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rings. In particular, we address the Isomorphism Problem for 
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prove that any non-zero reduced order R can be written as 
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R ∼= A[G] as rings, and such that if B is a ring and H is a 
group, then R ∼= B[H] as rings if and only if there is a finite 
abelian group J such that B ∼= A[J ] as rings and J × H ∼= G

as groups. Computing A and G for given R can be done by 
means of an algorithm that is not quite polynomial-time. We 
also give a description of the automorphism group of R in 
terms of A and G.
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1. Introduction

Consider the map

({rings}/∼=) × ({groups}/∼=) → ({rings}/∼=)

that for each ring A and each group G sends the pair of isomorphism classes of (A, G)

to the isomorphism class of the group ring A[G]. The Isomorphism Problem for group 

rings asks about the fibers of this map, i.e., given a ring R, what can one say about the 

pairs (A, G) with A[G] ∼= R? There is a great deal of literature on this subject, starting 

with the 1940 paper by Higman [4], which solved the case where A = Z and G is a finite 

abelian group, and including [15, Chapter 14], [17, Chapters III and IV], [18], and the 

recent survey article [16] and the references therein.

The emphasis has been on results stating that the fibers of our map are often “small” 

in a suitable sense. For instance, it is a consequence of a theorem of May [11] that if G is 

an abelian group and Z[G] ∼= Z[H] then G ∼= H. This contrasts with the complex case, 

where C[G] ∼= C[H], even as C-algebras, whenever G and H are finite abelian groups of 

the same order.

One can slightly refine the question by not just asking for the existence of an isomor-

phism from A[G] to R, but asking for the isomorphism as well. For a given non-zero ring 

R the object of study is thus the set of triples (A, G, φ), where A is a ring (always with 

1), G is a group, and φ : A[G] → R is a ring isomorphism. This essentially comes down 

to considering the set

D(R) = {(A, G) : A ⊂ R a subring, G ⊂ R∗ a subgroup, with

A[G] → R a ring isomorphism},

where R∗ is the group of units of R, and A[G] → R is the natural group homomorphism.

One of the main contributions of the present paper is a new group-theoretic description 

of the set D(R) for an important class of rings R, namely for connected reduced orders; see 

below for definitions. These rings are commutative, so A is commutative and G is abelian. 

The case of commutative group rings has received special attention in the literature (for 

example [1,10–14]), an important tool being the abelian group μ = μ(R) = {ζ ∈ R :

(∃ n ∈ Z≥1) ζn = 1} of roots of unity in a commutative ring R.

For connected reduced orders R we add a new tool, namely the universal grading 

of R and the abelian group Γ = Γ(R) by which it is graded. The existence of such a 

universal grading was recently established in [9], and it was proved there that it comes 

with a natural map d = dR : μ → Γ. In one of our main theorems (Theorem 6.7 below) 

we exhibit, for connected reduced orders R, a natural bijection

D(R)
∼
−→ {f ∈ Hom(Γ, μ) : f ◦ d ◦ f = f}.
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Thus, the set of realizations of a connected reduced order as a group ring is parametrized 

by an easily defined set of homomorphisms from Γ to μ, both of which are finite abelian 

groups.

The theorem just stated has several striking consequences in the context of the Iso-

morphism Problem. For example, in Theorem 1.1 we prove that among reduced orders, 

group rings can only be isomorphic if they are so for obvious reasons. In Theorem 1.2 we 

show that each non-zero reduced order can in a unique “maximal” way be realized as a 

group ring. In Theorem 1.3 we establish a curious “cross-over” result. For the connected 

case, we describe in Theorem 1.5 the group of ring automorphisms of such a maximal 

group ring.

Deducing these results from our description of D(R) is surprisingly non-trivial, and 

has two features that may be unexpected in the context of commutative algebra. The first 

is the use of modules over non-commutative rings, and the second the use of techniques 

from number theory, taken from [7] and [9]. We next give precise statements of some of 

our main results, along with a brief introduction to our new tool and methods.

By an order we mean a commutative ring of which the additive group is isomorphic 

to Zn for some n ∈ Z≥0. A ring element x is nilpotent if xn = 0 for some n ∈ Z>0. We 

call a commutative ring reduced if it has no non-zero nilpotent elements.

Obviously, if A is a ring and I and H are groups, then the group rings A[I × H] and 

(A[I])[H] are isomorphic as rings. The following result expresses that, among reduced 

orders, group rings can only be isomorphic if they are so for this obvious reason.

Theorem 1.1. Suppose A and B are reduced orders and G and H are finite abelian groups. 

Then the following are equivalent:

(i) A[G] ∼= B[H] as rings,

(ii) there exist an order C and finite abelian groups I and J such that A ∼= C[I] and 

B ∼= C[J ] as rings and I × G ∼= J × H as groups.

The proof is given in Section 8.

We call a commutative ring R stark if there do not exist a ring A and a non-trivial 

group G such that R is isomorphic to the group ring A[G].

Theorem 1.2. Let R be a non-zero reduced order. Then there exist a stark ring A, unique 

up to ring isomorphism, and a finite abelian group G, unique up to group isomorphism, 

such that R ∼= A[G] as rings.

Theorem 1.2 is an immediate consequence of Theorem 1.1, and we give a proof in 

Section 8. We note that Theorem 1.1 may be deduced from Theorem 1.2 using that group 

rings of finite abelian groups over reduced orders are reduced (see Proposition 5.7(i)). 

There are many examples showing that A and G in Theorem 1.2 need not be uniquely 

determined as a subring of R and a subgroup of R∗, respectively (see Example 6.11).
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Theorems 1.1 and 1.2 are closely related to known results about group rings of torsion 

abelian groups over integral domains of characteristic zero; see Corollary 5 in [1] and 

Theorem 8 in [14], which were proved by studying the group of torsion units in the 

group ring. Our new tool, namely the consideration of gradings, allows us in the case of 

orders to replace the condition that the base ring be a domain by the weaker condition 

that it be stark and reduced.

A ring element x is idempotent if x2 = x. We call a commutative ring connected if 

it has precisely two idempotents, i.e., the ring is non-zero and 0 and 1 are the only 

idempotents. For a commutative ring R with a subring A ⊂ R and a subgroup G ⊂ R∗

we write A[G] = R when the natural map A[G] → R is a ring isomorphism.

If R, A, and G are as in Theorem 1.2, then A is isomorphic to a subring of R, and 

G is isomorphic to a subgroup of μ(R), but as we remarked, this subring and subgroup 

need not be uniquely determined. However, in the important special case where R is 

connected, there is a sense in which the set of subrings A ⊂ R that can be used and 

the set of subgroups G ⊂ μ(R) that can be used are entirely independent. The following 

“cross-over” result, which we found surprising, formulates this more precisely.

Theorem 1.3. Let R be a connected reduced order. Suppose that A and B are stark sub-

rings of R and that G and H are subgroups of R∗ such that A[G] = B[H] = R. Then 

A[H] = B[G] = R.

Theorem 1.3 will follow immediately from Theorem 6.10, which is proved in Section 6

below. As can be seen in Example 6.12, we cannot drop the assumption that R be 

connected in Theorem 1.3.

We call a ring element x autopotent if xn+1 = x for some n ∈ Z>0, or equivalently 

if it is the product of a root of unity and an idempotent that commute with each other 

(see Proposition 9.6.iv).

We have the following algorithmic result. All our algorithms will be deterministic.

Theorem 1.4. There is an algorithm that, given a non-zero reduced order R, computes 

a stark subring A ⊂ R and a subgroup G ⊂ μ(R) such that A[G] = R. This algorithm 

runs (a) in polynomial time when the additive group of R is generated by autopotents, 

and generally (b) in time nO(m) where n is the length of the input and m is the number 

of minimal prime ideals of R.

The proof of Theorem 1.4, and a description of the algorithm and how its input and 

output are given, are found in Section 9. Note that the algorithm runs in polynomial 

time when m is bounded by a constant. The case m = 1 is precisely the case where R is 

a domain, in which case one necessarily has A = R and G = 1. A notable special case 

for (a) is when R is the product of finitely many group rings over Z. We do not know 

whether there exists a polynomial-time algorithm that decides whether a given reduced 

order is stark.
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We next discuss the new tool that we announced. A grading of a commutative ring R is 

a pair (∆, (Rδ)δ∈∆) where ∆ is an abelian group and the Rδ are additive subgroups of R

such that, first, for all γ, δ ∈ ∆ one has Rγ ·Rδ ⊂ Rγδ, and, second, one has 
⊕

δ∈∆ Rδ = R

in the sense that the natural map 
⊕

δ∈∆ Rδ → R is bijective. For each commutative ring 

A and abelian group G the ring A[G] has a natural grading (G, (Aγ)γ∈G).

Suppose now that R is a reduced order. Two recent results from [9] (Theorems 5.5

and 5.6 below) are of crucial importance to the present paper. The first states that R

has a grading (Γ, (Rγ)γ∈Γ) that is universal in the sense that giving a grading of R with 

group ∆ is equivalent to giving a group homomorphism Γ → ∆ (see Definition 5.3). The 

abelian group Γ = Γ(R) is finite, and by universality it is canonically defined, so that 

the group Aut(R) of ring automorphisms acts on it (see Remark 6.4). The second result 

states that, if R is also connected, then for each ζ ∈ μ there is a unique γ ∈ Γ such that 

ζ ∈ Rγ , and we write d(ζ) = γ; this gives rise to a group homomorphism d : μ → Γ, 

sometimes denoted dR, which we call the degree map.

For each (A, G) ∈ D(R), the natural grading of A[G] gives rise to the grading 

(μ, (Aζ)ζ∈μ) of R, where Aζ = Aζ if ζ ∈ G and Aζ = 0 otherwise. This grading corre-

sponds to a homomorphism f : Γ → μ. We prove in Theorem 6.7 that in the connected 

case this construction induces a bijection from D(R) to the set of f such that fdf = f , 

so D(R) can be studied group-theoretically as mentioned above.

Our next result is on automorphism groups of orders. As we saw in Theorem 1.2, any 

non-zero reduced order R may be written as A[G], where A is a stark subring of R and G

is a subgroup of μ(R), but it is only up to the action of the automorphism group Aut(R)

that the pair (A, G) is unique. Thus, a natural question is how to describe the group 

Aut(R) in terms of A and G. Restricting to connected orders, which is the main case of 

interest, we show in Theorem 1.5 that this group has a somewhat curious description in 

terms of 2 × 2 matrices.

We write μ = μ(A) and Γ = Γ(A). There is a left action of Aut(A) on Hom(G, μ)

given via the restriction Aut(A) → Aut(μ), and a right action of Aut(A) on Hom(Γ, G)

induced by its action on Γ. For abelian groups M and N we will, here and elsewhere, 

write the group Hom(M, N) additively, regardless of the notation used for N .

Theorem 1.5. Let A be a stark connected reduced order with degree map dA : μ → Γ and 

let G be a finite abelian group. We equip the cartesian product

M =

(

Aut(A) Hom(G, μ)
Hom(Γ, G) Aut(G)

)

of Aut(A), Hom(G, μ), Hom(Γ, G), and Aut(G) with the following multiplication:

(

α1 s1

t1 σ1

) (

α2 s2

t2 σ2

)

=

(

α1α2 + s1t2 α1s2 + s1σ2

t1α2 + σ1t2 t1dAs2 + σ1σ2

)

,

where the sum in Aut(A) is as in Lemma 7.7 and the sum in Aut(G) is taken inside 

End(G). For x ∈ A and g ∈ G write (
x
g ) for the element x · g ∈ A[G]. Then:
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(i) M is a group;

(ii) there is a group isomorphism M
∼
−→ Aut(A[G]) such that the action of M on the 

ring A[G] is given by

(

α s
t σ

) (

x
g

)

=

(

α(x) · s(g)
t(γ) · σ(g)

)

for all g ∈ G, γ ∈ Γ, and x ∈ Aγ.

For the proof and additional results, we refer to Section 7.

Theorem 1.6. Let A be a stark connected reduced order with degree map dA : μ → Γ

and let G be a finite abelian group. Let A = {
⊕

γ∈Γ Aγt(γ) : t ∈ Hom(Γ, G)}, a set of 

subrings of A[G]. Let G = {{s(g)g : g ∈ G} : s ∈ Hom(G, μ)}, a set of subgroups of 

A[G]∗. Then

A × G = {(B, H) ∈ D(A[G]) : B is stark}.

The pairs (B, H) in Theorem 1.6 are exactly the pairs occurring in Theorem 1.3 with 

R = A[G]. Theorem 1.6 allows one, in the connected case, to read off the set of subrings 

A ⊂ R and the set of subgroups G ⊂ R∗ that can be used in Theorem 1.2. At the end 

of Section 8 we show how Theorem 1.6 readily follows from Theorems 1.5 and 1.2.

Our results suggest several questions. Which other rings have a universal grading? 

