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1. Introduction

Consider the map

({rings}/=) x ({groups}/=) — ({rings}/=)

that for each ring A and each group G sends the pair of isomorphism classes of (A, G)
to the isomorphism class of the group ring A[G]. The Isomorphism Problem for group
rings asks about the fibers of this map, i.e., given a ring R, what can one say about the
pairs (4, G) with A[G] = R? There is a great deal of literature on this subject, starting
with the 1940 paper by Higman [4], which solved the case where A = Z and G is a finite
abelian group, and including [15, Chapter 14], [17, Chapters III and IV], [18], and the
recent survey article [16] and the references therein.

The emphasis has been on results stating that the fibers of our map are often “small”
in a suitable sense. For instance, it is a consequence of a theorem of May [11] that if G is
an abelian group and Z[G] = Z[H] then G = H. This contrasts with the complex case,
where C[G] = C[H], even as C-algebras, whenever G and H are finite abelian groups of
the same order.

One can slightly refine the question by not just asking for the existence of an isomor-
phism from A[G] to R, but asking for the isomorphism as well. For a given non-zero ring
R the object of study is thus the set of triples (4, G, ¢), where A is a ring (always with
1), G is a group, and ¢: A[G] — R is a ring isomorphism. This essentially comes down
to considering the set

D(R) = {(A,G) : A C R a subring, G C R* a subgroup, with

A[G] — R a ring isomorphism},

where R* is the group of units of R, and A[G] — R is the natural group homomorphism.

One of the main contributions of the present paper is a new group-theoretic description
of the set D(R) for an important class of rings R, namely for connected reduced orders; see
below for definitions. These rings are commutative, so A is commutative and G is abelian.
The case of commutative group rings has received special attention in the literature (for
example [1,10-14]), an important tool being the abelian group p = pu(R) = {¢ € R :
(3n € Z>1) ¢" =1} of roots of unity in a commutative ring R.

For connected reduced orders R we add a new tool, namely the universal grading
of R and the abelian group I' = I'(R) by which it is graded. The existence of such a
universal grading was recently established in [9], and it was proved there that it comes
with a natural map d = dg: p — T'. In one of our main theorems (Theorem 6.7 below)
we exhibit, for connected reduced orders R, a natural bijection

D(R) = {f € Hom([',u) : fodo f = f}.
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Thus, the set of realizations of a connected reduced order as a group ring is parametrized
by an easily defined set of homomorphisms from I" to p, both of which are finite abelian
groups.

The theorem just stated has several striking consequences in the context of the Iso-
morphism Problem. For example, in Theorem 1.1 we prove that among reduced orders,
group rings can only be isomorphic if they are so for obvious reasons. In Theorem 1.2 we
show that each non-zero reduced order can in a unique “maximal” way be realized as a
group ring. In Theorem 1.3 we establish a curious “cross-over” result. For the connected
case, we describe in Theorem 1.5 the group of ring automorphisms of such a maximal
group ring.

Deducing these results from our description of D(R) is surprisingly non-trivial, and
has two features that may be unexpected in the context of commutative algebra. The first
is the use of modules over non-commutative rings, and the second the use of techniques
from number theory, taken from [7] and [9]. We next give precise statements of some of
our main results, along with a brief introduction to our new tool and methods.

By an order we mean a commutative ring of which the additive group is isomorphic
to Z™ for some n € Z>(. A ring element x is nilpotent if 2™ = 0 for some n € Z~o. We
call a commutative ring reduced if it has no non-zero nilpotent elements.

Obviously, if A is a ring and I and H are groups, then the group rings A[I x H| and
(A[I])[H] are isomorphic as rings. The following result expresses that, among reduced
orders, group rings can only be isomorphic if they are so for this obvious reason.

Theorem 1.1. Suppose A and B are reduced orders and G and H are finite abelian groups.
Then the following are equivalent:

(i) A[G] = B[H] as rings,
(ii) there exist an order C' and finite abelian groups I and J such that A = C[I] and
B = C[J] as rings and I x G = J x H as groups.

The proof is given in Section 8.
We call a commutative ring R stark if there do not exist a ring A and a non-trivial
group G such that R is isomorphic to the group ring A[G].

Theorem 1.2. Let R be a non-zero reduced order. Then there exist a stark ring A, unique
up to ring isomorphism, and a finite abelian group G, unique up to group isomorphism,
such that R = A[G] as rings.

Theorem 1.2 is an immediate consequence of Theorem 1.1, and we give a proof in
Section 8. We note that Theorem 1.1 may be deduced from Theorem 1.2 using that group
rings of finite abelian groups over reduced orders are reduced (see Proposition 5.7(i)).
There are many examples showing that A and G in Theorem 1.2 need not be uniquely
determined as a subring of R and a subgroup of R*, respectively (see Example 6.11).
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Theorems 1.1 and 1.2 are closely related to known results about group rings of torsion
abelian groups over integral domains of characteristic zero; see Corollary 5 in [1] and
Theorem 8 in [14], which were proved by studying the group of torsion units in the
group ring. Our new tool, namely the consideration of gradings, allows us in the case of
orders to replace the condition that the base ring be a domain by the weaker condition
that it be stark and reduced.

A ring element x is idempotent if 2 = x. We call a commutative ring connected if
it has precisely two idempotents, i.e., the ring is non-zero and 0 and 1 are the only
idempotents. For a commutative ring R with a subring A C R and a subgroup G C R*
we write A[G] = R when the natural map A[G] — R is a ring isomorphism.

If R, A, and G are as in Theorem 1.2, then A is isomorphic to a subring of R, and
G is isomorphic to a subgroup of p(R), but as we remarked, this subring and subgroup
need not be uniquely determined. However, in the important special case where R is
connected, there is a sense in which the set of subrings A C R that can be used and
the set of subgroups G C u(R) that can be used are entirely independent. The following
“cross-over” result, which we found surprising, formulates this more precisely.

Theorem 1.3. Let R be a connected reduced order. Suppose that A and B are stark sub-
rings of R and that G and H are subgroups of R* such that A|G] = B[H| = R. Then
A[H] = B[G] = R.

Theorem 1.3 will follow immediately from Theorem 6.10, which is proved in Section 6
below. As can be seen in Example 6.12, we cannot drop the assumption that R be
connected in Theorem 1.3.

We call a ring element x autopotent if 2"t = x for some n € Z~q, or equivalently
if it is the product of a root of unity and an idempotent that commute with each other
(see Proposition 9.6.iv).

We have the following algorithmic result. All our algorithms will be deterministic.

Theorem 1.4. There is an algorithm that, given a mon-zero reduced order R, computes
a stark subring A C R and a subgroup G C u(R) such that A[G] = R. This algorithm
runs (a) in polynomial time when the additive group of R is generated by autopotents,

o(m

and generally (b) in time n°™) where n is the length of the input and m is the number

of minimal prime ideals of R.

The proof of Theorem 1.4, and a description of the algorithm and how its input and
output are given, are found in Section 9. Note that the algorithm runs in polynomial
time when m is bounded by a constant. The case m = 1 is precisely the case where R is
a domain, in which case one necessarily has A = R and G = 1. A notable special case
for (a) is when R is the product of finitely many group rings over Z. We do not know
whether there exists a polynomial-time algorithm that decides whether a given reduced
order is stark.
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We next discuss the new tool that we announced. A grading of a commutative ring R is
a pair (A, (Rs)sea) where A is an abelian group and the Rs are additive subgroups of R
such that, first, for all v, § € A one has R,-Rs C R,s, and, second, one has s Rs = R
in the sense that the natural map ;.5 Rs — R is bijective. For each commutative ring
A and abelian group G the ring A[G] has a natural grading (G, (A7)~yeq)-

Suppose now that R is a reduced order. Two recent results from [9] (Theorems 5.5
and 5.6 below) are of crucial importance to the present paper. The first states that R
has a grading (T, (Ry)~er) that is universal in the sense that giving a grading of R with
group A is equivalent to giving a group homomorphism I' — A (see Definition 5.3). The
abelian group I' = T'(R) is finite, and by universality it is canonically defined, so that
the group Aut(R) of ring automorphisms acts on it (see Remark 6.4). The second result
states that, if R is also connected, then for each ¢ € u there is a unique v € I" such that
¢ € Ry, and we write d(¢) = ~y; this gives rise to a group homomorphism d: y — T,
sometimes denoted dg, which we call the degree map.

For each (A,G) € D(R), the natural grading of A[G] gives rise to the grading
(1, (A¢)cepn) of R, where Ac = AC if ( € G and A; = 0 otherwise. This grading corre-
sponds to a homomorphism f: I' — p. We prove in Theorem 6.7 that in the connected
case this construction induces a bijection from D(R) to the set of f such that fdf = f,
so D(R) can be studied group-theoretically as mentioned above.

Our next result is on automorphism groups of orders. As we saw in Theorem 1.2, any
non-zero reduced order R may be written as A[G], where A is a stark subring of R and G
is a subgroup of u(R), but it is only up to the action of the automorphism group Aut(R)
that the pair (A, G) is unique. Thus, a natural question is how to describe the group
Aut(R) in terms of A and G. Restricting to connected orders, which is the main case of
interest, we show in Theorem 1.5 that this group has a somewhat curious description in
terms of 2 X 2 matrices.

We write 1t = u(A) and I' = T'(A). There is a left action of Aut(A) on Hom(G, i)
given via the restriction Aut(A) — Aut(u), and a right action of Aut(A) on Hom(T, G)
induced by its action on I'. For abelian groups M and N we will, here and elsewhere,
write the group Hom(M, N) additively, regardless of the notation used for N.

Theorem 1.5. Let A be a stark connected reduced order with degree map da: p — T and
let G be a finite abelian group. We equip the cartesian product

Aut(A Hom(G,
M= (Hom((r,%;) /Oxut((c;)u)>

of Aut(A4), Hom(G, i), Hom(T', G), and Aut(G) with the following multiplication:
ap s1\ (az s2) _ (a2 +sily aisy + 5102
tl 01 t2 (o) - t1a2+01t2 tldA82+0'10'2 ’

where the sum in Aut(A) is as in Lemma 7.7 and the sum in Aut(QG) is taken inside
End(G). For x € A and g € G write (Z) for the element x - g € A[G]. Then:



396 H.W. Lenstra et al. / Journal of Algebra 641 (2024) 391-428

(i) M is a group;
(ii) there is a group isomorphism M — Aut(A[G]) such that the action of M on the
ring A[G)] is given by

forallge G, veTl, andx € A,.
For the proof and additional results, we refer to Section 7.

Theorem 1.6. Let A be a stark connected reduced order with degree map da: p — T
and let G be a finite abelian group. Let A = {€D,cr Ayt(7) : t € Hom(I',G)}, a set of
subrings of A[G]. Let G = {{s(g9)g : g € G} : s € Hom(G, 1)}, a set of subgroups of
A[G]*. Then

AxG={(B,H) € D(A[G]) : B is stark}.

The pairs (B, H) in Theorem 1.6 are exactly the pairs occurring in Theorem 1.3 with
R = A[G]. Theorem 1.6 allows one, in the connected case, to read off the set of subrings
A C R and the set of subgroups G C R* that can be used in Theorem 1.2. At the end
of Section 8 we show how Theorem 1.6 readily follows from Theorems 1.5 and 1.2.

