariant Blakers–Massey theorem (see, 
e.g., [5]). In the inductive approach of [20], it is therefore crucial to show that the local 
Reidemeister traces RG(f |Mk−1,Mk

) vanish.
Theorem E, along with Lemmas 10.1 and 10.2 of [20], provides the necessary “global-

to-local” theorem:

Theorem 2.7. Suppose that M is a compact smooth G-manifold such that

• dim MH ≥ 3 for all H that appear as isotropy groups in M , and
• for H < K that appear as isotropy groups in M , dim MH − dim MK ≥ 2.

Suppose that f : M → M is an equivariant map. If RG(f) is trivial, then RG(f |Mk−1,Mk
)

is trivial for all k.

This global-to-local theorem allows for removing fixed points on M inductively, at 
each step proceeding from Mk−1 to the subsequent Mk. This will also be our method of 
isovariantly removing fixed points in Section 4.

3. Homotopy extension and lifting for isovariant spaces

In order to study isovariant fixed point theory for G-manifolds and prove an isovariant 
Whitehead theorem, we will show that manifolds satisfy certain homotopy extension 
and lifting properties for isovariant maps. This almost amounts to a new Quillen model 
structure on isovariant spaces, but there are subtle technicalities in building the model 
structure that we are unable to resolve. We are thankful for work of Douteau–Waas 
[8], whose Proposition A.1 alerted us to the stratified version of this issue. While their 
counterexample A.4 cannot arise in the isovariant setting, we are currently unable to 
prove that J -cell ⊆ W (where J -cell and W are defined below). Nevertheless, as in work 
of Douteau and Douteau–Waas [6,8] on stratified spaces, we are able to obtain the main 
results that would follow from a suitable model structure.

We will define three classes of maps I, J and W. The class I generates the isovari-
ant cell inclusions. In a Quillen model structure, I would be the class of generating 
cofibrations, and J would be the class of generating acyclic cofibrations. Recall that 
sn : Sn → Dn+1 and bH : ∂ΔH

G → ΔH
G are the boundary inclusions, and ΔH

G is the 
linking simplex of Definition 2.1.

Definition 3.1. Define I as the class of pushout-products of sn−1 with bH, that is,

I =
{

sn−1�bH :
(
Sn−1 × ΔH

G

)
∪Sn−1×∂ΔH

G

(
Dn × ∂ΔH

G

)
→ Dn × ΔH

G

}
H,n

Define J as pushout-products of the maps in I with i0 : {0} → [0, 1], that is,
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J =
{

sn−1�bH�i0
}

H,n

Let W be the class of isovariant weak equivalences, that is, the maps f : X → Y such 
that the induced map Mapisvt(ΔH, X) → Mapisvt(ΔH, Y ) is a weak equivalence of spaces 
for all strictly increasing chains of subgroups H = H0 < · · · < Hn.

We will prove a series of lemmas about the classes I, J and how they interact with the 
isovariant weak equivalences W. This will enable us to prove an isovariant Whitehead’s 
theorem, as well as results on isovariant fixed point theory in section 4.

We begin by showing that cofibrations in the elementary model structure are built out 
of maps in I, that is, Ielem ⊆ I-cell, and that acyclic cofibrations in the elementary model 
structure are built out of maps in J , that is, J elem ⊆ J -cell (see Definition 2.3). First, 
given a poset P of chains of subgroups of G, define PΔ to be the colimit colimH∈P ΔH. 
We say that P is closed under inclusion if whenever H ∈ P and K is a subchain of 
H, then K ∈ P. For example, if H is a chain of subgroups, then the poset PH of all 
subchains of H is closed under inclusion, and PHΔ = ΔH.

Lemma 3.2.

(1) For every P closed under inclusion, the maps sn × PΔ : Sn × PΔ → Dn+1 × PΔ
are in I-cell. That is, they are obtained by composition of pushouts of coproducts of 
elements of I.

(2) For every P closed under inclusion, the maps Dn × i0 × PΔ : Dn × 0 × PΔ →
Dn × [0, 1] ×PΔ are in J -cell. That is, they are obtained by composition of pushouts 
of coproducts of elements of J .

In particular, sn × ΔH ∈ I-cell and Dn × i0 × ΔH ∈ J -cell.

Proof. We will prove (1) by induction on the lengths of the chains in P. If all chains in 
P are of length 0, then

PΔ = ΔH0 � ... � ΔHm .

If H = {H0} has length 0, then sn × ΔH0 is equal to sn�bH0 , so it is in I for all n. The 
coproduct of maps in I is in I-cell, therefore sn × PΔ ∈ I-cell.

Now suppose the statement is true for P, and let K be a chain of subgroups which is 
not in P. Define P ′ = P ∪ {K}. Note that P ′Δ is the pushout of the diagram

colimH∈P ΔH∩K f
PΔ

ΔK
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We may assume that all proper subchains of K are in P, and therefore this diagram 
becomes

∂ΔK f

bK

PΔ

ΔK

Multiplying by Sn and Dn+1, we obtain the map of pushout diagrams

Sn × ΔK

sn×ΔK

Sn × ∂ΔK
Sn×bK

Sn×f

sn×∂ΔK

Sn × PΔ

sn×PΔ

Dn+1 × ΔK Dn+1 × ∂ΔK
Dn+1×bK

Dn+1×f
Dn+1 × PΔ

The map sn�bK is in I-cell by definition, and sn × PΔ ∈ I-cell by the induction 
hypothesis. Therefore by Corollary 2.2.2 of [24], the map between the pushouts, sn×P ′Δ, 
is also in I-cell, as required.

The proof of (2) is similar, using the fact that Dn × i0 is sn−1�i0 composed with a 
homeomorphism. �

Next, we prove a lemma about cubical limits of maps, which will be applied in the 
proof of Lemma 3.4 to ITop-inj. Recall that an S-cube in a category C is a functor 
X : P(S) → C, where S is a finite set and P(S) is the poset of all subsets of S. The finite 
set n = {1, 2, . . . , n} will define an n-cube. For an S-cube X , and subsets U ⊂ T ⊂ S, 
we use ∂T

U X to denote the (T − U)-cube {V �→ X (V ∪ U) : V ⊂ T − U}. For a subset 
U ⊂ S, we define the U -corner map of X to be the restriction map

lim
U⊂T

X (T ) → lim
U�T

X (T )

and limU⊂T X (T ) = X (U). For the following lemma, note that a map of n-cubes X → Y
defines an (n + 1)-cube.

Lemma 3.3. Let C be a category with all limits and a class of maps F which are preserved 
by pullbacks and compositions. Assume also that isomorphisms are in F . Let X → Y be 
a map of cubical diagrams in C such that the corner maps of all possible subcube maps 
X ′ → Y ′ are in the class F . Then lim X → lim Y is in the class F .

We note that the corner map condition in the lemma is slightly weaker than the 
fibration cube condition in Definition 1.13 of [13], since we do not require corner maps of 
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subcubes of X or Y to be in F . We are unaware of a proof of this lemma in the literature, 
so we provide one now.

Proof. We will factor the map lim X → lim Y through maps of F . Let X and Y be cubes 
in C indexed by the poset P(n) on n = {1, 2, . . . , n}.