Under what conditions is there a degree map? Once one has a degree map d : μ → Γ, 

are there consequences for the Isomorphism Problem for group rings, even if μ or Γ is 

infinite? Can we replace rings by algebras over base rings other than Z? For preliminary 

results in these directions, see Theorem 6.21 in [19] (cf. Theorem 5.5), and [20] (cf. 

Theorem 5.6).

The structure of the paper is as follows. Section 2 contains generalities on modules of 

finite length over rings that need not be commutative. We show in Section 3 that a mor-

phism of abelian groups, in particular the degree map defined above, can be interpreted 

as a module over a certain matrix ring. This enables us, in Section 4, to apply the the-

orem of Krull–Remak–Schmidt to morphisms of finite abelian groups. Additionally, we 

introduce, for any morphism of abelian groups, an important group U∗ that acts on it. 

In Section 5 we treat generalities on graded rings and group rings. In Section 6 we apply 

the theory from the former sections to the degree map of a connected reduced order. It 

is an essential property of U∗ that its action on the degree map can be lifted to an action 

on the order (see Lemma 6.5). We prove Theorem 1.3 by showing that the pairs (A, G), 

(B, H), (A, H), and (B, G) are in the same orbit under the action of U∗. This effectively 

proves Theorems 1.1 and 1.2 in the connected case. In Section 7 we prove Theorem 1.5. 

Here U∗ will make a further appearance. In Section 8 we deduce Theorems 1.1 and 1.2

by reduction to the connected case. Finally, the algorithmic Theorem 1.4 is proved in 

Section 9.
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2. Modules and decompositions

In this section we gather some results on modules, by which we mean left modules. Let 

R be a ring and M an R-module. We call an R-module D a divisor of M if M ∼= D⊕N for 

some R-module N . If (Mi)i∈I is a family of submodules of M , then there is a natural map 
⊕

i∈I Mi → M , and we write 
⊕

i∈I Mi = M if this map is an isomorphism. Likewise, if 

C, D, N are submodules of M , we write C ⊕ D = N if the natural map C ⊕ D → M is 

injective with image N .

Definition 2.1. Let R be a ring and M an R-module. A decomposition of M is a pair 

(I, (Mi)i∈I) where I is a set and the Mi are submodules of M such that 
⊕

i∈I Mi = M ; in 

this case we also call (Mi)i∈I an I-indexed decomposition of M . We call M indecomposable

if M is non-zero and there do not exist non-zero R-modules D and N with M ∼= D ⊕ N .

We abbreviate (Mi)i∈I to (Mi)i when the index set is understood.

Definition 2.2. For a ring R and an R-module M we define

Id(R) = {e ∈ R : e2 = e},

Dec(M) = {(D, N) : D, N are submodules of M with D ⊕ N = M}.

We equip Id(R) with a partial order given by e ≤ f if and only if ef = fe = e. We 

equip Dec(M) with a partial order given by (D, N) ≤ (D′, N ′) if and only if there exists 

a submodule C ⊂ M such that D = D′ ⊕ C and N ⊕ C = N ′.

The following result, which we will use to prove Theorem 1.3, is easily verified.

Proposition 2.3. Let R be a ring and M an R-module. Then we have a bijection 

Φ: Id(End(M)) → Dec(M) given by e 
→ (ker(e), im(e)). If we let Aut(M) act natu-

rally both on Id(End(M)) by conjugation and on Dec(M) coordinate-wise, then Φ is an 

isomorphism of partially ordered sets that respects the action of Aut(M).

A module has finite length if every totally ordered set of submodules is finite, or 

equivalently if it is both Noetherian and Artinian.

Theorem 2.4 (Krull–Remak–Schmidt; see Theorem X.7.5 of [5]). Suppose R is a ring 

and M is an R-module of finite length. Then there exists a decomposition of M into 

finitely many indecomposable submodules, and such a decomposition is unique up to 

automorphisms of M and relabeling of the indices.

Remark 2.5. Let R be a ring, and let M be a non-empty set of R-modules of finite length. 

As a consequence of Theorem 2.4, there exists up to isomorphism exactly one R-module 

D that is a divisor of every M ∈ M such that every R-module that is a divisor of every 
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M ∈ M is a divisor of D; it is called a greatest common divisor of the set M. Every such 

D is of finite length. We say R-modules M and N are coprime if the greatest common 

divisor of {M, N} is 0. Likewise, if M is a finite set of R-modules of finite length, then 

there exists up to isomorphism exactly one R-module L of which each M ∈ M is a 

divisor such that L is a divisor of each R-module of finite length of which each M ∈ M

is a divisor; it is called a least common multiple of M. Every such L is of finite length.

Definition 2.6. Suppose R is a ring, M is an R-module, and h ∈ End(M). We define the 

R-modules

lim im(h) =

∞
⋂

n=1

hn(M) and lim ker(h) =

∞
⋃

n=1

ker(hn).

Lemma 2.7 (Fitting; see Theorem X.7.3 of [5]). Suppose R is a ring, M is an R-module 

of finite length, and h ∈ End(M). Then M = lim im(h) ⊕ lim ker(h), the restriction of h

to lim im(h) is an automorphism, and the restriction of h to lim ker(h) is nilpotent.

Lemma 2.8. Suppose R is a ring, M and N are R-modules, and f : M → N and 

g : N → M are morphisms. Then f restricts to morphisms i : lim im(gf) → lim im(fg)

and k : lim ker(gf) → lim ker(fg). If M and N have finite length, then i is an isomor-

phism.

Proof. We have f(gf)n(M) = (fg)nf(M) ⊂ (fg)n(N) for all n ≥ 1. Hence 

f(lim im(gf)) ⊂ lim im(fg), so i is well-defined. As

f(ker((gf)n+1)) ⊂ ker(g(fg)n) ⊂ ker((fg)n+1)

for all n ≥ 1 we also get f(lim ker(gf)) ⊂ lim ker(fg), so k is well-defined. By symmetry 

we obtain a restriction j : lim im(fg) → lim im(gf) of g. Under the finite length assump-

tion both ji and ij are automorphisms by Lemma 2.7, hence i is an isomorphism. �

Proposition 2.9. Suppose R is a ring, M is an R-module of finite length, and A1, A2, 

B1, B2 ⊂ M are submodules such that A1 and A2 are coprime, A1 ⊕A2 = B1 ⊕B2 = M , 

and A1
∼= B1. Then A1 ⊕ B2 = B1 ⊕ A2 = M .

Note that under the above assumptions it immediately follows that A1 ⊕ B2
∼= B1 ⊕

B2 = M . This is not equivalent to A1 ⊕ B2 = M , as this concerns a specific map 

A1 ⊕B2 → M . We need to show that the natural map B1 → M → A1 is an isomorphism.

Proof. From Theorem 2.4 it follows that A2
∼= B2 and thus B1 and B2 are coprime as 

well. By symmetry it therefore suffices to show B1 ⊕ A2 = M . We consider the maps as 

in the following commutative diagram, where ϕ : A1 → B1 is an isomorphism, the maps 

to and from M are the natural inclusions and projections, and the fi and gi are defined 

to make the diagram commute.
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A1 A1

A1 B1 M M B1 A1

A2 A2

e1

g1

ϕ

f1

f2

e

p1

p2

p ϕ−1

e2

g2

Note that idB1
= pe and idM = e1p1 + e2p2, so

idA1
= ϕ−1peϕ = ϕ−1p(e1p1 + e2p2)eϕ = ϕ−1pe1 · p1eϕ + ϕ−1pe2 · p2eϕ = g1f1 + g2f2.

Lemma 2.8 shows that D = lim im(g2f2) ∼= lim im(f2g2), so D is a divisor of both A1

and A2 by Lemma 2.7. Since A1 and A2 are coprime, we must have that D = 0 and 

thus g2f2 is nilpotent. We conclude that g1f1 = idA1
− g2f2 is an automorphism of A1. 

Hence f1 is injective, and since A1 is of finite length it must be an automorphism. It 

follows that p1e = f1ϕ−1 : B1 → A1 is an isomorphism, so M = B1 ⊕ A2, as was to be 

shown. �

Definition 2.10. Let R be a ring. A class S of R-modules is multiplicative if 0 ∈ S and 

for all R-modules M , N and D with M ∼= N ⊕ D and N , D ∈ S one has M ∈ S. We say 

a multiplicative class S of R-modules is saturated if for all M ∈ S and all divisors D of 

M one has D ∈ S. For a multiplicative class S of R-modules and an R-module M , write 

DecS(M) = {(M1, M2) ∈ Dec(M) : M2 ∈ S}, where Dec(M) is as in Definition 2.2. We 

equip DecS(M) with the partial order inherited from Dec(M), and write max(DecS(M))

for its set of maximal elements.

Proposition 2.11. Let R be a ring, let S be a multiplicative class of R-modules, and let 

M and N be R-modules. Then

(i) if M ∼= N and N ∈ S, then M ∈ S;

(ii) the set DecS(M) is non-empty.

Suppose in addition that S is saturated and that M is of finite length, and let (A1, A2), 

(B1, B2) ∈ DecS(M). Then

(iii) one has (A1, A2) ∈ max(DecS(M)) if and only if 0 is the only divisor of A1 that is 

in S;

(iv) the set max(DecS(M)) is non-empty and consists of one orbit of DecS(M) under 

the action of Aut(M);

(v) if (A1, A2), (B1, B2) ∈ max(DecS(M)), then (A1, B2), (B1, A2) ∈ max(DecS(M)).

Proof. (i) Apply the definition of multiplicative with D = 0.

(ii) The trivial element (M, 0) is in DecS(M).

(iii) If (A1, A2) is maximal but A1 = D ⊕ B1 for some D ∈ S and some B1, then 

(A1, A2) ≤ (B1, A2 ⊕ D) ∈ DecS(M) and thus A2 = A2 ⊕ D and D = 0. Conversely, 
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suppose 0 is the only divisor of A1 that is in S and (A1, A2) ≤ (B1, B2). Then there is 

some C such that A1 = B1 ⊕ C and B2 = A2 ⊕ C. Since S is saturated we have C ∈ S, 

and since C is a divisor of A1 we must have that C = 0. Hence (A1, A2) = (B1, B2) is 

maximal.

(iv) Let M =
⊕

i∈I Mi with each Mi indecomposable. If A2, respectively A1, is the 

direct sum of those Mi that are, respectively are not, in S, then (A1, A2) is in DecS(M)

and it is maximal by (iii). If (B1, B2) is also maximal, then B2, respectively B1, is a 

direct sum of indecomposables that are, respectively are not, in S; this follows from 

the definition of DecS(M) and from (iii). Since together these decompositions give a 

decomposition of M into indecomposables, Theorem 2.4 implies that A1
∼= B1 and 

A2
∼= B2, so (B1, B2) belongs to the Aut(M)-orbit of (A1, A2). Because the action of 

Aut(M) preserves the partial order, this orbit is conversely contained in max(DecS(M)).

(v) By (iii) we have that A1 and A2 are coprime and by (iv) we have A1
∼= B1 and 

A2
∼= B2. We may conclude from Proposition 2.9 that (A1, B2), (B1, A2) ∈ DecS(M). 

Applying (iii) again we may conclude they are maximal. �

3. Morphisms as modules

In this section we will interpret a morphism of (finite) abelian groups as a (finite 

length) module, as expressed by Proposition 3.3. We will then study decompositions 

of this module and what this decomposition corresponds to in terms of the original 

morphism. This will enable us in the next section to apply the Krull–Remak–Schmidt 

theorem to morphisms of finite abelian groups.

We write 
(

Z 0
Z Z

)

for the ring of lower-triangular 2 ×2 matrices with integer coefficients, 

Ab for the category of abelian groups, and ab for the category of finite abelian groups.

Definition 3.1. Let C be a category. We define the category of C-morphisms, written 

CHom, where the objects are the morphisms of C and for objects f : A → B and g : C →

D the morphisms from f to g are the pairs (α, β) ∈ HomC(A, C) × HomC(B, D) such 

that βf = gα, as in the following diagram:

A B

C D.

f

α β

g

The composition of C-morphisms (γ, δ) : g → h and (α, β) : f → g is (γα, δβ).

Remark 3.2. Let d : A → B be a morphism of abelian groups. Then the set End(d) ⊂

End(A) × End(B) of endomorphisms of d is a ring. Moreover, we have natural maps 

End(d) → End(A) and End(d) → End(B), turning A and B into End(d)-modules. 

Similarly we write Aut(d) for the group of automorphisms of d, which equals End(d) ∩

(Aut(A) × Aut(B)).
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The following proposition can be thought of as an explicit instance of Mitchell’s em-

bedding theorem for abelian categories.

Proposition 3.3. There is an equivalence of categories, specified in the proof, between 

the category AbHom and the category 
(

Z 0
Z Z

)

-Mod of 
(

Z 0
Z Z

)

-modules. This equivalence 

restricts to an equivalence between the subcategory abHom and the subcategory of 
(

Z 0
Z Z

)

-

modules of finite length.