Our results suggest several questions. Which other rings have a universal grading?
Under what conditions is there a degree map? Once one has a degree map d: p — T,
are there consequences for the Isomorphism Problem for group rings, even if p or I is
infinite? Can we replace rings by algebras over base rings other than Z? For preliminary
results in these directions, see Theorem 6.21 in [19] (cf. Theorem 5.5), and [20] (cf.
Theorem 5.6).

The structure of the paper is as follows. Section 2 contains generalities on modules of
finite length over rings that need not be commutative. We show in Section 3 that a mor-
phism of abelian groups, in particular the degree map defined above, can be interpreted
as a module over a certain matrix ring. This enables us, in Section 4, to apply the the-
orem of Krull-Remak—Schmidt to morphisms of finite abelian groups. Additionally, we
introduce, for any morphism of abelian groups, an important group U* that acts on it.
In Section 5 we treat generalities on graded rings and group rings. In Section 6 we apply
the theory from the former sections to the degree map of a connected reduced order. It
is an essential property of U* that its action on the degree map can be lifted to an action
on the order (see Lemma 6.5). We prove Theorem 1.3 by showing that the pairs (4, G),
(B,H), (A, H), and (B, Q) are in the same orbit under the action of U*. This effectively
proves Theorems 1.1 and 1.2 in the connected case. In Section 7 we prove Theorem 1.5.
Here U* will make a further appearance. In Section 8 we deduce Theorems 1.1 and 1.2
by reduction to the connected case. Finally, the algorithmic Theorem 1.4 is proved in
Section 9.
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2. Modules and decompositions

In this section we gather some results on modules, by which we mean left modules. Let
R be aring and M an R-module. We call an R-module D a divisor of M if M = D® N for
some R-module N. If (M;);c; is a family of submodules of M, then there is a natural map
P,c; Mi — M, and we write @,.;, M; = M if this map is an isomorphism. Likewise, if
C, D, N are submodules of M, we write C @ D = N if the natural map C & D — M is
injective with image N.

Definition 2.1. Let R be a ring and M an R-module. A decomposition of M is a pair
(I, (M;)icr) where I is a set and the M; are submodules of M such that @,.; M; = M; in
this case we also call (M;);er an I-indexed decomposition of M. We call M indecomposable

if M is non-zero and there do not exist non-zero R-modules D and N with M 2 D& N.
We abbreviate (M;);ecr to (M;); when the index set is understood.
Definition 2.2. For a ring R and an R-module M we define

Id(R) ={e€ R:e*=¢},
Dec(M) ={(D,N) : D, N are submodules of M with D & N = M}.

We equip Id(R) with a partial order given by e < f if and only if ef = fe = e. We
equip Dec(M) with a partial order given by (D, N) < (D’, N') if and only if there exists
a submodule C € M such that D =D& C and N C = N'.

The following result, which we will use to prove Theorem 1.3, is easily verified.

Proposition 2.3. Let R be a ring and M an R-module. Then we have a bijection
®: Id(End(M)) — Dec(M) given by e — (ker(e),im(e)). If we let Aut(M) act natu-
rally both on Id(End(M)) by conjugation and on Dec(M) coordinate-wise, then ® is an
isomorphism of partially ordered sets that respects the action of Aut(M).

A module has finite length if every totally ordered set of submodules is finite, or
equivalently if it is both Noetherian and Artinian.

Theorem 2.4 (Krull-Remak—Schmidt; see Theorem X.7.5 of [5]). Suppose R is a ring
and M is an R-module of finite length. Then there exists a decomposition of M into
finitely many indecomposable submodules, and such a decomposition is unique up to
automorphisms of M and relabeling of the indices.

Remark 2.5. Let R be a ring, and let M be a non-empty set of R-modules of finite length.
As a consequence of Theorem 2.4, there exists up to isomorphism exactly one R-module
D that is a divisor of every M € M such that every R-module that is a divisor of every
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M € M is a divisor of D; it is called a greatest common divisor of the set M. Every such
D is of finite length. We say R-modules M and N are coprime if the greatest common
divisor of {M, N} is 0. Likewise, if M is a finite set of R-modules of finite length, then
there exists up to isomorphism exactly one R-module L of which each M € M is a
divisor such that L is a divisor of each R-module of finite length of which each M € M
is a divisor; it is called a least common multiple of M. Every such L is of finite length.

Definition 2.6. Suppose R is a ring, M is an R-module, and h € End(M). We define the
R-modules

limim(h) = () h™(M) and limker(h) = | ] ker(h").
n=1 n=1

Lemma 2.7 (Fitting; see Theorem X.7.3 of [5]). Suppose R is a ring, M is an R-module
of finite length, and h € End(M). Then M = limim(h) @ limker(h), the restriction of h
to limim(h) is an automorphism, and the restriction of h to limker(h) is nilpotent.

Lemma 2.8. Suppose R is a ring, M and N are R-modules, and f: M — N and
g: N — M are morphisms. Then f restricts to morphisms i: limim(gf) — limim(fg)
and k: limker(gf) — limker(fg). If M and N have finite length, then i is an isomor-
phism.

Proof. We have f(gf)"(M) = (fg)"f(M) < (fg)"(N) for all n > 1. Hence
fimim(gf)) C limim(fg), so 4 is well-defined. As

flker((gf)"™)) C ker(g(f9)") C ker((fg)" ™)

for all n > 1 we also get f(limker(gf)) C limker(fg), so k is well-defined. By symmetry
we obtain a restriction j: limim(fg) — limim(gf) of g. Under the finite length assump-
tion both ji and ¢j are automorphisms by Lemma 2.7, hence i is an isomorphism. 0O

Proposition 2.9. Suppose R is a ring, M is an R-module of finite length, and A1, As,
By, By C M are submodules such that A1 and As are coprime, A1 Ay = B1®& By = M,
and A1 =2 By. Then A1 ® By =By ® Ay = M.

Note that under the above assumptions it immediately follows that A; @ Bs = B &
By = M. This is not equivalent to A; & B, = M, as this concerns a specific map
A1® By — M. We need to show that the natural map By — M — A; is an isomorphism.

Proof. From Theorem 2.4 it follows that As = By and thus By and Bs are coprime as
well. By symmetry it therefore suffices to show By @& As = M. We consider the maps as
in the following commutative diagram, where ¢: A; — Bj is an isomorphism, the maps
to and from M are the natural inclusions and projections, and the f; and g; are defined
to make the diagram commute.
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/ o ew \

A14>B1*>M M‘)B14>A1

\—) L2 e2 ]
f2 Ay Ay g2

Note that idp, = pe and idy;s = e1p1 + eapa, so

ida, = ¢ 'pep = ¢ 'pleipr + eap2)ep = ¢ 'per - prew + ¢ pes - paep = g1 f1 + gafo

Lemma 2.8 shows that D = limim(gsf2) = limim(f2g2), so D is a divisor of both A;
and Ay by Lemma 2.7. Since A; and As are coprime, we must have that D = 0 and
thus g2 f2 is nilpotent. We conclude that ¢, fi = ida, — g2 f2 is an automorphism of A;.
Hence f; is injective, and since A; is of finite length it must be an automorphism. It
follows that p1e = fip~': By — A; is an isomorphism, so M = B; @ Ay, as was to be
shown. O

Definition 2.10. Let R be a ring. A class S of R-modules is multiplicative if 0 € S and
for all R-modules M, N and D with M 2 N@® D and N, D € § one has M € §. We say
a multiplicative class S of R-modules is saturated if for all M € S and all divisors D of
M one has D € S. For a multiplicative class S of R-modules and an R-module M, write
Decs(M) = {(M7, Ms) € Dec(M) : My € S}, where Dec(M) is as in Definition 2.2. We
equip Decg(M) with the partial order inherited from Dec(M), and write max(Decs(M))
for its set of maximal elements.

Proposition 2.11. Let R be a ring, let S be a multiplicative class of R-modules, and let
M and N be R-modules. Then

(i) f M 2N and N € S, then M € S;
(ii) the set Decs(M) is non-empty.

Suppose in addition that S is saturated and that M is of finite length, and let (Ay, As),
(B1, B2) € Decs(M). Then

(iii) one has (A1, As) € max(Decs(M)) if and only if O is the only divisor of Ay that is
inS;

(iv) the set max(Decs(M)) is non-empty and consists of one orbit of Decs(M) under
the action of Aut(M);

(V) ’Lf (Al,AQ), (Bh Bg) S maX(Decs(M)), then (Al,Bg), (Bl,Ag) S maX(DeCS(M)).

Proof. (i) Apply the definition of multiplicative with D = 0.

(ii) The trivial element (M, 0) is in Decs(M).

(iii) If (A1, As) is maximal but 41 = D @ By for some D € S and some Bj, then
(A1, As) < (B1,A43 ® D) € Decs(M) and thus Ay = A @ D and D = 0. Conversely,
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some C' such that A1 = B1 ® C and By, = A; @ C. Since S is saturated we have C' € S,
and since C is a divisor of A; we must have that C = 0. Hence (A;, Ay) = (B, Bs) is
maximal.

(iv) Let M = @,;
direct sum of those M; that are, respectively are not, in S, then (Ay, As) is in Decs(M)

suppose 0 is the only divisor of A; that is in S and (A4, As) < (B, Bz). Then there is

M; with each M; indecomposable. If As, respectively Ay, is the

and it is maximal by (iii). If (B, Bz) is also maximal, then Bs, respectively By, is a
direct sum of indecomposables that are, respectively are not, in S; this follows from
the definition of Decs(M) and from (iii). Since together these decompositions give a
decomposition of M into indecomposables, Theorem 2.4 implies that A; = B; and
As = Bs, so (B, B2) belongs to the Aut(M)-orbit of (Ay, A2). Because the action of
Aut(M) preserves the partial order, this orbit is conversely contained in max(Decs(M)).

(v) By (iii) we have that A; and Az are coprime and by (iv) we have 4; = B; and
As = By. We may conclude from Proposition 2.9 that (Aj, Bs), (B1, A2) € Decs(M).
Applying (iii) again we may conclude they are maximal. O

3. Morphisms as modules

In this section we will interpret a morphism of (finite) abelian groups as a (finite
length) module, as expressed by Proposition 3.3. We will then study decompositions
of this module and what this decomposition corresponds to in terms of the original
morphism. This will enable us in the next section to apply the Krull-Remak—Schmidt
theorem to morphisms of finite abelian groups.

We write (Z 0 ) for the ring of lower-triangular 2 x 2 matrices with integer coefficients,

ZZ
Ab for the category of abelian groups, and ab for the category of finite abelian groups.

Definition 3.1. Let C be a category. We define the category of C-morphisms, written
CHom, where the objects are the morphisms of C and for objects f: A — B and g: C' —
D the morphisms from f to g are the pairs («, ) € Home (A, C) x Home (B, D) such
that 8f = ga, as in the following diagram:

%B
B

-9 . D.

BN

Q
«—

Q

The composition of C-morphisms (vy,d) : ¢ = h and (o, 8) : f — g is (ya, d5).

Remark 3.2. Let d: A — B be a morphism of abelian groups. Then the set End(d) C
End(A) x End(B) of endomorphisms of d is a ring. Moreover, we have natural maps
End(d) — End(A) and End(d) — End(B), turning A and B into End(d)-modules.

Similarly we write Aut(d) for the group of automorphisms of d, which equals End(d) N
(Aut(A) x Aut(B)).
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The following proposition can be thought of as an explicit instance of Mitchell’s em-
bedding theorem for abelian categories.