Let X0 denote the final vertex X (n) of the cube X , and let Xi denote the diagram 
∪i

j=1∂n
n−{j}X for 1 ≤ i ≤ n. For example, Xn is the full subdiagram of X containing all 

vertices of distance at most 1 from the final vertex. We continue this process to define 
Xi for all n < i ≤ 2n − 1 by incrementally adding vertices of distance 2, 3, . . . , and 
finally n from the final vertex. We apply the same vertex ordering to define Yi for all 
0 ≤ i ≤ 2n − 1. Note this process extends the partial order on the poset P(n) to a total 
order, although we do not add extra maps to the associated domain category of the 
diagrams.

We define Li for 0 ≤ i ≤ 2n − 1 to be the limit of the diagram containing Xi and 
Y and the maps between them (that is, the diagram maps Xi → Yi). We denote this 
by Li = lim(Xi → Y). The limit Li can be rewritten as the pullback of the following 
diagram for i ≥ 1:

lim(Xi → Yi)

θi

Li−1 lim(Xi−1 → Yi)

The map Li → Li−1 is in F if the right vertical map θi is in F . For i = 0, L0 is the 
pullback of the diagram

X0

θ0

lim Y Y0

Thus the map L0 → lim Y is in F if X0 → Y0 is in F .
We will now show that the right vertical maps θi of the previous diagrams are in F . 

First, θ0 is the corner map of the subdiagram X0 → Y0.
Adding the jth vertex, Y(n−U) (where U depends on the total order chosen above), to 

the diagram Yj−1 completes the |U |-cube ∂n
n−U Y (a subdiagram of Yj). Then Xj−Xj−1 =

X (n − U) is the limit of the diagram ∂n
n−U X → ∂n

n−U Y. The map θj : lim(Xj → Yj) →
lim(Xj−1 → Yj) is the pullback of the map from X (n − U) to the punctured cube 
(∂n

n−U X )p → ∂n
n−U Y, where Zp indicates removing the initial vertex from the cube Z. 

Since the latter map is a corner map for a subcube X ′ → Y ′, it is in F by hypothesis. 
Since F is preserved by pullbacks, θj ∈ F , and thus Lj → Lj−1 is also in F .

Finally, L2n−1 = lim(X → Y) = lim(X ), so we have factored the map lim X → lim Y
as a composition of maps of F
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lim X = L2n−1 → · · · → L1 → L0 → lim Y. �
We note that if X and Y are punctured cubes (with initial vertex missing), we can 

complete them into cubical diagrams by setting

X (∅) = lim
U 	=∅

X (U)

and similarly for Y. Then the corner map of the whole cube map X → Y is an isomor-
phism, and is thus in F .

We will now continue to prove results about the classes of maps I, J , and W, and 
the extension and lifting properties that they satisfy. Recall that I-cell is the collection 
of morphisms obtained by transfinite composition of pushouts of coproducts of elements 
of I, I-inj is the collection of morphisms with the right lifting property with respect to 
elements of I, and I-cof is the collection of morphisms with the left lifting property with 
respect to maps in I-inj.

Lemma 3.4. The classes I, J , W satisfy W ∩ J -inj ⊆ I-inj.

Proof. Let f : X → Y be in W ∩ J -inj. We will show f ∈ I-inj, that is, f has the right 
lifting property with respect to sn�bH for all H and all n by inducting on the length of 
H.

Let H = {H0} be a chain of length 0. By part (2) of Lemma 3.2, the generating acyclic 
cofibrations in the elementary model structure are in J -cell. Thus J -inj ⊆ J elem-inj, so 
f ∈ W ∩ J -inj ⊆ W ∩ J elem-inj = Ielem-inj. Thus f has the right lifting property with 
respect to sn × ΔH0 = sn�bH0 .

Suppose for induction that for all K = K0 < · · · < K� of length less than m, f has the 
right lifting property with respect to sn�bK. Suppose H = H0 < · · · < Hm has length 
m.

In the adjunction of pushout-product with pullback-hom from Lemma 2.5, let C = Top
and D = E = isvt-Top, let ⊗ be the cartesian product and HomD = Mapisvt. We will 
show f has the right lifting property with respect to sn�bH by showing that the map of 
spaces

Mapisvt�(bH, f) : Mapisvt(ΔH, X) → Mapisvt(ΔH, Y ) ×Mapisvt(∂ΔH,Y ) Mapisvt(∂ΔH, X)

is in ITop-inj = WTop ∩ J Top-inj.
Since f has the right lifting property with respect to sn�bJ�i0 for all J (of any 

length) and all n, the map Mapisvt�(bH, f) has the right lifting property with respect to 
sn�i0 ∼= Dn+1 × i0 ∈ J Top. That is, Mapisvt�(bH, f) is in J Top-inj. We need only show 
that Mapisvt�(bH, f) ∈ WTop.

Since the map Mapisvt(ΔH, f) ∈ W is factored by Mapisvt�(bH, f), the 2-out-of-3 
property for weak equivalences implies Mapisvt�(bH, f) is a weak equivalence in Top if 
the left vertical map of the following pullback is a weak equivalence in Top.
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Mapisvt(ΔH, Y ) ×Mapisvt(∂ΔH,Y ) Mapisvt(∂ΔH, X) Mapisvt(∂ΔH, X)

Mapisvt(∂ΔH,f)

Mapisvt(ΔH, Y ) Mapisvt(∂ΔH, Y )

It suffices to show that the right vertical map Mapisvt(∂ΔH, f) is an acyclic fibration 
of topological spaces (that is, Mapisvt(∂ΔH, f) ∈ ITop-inj). We will use Lemma 3.3 and 
the fact that ∂ΔH = colim•<HΔ•.

Let F = ITop-inj, which is closed under pullbacks and composition and contains 
isomorphisms. Let X be the punctured cube defined by {K �→ Mapisvt(ΔK, X)} and let Y
be the punctured cube defined by {K �→ Mapisvt(ΔK, Y )} where K ranges over the proper 
subchains of H (including the empty subchain). The map of cubical diagrams X → Y
is given by Mapisvt(ΔK, f). Because each Mapisvt�(bK, f) ∈ ITop-inj by the induction 
hypothesis, all corner maps of subcube maps X ′ → Y ′ are in F . Then by the lemma, 
lim X → lim Y is an acyclic fibration of spaces, where lim X = lim•<H Mapisvt(Δ•, X) =
Mapisvt(∂ΔH, X). We have shown that Mapisvt(∂ΔH, f) is an acyclic fibration of spaces, so 
Mapisvt�(bH, f) is an acyclic fibration of spaces, ensuring f has the right lifting property 
with respect to sn�bH. �
3.1. Manifolds are built out of isovariant cells

We will now show that manifolds are built out of maps in I. That is, we will show 
that ∅ → M ∈ I-cell for all smooth G-manifolds M . This is not true in the elementary 
model structure.

Example 3.5. Consider the disk D2 with the C2-action which rotates the disk around the 
origin by π. We can build this as a C2-isovariant cell complex with two mixed cells and 
one free cell: D0 × Δe<G, D1 × Δe, and D1 × Δe<G, where the free 1-cell is glued to x
and τx and the mixed 1-cell is glued by collapsing the entire D1 × ΔG to z and sending 
{0} × fd(Δe<G) to a and {1} × fd(Δe<G) to τa.