Proof. We will define functors F : AbHom →
(

Z 0
Z Z

)

-Mod and G :
(

Z 0
Z Z

)

-Mod → AbHom

such that FG and GF are naturally isomorphic to the identity functors of their respective 

categories. For an object f : A → B we take F (f) to be A ⊕ B, where the 
(

Z 0
Z Z

)

-module 

structure is given by

(

x 0
y z

) (

a
b

)

=

(

xa
yf(a) + zb

)

(for x, y, z ∈ Z, a ∈ A, b ∈ B).

For a 
(

Z 0
Z Z

)

-module M we take G(M) to be the morphism E11M → E22M given by 

multiplication with E21, where Eij is the 2 × 2 matrix having a 1 at position (i, j) and 

zeros elsewhere. The remainder of this proposition is a straightforward verification. �

Definition 3.4. Write I for the class of 
(

Z 0
Z Z

)

-modules that correspond to isomorphisms 

under the equivalence of categories of Proposition 3.3.

One readily checks that the class I is multiplicative and saturated in the sense of 

Definition 2.10. We observe that a 
(

Z 0
Z Z

)

-module M belongs to I if and only if its 
(

Z 0
Z Z

)

-module structure can be extended to a 
(

Z Z

Z Z

)

-module structure. This fact will 

not be needed, and we omit the proof.

Remark 3.5. Using the equivalence of categories of Proposition 3.3, one can translate 

terminology related to modules into terminology about morphisms of abelian groups. 

We briefly go through what is most relevant to us:

(i) If f : A → B is a morphism of abelian groups, then a submodule of the 
(

Z 0
Z Z

)

-module 

corresponding to f corresponds to a restriction of f , i.e., a morphism f ′ : A′ → B′

where A′ ⊂ A and B′ ⊂ B are subgroups and f ′(a′) = f(a′) ∈ B′ for all a′ ∈ A′.

(ii) For morphisms f : A → B and g : C → D of abelian groups and for r = (α, β) ∈

Hom(f, g), the image im(r) equals the restriction im(α) → im(β) of g, and the 

kernel ker(r) equals the restriction ker(α) → ker(β) of f .

(iii) If (fi)i∈I is a family of morphisms fi : Ai → Bi of abelian groups, then we write 
⊕

i∈I fi for the natural map 
⊕

i∈I Ai →
⊕

i∈I Bi and we write f/fi for the induced 

map A/Ai → B/Bi. One verifies that 
⊕

i∈I fi corresponds to the direct sum of 

the 
(

Z 0
Z Z

)

-modules that the fi correspond to. If f : A → B is a morphism and 
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fi : Ai → Bi is a family of restrictions of f then, just as we do for modules, we will 

write 
⊕

i∈I fi = f if the natural map 
⊕

i∈I fi → f is an isomorphism.

(iv) For a morphism f : A → B, the set Dec(f) is the set of all pairs (f0, f1) of restrictions 

of f such that f0 ⊕ f1 = f , which is a partially ordered set as in Definition 2.2. The 

set DecI(f) is the set of (f0, f1) ∈ Dec(f) such that f1 is an isomorphism.

Definition 3.6. For a morphism f : A → B of abelian groups we denote the ring of 

morphisms from f to f in the category AbHom by End(f), we define

Prj(f) = {e ∈ Id(End(f)) : im(e) is an isomorphism},

and we equip Prj(f) with the partial order inherited from the partial order on Id(End(f))

from Definition 2.2.

We have the following corollary to Proposition 2.3.

Corollary 3.7. Let f : A → B be a morphism of abelian groups. Then we have an isomor-

phism Prj(f) → DecI(f) of partially ordered sets that respects the action of Aut(f).

4. The group U∗

In this section we fix a morphism d : A → B of abelian groups. We will define a group 

U∗ that acts on d and study some of its properties.

Definition 4.1. For f, g ∈ Hom(B, A), define f 
 g = fdg ∈ Hom(B, A), and extend 
 to 

a ring multiplication on the additive group Q = Q(d) = Z ⊕ Hom(B, A) by

(m, f) 
 (n, g) = (mn, mg + nf + fdg)

for m, n ∈ Z and f, g ∈ Hom(B, A). We define the multiplicative monoid

U = U(d) = 1 + Hom(B, A) ⊂ Z ⊕ Hom(B, A) = Q

and write U∗ = U∗(d) = U ∩ Q∗ for the intersection of U with the group of units of Q.

It is easy to check that Q is indeed a ring with unit element 1 = (1, 0), and that the 

projection map Q → Z is a ring homomorphism with kernel Hom(B, A). The inverse 

image of 1 equals U , and U∗ is a group because it is the kernel of the induced group 

homomorphism Q∗ → Z∗. The following lemma is easy to verify.

Lemma 4.2. We have a ring homomorphism q : Q → End(d) defined by sending 1 to 

the identity idd and f ∈ Hom(B, A) to (fd, df). It restricts to a group homomorphism 

U∗ → Aut(d).
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Remark 4.3. Recall from Remark 3.2 that A and B are End(d)-modules. The map q

makes A and B into Q-modules in such a way that d is Q-linear.

Definition 4.4. We write

Id0 = Id0(d) = Id(Q) ∩ Hom(B, A) = {f ∈ Hom(B, A) : fdf = f}

with Q as in Definition 4.1. We equip Id0 with the partial order inherited from the partial 

order on Id(Q) as in Definition 2.2.

Remark 4.5. From Lemma 4.2 we get a map U∗ → Aut(d), i.e., U∗ acts on d. In turn, 

since an isomorphism between d’s induces a bijection between their Id0’s, the group 

Aut(d) acts on Id0. However, U∗ acts directly on Id0 by conjugation within Q. Although 

we will not need it, both of the induced maps U∗ → Aut(Id0) are the same.

Recall the terminology im(r), ker(r), and 
⊕

i∈I fi from Remark 3.5, and Prj(d) from 

Definition 3.6. If e ∈ End(d), we write e = (eA, eB) with eA ∈ End(A) and eB ∈ End(B).

Proposition 4.6. The map q : Q → End(d) from Lemma 4.2 restricts to an isomorphism 

Id0(d) 
∼
−→ Prj(d) of partially ordered sets that respects the action of Aut(d). Its inverse 

is the map given by e 
→ 0e ⊕ im(e)−1, where 0e : ker(eB) → ker(eA) is the zero map.

Proof. Write Φ: Id0(d) → End(d) for the restriction of q, and write Ψ: Prj(d) →

Hom(B, A) for the map e 
→ 0e ⊕ im(e)−1. To see that Ψ is well defined, note that 

e and hence eA and eB are idempotents, so A = ker(eA) ⊕ im(eA) and likewise for B by 

Proposition 2.3.

Let e ∈ Prj(d) and f = Ψ(e). Note that fd = eA, by considering the restriction to 

im(eA) and ker(eA) separately, and similarly df = eB and feB = f . Hence q(f) = e

and q ◦ Ψ = idPrj(d). For g ∈ Hom(B, A) we have g 
 f = gdf = geB . In particular 

f 
 f = feB = f , so f ∈ Id0. Thus Ψ restricts to Prj(d) → Id0.

Since q is a ring homomorphism, it maps idempotents to idempotents. For f ∈ Id0

it follows from fdf = f that f and d are mutually inverse when restricted to im(df) →

im(fd), respectively im(fd) → im(df). In particular im(q(f)), which is precisely the 

restriction of d just mentioned, is an isomorphism. Hence Φ restricts to Id0 → Prj(d). 

Moreover, the restriction of f to ker(df) → ker(fd) is zero since fdf = f , so Ψ(Φ(f)) = f . 

We conclude that Φ and Ψ are mutually inverse.

All constructions are functorial in d and thus Aut(d) commutes with Φ. The defini-

tion of the partial order on idempotents is completely algebraic, so the partial order is 

preserved by Φ, which is the restriction of a ring homomorphism. If e, e′ ∈ Prj(d) are 

such that ee′ = e = e′e, then Ψ(e) 
 Ψ(e′) = Ψ(e)e′
B = Ψ(e)eBe′

B = Ψ(e)eB = Ψ(e), and 

likewise Ψ(e′) 
 Ψ(e) = Ψ(e), so Ψ preserves the partial order as well. �
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In the following results, we use the terminology from Remark 3.5. We let U∗ act on 

Dec(d) via the map U∗ → Aut(d) from Lemma 4.2.

Lemma 4.7. Let di : Ai → Bi with i ∈ {−1, 0, 1} be restrictions of d such that (d0, d1)

and (d0, d−1) belong to Dec(d), and suppose that d0 or d1 is an isomorphism. Then 

(d0, d−1) ∈ U∗ · (d0, d1).

Proof. We have A0 ⊕ A1
∼= A ∼= A0 ⊕ A−1. Hence the map A1 → A−1 given by x 
→ x−1

where x = x0 + x−1 with xi ∈ Ai is an isomorphism. Similarly, we have a natural 

isomorphism g1 : d1 → d/d0 → d−1, and its extension g = idd0
⊕ g1 ∈ Aut(d) maps 

(d0, d1) to (d0, d−1). Letting r = idd − g ∈ End(d), then r(d1) ⊂ d0 and r(d0) = 0, so 

r2 = 0. We first construct f ∈ Hom(B, A) that maps to r under q : Q → End(d). Write 

r = (rA, rB) with rA ∈ End(A) and rB ∈ End(B). Since d0 or d1 is invertible, there 

exists f1 : B1 → A0 such that the diagram

A1 B1

A0 B0

d1

rA rB

f1

d0

commutes. Then f = 0 ⊕ f1 with 0: B0 → A1 satisfies (fd, df) = r, so f does map to r

under q : Q → End(d). From f 
 f 
 f = fdfdf = r2
Af = 0 we see that f is nilpotent, so 

the element 1 − f ∈ U belongs to U∗. Since 1 − f maps to idd − r = g via q, it sends 

(d0, d1) to (d0, d−1). �

The proof of the following proposition, which can be considered a sharpening of Propo-

sition 2.11.iv when R =
(

Z 0
Z Z

)

, is the main reason for considering d as a module.

Proposition 4.8. Assume A and B are finite. Then the set of maximal elements of DecI(d)

equals one orbit of DecI(d) under the action of U∗.

Proof. By Proposition 3.3 we may apply Proposition 2.11.iv. Thus, it suffices to show 

that any two maximal elements (d0, d1), (e0, e1) ∈ DecI(d) are in the same U∗-orbit. 

Recall that (d0, e1) ∈ DecI(d) by Proposition 2.11.v. Applying Lemma 4.7 we obtain 

(d0, e1) ∈ U∗ · (d0, d1) since d1 is an isomorphism, and (e0, e1) ∈ U∗ · (d0, e1) since e1 is 

an isomorphism. Thus (e0, e1) ∈ U∗ · (d0, e1) = U∗ · (d0, d1). �

5. Graded rings

In this section we consider gradings, which may be viewed as a generalization of 

group rings. In Section 6 we will use them to prove Theorem 1.3. We begin by giving 

the definitions as we need them, and state some results from [9].
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Definition 5.1 (Definition 1.1 and Lemma 7.1 in [9]). Let R be a commutative ring. 

A grading of R is a pair (∆, R) where ∆ is a (multiplicatively written) abelian group 

and R = (Rδ)δ∈∆ is a ∆-indexed decomposition of R as a Z-module, as defined in 

Definition 2.1, such that RγRδ ⊂ Rγδ for all γ, δ ∈ ∆. For a grading (∆, R) with 

R = (Rδ)δ∈∆ and a group homomorphism f : ∆ → E, we define f∗(R) to be the E-

indexed decomposition (Sε)ε∈E of R defined by Sε =
∑

δ∈f−1ε Rδ; then (E, f∗(R)) is a 

grading of R. We turn the class of gradings of R into a category by defining a morphism 

(∆, R) → (E, S) to be a group homomorphism f : ∆ → E for which f∗(R) = S.

From now on, we will usually write (Rδ)δ instead of (Rδ)δ∈∆.

Remark 5.2. Note that every non-zero commutative group ring A[G] naturally comes 

with a grading (G, (Ag)g). Let R be a commutative ring. Analogously to writing 
⊕

i∈I Mi = M for submodules Mi of some R-module M when the natural map 
⊕

i∈I Mi → M is an isomorphism, we write R = A[G] for a subring A of R and subgroup 

G of R∗ if the natural map A[G] → R is an isomorphism.

Definition 5.3 (Definition 1.2 in [9]). Let R be a commutative ring. A grading (Γ, R) of R

is called universal if it is an initial object of the category of gradings of R, or equivalently 

if for every grading (E, S) of R there is a unique group homomorphism f : Γ → E such 

that f∗(R) = S. If a universal grading (Γ, R) exists, then it is unique up to a unique 

isomorphism and we refer to it as the universal grading of R. We write Γ(R) = Γ for the 

group of this grading.

Remark 5.4. If R and R′ are commutative rings that have universal gradings, then any 

ring isomorphism R → R′ induces a group isomorphism Γ(R) → Γ(R′), so Γ(R) behaves 

functorially under ring isomorphisms; in particular, the group Aut(R) of ring automor-

phisms of R acts in a natural way on Γ(R).

