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ABSTRACT

Deep Learning (DL) algorithms have gained popularity for super-
resolution tasks - reconstructing a high-resolution (HR) output
from its low-resolution (LR) counterpart. However, current DL ap-
proaches, both in computer vision and computational fluid dynam-
ics (CFD), perform spatially uniform super-resolution. Therefore,
DL for CFD approaches often over-resolve regions of the LR input
that are already accurate at low numerical precision. This hardware
over-utilization limits their scalability. To address this limitation,
we propose ADARNet, a DL-based adaptive mesh refinement (AMR)
framework. ADARNet takes a LR image as input and outputs its
non-uniform HR counterpart, predicting HR only in areas that re-
quire higher numerical accuracy. As a result, ADARNet predicts
the target 1024 x 1024 solution 7 — 28.5x faster than state-of-the-art
DL methods and reduces the memory usage by 4.4 — 7.65X while
maintaining the same level of accuracy. Moreover, unlike tradi-
tional AMR solvers that refine the mesh iteratively, ADARNet is a
one-shot method that accelerates it by 2.6 — 4.5%.

CCS CONCEPTS

« Computing methodologies — Neural networks; Multiscale
systems; Model development and analysis.

KEYWORDS

Physics-informed machine learning, adaptive mesh refinement,
super-resolution, turbulent flows

ACM Reference Format:

Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chan-
dramowlishwaran. 2023. ADARNet: Deep Learning Predicts Adaptive Mesh
Refinement. In 52nd International Conference on Parallel Processing (ICPP
2023), August 07-10, 2023, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3605573.3605654

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP 2023, August 07-10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0843-5/23/08.
https://doi.org/10.1145/3605573.3605654

524

Abhinav Vishnu
abhinav.vishnu@amd.com
Advanced Micro Devices
Austin, Texas, USA

Aparna Chandramowlishwaran
amowli@uci.edu
University of California, Irvine
Irvine, California, USA

1 INTRODUCTION

Computational Fluid Dynamics (CFD) is the de-facto method for
solving the Navier-Stokes equations, which govern fluid flow be-
havior. However, CFD simulations often require high spatial res-
olutions to accurately capture complex flow phenomena, making
them computationally expensive. There are widespread efforts to
address this challenge and to improve the performance and scal-
ability of solving these systems [7, 11, 20, 21, 23]. Inspired by the
remarkable success of deep learning (DL) algorithms in various
fields, including computer vision (CV) and natural language pro-
cessing (NLP), recent efforts have explored using DL algorithms
for accelerating CFD simulations via super-resolution (SR). SR in-
volves reconstructing expensive high-resolution (HR) solutions
from their low-resolution (LR) counterpart, which are computation-
ally cheaper to simulate [9, 10, 14, 24].

The state-of-the-art (SOTA) DL models for SR have shown promise
as real-time predictors [9, 14] that can generalize well across a wide
range of flow configurations. However, these models share a com-
mon limitation: they perform uniform SR, that is, every pixel of the
input LR image is refined to the target high-resolution output. As a
result, uniform SR methods [9, 14, 24] impose higher computational
demands, resulting in increased inference times and memory re-
quirements. This limitation is particularly evident when the target
spatial resolution is high, such as 1024 X 1024, which is necessary to
accurately model flow phenomena like the boundary layer. Figure 1
shows the maximum allowable batch size with increasing target
spatial resolution. The SOTA SR methods in CFD do not allow more
than two samples per batch during inference on a 16GB NVIDIA
V100 GPU at high spatial resolutions, significantly restricting their
practical usability for accelerating design space exploration in CFD.

Spatially uniform outputs are computationally inefficient for two
additional reasons. First, they tend to over-resolve regions with
smooth fluctuations in the flow properties. In fluid dynamics, many
flow phenomena exhibit smooth variations over certain regions, and
applying high-resolution refinement uniformly across the entire
domain may lead to excessive detail in these areas. This not only
wastes computational resources but can also introduce noise into
the results. Second, current uniform SR approaches require prior
knowledge of the target resolution. This requirement necessitates
a large number of HR labels at that specific resolution, making the
data collection process computationally challenging and resource-
intensive [9, 14, 19]. Moreover, obtaining a vast amount of HR
data can be impractical, especially when dealing with large-scale
simulations or complex flow configurations.
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Figure 1: Maximum possible batch size during inference at different
target spatial resolutions for SURFNet [24], a SOTA DL SR model on
a 16GB NVIDIA V100 GPU.