τx

x

a

τa

z

This is an example of a C2-space for which ∅ → D2 ∈ I-cell, but it is not cofibrant in 
the elementary model structure on isvt-Top, so ∅ → D2 /∈ Ielem-cell.
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To prove that ∅ → M ∈ I-cell, we show that an equivariant triangulation gives an 
isovariant cell structure. In [18], Illman proves that smooth G-manifolds are cofibrant in 
eqvt-Top. We build on his proof in this section. Illman defines the equivariant simplex 
Δn(G; H0, . . . , Hn) the same way we define the linking simplex ΔHn<···<H0

G , but he allows 
redundancies in the subgroups. Illman’s key result is Theorem 4.1, which proves that if 
X is a G-space with a homeomorphism u : Δn → X/G which has constant isotropy 
type in each of the sets Δm − Δm−1 for 0 ≤ m ≤ n, then there exist closed subgroups 
H0 ≥ · · · ≥ Hn of G and a G-homeomorphism α : Δn(G; H0, . . . , Hn) → X which 
induces u on orbits.

An equivariant triangulation on a G-space X consists of a triangulation t : K → X/G

of the orbit space such that for each n-simplex s of the simplicial complex K, there are 
closed subgroups H0, . . . , Hn of G and a G-homeomorphism α : Δn(G; H0, . . . , Hn) →
π−1(t(s)) which induces a linear homeomorphism on orbit spaces ([18, 5.1]). Illman shows 
in Proposition 6.1 that if a G-space X has an equivariant triangulation, then it has the 
structure of a G-CW complex. That is, X is cofibrant in eqvt-Top and can be built from 
the equivariant generating cofibrations. Illman cites [35] to prove that if M is a smooth 
G-manifold, then M has an equivariant triangulation.

Theorem 3.6. Let G be a finite group. Smooth G-manifolds M satisfy ∅ → M ∈ I-cell.

Proof. We will prove the more general fact that a G-space X with an equivariant trian-
gulation satisfies ∅ → X ∈ I-cell. Let X be a G-space with an equivariant triangulation 
t : K → X/G. Consider the n-skeleton of K, denoted Kn. The n-skeleton of the isovariant 
space X is π−1(t(Kn)), where π : X → X/G is the quotient to the orbit space.

The goal is to construct an isovariant characteristic map for each equivariant simplex 
π−1(t(s)) of X. Let s be an arbitrary n-simplex of K, and let α : Δn(G; H0, . . . , Hn) →
π−1(t(s)) be the G-homeomorphism arising from the definition of equivariant trian-
gulation. The map α is also an isovariant homeomorphism because it is an injective 
equivariant map with injective equivariant inverse. Then α∗ : Δn → t(s) is a linear 
homeomorphism with α∗(∂Δn) = t(∂s) and α∗(Δ̊n) = t(̊s), where ∂s is the boundary of 
s and s̊ is its interior. In the isovariant category, we have

∂Δn(G; H0, . . . , Hn)
∼=

π−1(t(∂s))

Δn(G; H0, . . . , Hn)
∼=

π−1(t(s))

We will show that the left vertical map is a pushout along some sm�bK ∈ I. We will 
define an isovariant map φ : (

∏
Δni) × ΔK → Δn(G; H) by defining φ on fundamental 

domains of Δn(G; H) and ΔK, then extending equivariantly. The map φ will restrict to 
an appropriate map on boundaries which produces the desired pushout, because 

∏
Δni ∼=

Dm.
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Let H = H0 ≥ · · · ≥ Hn be the chain of isotropy groups of Δn(G; H0, . . . , Hn), and 
let K = K0 > K1 > · · · > Kk be the same chain but with no degeneracies, that is if 
Hi = Hi+1 in H, Hi is only listed once in K. Let p : n → k be the ordered surjection 
recording the collapse from H to K, that is, Hj is the same for each j ∈ p−1(i) for all 
0 ≤ i ≤ k. (Here n = {0, 1, . . . , n}.)

Let vKi
be the vertex of a fundamental domain of ΔK which has isotropy group Ki. 

Denote the vertices of Δni by v0, ..., vni
, and for each 0 ≤ i ≤ k, let 0 ≤ 	i ≤ |p−1(i)| −1. 

In a fundamental domain of Δn(G; H), denote the ith vertex by wi.
Let φ be the map

Δ|p−1(0)|−1 × · · · × Δ|p−1(k)|−1 × fd(ΔK) → fd(Δn(G; H))

defined on vertices by

(v�0 , v�1 , . . . , v�k
, vKi

) �→ wmin{p−1(i)}+�i
.

This map projects to v0 in all trivial (with respect to the G-action) simplices except 
the ith, leaving a simplex of dimension |p−1(i)| −1 with isotropy Ki, which is isovariantly 
homeomorphic to the corresponding face with isotropy Ki in Δn(G; H). That is, φ sends

Δ|p−1(0)|−1 × · · · × Δ|p−1(k)|−1 × {vKi
}

proj
Δ|p−1(i)|−1 × {vKi

}
∼= span(wp−1(i)).

Here wp−1(i) denotes the subset of vertices {wj : j ∈ p−1(i)} of Δn(G; H).
Let ni = |p−1(i)| − 1, and let bni : ∂Δni → Δni denote the boundary inclusion. Note 

that 
∏k

i=0 Δni ∼= Dn−k, and the boundary (whose inclusion is defined as a pushout prod-
uct, that is, the map bn0� · · · �bnk : ∂(

∏
Δni) →

∏
Δni) is homeomorphic to Sn−k−1. 

Therefore the map bn−k�bK is isovariantly homeomorphic to the map sn−k−1�bK ∈ I.
Note that φ restricts to an isovariant map

φ : ∂(
k∏

i=0
Δni) × ΔK

∐
∂(

∏k
i=0 Δni )×∂ΔK

(
k∏

i=0
Δni) × ∂ΔK → ∂Δn(G; H).

Careful consideration shows that Δn(G; H0, . . . , Hn) is the pushout

∂(
∏k

i=0 Δni) × ΔK ∐
∂(

∏k
i=0 Δni )×∂ΔK(

∏k
i=0 Δni) × ∂ΔK

bn−k�bK

∂Δn(G; H0, . . . , Hn)

(
∏k

i=0 Δni) × ΔK φ
Δn(G; H0, . . . , Hn)

Since all smooth G-manifolds have an equivariant triangulation ([35, 3.8]), the proof 
is complete. �
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In section 4, we will need the fact that some subspaces of a G-manifold M have 
inclusions which are in I-cell. We record the result here.

Lemma 3.7. The inclusion of an equivariant subsimplex into a linking simplex is in I-cell.

Proof. Let H = H0 < · · · < Hk and let A be an equivariant subsimplex of the linking 
simplex ΔH. That is, A = ΔĤ, where Ĥ is a subchain of H. Let Hi1 , . . . , Him

denote 
the subgroups of H which are not in Ĥ.