Two important results on gradings of orders from [9] are fundamental to the present 

paper. The first concerns the existence of a universal grading. Recall a commutative ring 

is reduced if it has no non-zero nilpotent elements.

Theorem 5.5 (Theorem 1.3 of [9]). If R is a reduced order, then R has a universal grading 

and Γ(R) is finite.

The second result relates to roots of unity. Recall that a commutative ring R is 

connected if it has exactly two idempotents and that μ(R) is the group of roots of unity 

in R.

Theorem 5.6 (Theorem 1.5.iii in [9]). If R is a connected order and (∆, (Rδ)δ) is a 

grading of R, then μ(R) ⊂
⋃

δ∈∆ Rδ.
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The proofs of these two theorems as given in [9] are of a number-theoretic nature. For 

algebraic arguments one may refer to [19,20].

Another useful fact is that the properties of being reduced and being connected are 

preserved under construction of group rings. We write nil(R) for the set of nilpotent 

elements of a commutative ring R.

Proposition 5.7 (Theorem 1.5 in [9]). Let A be an order and G a finite abelian group. 

Then:

(i) nil(A[G]) = nil(A)[G], and A is reduced if and only if A[G] is reduced;

(ii) Id(A[G]) = Id(A), and A is connected if and only if A[G] is connected;

(iii) If A is connected, then μ(A[G]) = μ(A) × G.

Proof. We apply the theory of gradings to the natural grading of A[G]. For (i) we 

apply Theorem 1.5.i in [9] so that nil(A[G]) =
⊕

g∈G(nil(A[G]) ∩ Ag) = nil(A)[G]. The 

remaining equivalence follows trivially. Theorem 1.5.ii and iii in [9] prove (ii) and (iii). �

Proposition 5.8. Suppose R = (∆, (Rδ)δ) is a grading of a commutative ring R and let

∆′ = 〈δ ∈ ∆ : Rδ �= 0〉.

Then:

(i) We have that R′ = (∆′, (Rδ)δ) is a grading of R.

(ii) The inclusion i : ∆′ → ∆ is a morphism R′ → R of gradings.

(iii) If S is a grading of R and there exists a morphism f : R → S, then there exists a 

unique morphism f ′ : R′ → S. It equals f ◦ i.

(iv) If there exists a morphism from R′ to a universal grading, then R′ is universal.

(v) If R is universal, then ∆ = ∆′.

Proof. Both (i) and (ii) are trivial. For (iii), clearly f ◦ i is such a morphism. For unique-

ness, it follows from the definitions that f ′ must equal f for all δ ∈ ∆ such that Rδ �= 0, 

and such δ generate ∆′. For (iv), we have a map from R′ to any other grading by pass-

ing through the universal grading, and such a map is unique by (iii). For (v), if R is 

universal, then so is R′ by (ii) and (iv), and then i is a bijection since universal objects 

are uniquely unique. �

Proposition 5.9. Let S and T be orders, write R = S × T , and let π : R → S be the 

natural projection.

(i) If (∆, (Rδ)δ) is a grading of R, then (∆′, (π(Rδ))δ) with ∆′ = 〈δ ∈ ∆ : π(Rδ) �= 0〉

is a grading of S, and if the former is universal, then so is the latter.
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(ii) If (E, (Sε)ε) and (Z, (Tζ)ζ) are gradings of S, respectively T , then (E×Z, (R(ε,ζ))(ε,ζ))

with R1,1 = S1 × T1, Rε,1 = Sε × {0} for ε �= 1, R1,ζ = {0} × Tζ for ζ �= 1, and 

R(ε,ζ) = {(0, 0)} for ε �= 1, ζ �= 1, is a grading of R. If the first two are universal, 

then so is the latter.

Proof. (i) Clearly S =
∑

δ∈∆′ π(Rδ). We identify S with S × {0} ⊂ R, so that π(Rδ) =

(1, 0) · Rδ. As (1, 0) ∈ R1 by Theorem 1.5.ii in [9], we find π(Rδ) ⊂ Rδ, and hence the 

sum of the π(Rδ) is a direct sum. It follows that (∆′, (π(Rδ))δ) is a grading of S.

Suppose that (∆, (Rδ)δ) is universal and let (E, (S′
ε)ε) be a grading of S. Then 

(E, (Sε)ε) with S1 = S′
1 × T and Sε = S′

ε × {0} for ε �= 1 is a grading of R. By uni-

versality, there is a group homomorphism f : ∆ → E such that f∗((Rδ)δ) = (Sε)ε. Its 

restriction f ′ to a map ∆′ → E is a morphism (∆′, (π(Rδ))δ) → (E, (S′
ε)ε), and the map 

is unique by Proposition 5.8.iii. We conclude that (∆′, (π(Rδ))δ) is universal.

(ii) The first statement is immediate. For universality, any grading (∆, R) of R in-

duces, as in (i), gradings of S and of T by the same group ∆, which come from unique 

group homomorphisms E → ∆ and Z → ∆. One readily checks that the induced group 

homomorphism E × Z → ∆ is the unique morphism (E × Z, (R(ε,ζ))(ε,ζ)) → (∆, R). The 

details are left to the reader. �

Definition 5.10. When R is a commutative ring, we define the set

D(R) = {(A, G) : A ⊂ R a subring, G ⊂ R∗ a subgroup, A[G] = R},

and equip it with a partial order ≤ given by (B, H) ≤ (A, G) if and only if H ⊂ G and 

B ⊃ A.

Note that Aut(R) naturally acts component-wise on D(R).

Lemma 5.11. Suppose R is a non-zero order. Then for each (A, G) ∈ D(R) the order of 

G is at most the rank of R as a Z-module, and D(R) contains a maximal element.

Proof. By definition of D(R) the elements of G are linearly independent, from which the 

first claim follows. We have (R, 1) ∈ D(R), so D(R) is not empty. Thus if (A, G) ∈ D(R)

and #G is maximal, then (A, G) is a maximal element of D(R). �

Lemma 5.12. Let R be a connected order and let (A, G), (B, H) ∈ D(R) be such that 

(B, H) ≤ (A, G). Then with J = G ∩ μ(B) we have G = J × H and B = A[J ].

Proof. By Lemma 5.11 the group H is finite, and by Proposition 5.7.iii the multiplication 

map μ(B) × H → μ(R) is an isomorphism. Since the inverse image of G is J × H, we 

have G = J ×H. Thus A[J ][H] = A[J ×H] = A[G] = B[H] and therefore A[J ] = B. �

Example 5.13. The conclusion to Lemma 5.12 does not hold in general for non-connected 

orders. Let p be prime and let G = Cp × Cp with Cp a group of order p. Then G is a 
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2-dimensional Fp-vector space and thus there are precisely p + 1 subgroups H0, . . . , Hp

of G of order p. We have Hi · Hj = G if and only if i �= j. Let R = Z[G] × Z[G] and let 

∆: G → μ(R) be the map given by g 
→ (g, g). Now consider the elements

(Z × Z, ∆(G)) ≥ (Z[H0] × Z[H1], ∆(Hp))

of D(R). As Proposition 5.7.iii implies

μ(Z[H0] × Z[H1]) = μ(Z[H0]) × μ(Z[H1]) = {(±h0, ±h1) : h0 ∈ H0, h1 ∈ H1},

we get J = ∆(G) ∩ μ(Z[H0] × Z[H1]) = 1 and (Z × Z)[J ] �= Z[H0] × Z[H1].

Recall that we say a commutative ring R is stark if there do not exist a ring A and 

a non-trivial group G such that R is isomorphic to the group ring A[G], or equivalently 

for R non-zero, if # D(R) = 1.

Lemma 5.14. Let R be a non-zero commutative ring and let (A, G) ∈ D(R). If (A, G) is 

maximal, then A is stark. When R is a connected order, the converse also holds.

Proof. If A = B[J ] for some J ⊂ A∗, then (A, G) ≤ (B, J × G) ∈ D(R). Hence if (A, G)

is maximal we have (A, G) = (B, J × G) and thus J = 1, so A is stark. For connected 

orders, the converse follows from Lemma 5.12. �

Note that from Theorem 1.1 it follows that maximality of (A, G) ∈ D(R) for a non-

zero reduced order R is equivalent to A being stark even when R is not connected. 

However, we have not proved this yet.

6. The degree map

In this section we extract from a connected reduced order R a morphism d of abelian 

groups. We will describe D(R) in terms of d using the theory in Section 4 and then prove 

Theorem 1.3.

Lemma 6.1. Let R be a connected reduced order and let (Γ(R), (Rγ)γ) be its univer-

sal grading (see Definition 5.3). Then there exists a morphism of finite abelian groups 

d : μ(R) → Γ(R) that sends ζ ∈ μ(R) to the unique γ ∈ Γ(R) such that ζ ∈ Rγ .

Proof. The group Γ(R) is finite by Theorem 5.5, and μ(R) is finite by Lemma 3.3.ii in 

[7]. By Theorem 5.6, if ζ ∈ μ(R), then there exists a γ ∈ Γ(R) such that ζ ∈ Rγ . The 

element γ is unique, since Rγ ∩ Rδ = 0 for all γ �= δ. That d is a homomorphism follows 

from the definitions. �

Definition 6.2. For a connected reduced order R we call the map d = dR : μ(R) → Γ(R)

from Lemma 6.1 the degree map of R.



H.W. Lenstra et al. / Journal of Algebra 641 (2024) 391–428 409

The above definition depends on the choice of universal grading. However, the uni-

versal grading of R is uniquely unique. Moreover, the proof of Theorem 1.3 of [9], which 

states that a reduced order has a universal grading, exhibited an explicit canonical choice 

of universal grading. Thus we can confidently refer to the degree map of a connected re-

duced order. We now describe the degree map dA[G] of A[G].

Proposition 6.3. Let A be a connected reduced order and let G be a finite abelian group. Let 

(Γ(A), (Aγ)γ) and (Γ(A[G]), (Rγ)γ) be the universal grading of A and A[G], respectively. 

Then

(i) we have Γ(A[G]) = Γ(A) × G, and R(γ,g) = Aγ · g for all γ ∈ Γ(A) and g ∈ G;

(ii) if we identify μ(A[G]) with μ(A) × G as in Proposition 5.7.iii, then the degree map

dA[G] : μ(A) × G → Γ(A) × G

equals dA × idG;

(iii) we have Γ(A) = 〈γ ∈ Γ(A[G]) : Rγ ∩ A �= 0〉.

Proof. Let A = (Γ(A), (Aγ)γ) and R = (Γ(A[G]), (Rγ)γ) be the universal gradings of A

and A[G] respectively and define A[G] = (Γ(A) × G, (Aγ · g)(γ,g)). By universality there 

exists a unique morphism of gradings ϕ : R → A[G], which by Definition 5.1 is a group 

homomorphism Γ(A[G]) → Γ(A) × G, and we will show that it is an isomorphism. Let 

π : Γ(A) × G → G be the projection and ∆ = ker(πϕ). For g ∈ G we have g ∈ RdA[G](g)

and g ∈ A1 · g, so πϕdA[G] is the identity on G. It follows that Γ(A[G]) = ∆ × G. 

Then RA = (∆, (Rδ)δ) is a grading of A, and ϕ restricts to a morphism of gradings 

ϕ′ : RA → A with ϕ = ϕ′ × idG. With ∆′ = 〈δ ∈ ∆ : Rδ �= 0〉 we have

⊕

(δ,g)∈∆′×G

Rδ · g = A[G],

so by Proposition 5.8.v we obtain ∆′ × G = Γ(A[G]) = ∆ × G. Hence ∆′ = ∆, so RA is 

universal by Proposition 5.8.iv. It follows that ϕ′ and hence ϕ is an isomorphism, proving 

(i). Now (ii) and (iii) follow by inspection. �

Proposition 6.3.ii expresses the degree map of A[G] in terms of G and the degree map of 

A, but we will mainly use it in the opposite direction. Specifically, for a connected reduced 

order R, an element (A, G) ∈ D(R) corresponds to a certain decomposition (dA, idG) ∈

DecI(d) of the degree map d of R, as defined in Definition 2.10 and Definition 3.4. In 

Theorem 6.9 we will show it is in fact a bijective correspondence. This together with 

Proposition 4.8 will prove Theorem 1.3.

Remark 6.4. Let R be a connected reduced order with universal grading (Γ, (Rγ)γ) and 

degree map d : μ → Γ. Note that the group Aut(R) acts on the category of gradings of 
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R. Under this action, σ ∈ Aut(R) sends (Γ, (Rγ)γ) to (Γ, (σ(Rγ))γ), which is again a 

universal grading of R. Thus by universality, σ induces a unique isomorphism Γ 
∼
−→ Γ. 

It follows that Aut(R) acts on Γ. Clearly Aut(R) acts on μ, and it is easy to see the 

following diagram commutes

μ Γ

μ Γ,

d

σ σ

d

i.e., we obtain an action Aut(R) → Aut(d) of Aut(R) on d.