To address the above challenge, traditional numerical solvers
often employ adaptive mesh refinement (AMR). AMR is a technique
that selectively refines only those regions in the computational
domain that exhibit significant flow variability, while leaving other
regions coarser. This adaptive refinement helps achieve better scal-
ability and performance in large-scale simulations [5, 30]. However,
conventional AMR methods in CFD suffer from two main limita-
tions. First, they heavily rely on user intervention and heuristics
that require specific knowledge of the problem, making them less
generalizable. Second, the mesh refinement process is iterative. It
involves multiple iterations of solving the flow equations, assessing
the solution, and then refining or coarsening the mesh based on
certain criteria. This iterative nature demands more computational
resources and time compared to direct methods.

In this paper, we tackle all these challenges and present ADAR-
Net, a novel DL framework for ADAptive mesh Refinement. ADAR-
Net takes as input a LR flow field and outputs, in one-shot, its final
non-uniform HR solution, as seen in Figure 2. Since only regions
in the flow field that exhibit complex flow phenomena are refined,
it requires less computational resources. This enables larger batch
sizes during inference at high spatial resolutions while still achiev-
ing the target accuracy compared to SOTA methods for SR. To
achieve this, ADARNet distinguishes between different regions
of the domain by dividing the input LR flow field into fixed-size
patches, and adaptively increases or maintains the spatial resolution
of each patch based on the complexity of the flow in that region.
ADARNeEet is an end-to-end DL-physics solver framework where the
non-uniform output flow field from the model inference is input to
a traditional physics solver. This coupling ensures that ADARNet
meets the same convergence guarantees as AMR solvers, which is
critical for practitioners [23, 24].

Specifically, ADARNet makes the following contributions, ad-
dressing the limitations of uniform SR and traditional AMR in CFD:

e Non-uniform SR. To enable non-uniform super-resolution, we
introduce a novel scorer-ranker-decoder DL algorithm, where the
scorer finds the spatial score of each patch, the ranker places
patches in corresponding bins based on their score (which de-
termines the target resolution of each patch), and the decoder
reconstructs every patch in each bin to its final target resolution
using semi-supervised learning.
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Figure 2: Current DL algorithms for SR output the solution on a
uniform fine mesh (top). Our objective with ADARNet is to predict a
spatially non-uniform output where only areas that require higher
accuracy are refined (bottom). Hence, ADARNet requires less com-
pute time and memory resources while achieving the target accuracy.

e Minimal user intervention. ADARNet’s training process is
semi-supervised - the loss function that guides its optimization
process is formed by the governing equations of the problem -
which poses a two-fold advantage. First, the refinement or coars-
ening decisions are based on physics principles with minimal
human intervention, as opposed to traditional AMR solvers that
require expert, domain, and even problem-specific knowledge
and a high degree of user intervention [30]. From one single train-
ing, ADARNet reaches SOTA refining/coarsening decisions for
different flow problems that exhibit very different flow phenom-
ena, showcasing remarkable generalization properties. Second,
ADARNet does not require knowledge of the target resolution
a priori and hence eliminates the need for expensive HR data
collection.

e Outperforms traditional AMR solvers. We evaluate ADAR-
Net on three canonical turbulent flows obtained from Reynolds-
Averaged Navier-Stokes (RANS) simulations, considering seven
flow configurations (three geometries and four boundary con-
ditions) unseen during training. The adaptively refined meshes
produced by ADARNet demonstrate excellent flow discerning
properties and agreement with the baseline OpenFOAM AMR
solver in refining regions of interest such as near-wall areas in
wall-bounded problems (channel flow, flat plate), in flow around
smooth solid bodies (flow around an airfoil), and the wake re-
gion in flow around thick solid bodies (flow around a cylin-
der) while maintaining less complex flow areas, such as the
freestream, at low resolution. Additionally, ADARNet predicts
the non-uniformly refined flow field in a single inference step,
avoiding the need for multiple iterations as required by tradi-
tional AMR solvers. As a result, ADARNet achieves the same
convergence guarantees as the AMR solver while accelerating it
by 3.2 — 5.5x.