We will build ΔH from A as a composition of pushouts along maps of I. When n = 0, 
the map sn−1�bK of I is the map bK for any K. Then if A0 = A 

∐ ∐m
j=1 ΔHij is the 

union of A with the orbits of the missing subgroups Hij
, the map A → A0 is in I-cell

because it is a pushout along 
∐

bHij . Now the length 1 subchains of H containing Hij

have both length 0 subchains represented in A0; that is, we may glue in the equivariant 
1-simplices ΔHij

<H′
along ∂ΔHij

<H′
. Let A1 be the pushout of A0 along the coproduct 

of the generating cofibrations bHij
<H′

and bH′<Hij for j = 1, . . . , m. By induction, one 
can continue in this way until the entire boundary of the linking simplex has been glued 
in to A along generating cofibrations of the form bK. Finally, ΔH can be obtained by 
pushout along bH, so A → ΔH is a composition of pushouts of maps in I, so is in 
I-cell. �
Corollary 3.8. For all k, the inclusion Mk → M is in I-cell.

Proof. The equivariant triangulation on M admits Mk as an equivariant subtriangula-
tion. By Lemma 3.7, Mk → M is in I-cell. �
3.2. Manifolds satisfy isovariant lifting properties

We will now show that smooth G-manifolds satisfy isovariant lifting properties with 
respect to maps in J -cell. Recall that the pushout-product map sn−1�i0 is homeomor-
phic to the map Dn × i0 in Top, in the sense that Dn × i0 is sn−1�i0 composed with 
a homeomorphism. Then for a G-space X, there is an isovariant lift in the following 
diagram for any map j : A → B of J -cell

A

j

X

B

if and only if there is an isovariant lift in the following diagram for all n and for all chains 
of subgroups H:
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I × Dn × ∂ΔH ∪{0}×Dn×∂ΔH {0} × Dn × ΔH

(i0×Dn)�bH

X

I × Dn × ΔH

Using the adjunction of the pushout-product with the pullback-hom (Lemma 2.5 with 
C = Top and D = E = isvt-Top), such an extension corresponds to a lift in the following 
diagram of spaces, or equivalently the condition that Mapisvt(bH, X) is a Serre fibration 
in Top, since sn−1�i0 are the generating acyclic cofibrations of Top.

{0} × Dn Mapisvt(ΔH, X)

I × Dn Mapisvt(∂ΔH, X)

We will show that if X is a smooth G-manifold, such a lift exists. We need to set up 
some notation for the proof. For 0 < ε < 1, let Δn

ε be {(t0, . . . , tn) :
∑

ti = 1, 1 −ε ≤ t0 ≤
1}, as pictured in Fig. 1a. The corresponding equivariant simplex ΔH

ε is the appropriate 
quotient of G × Δn

ε . This truncated simplex contains the 0th vertex, which is fixed by 
Hn in a fundamental domain of the equivariant simplex.

Let Δn
=ε be the face of Δn

ε which does not contain the 0 vertex and let Δn
<ε be its 

complement in Δn
ε . We note that Δn

=ε
∼= Δn−1 and for the corresponding equivariant 

simplices, ΔH0<···<Hn
=ε is isovariantly homeomorphic to ΔH0<···<Hn−1 . Finally, for 0 <

δ < ε < 1, let Δ[δ,ε] denote Δε\Δ<δ, (pictured in Fig. 1b). Then the boundary is ∂Δ[δ,ε] =
(∂Δε \ ∂Δδ) ∪ Δ=δ. Denote the inclusion of this boundary by b. For the corresponding 
equivariant simplices, isovariantly Δ[δ,ε] ∼= Δ=ε × I and the inclusion of the boundary 
is isovariantly homeomorphic to the pushout-product b ∼= (∂I → I)�(∂Δ=ε → Δ=ε) or 
equivalently, b ∼= s0�bH0<···<Hn−1 . We denote by δ0 the map ∂Δn

ε \ Δ̊=ε → Δn
ε which 

includes the boundary components containing the 0th vertex, pictured in Fig. 1c.
We denote by C the domain of a map bH�i0 ∈ J . Let Cε,ε′ ⊂ C be the domain 

of the pushout-product of i0 : {0} → [0, ε′] with δ0 : ∂Δε \ Δ̊=ε → Δε, pictured for 
H0 < H1 < H2 in Fig. 2 on a fundamental domain.

Theorem 3.9. For a finite group G, a smooth G-manifold M , and a map j ∈ J -cell, there 
is an isovariant lift in the following diagram:

A

j

M

B

We note that having this lifting condition against maps of J implies that it holds for 
maps j ∈ J -cell.
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v0

Δn
=ε−

Δn
<ε

(a)

v0

−Δn
=ε

−Δn
=δ

(b)

δ0

v0 v0

(c)

Fig. 1. (a) Δn
ε ⊂ Δn with bold boundary. (b) Δn

[δ,ε] ⊂ Δn with bold boundary. (c) The map δ0 : ∂Δε \Δ̊=ε →
Δε.

•

•

•

•

[0, ε′]

fd(ΔH

ε )

Fig. 2. Cε,ε′ ⊂ fd(ΔH0<H1<H2 ) × I.

The lifting condition above resembles the fibrancy condition for stratified simplicial 
sets in [6]. Proposition 4.12 of [6] shows that conically stratified spaces are fibrant, relying 
on Theorem A.6.4 of [23]. Our proof below resembles these arguments, but is simplified by 
the fact that we only consider smooth manifolds rather than the more general conically 
stratified spaces.

Proof. We will show that M has the extension property with respect to i0�bH by induc-
tion on the length of the chain H = H0 < · · · < Hn. The same proof shows M has the 
extension property with respect to (i0�bH) × Dn, so we omit the disk factor throughout 
this proof.

For H = H0, a length 0 chain, the lifting condition on Mapisvt(ΔH, M) →
Mapisvt(∂ΔH, M) reduces to fibrancy of the space Mapisvt(G/H0, M) = MH0 .
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Assume that the maps i0�bH0<···<Hn−1 extend isovariantly against any G-manifold 
M for any length n − 1 chain of subgroups H0 < · · · < Hn−1.

We wish to show that the map i0�bH0<···<Hn extends against a G-manifold M . Denote 
the domain of i0�bH0<···<Hn by C and let φ : C → M be the map we wish to extend. By 
the equivariant tubular neighborhood theorem, there is a neighborhood of φ(0 ×ΔHn) in 
M which is G-homeomorphic to G ×Hn

V where V is a Hn-representation. Let Cε,ε′ ⊂ C

be the domain of the pushout-product of i0 : {0} → [0, ε′] with δ0 : ∂Δε \ Δ̊=ε → Δε (as 
pictured in Fig. 2). By continuity, there exist ε and ε′ such that φ(Cε,ε′) ⊂ G ×Hn

V .
An extension of φ for one connected component of Cε,ε′ mapping to one copy of V

will define the extension Φ : [0, ε′] × ΔH0<···<Hn
ε → G ×Hn

V for all components by 
equivariance. By compactness, this yields an extension of φ to I × Δε → M ; fibrancy of 
the space MH0 yields the extension to all of I × ΔH0<···<Hn .