For a degree map d : μ → Γ we define U∗(d) as in Definition 4.1.

Lemma 6.5. Let R be a connected reduced order with universal grading (Γ, (Rγ)γ∈Γ) and 

corresponding degree map d : μ → Γ. Let ϕ : U∗(d) → Aut(d) be as in Lemma 4.2 and 

χ : Aut(R) → Aut(d) as in Remark 6.4. We then have a commutative diagram

U∗(d)

Aut(R) Aut(d)

ψ ϕ

χ

where ψ is a morphism given by 1 + f 
→ (x ∈ Rγ 
→ f(γ) · x).

Proof. Let 1 + f, 1 + g ∈ U∗ and recall that their product equals (1 + f) 
 (1 + g) =

1 + f + g + fdg in U∗. It is easy to see that ψ(1 + f) is an endomorphism of R. For γ ∈ Γ

we have

x ∈ Rγ
ψ(1+g)

−−−−−→ g(γ) · x ∈ Rdg(γ) · Rγ ⊂ Rdg(γ)·γ

ψ(1+f)

−−−−−→ f(dg(γ) · γ) · g(γ) · x = f(γ)g(γ)fdg(γ) · x,

so indeed ψ(1 + f) ◦ ψ(1 + g) = ψ((1 + f) 
 (1 + g)). It follows that ψ(1 + f) ∈ Aut(R)

and that ψ is a morphism.

Let 1 + f ∈ U∗ and write F = ψ(1 + f). For ζ ∈ μ we have F (ζ) = f(dζ)ζ, so 

F |μ(R) = idμ + fd. For γ ∈ Γ and x ∈ Rγ non-zero we have F (x) = f(γ) · x, so 

the induced action on Γ sends γ to df(γ)γ. Hence 1 + f gets sent to idΓ + df , since 

{γ ∈ Γ : Rγ �= 0} is a generating set of Γ by Proposition 5.8.v. We conclude that 

χ(ψ(1 + f)) = (idμ + fd, idΓ + df) = ϕ(1 + f), as was to be shown. �

Example 6.6. The map ψ : U∗ → Aut(R) need not be injective, even when R is stark. 

Consider the subring R = Z · (1, 1) +2S of S = Z[i] ×Z[i] where i2 = −1, which is clearly 

connected, reduced, and has μ(R) = {±1} × {±1}. Let Γ = μ(R) and write
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R1,1 = R ∩ (Q × Q) = Z · (1, 1) + Z · (1, −1),

R1,−1 = 2i · (Z × {0}), R−1,1 = 2i · ({0} × Z), R−1,−1 = 0.

Then (Γ, (Rγ)γ) is the universal grading of R. Consider the identity id : Γ → μ. Note 

that 2id = 0 and d = 0, hence (1 + id)2 = 1 in Q and so 1 + id ∈ U∗. Moreover, ψ(1 + id)

is the identity of R, so ψ is not injective. To see R is stark, we can apply Lemma 7.1.vi 

below since d = 0.

For a degree map d : μ → Γ we write Id0(d) for the partially ordered set {f ∈

Hom(Γ, μ) : fdf = f} corresponding to d, as defined in Definition 4.4.

Theorem 6.7. Let R be a connected reduced order with universal grading (Γ, (Rγ)γ)

and corresponding degree map d : μ → Γ. The map Id0(d) → D(R) given by f 
→

(
⊕

γ∈ker(f) Rγ , im(f)) is a well-defined isomorphism of partially ordered sets and re-

spects the action of Aut(R) of Remark 6.4. Its inverse is the map given by (A, G) 
→

0Γ(A)→μ(A) ⊕ d−1
G→d(G).

Proof. Write Φ for the map Id0(d) → D(R), which we first verify is well-defined. Suppose 

f ∈ Id0(d). As ker(f) is a subgroup of Γ we have that B =
⊕

γ∈ker(f) Rγ is a subring 

of R. Furthermore, from fdf = f it follows that the restriction of d to im(f) → im(df)

is an isomorphism, with the restriction of f to im(df) → im(f) as inverse, and Γ =

ker(f) ⊕ im(df). Thus

R =
⊕

γ∈Γ

Rγ =
⊕

ζ∈im(f)

(

⊕

γ∈ker(f)d(ζ)

Rγ

)

=
⊕

ζ∈im(f)

Bζ = B[im(f)].

Hence Φ(f) ∈ D(R) and Φ is well-defined.

We next construct an inverse Ψ of Φ. Suppose (A, G) ∈ D(R). By Proposition 6.3 we 

may factor Γ(R) and μ(R) such that d is given by d : μ(A) × G → Γ(A) × d(G), where

Γ(A) = 〈γ ∈ Γ(R) : Rγ ∩ A �= 0〉,

and the restriction d1 of d to G → d(G) is an isomorphism. Now define f : Γ(R) → μ(R)

as the product of 0: Γ(A) → μ(A) and d−1
1 . Clearly fdf = f , so Ψ is well-defined.

For (A, G) ∈ D(R) we have ker(Ψ(A, G)) = Γ(A) and im(Ψ(A, G)) = G, so indeed 

Φ ◦ Ψ = id. Conversely, let f ∈ Id0(d) and f ′ = Ψ(Φ(f)). Restricted to im(df) →

im(f), both f and f ′ equal the inverse of a restriction of d, and are 0 on a subgroup 

complementary to im(df). By Proposition 6.3.iii we have

ker(f ′) =
〈

γ′ ∈ Γ(R) : Rγ′ ∩
⊕

γ∈ker(f)

Rγ �= 0
〉

= 〈γ ∈ ker(f) : Rγ �= 0〉 ⊂ ker(f),

so equality must hold and f = f ′. Thus Ψ ◦ Φ = id, and Φ and Ψ are bijections.
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It follows easily from the definitions that Φ and Ψ respect the partial order and that 

the action of Aut(R) commutes with Φ. �

Remark 6.8. Recall that U∗(d) was defined in Definition 4.1, and that it acts on R and 

hence on D(R) by Lemma 6.5. Moreover, U∗(d) acts on d and hence on

DecI(d) = {(d0, d1) : d0 ⊕ d1 = d and d1 is an isomorphism}

as in Remark 3.5.iv. For (d0, d1) ∈ DecI(d) we will write μi and Γi for the finite abelian 

groups such that di : μi → Γi. Note that if d0 ⊕d1 = d, then μ0 ⊕μ1 = μ and Γ0 ⊕Γ1 = Γ.

Theorem 6.9. Let R be a connected reduced order with degree map d and universal grading 

(Γ, (Rγ)γ). We have an isomorphism of partially ordered sets DecI(d) 
∼
−→ D(R) given by

(

d0 : μ0 → Γ0, d1 : μ1 → Γ1) 
→
(

⊕

γ∈Γ0

Rγ , μ1

)

,

(

d|μ(A)→Γ(A), d|G→d(G)

)


→
(

A, G
)

,

that respects the action of U∗(d), where Γ(A) = 〈γ ∈ Γ : 0 �= Rγ ⊂ A〉.

Before we prove Theorem 6.9, we remark that the notation Γ(A) used in the theorem 

was already reserved for the group of the universal grading of A. However, by Propo-

sition 6.3.iii there is no ambiguity, as they are uniquely isomorphic. In fact, the map 

d|μ(A)→Γ(A) is the degree map of A.

Proof. Theorem 6.7, Proposition 4.6, and Corollary 3.7 give explicit isomorphisms of 

partially ordered sets D(R) → Id0(d) → Prj(d) → DecI(d), from which one readily reads 

off that their composition and its inverse are as given in the theorem. From Lemma 6.5

it follows that the isomorphisms respect the action of U∗(d). �

Theorem 6.10. Let R be a connected reduced order with degree map d, and suppose 

(A, G), (B, H) ∈ D(R) are such that A and B are stark. Then A ∼= B as rings, G ∼= H as 

groups, and (A, G), (A, H), (B, G) and (B, H) are all in the same U∗(d)-orbit of D(R).

Proof. Let Φ: DecI(d) → D(R) be the isomorphism of Theorem 6.9. Suppose 

(A, G), (B, H) ∈ D(R) are such that A and B are stark. Then (A, G) and (B, H)

are maximal elements of D(R) by Lemma 5.14, and thus Φ(A, G) = (d0, d1) and 

Φ(B, H) = (e0, e1) are maximal in DecI(d). Then by Proposition 2.11.v and Propo-

sition 4.8 all of (d0, d1), (d0, e1), (e0, d1), and (e0, e1) are maximal and in the same 

U∗-orbit. Since Φ(d0, e1) = (A, H) and Φ(e0, d1) = (B, G), and Φ respects the action of 

U∗, the last assertion of the theorem follows. As a consequence, (A, G) and (B, H) are 

in the same orbit of Aut(R), so A ∼= B as rings and G ∼= H as groups. �
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Theorem 1.3 is an immediate consequence of Theorem 6.10. Note that in the connected 

case Theorem 1.2 also follows from Theorem 6.10. In Section 8 we shall see that the same 

applies for Theorem 1.1.

Example 6.11. Let 〈σ〉 be a group of order 2 and let R = Z[i][〈σ〉], where i2 = −1. We 

will compute D(R). By Proposition 5.7.i,ii the ring R is both reduced and connected. 

With Γ = (Z/2Z)2, consider the grading (Γ, (Ra,b)(a,b)) of R with Ra,b = Ziaσb, where 

although ia is not well-defined, Zia is. Since a universal grading exists, and all Ra,b are 

of rank 1 over Z, this must be the universal grading. Let d : μ → Γ be the degree map. 

It follows from Proposition 5.7.iii that μ = 〈i, σ〉 ∼= Z/4Z × Z/2Z. We will first compute 

DecI(d).

Suppose we have (d0, d1) ∈ DecI(d) with di : μi → Γi as in Remark 6.8. If μ1 = 1, then 

d0 = d, and (d0, d1) corresponds via Theorem 6.9 to the trivial element (R, 1) of D(R). 

Now suppose μ1 �= 1. Since d1 is an isomorphism, the groups μ1 and Γ1 are isomorphic, 

so μ1 is isomorphic to a direct factor of μ and of Γ. Since Z/2Z is the greatest common 

divisor of μ and Γ as Z-modules (in the sense of Remark 2.5), we have that μ1 is a direct 

factor of μ isomorphic to Z/2Z. It follows that μ1 = 〈(−1)bσ〉 for some b ∈ Z/2Z, and 

the corresponding group Γ1 equals 〈(0, 1)〉 in both cases. On the other hand μ0 = 〈iσa〉

for some a ∈ (Z/2Z) since it must be a cyclic group of order 4, and Γ0 = 〈(1, a)〉. 

Upon inspection, all pairs (a, b) do indeed give a decomposition (d0, d1) ∈ DecI(d). The 

rings corresponding to the possible d0 are Z[iσa], and the groups corresponding to d1

are 〈(−1)bσ〉. This gives

D(R) = {(R, 1)} ∪ {(Z[iσa], 〈(−1)bσ〉) : a, b ∈ Z/2Z}.

Interesting to note is that, although (Z[iσ], 〈σ〉) differs from (Z[iσ], 〈−σ〉), the corre-

sponding gradings are isomorphic, since Z[iσ] · σ = Z[iσ] · (−σ).

Example 6.12. The conclusion to Theorem 1.3 does not hold in general for non-connected 

reduced orders. Let C be a non-trivial finite abelian group and consider R = Z[C × C] ×

Z[C]. Let

A = Z[C × 1] × Z, G = {((1, γ), γ) : γ ∈ C},

B = Z[1 × C] × Z, H = {((γ, 1), γ) : γ ∈ C}.

Then A and B are stark, and A[G] = R = B[H]. However, the natural map A[H] → R

has image Z[C × 1] × Z[C] �= R.

7. Automorphisms of group rings

In this section we will describe Aut(A[G]), for a stark connected reduced order A with 

degree map d and a finite abelian group G, in terms of U∗(d), G, and Aut(A).
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For a ring R, write Jac(R) = {x ∈ R : 1 + RxR ⊂ R∗} for the Jacobson radical

of R. Recall the definitions of Id0(d) from Definition 4.4 and Γ(A) from Definition 5.3. 

In this section we write Id0(A) for Id0(d) and similarly for Q, U , and U∗ as defined in 

Definition 4.1. In our context U∗(A) is equal to U(A) due to the following.

Lemma 7.1. Let A be a connected reduced order with degree map d : μ → Γ. Then the 

following are equivalent: (i) A is stark; (ii) Id0(A) = {0}; (iii) the ideal Hom(Γ, μ) ⊂

Q(A) consists of only nilpotent elements; (iv) Hom(Γ, μ) = Jac(Q(A)); (v) U∗(A) =

U(A); (vi) for all abelian groups Ω and morphisms f : Ω → μ and g : Γ → Ω, the element 

gdf ∈ End(Ω) is nilpotent.