Reduced computational resources. ADARNet’s ability to se-

lectively refine specific areas of the flow and avoid HR inferences

across the entire domain results in a speedup of 7 — 28.5x and
reduces memory usage by 4.4 — 7.65X at 1024 X 1024 spatial res-
olutions compared to SOTA DL methods that perform uniform

SR while maintaining SOTA accuracies.
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2 RELATED WORK

Adaptive Mesh Refinement (AMR). AMR is a popular technique
that makes it feasible to solve problems that are intractable on
uniform grids and it has been widely applied in traditional finite
volume-based solvers. Different areas of the partial differential
equation (PDE) domain can require different precisions where non-
uniform grids are better suited. AMR algorithms dynamically iden-
tify regions that require finer resolution (such as discontinuities and
steep gradients) and refine or coarsen the mesh to achieve the target
accuracy. Therefore, AMR can scale to resolutions that would oth-
erwise be infeasible on uniform meshes resulting in increased com-
putational efficiency and storage savings. The majority of current
works [7, 30] result from the early local adaptive mesh refinement [3],
where cells are marked for refinement. Two main approaches exist
for identifying cells for refinement. First, adjoint-based AMR [22],
which estimates the discretization error in each cell and adapts
the mesh for lowering these errors. However, the optimal rationale
for error estimation remains unknown [4]. Second, feature-based
AMR [15], where the user supplies the features to track and refines
the computational cells that meet a user-defined value of those
variables. Feature-based AMR is the most popular approach due
to less challenging implementations. However, feature-based AMR
approaches require both a high degree of user intervention and
specific knowledge of the problem at hand and do not generalize
well. Traditional iterative AMR solver are based on a handful of
heuristics for re-meshing whose long-term or general optimality re-
mains unknown. The user is expected to choose one based on their
application. To overcome this limitation, Yang et al. [29] designed
the AMR procedure as a Markov Decision Process. However, the
training is done with ground truth data generated from analytical
solutions and can not be extended to turbulent flows. In [1], the
authors develop AMRNet, a convolutional neural network-based
(CNN) model that performs multi-resolution, where the network out-
puts a uniform flow field at different resolutions. As opposed to the
above approaches, we design a DL algorithm for AMR without im-
posing any application-specific heuristics during training. Instead,
the training is guided by the fundamental governing equations of
fluid dynamics - continuity and momentum equations. ADARNet’s
optimization process aims to reduce the residual, thereby adhering
to the physics imposed by the RANS equations (see Section 3.2).

Super-resolution (SR). DL algorithms have shown impressive
results for SR [14, 17]. We find SR techniques applied to both CV and
CFD problems. Two main research directions exist in CV: single-
image SR (SISR) and reference-based SR (RefSR). However, both
SISR and RefSR have a target resolution that is both known a priori
and uniform [28]. In [28], the authors present the texture trans-
former, where the query, key, and value of their attention module
are formed by upsampled and downsampled images of the input
image together with a reference image from which textures are
extracted. In [6], the authors provide a differentiable module that
selects the most salient patches of the input image for image classi-
fication. However, the unselected patches are unused. In this paper,
we are interested in SR, and therefore we keep all patches that cover
the entire domain.

In CFD, we also find successful SR attempts. Recent works use
CNNess as finite-dimensional maps [9, 19]. However, these approaches
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know the target resolution a priori, perform uniform SR, and re-
quire large amounts of HR labels. To eliminate the need for large
amounts of HR labels, authors in [24] developed SURFNet, a transfer
learning-based uniform SR framework. This work reduces the HR
data requirement by 15X while achieving resolution invariance.
However, it’s also limited to uniform SR. Mesh-free, resolution-
invariant methods [14, 18, 27] are a potential alternative to finite-
dimensional maps because they can query the solution at any point
in the domain and hence are prone to perform non-uniform SR.
In [14], the authors developed MeshFreeFlowNet, an efficient frame-
work for SR of turbulent flows that outperforms baseline models
[26]. However, it lacks the ability to intrinsically discriminate be-
tween different regions of the flow, resulting in uniform output
resolutions. It also suffers from the limitation of extensive HR data
collection. In this paper, we present a semi-supervised DL algorithm
that adaptively refines the input mesh and outputs a non-uniform
HR flow field, improving both inference times and memory require-
ments for scaling to large problem sizes. ADARNet does not require
knowledge of the target resoluton a priori, hence eliminates the
need for collecting HR training data.