Decompose the Hn-representation V as the product V Hn ×W where W = (V Hn)⊥ and 
W Hn = 0. The map φ can be written as the product φ = φfix×ψ with φfix : Cε,ε′ → V Hn

and ψ : Cε,ε′ → W . Isovariance of φ implies ψ is isovariant and ψ([0, ε] × ΔHn) = 0 ∈ W .
We will extend φfix and ψ individually and define the desired extension Φ : [0, ε′] ×

ΔH0<···<Hn
ε → V by Φ = Φfix × Ψ. If Ψ is isovariant, then Φ is an isovariant extension 

of φ.
The extension Φfix of φfix is obtained as

fd(Cε,ε′)
φfix

i0�δ0

V Hn

[0, ε′] × fd(ΔH0<···<Hn
ε )

Φfix

The vertical map is the pushout-product of i0 : {0} → [0, ε′] with the map δ0 : ∂Δε \
Δ̊=ε → Δε. Since V Hn is fibrant as a space and i0�δ0 is an acyclic cofibration of spaces, 
the extension exists. Once the extension is defined on the fundamental domains, it can 
be defined on the whole space by equivariance.

It remains to extend ψ isovariantly to Ψ : [0, ε′] × ΔH0<···<Hn
ε → W .

By continuity of φ, we can choose real numbers p1 > p2 > · · · > pk > · · · such that 
ψ(Cpk,ε′) ⊂ B1/k(W ), that is, ψ sends the truncated pushout-product domain to the ball 
of radius 1/k centered at 0 in W .

Since B1/k(W ) is an Hn-manifold, we may apply the inductive hypothesis with H =
H0 < · · · < Hn−1 to isovariantly extend ψ to each level [0, ε′] × Δ=pk

.

0 × ΔH
=pk

ψ

i0

B1/k(W )H0

[0, ε′] × ΔH
=pk

ψ′
k
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[0, ε′]

pk

pk+1

•

•
•

Δε

(a)

[0, ε′]

pk

pk+1

•

•
•

Δε

(b)

Fig. 3. (a) Domains of extensions ψ′
k shown horizontally. (b) Domain of extension ψk shaded in.

A similar diagram extends ψ : 0 × ΔH
=ε → WH0 to ψ′

0 : [0, ε′] × ΔH
=ε → WH0 . The 

result of the steps so far is pictured in Fig. 3a.
Extension to each sector ψk : [0, ε′] × Δ[pk+1,pk] → B1/k(W ) is also given by the 

inductive hypothesis, using that isovariantly ΔH0<···<Hn

[pk+1,pk]
∼= ΔH0<···<Hn−1 × I and the 

boundary inclusion map b is isovariantly homeomorphic to s0�bH0<···<Hn−1 .

0 × Δ[pk+1,pk]
∐

0×∂Δ[pk+1,pk]
[0, ε′] × ∂Δ[pk+1,pk]

ψ
∐

ψ′
k

∐
ψ′

k+1

i0�s0�bH

B1/k(W )

[0, ε′] × Δ[pk+1,pk]

ψk

One of these extensions is pictured in Fig. 3b. Similarly, one obtains an isovariant 
extension ψ0 : [0, ε′] × Δ[p1,ε] → W .

The union of the extensions ψk yields an isovariant map

Ψ : [0, ε′] × ΔH0<···<Hn
ε → W

with Ψ([0, ε′] × ΔH0<···<Hn
pk

) ⊂ B1/k(W ). Since ψ([0, ε′] × ΔHn) = 0, the map Ψ is 
continuous on its domain. �
3.3. An isovariant Whitehead’s theorem

Using the results proven in the previous subsections, we can prove that isovariant 
weak equivalences between smooth G-manifolds are isovariant homotopy equivalences.

Theorem 3.10. (Isovariant Whitehead’s theorem) Let G be a finite group, let Y and Z be 
smooth G-manifolds, and let f : Y → Z be an isovariant map. Then f is an isovariant 
homotopy equivalence if and only if f induces weak equivalences Mapisvt(ΔH, f) for all 
chains of subgroups H = H0 < · · · < Hn of G.

Proof. Recall from Remark 2.4 that an isovariant homotopy equivalence between G-
spaces is an isovariant weak equivalence. For G-spaces X and Y , let [X, Y ]isvt denote the 
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set of isovariant homotopy classes of isovariant maps between them. Suppose that Y , Z
are smooth G-manifolds, and f : Y → Z is an isovariant weak equivalence. We will prove 
that if M is a smooth G-manifold, then f induces a bijection

f∗ : [M, Y ]isvt → [M, Z]isvt.

When M = Z, the preimage of idZ gives an isovariant homotopy inverse for f .
In order to do this, we will first replace f : Y → Z with an isovariant map f̂ : Ŷ →

Z ∈ J -inj, where Ŷ is isovariantly homotopy equivalent to Y . Define

Ŷ = {(y, γ) ∈ Y × Map(I, Z) : f(y) = γ(0), Gγ(t) = Gγ(0)∀t ∈ I}

with diagonal G-action and

f̂(y, γ) = γ(1).

This is very similar to the process of replacing a map of topological spaces by a fibration, 
except the paths are required to stay in the same isotropy subspace of Z in order for 
the evaluation at 1 to be isovariant. Denote by PisvtZ the paths in Z that remain in the 
same isotropy subspace. That is,

PisvtZ = {γ : I → Z : Gγ(t) = Gγ(0)∀t}.

Then Ŷ = {(y, γ) ∈ Y × PisvtZ : f(y) = γ(0)}. We will prove a series of claims that will 
imply the theorem.

Claim 1: the space Ŷ is isovariantly homotopy equivalent to Y . Define pr : Ŷ → Y

by projection onto the first component, and c : Y → Ŷ as c(y) = (y, constf(y)). These 
maps are isovariant due to the requirement that paths in Ŷ remain in the same isotropy 
subspace. In addition, pr ◦ c = idY , so it remains to show that c ◦ pr is isovariantly 
homotopic to idŶ . For (y, γ) ∈ Ŷ , c ◦ pr(y, γ) = (y, constf(y)). For s ∈ [0, 1], define 
H((y, γ), s) = (y, γs), where γs(t) = γ(st). Then H is an isovariant homotopy from c ◦pr

to idŶ , as required.
Claim 2: the map ev0 ×ev1 : PisvtZ → Z ×Z is in J -inj. In the notation of Lemma 2.5, 

take C = E = isvt-Top, and D = Top. Here we use the tensoring and cotensoring of 
isvt-Top over Top. Note that ev0 × ev1 = Hom�(i0,1, tZ), where i0,1 : {0, 1} → [0, 1]
denotes the inclusion of the endpoints, and tZ denotes the map from Z to the terminal 
object in isvt-Top. By the adjunction between pushout-product and pullback-hom, a lift 
in the diagram

A

bH�sn−1�i0

PisvtZ

ev0×ev1

B Z × Z
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is equivalent to a lift in the diagram

A′

bH�sn−1�i0�i0,1

Z

B′

Here A and B denote the source and target of bH�sn−1�i0, and A′ and B′ denote 
the source and target of bH�sn−1�i0�i0,1. Since i0,1 ∼= s0, we have sn−1�i0,1 ∼= sn, 
so bH�sn−1�i0�i0,1 ∈ J -cell. By Theorem 3.9, a lift exists in the second diagram, and 
therefore in the first. Therefore ev0 × ev1 ∈ J -inj.