Proof. We will write Q = Q(A) and similarly for U and U∗. (i ⇔ ii) This follows from the 

bijection of Theorem 6.7. (ii ⇒ iii) Let f ∈ Hom(Γ, μ). Since the semigroup Hom(Γ, μ)

with the multiplication from Q is finite by Lemma 6.1, some power of f is idempotent and 

thus zero. (iii ⇒ iv) It follows that 1 + Hom(Γ, μ) ⊂ Q∗ and thus Hom(Γ, μ) ⊂ Jac(Q). 

The surjection Q � Z must map Jac(Q) to Jac(Z) = {0}, so Jac(Q) ⊂ Hom(Γ, μ). (iv ⇒

v) We have U∗ ⊂ U = 1 +Jac(Q) ⊂ U∗. (v ⇒ ii) It follows that 1 is the only idempotent 

of U . The involution x 
→ 1 − x on Q shows that Hom(Γ, μ) and 1 − Hom(Γ, μ) = U

contain equally many idempotents, hence Id0(A) = {0}. (vi ⇒ iii) It suffices to show 

that df ∈ End(Γ) is nilpotent for all f ∈ Hom(Γ, μ), so take Ω = Γ and g = idΓ. (iii ⇒

vi) As (gdf)n+1 = g(dfg)ndf it holds that gdf is nilpotent if dfg is nilpotent. The latter 

holds because fg ∈ Hom(Γ, μ) ⊂ Q is nilpotent. �

A category C is small if the class of objects of C is a set and if for any two objects A

and B of C the class Hom(A, B) is a set. A category C is preadditive (see Section 1.2 in 

[2]) if for any two objects A and B of C the class Hom(A, B) is an abelian group such that 

composition of morphisms is bilinear, i.e., for all objects A, B, and C and morphisms 

f, f ′ : A → B and g, g′ : B → C we have

g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) and (g + g′) ◦ f = (g ◦ f) + (g′ ◦ f).

Lemma 7.2. Let C be a preadditive small category with precisely two objects 0 and 1. 

Then:

(i) With Mij = Hom(j, i) for i, j ∈ {0, 1} both M00 and M11 are rings and M01 and 

M10 are a M00-M11-bimodule and M11-M00-bimodule respectively.

(ii) The product of groups

M(C) =
∏

i,j∈{0,1}

Mij =

(

M00 M01

M10 M11

)

is a ring with respect to the addition and multiplication implied by the matrix no-

tation.



H.W. Lenstra et al. / Journal of Algebra 641 (2024) 391–428 415

(iii) If M01 · M10 = im(M01 ⊗ M10 → M00) ⊂ Jac(M00), then M10 · M01 ⊂ Jac(M11),

Jac(M(C)) =

(

Jac(M00) M01

M10 Jac(M11)

)

, and M(C)∗ =

(

M∗
00

M01

M10 M∗
11

)

.

Proof. That the Mij are groups, and that the addition is compatible with the composi-

tion of morphisms, follows from the fact that C is preadditive. It is then easy to verify 

that the Mij are rings and modules as claimed, and that M(C) is a ring, giving (i) and 

(ii).

Now suppose M01 ·M10 ⊂ Jac(M00). We will show that for all m ∈ M01 and n ∈ M10

we have nm ∈ Jac(M11). Let s ∈ M11. Then (ms)n ∈ M01 ·M10 ⊂ Jac(M00), so 1 +msn

has an inverse r ∈ M00. Then

(1 − snrm)(1 + snm) = 1 − sn(r(1 + msn) − 1)m = 1 − sn(1 − 1)m = 1.

Hence 1 + snm has a left inverse 1 − snrm, and similarly 1 − snrm is a right inverse of 

1 + snm. Thus 1 + snm ∈ M∗
11

and nm ∈ Jac(M11). We conclude that M10 · M01 ⊂

Jac(M11).

Consider T =
(

Jac(M00) M01

0 0

)

and B =
( 0 0

M10 Jac(M11)

)

and write J = T + B. We 

will first show that T ⊂ Jac(M(C)). For x =
(

a b
0 0

)

∈ T it suffices to show for all 

y =
( r m

n s

)

∈ M(C) that 1 +xy ∈ M(C)∗. As 1 +xy =
(

1+ar+bn ma+bs
0 1

)

is upper diagonal, 

it is invertible if its diagonal elements are. The element 1 + ar + bn is invertible because 

ar + bn ∈ Jac(M00). So T ⊂ Jac(M(C)). Analogously B ⊂ Jac(M(C)). Thus we have a 

two-sided ideal J ⊂ Jac(M(C)). To see equality, note that the ring

M(C)/J ∼= (M00/Jac(M00)) × (M11/Jac(M11))

has a trivial Jacobson radical.

An element of M(C) is a unit if and only if it maps to a unit in M(C)/Jac(M(C)), 

hence if and only if its diagonal elements are units, proving the final statement. �

Naturally, the construction M(C) can be generalized to categories C with any finite 

number of objects. We call M(C) the matrix ring of C.

Remark 7.3. Given four abelian groups Mij with i, j ∈ {0, 1} together with compatible 

(i.e., associative) multiplications Mij ⊗Mjk → Mik for all i, j, k ∈ {0, 1} with appropriate 

unit elements, we can construct the preadditive category C with two objects 0 and 1, with 

Hom(j, i) = Mij , and with composition being these multiplications. In particular, if M00

and M11 are rings, M01 is an M00-M11-bimodule, and M10 is an M11-M00-bimodule, then 

it remains only to specify the multiplications M01 ⊗M10 → M00 and M10 ⊗M01 → M11.

Let A be a connected reduced order and G a finite abelian group. Recall that μ(A)

and Γ(A) are Q(A)-modules by Remark 4.3, hence Hom(G, μ(A)) and Hom(Γ(A), G) are 
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respectively left and right Q(A)-modules. We next describe U∗(A[G]) in terms of A and 

G.

Proposition 7.4. Let A be a connected reduced order and G a finite abelian group. Then:

(i) We have a matrix ring

E =

(

Q(A) Hom(G, μ(A))
Hom(Γ(A), G) End(G)

)

where Hom(G, μ(A)) ⊗ Hom(Γ(A), G) → Hom(Γ(A), μ(A)) ⊂ Q(A) is the composi-

tion map and Hom(Γ(A), G) ⊗ Hom(G, μ(A)) → End(G) is given by g ⊗ f 
→ gdf .

(ii) There is a natural ring isomorphism E
∼
−→ Q(A[G]) that respects the action of 

Aut(A).

(iii) If A is stark, then the map in (ii) restricts to an isomorphism

(

U∗(A) Hom(G, μ(A))
Hom(Γ(A), G) Aut(G)

)

∼
−→ U∗(A[G]).

Proof. For (i), apply Remark 7.3 and Lemma 7.2.ii. Since all multiplications are defined 

in terms of compositions of morphisms, the associativity conditions are trivially satisfied.

Write Γ = Γ(A) and μ = μ(A). For (ii), we have by Proposition 6.3.ii that

Q(A[G]) = Z ⊕ Hom(Γ × G, μ × G) ∼= Z ⊕

(

Hom(Γ, μ) Hom(G, μ)
Hom(Γ, G) End(G)

)

,

where the isomorphism is one of abelian groups. Then the map Q(A[G]) → E with 

respect to the latter representation given by

(

n,

(

p q
r s

)

)


→

(

(n, p) q
r n + s

)

is an isomorphism of rings that by functoriality respects the action of Aut(A).

For (iii), suppose A is stark. Then Hom(Γ, μ) = Jac(Q(A)) by Lemma 7.1. It follows 

that the ideal Hom(G, μ) ·Hom(Γ, G) ⊂ Hom(Γ, μ) is contained in Jac(Q(A)). Now apply 

Lemma 7.2.iii. �

In Remark 7.5 and Proposition 7.6 we describe Aut(A[G]) in terms of A and U∗(A[G]).

Remark 7.5. Let G be a finite abelian group. Then −[G] and U∗ act functorially on 

isomorphisms of connected reduced orders. Let A be a connected reduced order. From 

Proposition 6.3.ii we get a natural inclusion

Hom(Γ(A), μ(A)) → Hom(Γ(A[G]), μ(A[G])),
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which extends to an inclusion of rings Q(A) → Q(A[G]). Then we have a commutative 

diagram

U∗(A) Aut(A) Aut(U∗(A))

U∗(A[G]) Aut(A[G]) Aut(U∗(A[G])),

Lemma 6.5 U∗

−[G]

Lemma 6.5 U∗

and the composition U∗(A) → Aut(U∗(A)) is the conjugation map.

Proposition 7.6. Let A be a stark connected reduced order and G a finite abelian group. 

Then the maps and actions from Remark 7.5 fit in an exact sequence

0 → U∗(A)
ι

−→ U∗(A[G]) � Aut(A)
π
−→ Aut(A[G]) → 0,

where ι and π are homomorphisms such that ι(u) = (u−1, u) and π maps each component 

to Aut(A[G]).

Proof. For all u, v ∈ U∗(A) we have

ι(u)ι(v) = (u−1, u)(v−1, v) = (u−1(uv−1u−1), uv) = ι(uv)

by Remark 7.5, so ι is a homomorphism. Moreover, ι is injective because it maps injec-

tively to the first factor. By the same remark π is a homomorphism.

We will now show that π is surjective. Suppose σ ∈ Aut(A[G]). By Theorem 6.10 there 

exists 1 + f ∈ U∗(A[G]) that maps (A, G) to (σ(A), σ(G)), so without loss of generality 

we may assume σ(A) = A and σ(G) = G. By applying the restriction σ|A ∈ Aut(A) we 

may assume σ is the identity on A. Consider the map f : Γ(A) × G → μ(A[G]) given by 

(δ, g) 
→ σ(g)g−1 and note that 1 + f ∈ U(A[G]) gets mapped to σ. We similarly obtain 

the inverse of 1 + f in U(A[G]) from (δ, g) 
→ σ−1(g)g−1, so 1 + f ∈ U∗(A[G]). It follows 

that σ is in the image of π and thus π is surjective.

To show the sequence is exact, it remains to show im(ι) = ker(π). It is clear that 

im(ι) ⊂ ker(π), so suppose (1 + f, α) ∈ ker(π). As α−1 equals the restriction of 1 + f

by assumption, it suffices to show that 1 + f ∈ U∗(A). For g ∈ G we have g = (1 +

f)α(g) = f(g)g, and multiplying by g−1 we obtain 1 = f(g), i.e., G ⊂ ker(f). Moreover 

im(f) ⊂ μ(A), since multiplication by any unit (ζ, g) ∈ μ(A) × G = μ(A[G]) not in μ(A)

sends A to Ag �= A. Hence f ∈ Hom(Γ(A), μ(A)) and 1 + f ∈ U(A). The same holds for 

the inverse 1 + e ∈ U∗(A[G]) of 1 + f , so 1 + e ∈ U(A) and thus 1 + f ∈ U∗(A). It now 

follows that (1 + f, α) = ι(1 + e), so ker(π) ⊂ im(ι), as was to be shown. �

Proposition 7.4 and Proposition 7.6 combined gives us a description of Aut(A[G]) in 

terms of A and G. We now prove Theorem 1.5 and describe Aut(A[G]) by less canonical 

means.
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Lemma 7.7. Let A be a stark connected reduced order. Then the group Hom(Γ(A), μ(A))

has a (right) action on the set Aut(A), which for α ∈ Aut(A) and f ∈ Hom(Γ(A), μ(A))

is given by

(α, f) 
→ α + f =
(

x ∈ Aγ 
→ α(x) · f(γ)
)

.

Proof. Let α ∈ Aut(A) and f, g ∈ Hom(Γ(A), μ(A)). Note that

α + f = α ◦ (1 + α−1f) ∈ Aut(A),

where 1 + α−1f ∈ U(A) = U∗(A) by Lemma 7.1 and the composition is taken inside 

Aut(A) via Lemma 6.5. For γ ∈ Γ(A) and x ∈ Aγ we clearly have

[(α + f) + g](x) = [α + f ](x) · g(γ) = α(x) · f(γ) · g(γ) = [α + (f + g)](x),

so the action is well-defined. �

Proof of Theorem 1.5. To check that M is a group it remains to verify that t1ds2+σ1σ2 ∈

Aut(G). This follows from Lemma 7.1, namely t1ds2 ∈ Jac(End(G)). Note that the map

ϑ : M → Aut(A[G])

can be written as the composition of the homomorphism ϕ : M → U∗(A[G]) � Aut(A)

given by

(

α s
t σ

)


→

(

1 s
tα−1 σ

)

· α

where U∗(A[G]) is written in terms of the matrix representation of Proposition 7.4.iii, 

and the homomorphism π : U∗(A[G]) � Aut(A) → Aut(A[G]) from Proposition 7.6.

The map π is still surjective when restricted to the image of ϕ. Namely any

(

u s
t σ

)

· α ∈ U∗(A[G]) � Aut(A)

has the same image as 
( 1 s

tβ−1 σ

)

· βα, where β is the image of u in Aut(A). Hence the 

map ϑ is surjective. By Proposition 7.4.iii and Proposition 7.6, respectively, we have

#M

#U∗(A[G])
=

# Aut(A)

#U∗(A)
=

# Aut(A[G])

#U∗(A[G])
,

so the groups M and Aut(A[G]) have the same (finite) cardinality, so ϑ is bijective.
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8. Proofs of Theorems 1.1, 1.2, and 1.6

We will prove Theorems 1.1 and 1.2 by reducing to the connected case, where we can 

apply Theorem 6.10. Recall the definition of D from Definition 5.10.