Proposition 3.3. There is an equivalence of categories, specified in the proof, between
the category AbHom and the category (% 2)-M0d of (% %)—modules. This equivalence
restricts to an equivalence between the subcategory abHom and the subcategory of (% 2)-
modules of finite length.

Proof. We will define functors F': AbHom — (% %)-Mod and G: (% Z)-Mod — AbHom
such that F'G and G'F are naturally isomorphic to the identity functors of their respective
categories. For an object f: A — B we take F(f) to be A® B, where the (% %)-module
structure is given by

(; 2) <Z> - <yf(cic)a+zb) (for z,y,z € Z,a € A, b€ B).

For a (% %)-module M we take G(M) to be the morphism EyjyM — FEyoM given by
multiplication with Fq;, where FE;; is the 2 X 2 matrix having a 1 at position (4, j) and

zeros elsewhere. The remainder of this proposition is a straightforward verification. O

Definition 3.4. Write Z for the class of (% 2)—m0dules that correspond to isomorphisms
under the equivalence of categories of Proposition 3.3.

One readily checks that the class Z is multiplicative and saturated in the sense of
Definition 2.10. We observe that a (% %)—module M belongs to Z if and only if its
(% ;)—module structure can be extended to a (%%
not be needed, and we omit the proof.

)—module structure. This fact will

Remark 3.5. Using the equivalence of categories of Proposition 3.3, one can translate
terminology related to modules into terminology about morphisms of abelian groups.
We briefly go through what is most relevant to us:

Z 0
ZZ
corresponding to f corresponds to a restriction of f, i.e., a morphism f': A" — B’

where A’ C A and B’ C B are subgroups and f'(a’) = f(a’) € B’ for all «’ € A'.
(ii) For morphisms f: A — B and g: C — D of abelian groups and for r = (o, 8) €
Hom(f, g), the image im(r) equals the restriction im(a) — im(S3) of g, and the
kernel ker(r) equals the restriction ker(a) — ker(f) of f.
(iii) If (f;)ier is a family of morphisms f;: A; — B; of abelian groups, then we write
P, c; fi for the natural map @,.; Ai — @,; B; and we write f/f; for the induced
map A/A; — B/B;. One verifies that €,.; f; corresponds to the direct sum of

the -modules that the f; correspond to. : — 1s a morphism an
he (20 dules that the f dto.If f: A — Bi hi d

(i) If f: A — B is a morphism of abelian groups, then a submodule of the ( )—module



402 H.W. Lenstra et al. / Journal of Algebra 641 (2024) 391-428

fi: A; — B; is a family of restrictions of f then, just as we do for modules, we will
write @, fi = f if the natural map €, ; fi — f is an isomorphism.

(iv) For a morphism f: A — B, the set Dec(f) is the set of all pairs (fo, f1) of restrictions
of f such that fo&® f1 = f, which is a partially ordered set as in Definition 2.2. The
set Decz(f) is the set of (fo, f1) € Dec(f) such that f; is an isomorphism.

Definition 3.6. For a morphism f: A — B of abelian groups we denote the ring of
morphisms from f to f in the category AbHom by End(f), we define

Prj(f) = {e € Id(End(f)) : im(e) is an isomorphism},

and we equip Prj(f) with the partial order inherited from the partial order on Id(End(f))
from Definition 2.2.

We have the following corollary to Proposition 2.3.

Corollary 3.7. Let f: A — B be a morphism of abelian groups. Then we have an isomor-
phism Prj(f) — Decz(f) of partially ordered sets that respects the action of Aut(f).

4. The group U™

In this section we fix a morphism d: A — B of abelian groups. We will define a group
U* that acts on d and study some of its properties.

Definition 4.1. For f,g € Hom(B, A), define f xg = fdg € Hom(B, A), and extend x to
a ring multiplication on the additive group @ = Q(d) = Z ® Hom(B, A) by

(m, f) x (n,9) = (mn, mg + nf + fdg)
for m,n € Z and f,g € Hom(B, A). We define the multiplicative monoid
U=U(d)=1+Hom(B,A) C Z®&Hom(B,A)=Q
and write U* = U*(d) = U N Q* for the intersection of U with the group of units of Q.

It is easy to check that @ is indeed a ring with unit element 1 = (1,0), and that the
projection map @ — Z is a ring homomorphism with kernel Hom(B, A). The inverse
image of 1 equals U, and U* is a group because it is the kernel of the induced group
homomorphism Q* — Z*. The following lemma is easy to verify.

Lemma 4.2. We have a ring homomorphism q: Q@ — End(d) defined by sending 1 to
the identity idg and f € Hom(B, A) to (fd,df). It restricts to a group homomorphism
U* — Aut(d).
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Remark 4.3. Recall from Remark 3.2 that A and B are End(d)-modules. The map ¢
makes A and B into @-modules in such a way that d is @-linear.

Definition 4.4. We write
Idg = Idp(d) = 1d(Q) NHom(B, A) = {f € Hom(B, A) : fdf = f}

with @ as in Definition 4.1. We equip Idy with the partial order inherited from the partial
order on Id(Q) as in Definition 2.2.

Remark 4.5. From Lemma 4.2 we get a map U* — Aut(d), i.e., U* acts on d. In turn,
since an isomorphism between d’s induces a bijection between their Idy’s, the group
Aut(d) acts on Idg. However, U* acts directly on Idy by conjugation within @. Although
we will not need it, both of the induced maps U* — Aut(Idg) are the same.

Recall the terminology im(r), ker(r), and €D, fi from Remark 3.5, and Prj(d) from
Definition 3.6. If e € End(d), we write e = (e4,ep) with e4 € End(A4) and eg € End(B).

Proposition 4.6. The map q: Q — End(d) from Lemma J.2 restricts to an isomorphism
Ido(d) = Prj(d) of partially ordered sets that respects the action of Aut(d). Its inverse
is the map given by e — 0. @ im(e)™!, where 0.: ker(ep) — ker(ea) is the zero map.

Proof. Write ®: Idg(d) — End(d) for the restriction of ¢, and write ¥: Prj(d) —
Hom(B, A) for the map e ~ 0, @ im(e)~!. To see that ¥ is well defined, note that
e and hence e4 and ep are idempotents, so A = ker(e4) @ im(e4) and likewise for B by
Proposition 2.3.

Let e € Prj(d) and f = ¥(e). Note that fd = e, by considering the restriction to
im(es) and ker(es) separately, and similarly df = ep and fep = f. Hence ¢(f) = e
and g o ¥ = idp,jq). For g € Hom(B, A) we have g x f = gdf = gep. In particular
f*xf=fesg=f,so fe€ldyg. Thus ¥ restricts to Prj(d) — Idg.

Since ¢ is a ring homomorphism, it maps idempotents to idempotents. For f € Idg
it follows from fdf = f that f and d are mutually inverse when restricted to im(df) —
im(fd), respectively im(fd) — im(df). In particular im(g(f)), which is precisely the
restriction of d just mentioned, is an isomorphism. Hence ® restricts to Idy — Prj(d).
Moreover, the restriction of f to ker(df) — ker(fd) is zero since fdf = f,so U(®(f)) = f.
We conclude that ® and ¥ are mutually inverse.

All constructions are functorial in d and thus Aut(d) commutes with ®. The defini-
tion of the partial order on idempotents is completely algebraic, so the partial order is
preserved by ®, which is the restriction of a ring homomorphism. If e, ¢’ € Prj(d) are
such that e’ = e = ¢e, then U(e) x ¥(e') = U(e)ely = U(e)epely = V(e)eg = U(e), and
likewise W(e') x U(e) = ¥U(e), so ¥ preserves the partial order as well. O
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In the following results, we use the terminology from Remark 3.5. We let U* act on
Dec(d) via the map U* — Aut(d) from Lemma 4.2.

Lemma 4.7. Let d;: A; — B; with i € {—1,0,1} be restrictions of d such that (dy,d)
and (dg,d_1) belong to Dec(d), and suppose that dy or dy is an isomorphism. Then
(do,d—1) € U™ - (do, dy).

Proof. We have Ag® A3 2 A= Ay A_;1. Hence the map A; — A_; given by x — z_4
where © = xg + z_1 with x; € A; is an isomorphism. Similarly, we have a natural
isomorphism g;: dy — d/dy — d_1, and its extension g = idg, ® g1 € Aut(d) maps
(do,d1) to (do,d—1). Letting r = idq — g € End(d), then r(dy) C do and r(dy) = 0, so
2 = 0. We first construct f € Hom(B, A) that maps to r under ¢: @ — End(d). Write
r = (ra,rp) with r4 € End(A) and rp € End(B). Since dy or d; is invertible, there
exists fi: By — Ag such that the diagram

A14>B1

l f1 l
TA . B

AO TQ) BO
commutes. Then f =0 f; with 0: By — A; satisfies (fd,df) =, so f does map to r
under ¢: @ — End(d). From f* fx f = fdfdf =r%f = 0 we see that f is nilpotent, so
the element 1 — f € U belongs to U*. Since 1 — f maps to idg — r = g via ¢, it sends
(do,dl) to (do,d_1). O

The proof of the following proposition, which can be considered a sharpening of Propo-
sition 2.11.iv when R = (% ;), is the main reason for considering d as a module.
Proposition 4.8. Assume A and B are finite. Then the set of mazimal elements of Decz(d)
equals one orbit of Decz(d) under the action of U*.

Proof. By Proposition 3.3 we may apply Proposition 2.11.iv. Thus, it suffices to show
that any two maximal elements (do,d1), (eo,e1) € Decz(d) are in the same U*-orbit.
Recall that (dg,e1) € Decz(d) by Proposition 2.11.v. Applying Lemma 4.7 we obtain
(do,e1) € U* - (do,dy) since d; is an isomorphism, and (e, e1) € U* - (do, e1) since ey is
an isomorphism. Thus (eg,e1) € U* - (do,e1) = U* - (do,d1). O

5. Graded rings

In this section we consider gradings, which may be viewed as a generalization of
group rings. In Section 6 we will use them to prove Theorem 1.3. We begin by giving
the definitions as we need them, and state some results from [9].
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Definition 5.1 (Definition 1.1 and Lemma 7.1 in [9]). Let R be a commutative ring.
A grading of R is a pair (A, R) where A is a (multiplicatively written) abelian group
and R = (Rs)seca is a A-indexed decomposition of R as a Z-module, as defined in
Definition 2.1, such that R,R; C R,s for all v, 6 € A. For a grading (A,R) with
R = (Rs)sea and a group homomorphism f: A — E, we define f.(R) to be the E-
indexed decomposition (S¢)ccp of R defined by Se = 3 5,1, Rs; then (E, fi(R)) is a
grading of R. We turn the class of gradings of R into a category by defining a morphism
(A,R) — (E,S) to be a group homomorphism f: A — E for which f,(R) =S.

From now on, we will usually write (Rs)s instead of (Rs)sea.-

Remark 5.2. Note that every non-zero commutative group ring A[G] naturally comes
with a grading (G, (Ag)y). Let R be a commutative ring. Analogously to writing
®i€ ; M; = M for submodules M; of some R-module M when the natural map
@D,cr Mi — M is an isomorphism, we write R = A[G] for a subring A of R and subgroup
G of R* if the natural map A[G] — R is an isomorphism.

Definition 5.3 (Definition 1.2in [9]). Let R be a commutative ring. A grading (I, R) of R
is called universal if it is an initial object of the category of gradings of R, or equivalently
if for every grading (E,S) of R there is a unique group homomorphism f: I' — E such
that f«(R) = S. If a universal grading (T, R) exists, then it is unique up to a unique
isomorphism and we refer to it as the universal grading of R. We write I'(R) =T for the
group of this grading.