Claim 3: the map f̂ is in J -inj. Let A and B denote the source and target of 
bH�sn−1�i0 ∈ J , respectively. Any isovariant map A → Ŷ can be written as ψ × φ, 
where ψ : A → Y and φ : A → PisvtZ are isovariant maps with ev0 ◦ φ(a) = f ◦ ψ(a) for 
all a ∈ A. By Theorem 3.9, there is a lift in the diagram

A
ψ

bH�sn−1�i0

Y

B
ψ̃

Denote this lift ψ̃ : B → Y . A commutative diagram

A
ψ×φ

bH�sn−1�i0

Ŷ

f̂

B
Φ

Z

gives a commutative diagram

A
φ

bH�sn−1�i0

PisvtZ

ev1

B
Φ

Z

and along with the previously obtained lift ψ̃ : B → Y , we obtain a commutative diagram

A
φ

bH�sn−1�i0

PisvtZ

ev0×ev1

B
(f◦ψ̃)×Φ

Z × Z
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By Claim 2, there is a lift Φ̃ : B → PisvtZ in the diagram above. Defining F (x) =
(ψ̃(x), Φ̃(x)) for all x ∈ B then gives a lift F : B → Ŷ in the diagram

A
ψ×φ

bH�sn−1�i0

Ŷ

f̂

B
Φ

Z

as required.
We will finish the proof of the theorem by showing that for M a smooth G-manifold, 

the isovariant weak equivalence f induces a bijection

f∗ : [M, Y ]isvt → [M, Z]isvt.

Claim 4: f∗ is surjective. Suppose we have an isovariant map g : M → Z. Note that 
f = f̂◦c is an isovariant weak equivalence, and c is an isovariant homotopy equivalence, so 
by the 2 out of 3 property for isovariant weak equivalences, f̂ ∈ W. By Claim 3, f̂ ∈ J -inj. 
Now, by Lemma 3.4, W ∩ J -inj ⊆ I-inj, and therefore f̂ ∈ I-inj. By Theorem 3.6, 
∅ → M ∈ I-cell, so there is a lift g̃ : M → Ŷ in the diagram

Ŷ

f̂

M
g

Z

Composing with pr : Ŷ → Y , we obtain by Claim 1 a preimage pr ◦ g̃ : M → Y of g.
Claim 5: f∗ is injective. Suppose that h0, h1 : M → Y are isovariant maps satisfying 

f ◦ h0 = g0, f ◦ h1 = g1, where g0 and g1 are isovariantly homotopic. Composing with 
c : Y → Ŷ , we obtain a commutative diagram

M × {0, 1}
(c◦h0)�(c◦h1)

Ŷ

f̂

M × I
H′

Z

where H ′ is an isovariant homotopy from g0 to g1, and the left hand vertical map is the 
inclusion. Since one can find an equivariant triangulation of M × I with an equivariant 
subtriangulation of M × {0, 1}, by Lemma 3.7, the left vertical map is in I-cell. Recall 
that f̂ ∈ I-inj. Since M × {0, 1} → M ∈ I-cell, a lift H : M × I → Ŷ exists in the above 
diagram. Composing with pr : Ŷ → Y , we obtain an isovariant homotopy from h0 to h1, 
as required.

This concludes the proof of the theorem. �
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In [7, 4.10], the authors prove an isovariant Whitehead theorem for compact smooth 
G-manifolds with treelike isotropy structure. We show that the isovariant Whitehead 
theorem above agrees with the theorem of Dula–Schultz in the cases where the latter 
applies. That is, we will show

Proposition 3.11. Let X and Y be compact smooth G-manifolds with treelike isotropy 
structure, and f : X → Y an isovariant map which satisfies the hypotheses of Theorem 
4.10 of [7]. Then f is an isovariant weak equivalence.

A space has treelike isotropy structure if all its isotropy subgroups are normal in G
and for each isotropy subgroup H, the set of isotropy subgroups K such that K ⊂ H is 
linearly ordered by inclusion. For more details, see section 3 of [7].

In Theorem 4.10 of [7], the hypotheses on the isovariant map f are:

• For every isotropy subgroup H ≤ G, fH : XH → Y H is a homotopy equivalence
• For every isotropy subgroup H ≤ G, fH : XH → YH is a homotopy equivalence, and
• For every isotropy subgroup H ≤ G, f induces a homotopy equivalence ∂NH(X) →

∂NH(Y ), where NH(X) is a mapping cylinder neighborhood of Sing(XH) ⊂ XH

and Sing(XH) is the set of points in XH whose isotropy groups are strictly larger 
than H.

Let H ′ be a minimal subgroup of G strictly containing H which appears as an isotropy 
subgroup in X. We denote by tubXH (XH′) a tubular neighborhood of XH′ in XH , and 
∂ tubXH (XH′) its boundary. If X has treelike isotropy structure, the space ∂NH(X) is 
a disjoint union of spaces of the form ∂ tubXH (XH′) for such H ′. This is because, if H ′

and H ′′ minimally strictly contain H and all three appear as isotropy subgroups, then 
XH′ ∩ XH′′ = ∅, and we can choose tubular neighborhoods which are also disjoint. We 
will use the following convenient model for ∂ tubXH (XH′):

∂ tubXH (XH′
) � XH<H′ = {γ : [0, 1] → XH : γ(0) ∈ XH′

, γ(t) ∈ XH∀t > 0}

Thus we can rephrase the third Dula–Schultz assumption on f as follows:

• For every consecutive pair of isotropy subgroups H < H ′, f induces an equivalence 
XH<H′ → YH<H′ .

We will now prove Proposition 3.11.

Proof. Let X and Y be compact smooth G-manifolds with treelike isotropy structure, 
and f : X → Y an isovariant map satisfying the assumptions above. We will prove that f
induces weak equivalences Mapisvt(ΔH, f) for all chains of subgroups H = H0 < · · · < Hn

of G by induction on the length of H. For n = 0, if H0 ≤ G is an isotropy subgroup, 
then Mapisvt(ΔH0 , f) = fH0 : XH0 → YH0 is an equivalence, by assumption.
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Now take a chain of subgroups H = H0 < · · · < Hn, and let H ′
0 be the smallest 

isotropy subgroup appearing in X which strictly contains H0 and is contained in H1. Let 
H′ = H1 < · · · < Hn. We will show that Mapisvt(ΔH, X) is naturally weakly equivalent 
to the homotopy pullback in the diagram

P XH0<H′
0

ev0

Mapisvt(ΔH′
, X) XH′

0

where the bottom map evaluates on any point in the simplex ΔH′; these maps are all 
homotopic. The homotopy pullback of the diagram above is equivalent to the homotopy 
pullback of

P Map(Δn−1, XH0<H′
0
)

(ev0)∗

Mapisvt(ΔH′
, X) Map(Δn−1, XH′

0)

where the bottom map is the inclusion of isovariant maps into all maps. We claim that ev0
is a fibration, and therefore so is (ev0)∗. Assuming this, the homotopy pullback is equiva-
lent to the pullback. The pullback in this diagram is the space of maps [0, 1] × ΔH′ → X

which send (0, (ti)) ∈ [0, 1] × ΔH′ to points with isotropy group the corresponding sub-
group in H′, and send (s, (ti)) for s > 0 to points with isotropy group H0. Thus the 
pullback is homeomorphic to the space of isovariant maps, Mapisvt(ΔH, X).