Lemma 8.1. Let S and T be orders with S non-zero, let R = S × T with projection 

map π : R → S, and let (A, G) ∈ D(R). Then we have (π(A), π(G)) ∈ D(S) and the 

restriction G → π(G) of π is a group isomorphism.

Proof. We have a natural map π(A)[G] � π(A)[π(G)] → S. Since S equals π(A[G]) =
∑

g∈G π(A)π(g), this map is clearly surjective. Suppose 
∑

g∈G π(ag)g is in its kernel. 

Writing e = (1, 0) ∈ R and identifying S with S × {0}, we have π(x) = ex for all 

x ∈ R. By Proposition 5.7(ii) we have e ∈ A and therefore 
∑

g∈G eagg = 0 in A[G]. 

We conclude that for all g ∈ G we have π(ag) = eag = 0, so the map π(A)[G] →

S is an isomorphism. Then the maps π(A)[G] → π(A)[π(G)] and π(A)[π(G)] → S

are isomorphisms as well. Since S �= 0, this implies that the map G → π(G) is an 

isomorphism and that (π(A), π(G)) ∈ D(S). �

Given a group ring structure on a product of orders, Lemma 8.1 constructs on each of 

the factors a group ring structure, with the same group. The following proposition does 

the opposite. For the definition of greatest common divisors, see Remark 2.5.

Proposition 8.2. Let X be a finite non-empty set, let (Rx)x∈X be a collection of connected 

orders, and let (Ax, Gx) ∈ D(Rx) for all x ∈ X. Suppose that for all x ∈ X we write 

Gx = Dx ⊕Ex for some subgroups Dx, Ex ⊂ Gx such that for all x, y ∈ X we have Dx
∼=

Dy. Put R =
∏

x∈X Rx and A =
∏

x∈X Ax[Ex], and let D ⊂
∏

x∈X Dx be a subgroup for 

which all the projection maps πx : D → Dx are isomorphisms. Then (A, D) ∈ D(R). If 

in addition (Ax, Gx) is maximal in D(Rx) for all x ∈ X, and D is a greatest common 

divisor of {Gx : x ∈ X}, then (A, D) is maximal in D(R).

Proof. Clearly A ⊂ R and D ⊂ μ(R). There is a sequence of ring isomorphisms

A[D] ∼=
∏

x∈X

(Ax[Ex][D]) ∼=
∏

x∈X

(Ax[Ex][Dx]) ∼=
∏

x∈X

Ax[Gx] = R,

where one obtains the first isomorphism by tensoring A =
∏

x∈X Ax[Ex] with Z[D] over 

Z and the second isomorphism is induced by the group isomorphisms πx. The resulting 

isomorphism A[D] → R restricts to the inclusion on both A and D, so A[D] = R and 

indeed (A, D) ∈ D(R).

Now suppose that (Ax, Gx) is maximal in D(Rx) for all x ∈ X, and that D is a greatest 

common divisor of {Gx : x ∈ X}. Let (B, H) ∈ D(R) be such that (A, D) ≤ (B, H). For 

x ∈ X let Bx and Hx be the projection of B, respectively H, to Rx, so by Lemma 8.1 we 

have (Bx, Hx) ∈ D(Rx) and H ∼= Hx. Choose (Cx, Ix) ∈ D(Rx) to be maximal such that 
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(Bx, Hx) ≤ (Cx, Ix). Since Rx is connected, Lemma 5.12 implies that there exists a finite 

abelian group Fx such that Ix
∼= Hx ⊕Fx. Since both (Ax, Gx) and (Cx, Ix) are maximal 

in D(Rx), we have Gx
∼= Ix by Theorem 6.10. Hence Gx

∼= Ix
∼= Hx ⊕ Fx

∼= H ⊕ Fx. 

Thus H is a common divisor of all Gx, and H contains D. Since D is a greatest common 

divisor, we obtain H = D. From A[D] = B[H] = B[D] and A ⊃ B we see A = B, so 

(A, D) = (B, H) and (A, D) is maximal. �

Proof of Theorem 1.1. If A = 0 or B = 0, then Theorem 1.1 holds trivially. Hence 

assume A and B are non-zero.

(ii) ⇒ (i) Assuming (ii), we have ring isomorphisms

A[G] ∼= C[I][G] ∼= C[I × G] ∼= C[J × H] ∼= C[J ][H] ∼= B[H].

(i) ⇒ (ii) First assume A[G] is connected. Let (C, V ) ≥ (A, G) and (D, W ) ≥ (B, H) be 

a maximal element of D(A[G]), respectively D(B[H]). By Lemma 5.14 the orders C and 

D are stark, so by Theorem 6.10 there exists a ring isomorphism σ : B[H] → A[G] that 

sends (D, W ) to (C, V ). It follows that (C, V ) ≥ (σ(B), σ(H)), so applying Lemma 5.12

twice, we find subgroups I, J ⊂ V such that I × G = V = J × σ(H) ∼= J × H and 

C[I] = A and C[J ] = σ(B) ∼= B. This concludes the proof of the connected case.

Next consider the general case, where A[G] =
∏

x∈X Rx is a non-empty product of 

connected reduced orders Rx. Without loss of generality we may assume A[G] = B[H]. 

Let x ∈ X. Write Ax and Bx for the image of A, respectively B, of the projection onto 

Rx. Then Ax[G] ∼= Rx
∼= Bx[H] by Lemma 8.1. Since Rx is connected and we proved (i) 

⇒ (ii) in the connected case, there exist a reduced order Cx and finite abelian groups Ix

and Jx such that Cx[Ix] ∼= Ax and Cx[Jx] ∼= Bx and Ix × G ∼= Jx × H = Px. Replacing 

Cx by Cx[Dx] for some greatest common divisor Dx of Ix and Jx, we may assume that 

Ix and Jx are coprime. It follows that Px is a least common multiple of G and H, as 

defined in Remark 2.5. In particular, when x ranges over X, the finite abelian groups Px

are pairwise isomorphic, and as a consequence the same holds for the groups Ix. Hence 

there exists a subgroup I ⊂
∏

x∈X Ix such that all projections I → Ix are isomorphisms, 

so from Proposition 8.2 it follows that C[I] ∼= A with C =
∏

x∈X Cx. Similarly we find 

a finite abelian group J that is isomorphic to all Jx such that C[J ] ∼= B. Now I and J

together satisfy I × G ∼= J × H, as desired. �

Proof of Theorem 1.2. Let (A, G) ∈ D(R) be a maximal element (Lemma 5.11). Then A

is stark by Lemma 5.14. Suppose B is a stark ring and H is a finite abelian group such 

that B[H] ∼= R. By Theorem 1.1 there exist an order C and finite abelian groups I and 

J such that A ∼= C[I] and B ∼= C[J ] and I × G ∼= J × H. Since both A and B are stark 

we conclude that I = J = 1, so G ∼= H and A ∼= C ∼= B. Hence A and G are unique up 

to ring and group isomorphism, respectively. �

Proof of Theorem 1.6. We use the notation of Theorem 1.6. By Remark 6.4, if α ∈

Aut(A) and γ ∈ Γ then α(Aγ) = Aαγ . It then follows readily from Theorem 1.5 that the 
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orbit of A under Aut(A[G]) is A and the orbit of G under Aut(A[G]) is G. Theorem 1.6

now follows from Theorem 1.2. �

9. Algorithms

In this section we will prove Theorem 1.4, the algorithmic counterpart to Theorem 1.2. 

To state our theorems rigorously, we should specify how our data are encoded. We 

will continue the conventions used in [3,6–9,19], the results from which are therefore 

compatible. They can be briefly described as follows. Integers and rationals are encoded 

straightforwardly. Any finitely generated free module is specified by its rank, its elements 

are represented by vectors, and morphisms between such modules are represented by 

matrices. All rings we consider are Noetherian, so each finitely generated module is a 

cokernel of some morphism of finitely generated free modules, and it is encoded as such. 

Finally, a ring structure on a finitely generated abelian group is encoded as a collection 

of multiplication maps, one for every generator. For matrices with integer coefficients we 

can do multiplication and compute (bases for) kernels and images in polynomial time as 

described in [6].

Theorem 9.1 (Theorem 4.1.1 in [3]). There exists a polynomial-time algorithm that, given 

a finite ring R and finite R-modules M1 and M2, computes a greatest common divisor 

D of M1 and M2 as defined in Remark 2.5, together with injections ιi : D → Mi and a 

complement Ni ⊂ Mi such that Ni ⊕ ιiD = Mi.

Proposition 9.2. For each of R = Z and R =
(

Z 0
Z Z

)

there exists a polynomial-time 

algorithm that, given finite R-modules M1 and M2, computes a greatest common divisor 

D of M1 and M2, together with injections ιi : D → Mi and a complement Ni ⊂ Mi such 

that Ni ⊕ ιiD = Mi.

Proof. By Theorem 2.6.9 in [3] we may compute the exponents of M1 and M2, and their 

least common multiple n, in polynomial time. Note that M1 and M2 are R/nR-modules 

and that replacing R by R/nR does not change the problem. Since R/nR is a finite ring, 

we can thus reduce to Theorem 9.1. �

Proposition 3.3 allows us to interpret a morphism of finite abelian groups as a finite 

length 
(

Z 0
Z Z

)

-module. Although both types of objects are represented differently, one 

easily deduces from the proof of Proposition 3.3 that we can change representations in 

polynomial time.

In the following result, DecI(d) is as defined in Definition 2.10, Remark 3.5.iv, and 

Definition 3.4.

Proposition 9.3. There exists a polynomial-time algorithm that, given finite abelian 

groups A and B and a morphism d : A → B, computes a maximal element of DecI(d).
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Proof. By Proposition 9.2 we may compute in polynomial time a greatest common divi-

sor D of A and B as Z-modules. Similarly we may compute a greatest common divisor 

E of d and idD as 
(

Z 0
Z Z

)

-modules. We also obtain submodules d0 and d1 of d such that 

d1
∼= E and d = d0 ⊕ d1. We claim that (d0, d1) is a maximal element of DecI(d). First 

note that d1 is a divisor of idD and thus must be an isomorphism. As d = d0 ⊕ d1 we 

indeed have that (d0, d1) ∈ DecI(d). Let (e0, e1) ≥ (d0, d1) be maximal in DecI(d). Since 

e1 is an isomorphism, it is isomorphic to idF for some finite abelian group F . Since e1

is a direct summand of d, the group F is a direct summand of both A and B, so F is a 

divisor of their greatest common divisor D. Thus e1 is a divisor of idD. It follows that 

e1 is a divisor of E ∼= d1, so (d0, d1) = (e0, e1) and thus (d0, d1) is maximal, as was to be 

shown. �

In the following result, we represent a grading (∆, (Rδ)δ∈∆) of an order R by a finitely 

generated abelian group ∆ by specifying only those subgroups Rδ of R that are non-zero. 

This differs from the representation of gradings used in [19], which restricts to finite ∆

and specifies all subgroups Rδ; the latter representation can readily be converted to the 

former in polynomial time, which is all we need.

Proposition 9.4. There exists a polynomial-time algorithm that, given a reduced order R

and a universal grading (Γ, R) of R, computes a maximal element of D(R) as defined in 

Definition 5.10.

Proof. First suppose R is connected. By Theorem 1.2 in [7] we may compute μ = μ(R)

in polynomial time and thus also the group homomorphism d : μ → Γ as defined in 

Definition 6.2. We may compute a maximal element (d0, d1) ∈ DecI(d), with di : μi → Γi

as in Remark 6.8, in polynomial time using Proposition 9.3. Under the isomorphisms of 

partially ordered sets of Theorem 6.9 this d corresponds to a maximal element (A, G) ∈

D(R), where A =
∑

γ∈Γ0
Rγ and G = μ1, which we may compute in polynomial time.

Now consider the general case. By Theorem 1.1 in [7] we may compute in polynomial 

time connected reduced orders (Rx)x∈X for some index set X such that R ∼=
∏

x∈X Rx, 

together with the projections πx : R → Rx. Using Proposition 5.9.i we may construct uni-

versal gradings for the Rx in polynomial time. Hence by the special case we may compute 

a maximal element of D(Rx) for all x ∈ X in polynomial time. Finally, we may apply 

Proposition 8.2 to compute a maximal element of D(R), observing that the construction 

in Proposition 8.2 can be carried out in polynomial time using Proposition 9.2. �

Computing a maximal element of D(R) for a reduced order R is now reduced to 

finding a universal grading of R.