3 ADARNET: DL FOR AMR

Our objective is three-fold. First, to predict fine-grid turbulent flows
from their coarse-grid counterpart only in the regions of interest.
Second, to design a DL algorithm for AMR where these areas to
refine are identified with the least possible user intervention. Third,
to output a solution that meets the same convergence guarantees
as classical AMR solvers.

In this section, we present ADARNet, a novel DL framework for
non-uniform SR. We first detail the neural network architecture
highlighting the challenges and the corresponding design choices.
Then, we present the semi-supervised learning approach that lever-
ages a hybrid loss function. Finally, we outline the end-to-end
framework, which reconstructs a non-uniform HR flow field while
reaching the same convergence as the state-of-the-art AMR solvers.

3.1 Neural Network Architecture

To our knowledge, no prior work has addressed non-uniform super-
resolution with deep neural networks (DNNs). To tackle this prob-
lem, we design a novel DNN architecture for this problem. We
decompose the problem into 3 sub-tasks: (a) identifying patches to
be refined further for accuracy, (b) determining the target resolu-
tion of these salient patches, and (c) predicting the output solution
in each patch given its target resolution. Figure 3 illustrates the
architecture composed of a scorer network, a ranker, and a decoder
network designed to accomplish the above 3 sub-tasks.

The DNN takes as input an LR flow field, which is first divided
into fixed-size regions or patches. The output is a non-uniform res-
olution flow field, where HR is predicted only for specific patches
in the domain. The RANS equations with the Spalart-Allmaras (SA)
model (described in Section 4.1) predict four main flow variables
- mean x-velocity (U), mean y-velocity (V), the mean kinematic
pressure (p), and the eddy viscosity (7). Therefore, the input LR flow
field consists of a four-channel tensor image where each channel
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Figure 3: ADARNet’s DNN. The input is a four-channel LR image where each channel represents one flow variable. The LR image is first input
to the scorer, which divides it into patches and outputs the score of each patch. The ranker uses these scores to assign each patch to a bin, which
is refined using a bicubic interpolation to its target resolution. Then, the refined patches are concatenated with their coordinates. Finally, the
decoder maps this refined, intermediate representation to the final values of each patch. ADARNet’s DNN’s output is multiple, consisting of a

list of four-channel images at different spatial resolutions.

represents the values of one flow variable across the entire com-
putational grid. The DNN scores, ranks (or bins), and predicts the
target resolution of each patch.

Scorer. The LR flow field is first input to the scorer network.
This is a trainable network whose goal is to score each patch of
the LR image via its 2D spatial latent representation, as illustrated
in Figure 4. This network is inspired by the work of Cordonnier
et al. [6] that use a similar network for finding salient patches from
the input image for classification.

HW,8 HW,16

HW1
NPx,NPy

(fz

Smg\e channel
2D latent representation

Per-patch
scores

NPx NPy

if

Conv2D MaxPool
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NPy number of patches in Y
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Figure 4: The scorer network. The first four convolutional layers
extract a single-channel 2D latent spatial representation from the
input LR flow field. This 2D latent representation is used to obtain
the scores of each patch via a maxpooling and a softmax layer.