Remark 5.4. If R and R’ are commutative rings that have universal gradings, then any
ring isomorphism R — R’ induces a group isomorphism I'(R) — I'(R’), so I'(R) behaves
functorially under ring isomorphisms; in particular, the group Aut(R) of ring automor-
phisms of R acts in a natural way on I'(R).

Two important results on gradings of orders from [9] are fundamental to the present
paper. The first concerns the existence of a universal grading. Recall a commutative ring
is reduced if it has no non-zero nilpotent elements.

Theorem 5.5 (Theorem 1.3 of [9]). If R is a reduced order, then R has a universal grading
and T'(R) is finite.

The second result relates to roots of unity. Recall that a commutative ring R is
connected if it has exactly two idempotents and that p(R) is the group of roots of unity
in R.

Theorem 5.6 (Theorem 1.5.%% in [9]). If R is a connected order and (A, (Rs)s) is a
grading of R, then u(R) C Usca Rs.



406 H.W. Lenstra et al. / Journal of Algebra 641 (2024) 391-428

The proofs of these two theorems as given in [9] are of a number-theoretic nature. For
algebraic arguments one may refer to [19,20].

Another useful fact is that the properties of being reduced and being connected are
preserved under construction of group rings. We write nil(R) for the set of nilpotent
elements of a commutative ring R.

Proposition 5.7 (Theorem 1.5 in [9]). Let A be an order and G o finite abelian group.
Then:

(i) nil(A[G]) = nil(A)[G], and A is reduced if and only if A[G] is reduced;
(i) Id(A[G]) =1d(A), and A is connected if and only if A[G] is connected;
(iii) If A is connected, then u(A[G]) = u(A) x G.

Proof. We apply the theory of gradings to the natural grading of A[G]. For (i) we
apply Theorem 1.5.1 in [9] so that nil(A[G]) = @, (nil(A[G]) N Ag) = nil(4)[G]. The
remaining equivalence follows trivially. Theorem 1.5.ii and iii in [9] prove (ii) and (iii). O

Proposition 5.8. Suppose R = (A, (Rs)s) is a grading of a commutative ring R and let
A'=(5€A:Rs#0).
Then:

(i) We have that R' = (A, (R;s)s) is a grading of R.
ii) The inclusion i: A" — A is a morphism R' — R of gradings.
g g
(iii) If S is a grading of R and there exists a morphism f: R — S, then there exists a
unique morphism f': R' — S. It equals f 0.
(iv) If there exists a morphism from R' to a universal grading, then R' is universal.
(v) If R is universal, then A = A,

Proof. Both (i) and (ii) are trivial. For (iii), clearly f o4 is such a morphism. For unique-
ness, it follows from the definitions that f’ must equal f for all § € A such that Rs # 0,
and such § generate A’. For (iv), we have a map from R’ to any other grading by pass-
ing through the universal grading, and such a map is unique by (iii). For (v), if R is
universal, then so is R’ by (ii) and (iv), and then i is a bijection since universal objects
are uniquely unique. 0O

Proposition 5.9. Let S and T be orders, write R = S X T, and let m: R — S be the
natural projection.

(i) If (A, (Rs)s) is a grading of R, then (A', (w(Rs))s) with A" = (§ € A : w(Rs) # 0)
is a grading of S, and if the former is universal, then so is the latter.
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(ii) If(E, (Se)e) and (Z, (T¢)¢) are gradings of S, respectively T', then (EXZ, (R ¢))(e.c))
with R11 = S1 X Th, Req = Se x {0} fore # 1, Ry = {0} x Ty for ( # 1, and
Ry =1{(0,0)} for e #1, ( # 1, is a grading of R. If the first two are universal,
then so is the latter.

Proof. (i) Clearly S =) ;. m(Rs). We identify S with S x {0} C R, so that 7(Rs) =
(1,0) - Rs. As (1,0) € Ry by Theorem 1.5.ii in [9], we find 7(Rs) C Rs, and hence the
sum of the w(Ry) is a direct sum. It follows that (A’, (7(Rs))s) is a grading of S.

Suppose that (A, (Rs)s) is universal and let (E,(S!).) be a grading of S. Then
(E, (Se)e) with S; = 5] x T and S = S, x {0} for € # 1 is a grading of R. By uni-
versality, there is a group homomorphism f: A — E such that f.((Rs)s) = (Se)c. Its
restriction f’ to a map A’ — E is a morphism (A/, (7(Rs))s) — (E, (S)).), and the map
is unique by Proposition 5.8.iii. We conclude that (A’ (7(Rs))s) is universal.

(ii) The first statement is immediate. For universality, any grading (A,R) of R in-
duces, as in (i), gradings of S and of T by the same group A, which come from unique
group homomorphisms E — A and Z — A. One readily checks that the induced group
homomorphism E x Z — A is the unique morphism (E x Z, (R(c.¢))(e,c)) — (A, R). The
details are left to the reader. O

Definition 5.10. When R is a commutative ring, we define the set
D(R) = {(A,G) : AC R asubring, G C R* a subgroup, A[G] = R},

and equip it with a partial order < given by (B, H) < (A, G) if and only if H C G and
B DA

Note that Aut(R) naturally acts component-wise on D(R).

Lemma 5.11. Suppose R is a non-zero order. Then for each (A,G) € D(R) the order of
G is at most the rank of R as a Z-module, and D(R) contains a maximal element.

Proof. By definition of D(R) the elements of G are linearly independent, from which the
first claim follows. We have (R, 1) € D(R), so D(R) is not empty. Thus if (4, G) € D(R)
and #G is maximal, then (A, G) is a maximal element of D(R). O

Lemma 5.12. Let R be a connected order and let (A,G), (B,H) € D(R) be such that
(B,H) < (A,G). Then with J = G N u(B) we have G = J x H and B = A[J].

Proof. By Lemma 5.11 the group H is finite, and by Proposition 5.7.iii the multiplication
map u(B) x H — p(R) is an isomorphism. Since the inverse image of G is J x H, we
have G = J x H. Thus A[J][H] = A[J x H| = A[G] = B[H] and therefore A[J] = B. O

Example 5.13. The conclusion to Lemma 5.12 does not hold in general for non-connected
orders. Let p be prime and let G = C,, x C, with C,, a group of order p. Then G is a
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2-dimensional IF,-vector space and thus there are precisely p + 1 subgroups Hy, ..., H),
of G of order p. We have H; - H; = G if and only if ¢ # j. Let R = Z[G] x Z[G] and let
A: G — p(R) be the map given by g — (g, ). Now consider the elements

(Z X Z,A(G)) = (Z[Ho| x Z[H:], A(Hp))
of D(R). As Proposition 5.7.iii implies
i(Z[Ho) x Z[H1]) = p(Z[Ho]) x p(Z[H:]) = {(xho,h1) : ho € Ho, h1 € H1},
we get J = A(G) N w(Z[Ho) x Z[H1]) = 1 and (Z x Z)[J] # Z[Hy) x Z[Ha].

Recall that we say a commutative ring R is stark if there do not exist a ring A and
a non-trivial group G such that R is isomorphic to the group ring A[G], or equivalently
for R non-zero, if # D(R) = 1.

Lemma 5.14. Let R be a non-zero commutative ring and let (A,G) € D(R). If (A, G) is
maximal, then A is stark. When R is a connected order, the converse also holds.

Proof. If A = B[J] for some J C A*, then (A,G) < (B,J x G) € D(R). Hence if (A, G)
is maximal we have (A,G) = (B,J x G) and thus J = 1, so A is stark. For connected
orders, the converse follows from Lemma 5.12. O

Note that from Theorem 1.1 it follows that maximality of (4,G) € D(R) for a non-
zero reduced order R is equivalent to A being stark even when R is not connected.
However, we have not proved this yet.

6. The degree map

In this section we extract from a connected reduced order R a morphism d of abelian
groups. We will describe D(R) in terms of d using the theory in Section 4 and then prove
Theorem 1.3.

Lemma 6.1. Let R be a connected reduced order and let (I'(R), (R,)y) be its univer-
sal grading (see Definition 5.3). Then there exists a morphism of finite abelian groups
d: p(R) — T'(R) that sends ¢ € u(R) to the unique v € I'(R) such that ¢ € R,,.

Proof. The group I'(R) is finite by Theorem 5.5, and p(R) is finite by Lemma 3.3.ii in
[7]. By Theorem 5.6, if ¢ € p(R), then there exists a v € I'(R) such that ¢ € R,. The
element + is unique, since R, N Rs = 0 for all v # 6. That d is a homomorphism follows
from the definitions. O

Definition 6.2. For a connected reduced order R we call the map d = dg: u(R) — I'(R)
from Lemma 6.1 the degree map of R.
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The above definition depends on the choice of universal grading. However, the uni-
versal grading of R is uniquely unique. Moreover, the proof of Theorem 1.3 of [9], which
states that a reduced order has a universal grading, exhibited an explicit canonical choice
of universal grading. Thus we can confidently refer to the degree map of a connected re-
duced order. We now describe the degree map d ;g of A[G].

Proposition 6.3. Let A be a connected reduced order and let G be a finite abelian group. Let
(T'(A), (Ay),) and (T'(A[G]), (Ry)~) be the universal grading of A and A[G], respectively.
Then

(i) we have I'(A[G]) =T(A) x G, and R(y 4 = Ay - g for ally € T(A) and g € G;
i) if we identify u(A[G]) with u(A) x G as in Proposition 5.7.iii, then the degree map
(i)

dag): (A) x G = T(A) xG

equals da X idg;
(iii) we have I'(A) = (y e T'(A[G]) : R, N A #0).

Proof. Let A= (I'(A), (A,),) and R = (I'(A[G]), (Ry)) be the universal gradings of A
and A[G] respectively and define A[G] = (I'(A) x G, (Ay - g)(y,))- By universality there
exists a unique morphism of gradings ¢: R — A[G], which by Definition 5.1 is a group
homomorphism I'(A[G]) — I'(A) x G, and we will show that it is an isomorphism. Let
m: I'(A) x G — G be the projection and A = ker(mp). For g € G we have g € Ry, (g)
and g € Ay - g, s0 mpdag) is the identity on G. It follows that I'(A[G]) = A x G.
Then R4 = (A, (Rs)s) is a grading of A, and ¢ restricts to a morphism of gradings
@' Ra— Awith p = ¢’ xidg. With A’ =(§ € A : Rs # 0) we have

(8,9)EA'XG

so by Proposition 5.8.v we obtain A’ x G = T'(A[G]) = A x G. Hence A’ = A, so R4 is
universal by Proposition 5.8.iv. It follows that ¢’ and hence ¢ is an isomorphism, proving
(i). Now (ii) and (iii) follow by inspection. O

Proposition 6.3.ii expresses the degree map of A[G] in terms of G and the degree map of
A, but we will mainly use it in the opposite direction. Specifically, for a connected reduced
order R, an element (A4,G) € D(R) corresponds to a certain decomposition (d4,idg) €
Decz(d) of the degree map d of R, as defined in Definition 2.10 and Definition 3.4. In
Theorem 6.9 we will show it is in fact a bijective correspondence. This together with
Proposition 4.8 will prove Theorem 1.3.