Theorem 9.5 (Theorem 1.4 in [19]). There is an algorithm that takes a reduced order R

as input and produces a universal grading of R in time nO(m), where n is the length of 

the input and m is the number of minimal prime ideals of R.
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The above algorithm does not, in general, run in polynomial time; but when we 

bound m, or equivalently the number 2m of idempotents of R ⊗Z Q, by a constant it is 

guaranteed to finish in polynomial time.

We now consider the case where R is generated as a group by its autopotent elements. 

We recall that a ring element x is called autopotent if xn+1 = x for some n ∈ Z>0. Write 

α(R) for the set of autopotents of R.

Proposition 9.6. Let S and R be rings. Then:

(i) The roots of unity and idempotents of R are autopotent.

(ii) The product of any two commuting autopotents of R is autopotent.

(iii) We have μ(R × S) = μ(R) × μ(S) and α(R × S) = α(R) × α(S).

(iv) Let x ∈ R. Then x ∈ α(R) if and only if there exist an idempotent e ∈ R and a 

ζ ∈ μ(R) such that x = eζ = ζe.

(v) If R is commutative, then R is generated as a ring by α(R) if and only if its additive 

group is generated by α(R).

(vi) As groups, R × S is generated by autopotents if and only if each of R and S is 

generated by autopotents.

(vii) If R is connected, then α(R) = μ(R) ∪ {0}.

Proof. Statements (i), (ii) and (iii) are trivial. The ‘if’-part of (iv) follows from (i) and 

(ii). Conversely, suppose xn+1 = x. Then e = xn satisfies e2 = e, so e is idempotent. 

Assume without loss of generality that R = Z[x], so R is commutative. Hence we may 

decompose R = eR × (1 − e)R. As x ∈ eR is an n-th root of unity, so is ζ = (x, 1) ∈ R. 

Then x = eζ = ζe.

By (ii) the set of autopotents is closed under multiplication, and this gives (v). Part 

(vi) follows from (iii) combined with the fact that 0 ∈ α(R) and 0 ∈ α(S). Part (vii) 

follows from (iv). �

The ‘if’-part of (vi) is wrong when we replace ‘autopotents’ by ‘roots of unity’: As a 

group the connected ring Z is generated by its roots of unity {±1}, but for Z × Z the 

group generated by the roots of unity does not contain (1, 0). This is the main reason 

we introduce autopotents.

Lemma 9.7. Let R be an order that is generated as a group by α(R). Then R is reduced.

Proof. It suffices to prove that K = R ⊗Z Q is reduced, because R → K is injective. 

Each x ∈ α(R) has a minimal polynomial in K[X] dividing Xn+1 − X for some n > 0. 

In particular x is separable, and consequently so are all elements of K. As 0 is the only 

separable nilpotent element, the lemma follows. �



424 H.W. Lenstra et al. / Journal of Algebra 641 (2024) 391–428

Definition 9.8 (Example 3.4 in [9]). For an order R we define a bilinear map

〈x, y〉R = 〈x, y〉 =
∑

σ : R→C

σ(x) · σ(y),

where the sum ranges over all ring homomorphisms, of which there are only finitely 

many.

Remark 9.9. Following Example 3.4 in [9], the map from Definition 9.8 is non-degenerate 

when R is reduced, i.e., 〈x, x〉 = 0 implies x = 0 for all x ∈ R. We have a bijective 

correspondence

{σ : R → C} ↔ {(p, σp) : p ⊂ R a minimal prime ideal, σp : R/p → C}

that sends σ : R → C to (ker(σ), ̃σ) where σ̃ : R/ ker(σ) → C is given by the homo-

morphism theorem, and conversely sends (p, σp) to σp composed with the projection 

πp : R → R/p. Thus for all x, y ∈ R we have 〈x, y〉R =
∑

p⊂R〈πp(x), πp(y)〉R/p, where 

the sum ranges over all minimal prime ideals.

Lemma 9.10. For all orders R that are generated as a group by α(R) we have 〈R, R〉 ⊂ Z. 

There exists a polynomial-time algorithm that, given an order R that is generated as a 

group by α(R) and x, y ∈ R, computes 〈x, y〉.

Proof. Note that R is reduced by Lemma 9.7. Let X be the set of minimal primes 

of R. Using Theorem 1.10 in [8] we may compute X and for each p ∈ X the map 

R → R/p in polynomial time. Note that as a group, R/p is generated by α(R/p). Then 

by the formula of Remark 9.9 it suffices to prove the lemma for the ring R/p. Thus 

we suppose R is a domain and consequently α(R) = μ(R) ∪ {0} by Proposition 9.6.vii. 

For ζ, ξ ∈ μ(R) and a ring homomorphism σ : R → C we have σ(ζ) · σ(ξ) = σ(ζξ−1). 

Thus 〈ζ, ξ〉R =
∑

σ : R→C σ(ζξ−1), which is the trace of ζξ−1 from R to Z, and hence 

is an integer. As R is generated as a group by μ(R), it follows that 〈R, R〉 ⊂ Z as well. 

Moreover, this shows that computing 〈x, y〉R reduces to computing traces of roots of 

unity, which clearly can be done in polynomial time. �

For a ring R, an R-module M , and a subset X ⊂ M , we write R ·X for the submodule 

of M generated by X.

Lemma 9.11. There exists a polynomial-time algorithm that, given a finite-dimensional 

commutative Q-algebra A and a finite set X ⊂ A, computes a Q-basis Y of the subalgebra 

B of A generated by X, where each element in Y is a finite (possibly vacuous) product 

of elements of X.
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Proof. The algorithm proceeds as follows. Start with Y = {1}. Compute the set of 

products Z = {xy : x ∈ X, y ∈ Y } and update Y to be a maximal Q-linearly independent 

subset of Z ∪ Y . Repeat this until Q · Y is stable.

Suppose in some step Q · Y = Q · (Z ∪ Y ). Then Z ⊂ Q · Y , so Q · Y is closed under 

taking products with X. Since X generates B as a Q-algebra and 1 ∈ Q ·Y by the choice 

of initial Y , it follows that Q · Y = B. Note that #Y ≤ dimQ(B) and thus there are 

at most dimQ(B) steps in the algorithm. Moreover, in each step #Z ≤ #(X × Y ) is 

polynomially bounded in the input length, so in total there are only polynomially many 

multiplications. Lastly, note that in step i of the algorithm each element of Y can be 

written as a product of i elements from X, and therefore the encoding of every element 

has length proportional to at most i times that of the longest element of X. Hence the 

multiplications can be carried out in polynomial time. �

Although it is possible to compute α(R) for a reduced order R, we cannot in general 

do this in polynomial time, even if R is connected. Note that for the ring

R = {(ai)i ∈ Zn : (∀i, j) ai ≡ aj mod 2},

the set {−1, 1}n = μ(R) ⊂ α(R) is exponentially large. Theorem 1.4 of [7] gives a 

polynomial-time algorithm that, given an order R, produces a set of generators of μ(R).

Proposition 9.12. There exists a polynomial-time algorithm that, given an order R, com-

putes a set Y ⊆ α(R) such that Z · Y = Z · α(R).

Proof. We may factor R into a product of connected orders in polynomial time using 

Algorithm 6.1 in [7]. Combined with Proposition 9.6.vii we may assume R is connected 

and α(R) = μ(R) ∪ {0}.

Apply Theorem 1.2 in [7] to compute in polynomial time a set X of generators of the 

group μ(R). Using Lemma 9.11 we may compute a basis Z ⊆ μ(R) for the subalgebra 

Q · μ(R) of R ⊗ Q as a Q-vector space.

Denote the discriminant det((TrQ·μ(R)/Q(xy))x,y∈Z) of Z · Z by ∆Z , and similarly let 

∆μ(R) denote the discriminant of Z · μ(R). Let n = #Z = dimQ(Q · μ(R)). We have 

|∆Z | ≤ n3n/2 by Hadamard’s inequality and the fact that | Tr(ζ)| ≤ n for ζ ∈ μ(R). 

Thus,

#(Z · μ(R)/Z · Z)2 = |∆Z |/|∆μ(R)| ≤ |∆Z | ≤ n3n/2.

In particular, log2 #(Z · μ(R)/Z · Z) is polynomially bounded.

First we set Y = Z. Then we iterate over x ∈ X and y ∈ Y and add xy to Y whenever 

xy /∈ Z · Y . Once Z · Y stabilizes we have Z · Y = Z · μ(R) and may return Y . Each new 

element added to Y decreases log2 #(Z · μ(R)/Z · Y ) by at least 1, so the cardinality of 

Y and the number of steps taken in the algorithm are polynomially bounded. Finally, 

we remark that there is a polynomial upper bound on the lengths of the encodings of 
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the elements of Y , since each element is the product of at most #Y elements of X and 

an element of Z. Hence the algorithm runs in polynomial time. �

Roots of unity are homogeneous in any grading of a connected order, by Theorem 

1.5 of [9]. The next result shows this is also true in any orthogonal decomposition of a 

connected reduced order, where orthogonal means with respect to the inner product in 

Definition 9.8.

Lemma 9.13. Let R be an orthogonal decomposition of a connected reduced order R. Then 

the roots of unity of R are homogeneous in R, i.e., for all ζ ∈ μ(R) there exists some 

M ∈ R such that ζ ∈ M .

Proof. By Corollary 5.6 in [9] the element 1 ∈ R is indecomposable, i.e., for all x, y ∈ R

such that x +y = 1 and 〈x, y〉 ≥ 0 we have x = 0 or y = 0. Since x 
→ ζx is an isometry of 

R for all ζ ∈ μ(R), we conclude that all ζ ∈ μ(R) are indecomposable. Indecomposable 

elements are clearly homogeneous. �

Lemma 9.14. Let R be a connected reduced order and R = (Γ, (Rγ)γ) be the universal 

grading of R. Suppose X ⊂ μ(R) is a subset and A ⊂ R is a subring such that 
⊕

x∈X Ax

is an orthogonal decomposition of R. Write ∆ = μ(R)/μ(A). Then the natural map 

g : X → ∆ is a bijection and S = (∆, (A · g−1(δ))δ) is a grading of R. If also A ⊂ R1, 

then S is universal.

Proof. First we show g is a bijection. If g(x) = g(y) for x, y ∈ X, then Ax = Ay and 

thus x = y by orthogonality. Hence g is injective. It follows from Lemma 9.13 that 

μ(R) =
⋃

x∈X(Ax ∩ μ(R)) = μ(A) · X, so g is surjective. It follows that S is a grading 

of R. Now assume A ⊂ R1. Let e : ∆ → Γ be induced by the degree map d : μ(R) → Γ, 

which is well-defined because μ(A) ⊂ ker(d) by assumption. Then e∗(S) = R, and S is 

universal by Proposition 5.8.iv. �

Theorem 9.15. There exists a polynomial-time algorithm that, given a reduced order R

that is generated as a group by α(R), computes the universal grading of R.

Proof. We may write R as a product of connected orders in polynomial time using 

Algorithm 6.1 in [7]. Using Proposition 5.9.ii and Proposition 9.6.vi we may restrict 

ourselves to the connected case, so suppose R is connected and thus α(R) = μ(R) ∪ {0}

by Proposition 9.6.vii. Let R = (Γ, (Rγ)γ) be the universal grading of R, which is not 

part of the algorithm.

We will compute a subring A ⊂ R and a sequence s1, . . . , sn ∈ μ(R) having the 

following properties:

(i)
n

∑

i=1

Asi = R; (ii) A ⊂ R1; (iii) (∀ i �= j) 〈Asi, Asj〉 = 0.
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It then follows from Lemma 9.14 that we have in fact computed the universal grading 

of R. The algorithm is as follows.

(1) Set A = Z and compute Z-module generators s1, . . . , sn ∈ μ(R) for R using Propo-

sition 9.12.

(2) While there exist i �= j such that 〈Asi, Asj〉 �= 0, as computed by Lemma 9.10:

(a) Choose any i < j such that 〈Asi, Asj〉 �= 0;

(b) Replace A by the ring generated by A and s−1
i sj ;

(c) Remove sj from the list of generators.

Clearly, properties (i) and (ii) are satisfied after step (1), and (iii) is satisfied after 

step (2). Moreover, since the number of generators decreases each step, the number of 

iterations in step (2) is polynomially bounded and the algorithm terminates. It remains 

to show that (i) and (ii) are preserved by step (2). Property (i) is preserved because 

sj is contained in Asi after updating A in step (2b). For (ii) it suffices to show that 

s−1
i sj ∈ R1. As s−1

i sj ∈ μ(R) we have s−1
i sj ∈ Rγ for γ = d(s−1

i sj) by Lemma 6.1. 

Since 〈A, As−1
i sj〉 = 〈Asi, Asj〉 �= 0 we conclude that Rγ = R1 by Proposition 5.8 in [9], 

as was to be shown. Lastly, note that all operations can be carried out in polynomial 

time. �

Proof of Theorem 1.4. By Proposition 9.4 it suffices to compute a universal grading of 

R. Apply Theorem 9.5 in the general case and Theorem 9.15 in the specific case of an 

order generated by its autopotents. �

Data availability

No data was used for the research described in the article.
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