By the induction hypothesis, f induces weak equivalences XH0<H′
0

→ YH0<H′
0
, XH′

0 →
Y H′

0 , and Mapisvt(ΔH′
, X) → Mapisvt(ΔH′

, Y ). Thus it induces a weak equivalence on 
the homotopy pullbacks, Mapisvt(ΔH, X) → Mapisvt(ΔH, Y ). So Mapisvt(ΔH, f) is a weak 
equivalence, as required.

It remains to justify the fact that ev0 : XH0<H′
0

→ XH′
0 is a fibration in Top. In other 

words, we want to show that there is a lift in every diagram of the form

Dm × 0

Dm×i0

XH0<H′
0

ev0

Dm × I XH′
0

Adjointing via the path space description of XH0<H′
0
, we would like to show that for 

every map

φ : Dm × 0 × I
⋃

m

Dm × I × 0 → XH0
D ×0×0
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such that φ(v, s, 0) ∈ XH′
0 for all s ∈ [0, 1] and φ(v, 0, t) ∈ XH0 for all t > 0, there is an 

extension

Φ : Dm × I × I → XH0

such that Φ(v, s, t) ∈ XH0 for all t > 0.
Restricting the G-action on XH0<H′

0
to an H ′

0-action does not change the space 
because the isotropy of X is treelike. As an H ′

0-space, XH0<H′
0

is equivalent to the 
1-dimensional link Mapisvt(ΔH0<H′

0 , X). Thus the fact that ev0 ∈ J -inj follows from the 
proof of Theorem 3.9. �

This suggests that for isovariant maps between manifolds, it suffices to check weak 
equivalence on isotropy subspaces and on one-dimensional links. The following result 
verifies this.

Proposition 3.12. Let f : M → N be an isovariant map between G-manifolds. If 
Mapisvt(ΔH , f) and Mapisvt(ΔH0<H1 , f) are weak equivalences for all H, H0, H1 ≤ G, 
then f is an isovariant weak equivalence.

Proof. Notice that M and N are, in particular, stratified spaces, whose strata are the 
MH for H ≤ G. For J = H0 < H1 < ... < Hn, denote by ΔJ a fundamental domain of 
the isovariant simplex ΔJ. This agrees with the stratified simplex ΔJ in the sense of [6, 
Section 1]. Note that

Mapisvt(ΔJ, M) = Mapstrat(ΔJ , M)

and similarly for N . That is, the space of isovariant maps is equal to a space of stratified 
maps. Suppose that Mapisvt(ΔJ, f) is a weak equivalence for all J of length 0 or 1. 
Then Mapstrat(ΔJ , f) is a weak equivalence for all J of length 0 or 1. The manifolds 
M and N with their isotropy stratification are conically stratified spaces which are the 
filtered realization of filtered simplicial sets, so by Theorem 5.4 of [6], this implies that 
Mapstrat(ΔJ , f) is a weak equivalence for all J of any length. Therefore Mapisvt(ΔJ, f)
is a weak equivalence for all J, so f is an isovariant weak equivalence, as required. �
4. Isovariant fixed point theory

Let G be a finite group, and let M be a compact smooth G-manifold such that

• dim MH ≥ 3 for all H that appear as isotropy groups in M , and
• for H < K that appear as isotropy groups in M , dim MH − dim MK ≥ 2.

Let f : M → M be an isovariant map. In this section, we prove that the equivariant 
Reidemeister trace gives a complete invariant for the isovariant fixed point problem.
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Theorem 4.1. If the fixed points of f : M → M can be removed equivariantly, then they 
can be removed isovariantly.

Write (H) < (K) if H is properly subconjugate to K, and let

(H1) > ... > (Hn)

be a total ordering of the subgroups appearing as isotropy groups of x ∈ M , which 
extends the subconjugacy order. For 1 ≤ k ≤ n, denote by Mk =

⋃
i≤k M (Hi) the 

subspace of M consisting of all points fixed by a subgroup conjugate to some Hi, i ≤ k. 
Denote by M(Hi) the points fixed exactly by a subgroup conjugate to Hi. We prove 
Theorem 4.1 inductively.

Proof. We prove by induction on k that f |Mk
can be isovariantly homotoped to have no 

fixed points. For k = 1, the fixed points of f can be eliminated equivariantly, therefore 
they can be eliminated on MH1 . (See, for example, Theorems 5.7 and 10.1 of [25].)

By induction, assume that f |Mk−1 has been isovariantly homotoped to a map without 
fixed points. Thus we have a homotopy

M ∪Mk−1×0 (Mk−1 × I) → M

Note that the inclusion M ∪Mk−1×0 (Mk−1 × I) → M × I is the pushout-product of 
Mk−1 → M with i0 : 0 → [0, 1]. The pushout-product of a map in I-cell with i0 is a map 
in J -cell, thus by Corollary 3.8, this is a map in J -cell. By Theorem 3.9, we can thus 
extend M ∪Mk−1×0 (Mk−1 × I) → M to an isovariant homotopy H : M × I → M . The 
map f1 = H(−, 1) has no fixed points on Mk−1, and therefore also has no fixed points 
on a neighborhood of Mk−1. In particular, f1 has no fixed points on a neighborhood of 
Mk−1 in Mk. Denote by U a G-invariant neighborhood of Mk−1 in Mk, whose closure 
Ū equivariantly deformation retracts to Mk−1, and such that f1 has no fixed points on 
Ū . This can be achieved by, for each i ≤ k − 1, taking Vi a small enough equivariant 
tubular neighborhood of M (Hi) in M , and setting U =

⋃
i≤k−1 Vi ∩ Mk. We’ll extend 

f1|Ū isovariantly to a map that has no fixed points on Mk; it suffices to extend it from 
∂U to Mk − U . As all points in ∂U and Mk − U have isotropy groups conjugate to Hk, 
an equivariant extension will provide an isovariant extension. As in [27], [20], or [28], the 
obstruction RG(f |∂U,Mk−U ) for extending the homotopy which removes the fixed points 
of f1 from ∂U to Mk − U lives in

[CM (Mk − U, ∂U), SM E]GM .