Remark 6.4. Let R be a connected reduced order with universal grading (I', (R,),) and
degree map d: p — I'. Note that the group Aut(R) acts on the category of gradings of
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R. Under this action, ¢ € Aut(R) sends (T, (R),) to (T, (¢(Ry))), which is again a
universal grading of R. Thus by universality, o induces a unique isomorphism I" =5 T.
It follows that Aut(R) acts on I'. Clearly Aut(R) acts on u, and it is easy to see the
following diagram commutes

i.e., we obtain an action Aut(R) — Aut(d) of Aut(R) on d.
For a degree map d: u — I' we define U*(d) as in Definition 4.1.

Lemma 6.5. Let R be a connected reduced order with universal grading (T, (R)~er) and
corresponding degree map d: u — . Let p: U*(d) — Aut(d) be as in Lemma /.2 and
X: Aut(R) — Aut(d) as in Remark 6.4. We then have a commutative diagram

U*(d)

/\

Aut(R) ——— Aut(d)
where © is a morphism given by 1+ f — (v € R, — f(v) - x).

Proof. Let 1 + f,1+ g € U* and recall that their product equals (1 + f) x (14 g) =
14+ f+g+ fdgin U*. It is easy to see that (1 + f) is an endomorphism of R. For v € T'
we have

P(1+g)
HARS R ’—g> g('y) S Rdg('y) ) R’Y C Rdg(’Y)"‘/

D, Fdg(1) 1) - 9() - @ = F()g() fdg(y) o

so indeed ¥(1+ f) o (14 g) = ¥((1 4 f) * (14 g)). It follows that (1 + f) € Aut(R)
and that 1 is a morphism.

Let 1+ f € U* and write F' = ¢(1 + f). For ( € pu we have F({) = f(d¢)¢, so
Flyry = idy + fd. For v € T and # € R, non-zero we have F(z) = f(vy) -z, so
the induced action on I' sends v to df(y)y. Hence 1 + f gets sent to idr + df, since
{y € I' : R, # 0} is a generating set of I" by Proposition 5.8.v. We conclude that
X1+ f)) = (id, + fd,idr + df) = ¢(1 + f), as was to be shown. O

Example 6.6. The map ¢: U* — Aut(R) need not be injective, even when R is stark.
Consider the subring R = Z-(1,1) +2S of S = Z[i] x Z[i] where i* = —1, which is clearly
connected, reduced, and has p(R) = {£1} x {£1}. Let I' = u(R) and write
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R1’1 :Rﬂ((@ XQ) :Z-(1,1)+Z-(1,—1),
Ri_1=2i-(Zx{0}), R11=2-({0}xZ), R_;_1=0.

Then (T, (R,),) is the universal grading of R. Consider the identity id: I' — u. Note
that 2id = 0 and d = 0, hence (1+id)? = 1 in Q and so 1+id € U*. Moreover, 1(1 +id)
is the identity of R, so % is not injective. To see R is stark, we can apply Lemma 7.1.vi
below since d = 0.

For a degree map d: p — I' we write Idg(d) for the partially ordered set {f €
Hom(T, i) : fdf = f} corresponding to d, as defined in Definition 4.4.

Theorem 6.7. Let R be a connected reduced order with universal grading (', (R,)~)
and corresponding degree map d: p — I'. The map Idg(d) — D(R) given by f —
(@Veker(f) R,,im(f)) is a well-defined isomorphism of partially ordered sets and re-
spects the action of Aut(R) of Remark 6.4. Its inverse is the map given by (4,G) —

-1
Or(a)—pu(a) ® dg_,q.q)-

Proof. Write ® for the map Idy(d) — D(R), which we first verify is well-defined. Suppose
f € 1do(d). As ker(f) is a subgroup of I' we have that B = €D, cyer(s) 2y 15 a subring
of R. Furthermore, from fdf = f it follows that the restriction of d to im(f) — im(df)
is an isomorphism, with the restriction of f to im(df) — im(f) as inverse, and T' =
ker(f) @ im(df). Thus

R=Pr-=P ( B &)= B B=Bin)

yer ceim(f)  veker(f)d(C) ceim(f)

Hence ®(f) € D(R) and ® is well-defined.
We next construct an inverse ¥ of ®. Suppose (A, G) € D(R). By Proposition 6.3 we
may factor I'(R) and p(R) such that d is given by d: u(A) x G — I'(A) x d(G), where

T(A) = (y€T(R): R,NA#0),

and the restriction dy of d to G — d(G) is an isomorphism. Now define f: I'(R) — u(R)
as the product of 0: T'(A) — u(A) and d; . Clearly fdf = f, so ¥ is well-defined.

For (A,G) € D(R) we have ker(¥(A,G)) = I'(4) and im(¥(A4,G)) = G, so indeed
® o U = id. Conversely, let f € Idg(d) and f' = ¥(P(f)). Restricted to im(df) —
im(f), both f and f’ equal the inverse of a restriction of d, and are 0 on a subgroup
complementary to im(df). By Proposition 6.3.iii we have

ker(f') = <7’ e(R): Ry N @ R, # O> = (y € ker(f) : R, # 0) C ker(f),
yeker(f)

so equality must hold and f = f’. Thus ¥ o ® = id, and ® and ¥ are bijections.



412 H.W. Lenstra et al. / Journal of Algebra 641 (2024) 391-428

It follows easily from the definitions that ® and ¥ respect the partial order and that
the action of Aut(R) commutes with . O

Remark 6.8. Recall that U*(d) was defined in Definition 4.1, and that it acts on R and
hence on D(R) by Lemma 6.5. Moreover, U*(d) acts on d and hence on

Decz(d) = {(do,d1) : do ® d1 = d and d; is an isomorphism }

as in Remark 3.5.iv. For (dp, d1) € Decz(d) we will write u; and T'; for the finite abelian
groups such that d; : pu; — T';. Note that if dg®d; = d, then ug®pu; = pand 'y’ =T

Theorem 6.9. Let R be a connected reduced order with degree map d and universal grading
(T, (Ry)~). We have an isomorphism of partially ordered sets Decz(d) — D(R) given by

(do: po — Lo, dy: pg — T1) = ( @ Rwﬂl)a
v€lg

(dlpaysreay, dle—ae) < (4,G),
that respects the action of U*(d), where T'(A) = (y € T': 0 # R, C A).

Before we prove Theorem 6.9, we remark that the notation I'(A) used in the theorem
was already reserved for the group of the universal grading of A. However, by Propo-
sition 6.3.iii there is no ambiguity, as they are uniquely isomorphic. In fact, the map
d|u(a)—r(4) is the degree map of A.

Proof. Theorem 6.7, Proposition 4.6, and Corollary 3.7 give explicit isomorphisms of
partially ordered sets D(R) — Idg(d) — Prj(d) — Decz(d), from which one readily reads
off that their composition and its inverse are as given in the theorem. From Lemma 6.5
it follows that the isomorphisms respect the action of U*(d). O

Theorem 6.10. Let R be a connected reduced order with degree map d, and suppose
(A,G),(B,H) € D(R) are such that A and B are stark. Then A = B as rings, G = H as
groups, and (A,G), (A, H), (B,Q) and (B, H) are all in the same U*(d)-orbit of D(R).

Proof. Let ®: Decz(d) — D(R) be the isomorphism of Theorem 6.9. Suppose
(A,G),(B,H) € D(R) are such that A and B are stark. Then (4,G) and (B, H)
are maximal elements of D(R) by Lemma 5.14, and thus ®(A,G) = (do,d1) and
®(B,H) = (eg,e1) are maximal in Decz(d). Then by Proposition 2.11.v and Propo-
sition 4.8 all of (do,d1), (do,e1), (eo,d1), and (eg,e1) are maximal and in the same
U*-orbit. Since ®(dp,e1) = (A, H) and ®(eg,d1) = (B,G), and P respects the action of
U*, the last assertion of the theorem follows. As a consequence, (A, G) and (B, H) are
in the same orbit of Aut(R), so A = B as rings and G = H as groups. O
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Theorem 1.3 is an immediate consequence of Theorem 6.10. Note that in the connected
case Theorem 1.2 also follows from Theorem 6.10. In Section 8 we shall see that the same
applies for Theorem 1.1.

Example 6.11. Let (o) be a group of order 2 and let R = Z[i][(c)], where i* = —1. We
will compute D(R). By Proposition 5.7.i,ii the ring R is both reduced and connected.
With T' = (Z/2Z)?, consider the grading (I, (Ra)(a,p)) of R with R, = Zi%c", where
although i is not well-defined, Zi® is. Since a universal grading exists, and all R, ; are
of rank 1 over Z, this must be the universal grading. Let d: 4 — I' be the degree map.
It follows from Proposition 5.7.iii that u = (i,0) = Z /47 x Z/27.. We will first compute
Decz(d).

Suppose we have (dg, d;) € Decz(d) with d;: p; — I'; as in Remark 6.8. If 47 = 1, then
do = d, and (dy, d;) corresponds via Theorem 6.9 to the trivial element (R, 1) of D(R).
Now suppose 1 # 1. Since d; is an isomorphism, the groups p; and I'; are isomorphic,
so p7 is isomorphic to a direct factor of p and of T'. Since Z/2Z is the greatest common
divisor of p and T" as Z-modules (in the sense of Remark 2.5), we have that p; is a direct
factor of u isomorphic to Z/2Z. It follows that pu; = ((—1)%c) for some b € Z/27Z, and
the corresponding group I'; equals ((0,1)) in both cases. On the other hand pg = (ic®)
for some a € (Z/27Z) since it must be a cyclic group of order 4, and Ty = ((1,a)).
Upon inspection, all pairs (a,b) do indeed give a decomposition (dy,d;) € Decz(d). The
rings corresponding to the possible dy are Z[ic?], and the groups corresponding to dy
are ((—1)bc). This gives

D(R) = {(R, 1)} U{(Z[ic?], ((-1)%0)) : a,b € Z/2Z}.

Interesting to note is that, although (Z[io], (c)) differs from (Zlic], (—0o)), the corre-
sponding gradings are isomorphic, since Z[io] - ¢ = Zlio] - (—0).

Example 6.12. The conclusion to Theorem 1.3 does not hold in general for non-connected
reduced orders. Let C' be a non-trivial finite abelian group and consider R = Z[C x C] x

Z|[C]. Let

A=Z[Cx1]xZ, G={((1,7).7):7€C}
B=Z[1xC]xZ, H={((vy,1),7) :v€ C}.

Then A and B are stark, and A[G] = R = B[H]|. However, the natural map A[H| — R
has image Z[C x 1] x Z[C] # R.

7. Automorphisms of group rings

In this section we will describe Aut(A[G]), for a stark connected reduced order A with
degree map d and a finite abelian group G, in terms of U*(d), G, and Aut(A).
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For a ring R, write Jac(R) = {# € R : 1+ RxR C R*} for the Jacobson radical
of R. Recall the definitions of Idy(d) from Definition 4.4 and T'(A4) from Definition 5.3.
In this section we write Idy(A) for Ido(d) and similarly for @, U, and U* as defined in
Definition 4.1. In our context U*(A) is equal to U(A) due to the following.

Lemma 7.1. Let A be a connected reduced order with degree map d: u — I'. Then the
following are equivalent: (i) A is stark; (ii) Ido(A) = {0}; (iii) the ideal Hom(T', ) C
Q(A) consists of only nilpotent elements; (iv) Hom(T, n) = Jac(Q(A)); (v) U*(4) =
U(A); (vi) for all abelian groups  and morphisms f: Q — p and g: T — §Q, the element
gdf € End(f) is nilpotent.