By excision (e.g., Lemma 7.3.1 of [24]) and by the equivariant deformation retraction 
between Ū and Mk−1,

[CM (Mk − U, ∂U), SM E]GM ∼= [CM (Mk, Ū), SM E]GM ∼= [CM (Mk, Mk−1), SM E]GM
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and under these isomorphisms, RG(f |∂U,Mk−U ) maps to RG(f |Ū,Mk
), which maps to 

RG(f |Mk−1,Mk
). The Reidemeister trace RG(f) is trivial, and M satisfies the assumptions 

of Theorem 2.7, and so the local Reidemeister trace RG(f |Mk−1,Mk
) is trivial. Thus we 

can extend the homotopy which removes the fixed points of f1 from ∂U to Mk − U .
Therefore we can extend f1 isovariantly to a map with no fixed points on Mk, and we 

are done. �
Corollary 4.2. Let G be a finite group, and M a compact smooth G-manifold such that

• dim MH ≥ 3 for all H that appear as isotropy groups in M , and
• For H < K that appear as isotropy groups in M , dim MH − dim MK ≥ 2

Let f : M → M be an isovariant map. Then f is isovariantly homotopic to a map 
without fixed points if and only if its equivariant Reidemeister trace, RG(f), is trivial.

However, if X is a compact G-space which is not a manifold and f : X → X is an 
isovariant map, RG(f) is not necessarily a complete invariant for isovariantly removing 
fixed points of f :

Example 4.3. Let X = D(sgn) ∪{0} S1, the disk in the sign representation of C2 attached 
along its fixed point to a circle with trivial action, pictured below. The identity map of 
X is isovariant. Equivariantly, this space is equivalent to S1 with the trivial action, so 
the fixed points of the identity map can be eliminated equivariantly (e.g., by rotation). 
But note that any (continuous) isovariant map f : X → X must send the point 0 ∈ X

to itself: this point is the limit of points in Xe = D(sgn) − 0, thus f(0) must be in the 
closure of D(sgn) − 0. On the other hand, 0 ∈ XC2 , so it must be sent into XC2 . Thus 
f(0) = 0, so any isovariant f : X → X has a fixed point. Therefore the fixed points of 
the identity cannot be eliminated isovariantly.

0

We can build a similar example with dim X ≥ 3 as follows: let X = D(sgn⊕5) ∪0 S3, 
where S3 has the trivial action, and take f : X → X the identity map. Equivariantly, 
this is equivalent to S3 with the trivial action, so we can remove the fixed points of the 
identity (e.g. by multiplying by a unit quaternion). The same argument as above shows 
that the fixed points of the identity cannot be removed isovariantly.

Both of these spaces are “cofibrant”, that is, built out of maps in I-cell. However, 
they are not “fibrant”; they do not satisfy the right lifting property with respect to all 
maps in J -cell. A crucial property of smooth G-manifolds which makes them fibrant is 
the existence of tubular neighborhoods of XH inside larger subspaces XK .
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Possible additional invariants for the isovariant fixed point problem are the equivariant 
Reidemeister traces of f on X(H) for H ≤ G, RG(f |X(H)). We do not know whether these 
are complete invariants; however, when X is not a manifold, the equivariant Reidemeister 
trace of f on X(H) is not determined by the equivariant Reidemeister trace of f . This 
can be seen by considering the equivariant Lefschetz number of id|Xe

in the examples 
above.

5. A weak model structure

In this section, we demonstrate that our results in this paper arise from a weak model 
structure in the sense of [14]. Weak model structures still allow for a good notion of 
Quillen adjunction (as well as Quillen equivalence), a well-behaved homotopy category, 
and most other constructions in categorical homotopy theory. We will use Theorem 3.5 
of [14], reproduced below.

Theorem 5.1. Let C be a bicomplete category with two classes of maps I and J such that:

(1) The classes I and J generate weak factorization systems (I-cof, I-inj) and 
(J -cof, J -inj);

(2) J ⊂ I-cof; and
(3) C admits a left adjoint endofunctor C with natural transformations e0, e1 : Id → C, 

such that
(a) If i : A → B ∈ I, the map (B � B) ∪A�A CA → CB is in I-cof;
(b) If i : A → B ∈ I, the two maps B ∪A CA → CB have the left lifting property 

with respect to all maps in J -inj between J -fibrant objects; and
(c) If j : A → B ∈ J , then the map (B � B) ∪A�A CA → CB has the left lifting 

property with respect to all maps in J -inj between J -fibrant objects.

Then C admits a weak model structure in which J -inj give the fibrations between fibrant 
objects, and I-cof give the cofibrations between cofibrant objects.

Remark 5.2. We say that X ∈ C is J -fibrant if the map from X to the terminal object 
is in J -inj.

We will prove that the isovariant category with the classes I and J as defined in 
Definition 3.1 satisfies the conditions of the theorem above.

Theorem 5.3. There is a weak model structure on isvt-Top in which J -inj gives the fibra-
tions between fibrant objects, and I-cof gives the cofibrations between cofibrant objects.

Proof. The classes I and J indeed generate weak factorization systems by the small 
object argument because their domains are compact and thus small with respect to 
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relative cell complexes. To prove the second condition, we will show I-inj ⊆ J -inj, which 
implies that J ⊆ I-cof. Let f : X → Y be in I-inj, so f has right lifting property with 
respect to sn�bH. By the adjunction of pushout-product with pullback-hom, a lift of f
with respect to sn�bH is equivalent to a lift in spaces of the map

Mapisvt�(bH, f) : Mapisvt(ΔH , X) → Mapisvt(∂ΔH , X) ×Mapisvt(∂ΔH ,Y ) Mapisvt(ΔH , Y )

against sn ∈ ITop. That is, the pullback-hom map above is in ITop-inj ⊆ J Top-inj, by the 
cofibrantly generated model structure on Top. Thus the pullback-hom map lifts in Top
with respect to sn�i0 ∼= Dn+1 × i0. Using the adjunction again, this implies that f has 
the right lifting property with respect to sn�i0�bH, so f ∈ J -inj. Thus I-inj ⊆ J -inj, 
and therefore J ⊆ I-cof.

For the third condition, take CX = X ×I. This is left adjoint to the functor Pisvt from 
subsection 3.3. We take e0 : X → X × I to be the inclusion at 0, and e1 : X → X × I to 
be the inclusion at 1.

Now take i = sn�bH : A → B ∈ I. Note that the map (B�B) ∪A�A (A ×I) → (B×I)
is the pushout-product i0,1�i; since i0,1�sn

∼= sn+1, this map is in I-cof, as required. 
This proves condition 3(a). In addition, the maps B ∪A (A ×I) → B ×I are the pushout-
products (0 → I)�i and (1 → I)�i, and are therefore in J -cof, and so satisfy the left 
lifting property with respect to all maps in J -inj. This proves condition 3(b). Finally, if 
j = sn�(0 → I)�bH ∈ J , then the map (B � B) ∪A�A (A × I) → (B × I) is i0,1�j; since 
i0,1�sn

∼= sn+1, this is in J -cof, and so satisfies the left lifting property with respect to 
all maps in J -inj. This proves condition 3(c). By Theorem 3.5 of [14], there is a weak 
model structure on isvt-Top in which J -inj give the fibrations between fibrant objects, 
and I-cof give the cofibrations between cofibrant objects. �
Remark 5.4. Note that our structure is somewhat stronger than that of a weak model 
category; for instance, the maps in 3(b) and 3(c) of the theorem lift against all maps 
in J -inj, not just the ones between fibrant objects. We conjecture that this weak model 
structure arises from a semi-model structure (specifically, a left model structure as in 
[15], [32], and [2]) or even a model structure (specifically, a fibrantly induced model 
structure in the sense of [12]).
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