Proof. We will write @ = Q(A) and similarly for U and U*. (i < ii) This follows from the
bijection of Theorem 6.7. (ii = iii) Let f € Hom(T, u). Since the semigroup Hom(T", u1)
with the multiplication from @ is finite by Lemma 6.1, some power of f is idempotent and
thus zero. (iii = iv) It follows that 1 + Hom(T", 1) C Q* and thus Hom(T', u) C Jac(Q).
The surjection @ — Z must map Jac(Q) to Jac(Z) = {0}, so Jac(Q) € Hom(T, p). (iv =
v) We have U* C U = 1+ Jac(Q) C U*. (v = ii) It follows that 1 is the only idempotent
of U. The involution # — 1 — z on @ shows that Hom(T', 1) and 1 — Hom(T',u) = U
contain equally many idempotents, hence Idy(A) = {0}. (vi = iii) It suffices to show
that df € End(T") is nilpotent for all f € Hom(T, 1), so take Q =T and g = idp. (iii =
vi) As (gdf)" ™ = g(dfg)"df it holds that gdf is nilpotent if dfg is nilpotent. The latter
holds because fg € Hom(T', 1) C @ is nilpotent. O

A category C is small if the class of objects of C is a set and if for any two objects A
and B of C the class Hom(A, B) is a set. A category C is preadditive (see Section 1.2 in
[2]) if for any two objects A and B of C the class Hom(A, B) is an abelian group such that
composition of morphisms is bilinear, i.e., for all objects A, B, and C and morphisms
fif/iA— Bandg,¢g : B— C we have

go(f+f)=(gof)+(gof) and (g+g')of=(g0f)+ (g of).

Lemma 7.2. Let C be a preadditive small category with precisely two objects 0 and 1.
Then:

(i) With M,;; = Hom(yj,3) for i,j € {0,1} both Moo and M1 are rings and Mo1 and
Mio are a Mogo-M11-bimodule and My1-Mogg-bimodule respectively.
(ii) The product of groups

_ _ MOO MOl
ME = 11 My —<M10 Mu)

i,j€{0,1}

is a Ting with respect to the addition and multiplication implied by the matriz no-
tation.
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(111) [f M01 . Ml() = im(M01 (024 Ml() — Mgg) C Jac(Mgg), then Ml() . M01 C Jac(Mll),

o JaC(M()()) MO]_ * M* M01
Jac(M(C)) = ( Myo Jac(M11)> , and M(C)* = <M(1)8 Mfl) .

Proof. That the M;; are groups, and that the addition is compatible with the composi-
tion of morphisms, follows from the fact that C is preadditive. It is then easy to verify
that the M;; are rings and modules as claimed, and that M(C) is a ring, giving (i) and
(ii).

Now suppose M1 - M10 C Jac(Moo). We will show that for all m € Mgy and n € Mg
we have nm € Jac(My1). Let s € M11. Then (ms)n € Moy -Mio C Jac(Moo), so 1+msn
has an inverse r € Mgpg. Then

(1 =snrm)(1+snm)=1—sn(r(l+msn)—1)m=1—sn(l—1)m=1.

Hence 1 + snm has a left inverse 1 — snrm, and similarly 1 — snrm is a right inverse of
1+ snm. Thus 14 snm € M7, and nm € Jac(Mi1). We conclude that Myg - Mp1 C
Jac(M11).

Consider T' = (Jac(éw"‘)) MO‘”) and B = (Mow Jac(g/fu)) and write J = T+ B. We
will first show that T C Jac(M(C)). For z = (g g) € T it suffices to show for all
y=(,")eM(C) that 1+ay € M(C)*. As 1+ay = (HagHm ma;rbs) is upper diagonal,
it is invertible if its diagonal elements are. The element 14 ar + bn is invertible because
ar + bn € Jac(Moo). So T C Jac(M(C)). Analogously B C Jac(M(C)). Thus we have a

two-sided ideal J C Jac(M(C)). To see equality, note that the ring
M(C)/J = (Moo/JaC(Moo)) X (Mll/JaC(M11)>

has a trivial Jacobson radical.
An element of M(C) is a unit if and only if it maps to a unit in M(C)/Jac(M(C)),
hence if and only if its diagonal elements are units, proving the final statement. O

Naturally, the construction M(C) can be generalized to categories C with any finite
number of objects. We call M(C) the matriz ring of C.

Remark 7.3. Given four abelian groups M;; with ¢, € {0,1} together with compatible
(i-e., associative) multiplications M;; @ M, — My, for all 4, j, k € {0, 1} with appropriate
unit elements, we can construct the preadditive category C with two objects 0 and 1, with
Hom(j,1) = M;;, and with composition being these multiplications. In particular, if Mg
and My, are rings, Mo is an Myp-M71-bimodule, and Mg is an M;1-Myg-bimodule, then
it remains only to specify the multiplications My ® Mg — Myg and Myg® My, — Mi;.

Let A be a connected reduced order and G a finite abelian group. Recall that p(A)
and I'(A) are Q(A)-modules by Remark 4.3, hence Hom(G, 1(A)) and Hom(I'(A), G) are
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respectively left and right Q(A)-modules. We next describe U*(A[G]) in terms of A and
G.

Proposition 7.4. Let A be a connected reduced order and G a finite abelian group. Then:

(i) We have a matriz ring

e ( QW) Hom(G,u(4)
~ \Hom(T'(A4),G) End(G)
where Hom(G, p1(A)) @ Hom(I'(A), G) — Hom(I'(A), u(A)) C Q(A) is the composi-
tion map and Hom(I'(A4), G) ® Hom(G, u(A)) — End(G) is given by g @ f — gdf .
(ii) There is a natural ring isomorphism E = Q(A[G]) that respects the action of
Aut(A).

(iii) If A is stark, then the map in (ii) restricts to an isomorphism

Ur(A Hom(G, u(A ~ ok
(Romrah.cy " haies™) = a6,

Proof. For (i), apply Remark 7.3 and Lemma 7.2.ii. Since all multiplications are defined
in terms of compositions of morphisms, the associativity conditions are trivially satisfied.
Write I' = T'(4) and p = u(A). For (ii), we have by Proposition 6.3.ii that

Q(A[G]) = ZeHom(' x G,ux G) = Z & (Eﬁﬁgéﬁ{ HE%%L)) ’

where the isomorphism is one of abelian groups. Then the map Q(A[G]) — E with
respect to the latter representation given by

(2= (L)

is an isomorphism of rings that by functoriality respects the action of Aut(A).

For (iii), suppose A is stark. Then Hom(T', u) = Jac(Q(A)) by Lemma 7.1. Tt follows
that the ideal Hom(G, p)-Hom(T', G) C Hom(T', u1) is contained in Jac(Q(A)). Now apply
Lemma 7.2.ii. O

In Remark 7.5 and Proposition 7.6 we describe Aut(A[G]) in terms of A and U*(A[G]).

Remark 7.5. Let G be a finite abelian group. Then —[G] and U* act functorially on
isomorphisms of connected reduced orders. Let A be a connected reduced order. From
Proposition 6.3.ii we get a natural inclusion

Hom(I'(A), p(A)) = Hom(I'(A[G]), p(A[G])),
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which extends to an inclusion of rings Q(A) — Q(A[G]). Then we have a commutative
diagram

U*(A) Lemma b5, Apg(A) — 5 Aut(U*(A))

1 Lo

U*(A[G]) Lemma 00 Ayt (A[G]) —C— Aut(U*(A[G])),
and the composition U*(A) — Aut(U*(A)) is the conjugation map.

Proposition 7.6. Let A be a stark connected reduced order and G a finite abelian group.
Then the maps and actions from Remark 7.5 fit in an exact sequence

0 — U(A) 5 U*(A[G]) x Aut(A) 5> Aut(A[G]) — 0,

where v and ™ are homomorphisms such that 1(u) = (u™',u) and T maps each component

to Aut(A[G)).

Proof. For all u,v € U*(A) we have

by Remark 7.5, so ¢ is a homomorphism. Moreover, ¢ is injective because it maps injec-
tively to the first factor. By the same remark 7 is a homomorphism.

We will now show that 7 is surjective. Suppose o € Aut(A[G]). By Theorem 6.10 there
exists 1 + f € U*(A[G]) that maps (4, G) to (¢(4),c(G)), so without loss of generality
we may assume o(A) = A and 0(G) = G. By applying the restriction o|4 € Aut(A4) we
may assume o is the identity on A. Consider the map f: I'(A) x G — u(A[G]) given by
(0,9) — o(g)g~! and note that 1+ f € U(A[G]) gets mapped to 0. We similarly obtain
the inverse of 1+ f in U(A[G]) from (6, g) — o~ 1(g9)g™ 1, so 1+ f € U*(A[G]). It follows
that o is in the image of 7 and thus 7 is surjective.

To show the sequence is exact, it remains to show im(:) = ker(w). It is clear that
im(:) C ker(r), so suppose (1 + f,a) € ker(w). As a~! equals the restriction of 1+ f
by assumption, it suffices to show that 1 + f € U*(A). For g € G we have g = (1 +
falg) = f(g9)g, and multiplying by g~! we obtain 1 = f(g), i.e., G C ker(f). Moreover
im(f) C u(A), since multiplication by any unit ({,g) € u(A) x G = p(A[G]) not in u(A)
sends A to Ag # A. Hence f € Hom(I'(A), u(A)) and 1+ f € U(A). The same holds for
the inverse 1 +e € U*(A[G]) of 1 4+ f,s0 1 +e € U(A) and thus 1+ f € U*(A). It now
follows that (14 f,«) = ¢(1 + ¢), so ker(7) C im(¢), as was to be shown. O

Proposition 7.4 and Proposition 7.6 combined gives us a description of Aut(A[G]) in
terms of A and G. We now prove Theorem 1.5 and describe Aut(A[G]) by less canonical
means.
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Lemma 7.7. Let A be a stark connected reduced order. Then the group Hom(T'(A), u(A))
has a (right) action on the set Aut(A), which for o € Aut(A) and f € Hom(I'(A), u(A))
is given by

(. f) = a+ f=(xeA —al) f(v).
Proof. Let o € Aut(A) and f, g € Hom(I'(A4), u(A)). Note that

a+f=ao(l+a tf) e Aut(A),

where 1 + a~1f € U(A) = U*(A) by Lemma 7.1 and the composition is taken inside
Aut(A) via Lemma 6.5. For v € I'(A) and = € A, we clearly have

[(a+ f)+gl(z) = [a+ fl(z) - g(v) = a(z) - f(v) - 9(7) = [+ (f + 9)l(z),
so the action is well-defined. O

Proof of Theorem 1.5. To check that M is a group it remains to verify that t1dss 40109 €
Aut(G). This follows from Lemma 7.1, namely ¢;dsy € Jac(End(G)). Note that the map

9: M — Aut(A[G])

can be written as the composition of the homomorphism ¢: M — U*(A[G]) x Aut(A)

a sy 1 s
t o ta=! o) @
where U*(A[G]) is written in terms of the matrix representation of Proposition 7.4.iii,

and the homomorphism 7: U*(A[G]) x Aut(A) — Aut(A[G]) from Proposition 7.6.
The map 7 is still surjective when restricted to the image of ¢. Namely any

given by

(“ 8) a € U*(A[G]) x Aut(A)

t o

S
o

) - fa, where 3 is the image of u in Aut(A). Hence the
map ¢ is surjective. By Proposition 7.4.iii and Proposition 7.6, respectively, we have

has the same image as (t ﬁl—l

H#M _ # Aut(A) _ # Aut(A[G])
#U*(AG])  #U*(A)  #U*(A[G])

so the groups M and Aut(A[G]) have the same (finite) cardinality, so ¥ is bijective.
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8. Proofs of Theorems 1.1, 1.2, and 1.6

We will prove Theorems 1.1 and 1.2 by reducing to the connected case, where we can
apply Theorem 6.10. Recall the definition of D from Definition 5.10.

Lemma 8.1. Let S and T be orders with S non-zero, let R = S x T with projection
map m: R — S, and let (A,G) € D(R). Then we have (w(A),m(G)) € D(S) and the

restriction G — w(G) of m is a group isomorphism.

Proof. We have a natural map 7(A)[G] — 7(A)[w(G)] — S. Since S equals 7(A[G]) =
>_gec ™(A)7(g), this map is clearly surjective. Suppose » ., m(ag)g is in its kernel.
Writing e = (1,0) € R and identifying S with S x {0}, we have n(z) = ex for all
z € R. By Proposition 5.7(ii) we have e € A and therefore }_ _;eagg = 0 in A[G].
We conclude that for all ¢ € G we have m(ay) = eayz = 0, so the map 7(A4)[G] —
S is an isomorphism. Then the maps 7(A)[G] — #(A)[r(G)] and 7 (A)[x(G)] — S
are isomorphisms as well. Since S # 0, this implies that the map G — #(G) is an
isomorphism and that (7(A),7(G)) € D(S). O

Given a group ring structure on a product of orders, Lemma 8.1 constructs on each of
the factors a group ring structure, with the same group. The following proposition does
the opposite. For the definition of greatest common divisors, see Remark 2.5.

Proposition 8.2. Let X be a finite non-empty set, let (Ry)zex be a collection of connected
orders, and let (A;,Gy) € D(R;) for all x € X. Suppose that for all v € X we write
Gy = D, ®E, for some subgroups D,, E, C G, such that for all x, y € X we have D, =
Dy. Put R=[],cx Re and A =[], cx Az[E:], and let D C [],c x Dz be a subgroup for
which all the projection maps m,: D — D, are isomorphisms. Then (A, D) € D(R). If
in addition (Ag, Gy) is mazimal in D(Ry) for all x € X, and D is a greatest common
divisor of {G, : x € X}, then (A, D) is mazimal in D(R).

Proof. Clearly A C R and D C u(R). There is a sequence of ring isomorphisms

rzeX rzeX rzeX

where one obtains the first isomorphism by tensoring A = [], .y Az[E:] with Z[D] over
Z and the second isomorphism is induced by the group isomorphisms 7,.. The resulting
isomorphism A[D] — R restricts to the inclusion on both A and D, so A[D] = R and
indeed (A4, D) € D(R).

Now suppose that (A, G;) is maximal in D(R,,) for all z € X, and that D is a greatest
common divisor of {G, : x € X}. Let (B, H) € D(R) be such that (A, D) < (B, H). For
x € X let B, and H, be the projection of B, respectively H, to R, so by Lemma 8.1 we
have (B, H,) € D(R,) and H = H,. Choose (Cy,I;) € D(R,) to be maximal such that
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(B, H;) < (Cy, I;). Since R, is connected, Lemma 5.12 implies that there exists a finite
abelian group F, such that I, &2 H, & F,. Since both (4,,G;) and (C,, I,)) are maximal
in D(R,), we have G, = I, by Theorem 6.10. Hence G, 2 I, * H, ® F, & H @ F,.
Thus H is a common divisor of all G, and H contains D. Since D is a greatest common
divisor, we obtain H = D. From A[D] = B[H] = B[D] and A D B we see A = B, so
(A,D) = (B,H) and (A, D) is maximal. O

Proof of Theorem 1.1. If A = 0 or B = 0, then Theorem 1.1 holds trivially. Hence
assume A and B are non-zero.
(ii) = (i) Assuming (ii), we have ring isomorphisms

A[G) = C[1][G] = C[I x G] = C|J x H] = C[J][H] = B[H].

(i) = (ii) First assume A[G] is connected. Let (C, V) > (A,G) and (D,W) > (B, H) be
a maximal element of D(A[G]), respectively D(B[H]). By Lemma 5.14 the orders C' and
D are stark, so by Theorem 6.10 there exists a ring isomorphism o: B[H| — A[G] that
sends (D, W) to (C,V). It follows that (C,V) > (¢(B),o(H)), so applying Lemma 5.12
twice, we find subgroups I, J C V such that I x G =V = J x o(H) &£ J x H and
C[I] = A and C[J] = o(B) = B. This concludes the proof of the connected case.

Next consider the general case, where A[G] = [],cx R: is a non-empty product of
connected reduced orders R,. Without loss of generality we may assume A[G] = B[H].
Let z € X. Write A, and B, for the image of A, respectively B, of the projection onto
R,. Then A,[G] ¥ R, = B,[H] by Lemma 8.1. Since R, is connected and we proved (i)
= (ii) in the connected case, there exist a reduced order C, and finite abelian groups I,
and J, such that C,[I;] = A, and C,[J,] = B, and I, x G = J, x H = P,. Replacing
C; by C.[D,] for some greatest common divisor D, of I, and J,, we may assume that
I, and J, are coprime. It follows that P, is a least common multiple of G and H, as
defined in Remark 2.5. In particular, when x ranges over X, the finite abelian groups P,
are pairwise isomorphic, and as a consequence the same holds for the groups I,. Hence
there exists a subgroup I C [, x Iz such that all projections I — I, are isomorphisms,
so from Proposition 8.2 it follows that C[I] = A with C' = [],cx Cx. Similarly we find
a finite abelian group J that is isomorphic to all J, such that C[J] = B. Now I and J
together satisfy I x G = J x H, as desired. O

Proof of Theorem 1.2. Let (A, G) € D(R) be a maximal element (Lemma 5.11). Then A
is stark by Lemma 5.14. Suppose B is a stark ring and H is a finite abelian group such
that B[H] = R. By Theorem 1.1 there exist an order C' and finite abelian groups I and
J such that A 2 C[I] and B = C[J] and I x G = J x H. Since both A and B are stark
we conclude that I = J =1,30 G = H and A = C = B. Hence A and G are unique up
to ring and group isomorphism, respectively. O

Proof of Theorem 1.6. We use the notation of Theorem 1.6. By Remark 6.4, if a €
Aut(A) and v € T' then a(A,) = A, It then follows readily from Theorem 1.5 that the
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orbit of A under Aut(A[G)) is A and the orbit of G under Aut(A[G]) is G. Theorem 1.6
now follows from Theorem 1.2. 0O

9. Algorithms

In this section we will prove Theorem 1.4, the algorithmic counterpart to Theorem 1.2.
To state our theorems rigorously, we should specify how our data are encoded. We
will continue the conventions used in [3,6-9,19], the results from which are therefore
compatible. They can be briefly described as follows. Integers and rationals are encoded
straightforwardly. Any finitely generated free module is specified by its rank, its elements
are represented by vectors, and morphisms between such modules are represented by
matrices. All rings we consider are Noetherian, so each finitely generated module is a
cokernel of some morphism of finitely generated free modules, and it is encoded as such.
Finally, a ring structure on a finitely generated abelian group is encoded as a collection
of multiplication maps, one for every generator. For matrices with integer coefficients we
can do multiplication and compute (bases for) kernels and images in polynomial time as
described in [6].

Theorem 9.1 (Theorem 4.1.1 in [3]). There exists a polynomial-time algorithm that, given
a finite ring R and finite R-modules My and Ms, computes a greatest common divisor
D of My and My as defined in Remark 2.5, together with injections v;: D — M, and a
complement N; C M; such that N; ® ;D = M;.

Proposition 9.2. For each of R = Z and R = (% %) there exists a polynomial-time
algorithm that, given finite R-modules My and My, computes a greatest common divisor
D of My and M, together with injections v;: D — M; and a complement N; C M; such

that N; & v;D = M;.

Proof. By Theorem 2.6.9 in [3] we may compute the exponents of M; and M, and their
least common multiple 7, in polynomial time. Note that M; and My are R/nR-modules
and that replacing R by R/nR does not change the problem. Since R/nR is a finite ring,
we can thus reduce to Theorem 9.1. O

Proposition 3.3 allows us to interpret a morphism of finite abelian groups as a finite
length (% %)—module. Although both types of objects are represented differently, one
easily deduces from the proof of Proposition 3.3 that we can change representations in
polynomial time.

In the following result, Decz(d) is as defined in Definition 2.10, Remark 3.5.iv, and
Definition 3.4.

Proposition 9.3. There exists a polynomial-time algorithm that, given finite abelian
groups A and B and a morphism d: A — B, computes a maximal element of Decz(d).
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Proof. By Proposition 9.2 we may compute in polynomial time a greatest common divi-
sor D of A and B as Z-modules. Similarly we may compute a greatest common divisor
E of d and idp as (% %)—modules. We also obtain submodules dg and d; of d such that
dy =2 F and d = dy ® dy. We claim that (dp,d;) is a maximal element of Decz(d). First
note that d; is a divisor of idp and thus must be an isomorphism. As d = dy & d; we
indeed have that (dg,d;) € Decz(d). Let (eg, e1) > (dp, d1) be maximal in Decz(d). Since
e1 is an isomorphism, it is isomorphic to idg for some finite abelian group F. Since ey
is a direct summand of d, the group F is a direct summand of both A and B, so F'is a
divisor of their greatest common divisor D. Thus e; is a divisor of idp. It follows that
ey is a divisor of E = dy, so (do,d1) = (eo, e1) and thus (do, d;) is maximal, as was to be
shown. 0O

In the following result, we represent a grading (A, (Rs)sea) of an order R by a finitely
generated abelian group A by specifying only those subgroups R of R that are non-zero.
This differs from the representation of gradings used in [19], which restricts to finite A
and specifies all subgroups Rys; the latter representation can readily be converted to the
former in polynomial time, which is all we need.

Proposition 9.4. There exists a polynomial-time algorithm that, given a reduced order R
and a universal grading (T, R) of R, computes a maximal element of D(R) as defined in
Definition 5.10.

Proof. First suppose R is connected. By Theorem 1.2 in [7] we may compute p = u(R)
in polynomial time and thus also the group homomorphism d: y — T' as defined in
Definition 6.2. We may compute a maximal element (dy, dy) € Decz(d), with d;: p; — T;
as in Remark 6.8, in polynomial time using Proposition 9.3. Under the isomorphisms of
partially ordered sets of Theorem 6.9 this d corresponds to a maximal element (A, G) €
D(R), where A =3 p/

Now consider the general case. By Theorem 1.1 in [7] we may compute in polynomial

R, and G = p1, which we may compute in polynomial time.

time connected reduced orders (R, ),ecx for some index set X such that R = er x R,
together with the projections 7,.: R — R,. Using Proposition 5.9.i we may construct uni-
versal gradings for the R, in polynomial time. Hence by the special case we may compute
a maximal element of D(R,) for all x € X in polynomial time. Finally, we may apply
Proposition 8.2 to compute a maximal element of D(R), observing that the construction
in Proposition 8.2 can be carried out in polynomial time using Proposition 9.2. 0O

Computing a maximal element of D(R) for a reduced order R is now reduced to
finding a universal grading of R.

Theorem 9.5 (Theorem 1.4 in [19]). There is an algorithm that takes a reduced order R

O(m)

as input and produces a universal grading of R in time n , where n is the length of

the input and m is the number of minimal prime ideals of R.
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The above algorithm does not, in general, run in polynomial time; but when we
bound m, or equivalently the number 2™ of idempotents of R ®z Q, by a constant it is
guaranteed to finish in polynomial time.

We now consider the case where R is generated as a group by its autopotent elements.
We recall that a ring element z is called autopotent if "1 = 2 for some n € Zo. Write

a(R) for the set of autopotents of R.

Proposition 9.6. Let S and R be rings. Then:

) The roots of unity and idempotents of R are autopotent.
(ii) The product of any two commuting autopotents of R is autopotent.
) We have u(R x S) = p(R) x pu(S) and a(R x S) = a(R) x «(S).
) Let x € R. Then x € a(R) if and only if there exist an idempotent e € R and a
¢ € u(R) such that © = e¢ = Ce.
(v) If R is commutative, then R is generated as a ring by a(R) if and only if its additive
group is generated by a(R).
(vi) As groups, R x S is generated by autopotents if and only if each of R and S is
generated by autopotents.
(vii) If R is connected, then a(R) = u(R) U {0}.

Proof. Statements (i), (ii) and (iii) are trivial. The ‘if’-part of (iv) follows from (i) and
(ii). Conversely, suppose 2" = z. Then e = x" satisfies € = e, so e is idempotent.
Assume without loss of generality that R = Z[x], so R is commutative. Hence we may
decompose R =eR x (1 —e)R. As x € eR is an n-th root of unity, so is ( = (z,1) € R.
Then x = e = (e.

By (ii) the set of autopotents is closed under multiplication, and this gives (v). Part
(vi) follows from (iii) combined with the fact that 0 € a(R) and 0 € «(S). Part (vii)

follows from (iv). O

The ‘if’-part of (vi) is wrong when we replace ‘autopotents’ by ‘roots of unity’: As a
group the connected ring Z is generated by its roots of unity {1}, but for Z x Z the
group generated by the roots of unity does not contain (1,0). This is the main reason

we introduce autopotents.
Lemma 9.7. Let R be an order that is generated as a group by a(R). Then R is reduced.

Proof. It suffices to prove that K = R ®z Q is reduced, because R — K is injective.
Each z € a(R) has a minimal polynomial in K[X] dividing X"*! — X for some n > 0.
In particular x is separable, and consequently so are all elements of K. As 0 is the only
separable nilpotent element, the lemma follows. O
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Definition 9.8 (Ezample 3.4 in [9]). For an order R we define a bilinear map

(@r =)= Y o) o),

o: R—C

where the sum ranges over all ring homomorphisms, of which there are only finitely
many.

Remark 9.9. Following Example 3.4 in [9], the map from Definition 9.8 is non-degenerate
when R is reduced, i.e., (z,z) = 0 implies x = 0 for all x € R. We have a bijective
correspondence

{6: R—=C} + {(p,0p) : p C R a minimal prime ideal, o,: R/p — C}

that sends o: R — C to (ker(c),5) where 6: R/ker(c) — C is given by the homo-
morphism theorem, and conversely sends (p,o,) to o, composed with the projection
mp: R — R/p. Thus for all x,y € R we have (z,y)r = >, g(mp(2), mp(y)) r/p, Where
the sum ranges over all minimal prime ideals.

Lemma 9.10. For all orders R that are generated as a group by a(R) we have (R, R) C Z.
There exists a polynomial-time algorithm that, given an order R that is generated as a
group by a(R) and x,y € R, computes {x,y).

Proof. Note that R is reduced by Lemma 9.7. Let X be the set of minimal primes
of R. Using Theorem 1.10 in [8] we may compute X and for each p € X the map
R — R/p in polynomial time. Note that as a group, R/p is generated by «(R/p). Then
by the formula of Remark 9.9 it suffices to prove the lemma for the ring R/p. Thus
we suppose R is a domain and consequently a(R) = u(R) U {0} by Proposition 9.6.vii.
For ¢,¢ € pu(R) and a ring homomorphism ¢: R — C we have o(¢) - 0(§) = o(CE71).
Thus (¢,&)r = >.,. pc 0(C€71), which is the trace of (¢7! from R to Z, and hence
is an integer. As R is generated as a group by p(R), it follows that (R, R) C Z as well.
Moreover, this shows that computing (x,y)r reduces to computing traces of roots of
unity, which clearly can be done in polynomial time. O

For a ring R, an R-module M, and a subset X C M, we write R- X for the submodule
of M generated by X.

Lemma 9.11. There exists a polynomial-time algorithm that, given a finite-dimensional
commutative Q-algebra A and a finite set X C A, computes a Q-basis Y of the subalgebra
B of A generated by X, where each element in 'Y is a finite (possibly vacuous) product
of elements of X.
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Proof. The algorithm proceeds as follows. Start with Y = {1}. Compute the set of
products Z = {zy : € X, y € Y} and update Y to be a maximal Q-linearly independent
subset of Z UY. Repeat this until Q - Y is stable.

Suppose in some step Q- Y =Q - (ZUY). Then Z C Q-Y, s0 Q- Y is closed under
taking products with X. Since X generates B as a Q-algebra and 1 € Q-Y by the choice
of initial Y, it follows that Q - Y = B. Note that #Y < dimg(B) and thus there are
at most dimg(B) steps in the algorithm. Moreover, in each step #7Z < #(X x Y) is
polynomially bounded in the input length, so in total there are only polynomially many
multiplications. Lastly, note that in step 7 of the algorithm each element of Y can be
written as a product of ¢ elements from X, and therefore the encoding of every element
has length proportional to at most i times that of the longest element of X. Hence the
multiplications can be carried out in polynomial time. 0O

Although it is possible to compute «(R) for a reduced order R, we cannot in general
do this in polynomial time, even if R is connected. Note that for the ring

R ={(ai); € Z" : (Vi,j) a; = a; mod 2},

the set {—1,1}" = u(R) C «a(R) is exponentially large. Theorem 1.4 of [7] gives a
polynomial-time algorithm that, given an order R, produces a set of generators of p(R).

Proposition 9.12. There exists a polynomial-time algorithm that, given an order R, com-
putes a set Y C a(R) such that Z -Y =7 - a(R).

Proof. We may factor R into a product of connected orders in polynomial time using
Algorithm 6.1 in [7]. Combined with Proposition 9.6.vii we may assume R is connected
and a(R) = u(R) U {0}.

Apply Theorem 1.2 in [7] to compute in polynomial time a set X of generators of the
group p(R). Using Lemma 9.11 we may compute a basis Z C u(R) for the subalgebra
Q- u(R) of R® Q as a Q-vector space.

Denote the discriminant det((Trq..(r)/Q(7Y))z,yez) of Z-Z by Az, and similarly let
A, (ry denote the discriminant of Z - u(R). Let n = #Z = dimg(Q - u(R)). We have
|Az| < n3/2 by Hadamard’s inequality and the fact that | Tr(¢)| < n for ¢ € u(R).
Thus,

#(Z-w(R)/Z - 2)* = |Azl/|Aum| < |Az] < n®/2,

In particular, logy #(Z - (R)/Z - Z) is polynomially bounded.

First we set Y = Z. Then we iterate over x € X and y € Y and add zy to Y whenever
2y ¢ Z-Y.Once Z Y stabilizes we have Z - Y = Z - u(R) and may return Y. Each new
element added to Y decreases log, #(Z - u(R)/Z - Y') by at least 1, so the cardinality of
Y and the number of steps taken in the algorithm are polynomially bounded. Finally,
we remark that there is a polynomial upper bound on the lengths of the encodings of
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the elements of Y, since each element is the product of at most #Y elements of X and
an element of Z. Hence the algorithm runs in polynomial time. O

Roots of unity are homogeneous in any grading of a connected order, by Theorem
1.5 of [9]. The next result shows this is also true in any orthogonal decomposition of a
connected reduced order, where orthogonal means with respect to the inner product in
Definition 9.8.

Lemma 9.13. Let R be an orthogonal decomposition of a connected reduced order R. Then
the roots of unity of R are homogeneous in R, i.e., for all { € pu(R) there exists some
M € R such that ¢ € M.

Proof. By Corollary 5.6 in [9] the element 1 € R is indecomposable, i.e., for all z,y € R
such that x+y = 1 and (z,y) > 0 we have x = 0 or y = 0. Since x +— (z is an isometry of
R for all ¢ € u(R), we conclude that all ¢ € u(R) are indecomposable. Indecomposable
elements are clearly homogeneous. 0O

Lemma 9.14. Let R be a connected reduced order and R = (I, (R,).) be the universal
grading of R. Suppose X C u(R) is a subset and A C R is a subring such that @, x Az
is an orthogonal decomposition of R. Write A = u(R)/u(A). Then the natural map
g: X = A is a bijection and S = (A, (A-g~%(8))s) is a grading of R. If also A C Ry,
then S is universal.

Proof. First we show g is a bijection. If g(x) = g(y) for z,y € X, then Ax = Ay and
thus * = y by orthogonality. Hence ¢ is injective. It follows from Lemma 9.13 that
t(R) = Uyex (Az N pu(R)) = p(A) - X, so g is surjective. It follows that S is a grading
of R. Now assume A C R;. Let e: A — T be induced by the degree map d: u(R) — T,
which is well-defined because p(A) C ker(d) by assumption. Then e,(S) = R, and S is
universal by Proposition 5.8.iv. O

Theorem 9.15. There exists a polynomial-time algorithm that, given a reduced order R
that is generated as a group by a(R), computes the universal grading of R.

Proof. We may write R as a product of connected orders in polynomial time using
Algorithm 6.1 in [7]. Using Proposition 5.9.ii and Proposition 9.6.vi we may restrict
ourselves to the connected case, so suppose R is connected and thus a(R) = pu(R) U {0}
by Proposition 9.6.vii. Let R = (T, (R,),) be the universal grading of R, which is not
part of the algorithm.

We will compute a subring A C R and a sequence si,...,$, € u(R) having the
following properties:

(i) ZAsi =R; (i) ACRy; (i) (Vi#7) (As;, Asj) = 0.
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It then follows from Lemma 9.14 that we have in fact computed the universal grading
of R. The algorithm is as follows.

(1) Set A =Z and compute Z-module generators sq,..., s, € u(R) for R using Propo-
sition 9.12.
(2) While there exist i # j such that (As;, As;) # 0, as computed by Lemma 9.10:
(a) Choose any i < j such that (As;, As;) # 0;
(b) Replace A by the ring generated by A and s 's;;
(c) Remove s; from the list of generators.

Clearly, properties (i) and (ii) are satisfied after step (1), and (iii) is satisfied after
step (2). Moreover, since the number of generators decreases each step, the number of
iterations in step (2) is polynomially bounded and the algorithm terminates. It remains
to show that (i) and (ii) are preserved by step (2). Property (i) is preserved because
s;j is contained in As; after updating A in step (2b). For (ii) it suffices to show that
s;'s; € Ry. As s7's; € pu(R) we have s;'s; € R, for v = d(s; 's;) by Lemma 6.1.
Since (A, As; 's;) = (As;, As;) # 0 we conclude that R, = R; by Proposition 5.8 in [9],
as was to be shown. Lastly, note that all operations can be carried out in polynomial
time. O

Proof of Theorem 1.4. By Proposition 9.4 it suffices to compute a universal grading of
R. Apply Theorem 9.5 in the general case and Theorem 9.15 in the specific case of an
order generated by its autopotents. O
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