To identify patches for refinement, we first extract the spatial
features from the input low-resolution mesh. The scorer network
consists of a shallow CNN followed by a maxpooling layer and a
softmax layer. We use convolutional layers because their inherent
spatial inductive bias makes them an ideal candidate to find relevant
spatial patches. The first three convolutional layers extract an
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abstract representation of the LR flow field. Their kernel size is (3, 3)
and the stride is 1. This overlap captures the spatial relationships
between and among the input flow variables and maintains the
spatial dimensionality. After the first three convolutional layers, we
apply a single-filter convolutional layer to encapsulate the extracted
spatial information in a single-channel image. This image is a 2D
latent representation of the spatial dependencies in the variables of
the LR flow field and plays a key role in determining the scores of
each patch. This single-channel image is input to the maxpooling
layer that splits the domain into NPx X NPy = N patches — where
NPy is the number of patches in the horizontal direction, NPy is
the number of patches in the vertical direction, and N is the total
number of patches. The pool size and the stride are both (ph, pw),
where ph is the height of the patch and pw is the width of the patch.
Hence, each value in this image represents the non-normalized
score of each patch. The softmax layer normalizes these scores to a
0 — 1 scaled probability distribution. The scorer network’s output is
twofold: the scaled scores and the 2D latent representation. Next,
we pass the scores from the scorer to the ranker.

Ranker. This is a non-trainable module that tracks the score
and the ID of each patch. The ranker locates each patch in the LR
flow field, isolates it from the rest of the image, and places it in a
bin according to its score. We refer to this process as binning, and
it is illustrated in Figure 3. Binning consists of splitting the 0 — 1
range of values of the scores into b bins uniformly. For instance, if
b = 2, the first bin consists of patches with scores between 0 — 0.5,
and the second bin with scores 0.5 — 1.

The ranker determines the final resolution of each patch. During
training, patches with the highest scores are mapped to the highest
target resolution, and as the scores decrease, the target resolution
is gradually reduced. Patches with the lowest scores remain in their
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original LR. Since each bin (which corresponds to a specific target
high-resolution) can contain a different number of patches, we
need to dynamically change the batch size for each forward pass
of the downstream decoder network. This differs from typical DL
algorithms, where the batch size remains fixed throughout training.

After binning, we refine each patch to its target resolution using
bicubic interpolation, concatenate their 2D coordinates, and then
use them as input to the decoder.

Decoder. The goal of this trainable network illustrated in Fig-
ure 5 is to reconstruct the HR solution of each patch. A design
choice we made in the decoder is weight sharing among resolutions
as opposed to a separate decoder for each target resolution like in
prior work [12]. Therefore, each patch in each bin passes through
the same decoder, which is shared among resolutions. The choice
of a shared decoder is motivated by two reasons. First, we have a
smaller number of learnable parameters compared to a separate
decoder for each resolution. Thus, we stress ADARNet’s ability
to recover different resolutions for different patches accurately
while being computationally efficient. Second, the LR patches have
not been upsampled and the decoder can extract the true spatial
correlations between the flow variables and coordinates in those
patches. We expect this to help in recovering the true values of the
HR patches. Note that the patches placed in the LR bin also passes
through the shared decoder.

nPH,nPW,16 nPH,nPW,64 NPH,NPW, 4
nPH,nPW, 8 nPH,nPW,64 nPH,nPW,16
PC+2
—

Conv2D  Deconv2D n  refinement level
k=(3x3)  k=(3x3) PH patch height
s=1 s=1

PW patch width
PC patch channels

Figure 5: The decoder network. The input to the decoder is the inter-
mediate patch representation concatenated with the 2D coordinates
at its target resolution. This network consists of 3 convolutional
layers followed by 3 deconvolutional layers.

The decoder is a 6-layer convolution-deconvolutional network.
We choose this architecture because convolutions will extract a
deep, abstract representation used by the deconvolution layers to
reconstruct the HR output. Other works [14] use a U-net type of
architecture. However, we keep the spatial dimension of the layers
constant because the decoder operates on a per-patch basis and
reducing the number of features that represent the patch is not
desired. We use a stride of 1 to not lose any spatial information.
The number of filters of the 3 convolutional layers followed by 3
deconvolutional layers are 8, 16, 64, 64, 16, 4; the kernel size is (3, 3),
and the stride is 1.

The decoder’s output consists of a list of patches. Each patch is
a four-channel image, and each channel represents the values of
the four flow variables (U, V, p, and V) at steady-state at their new
spatial resolution. Each patch in the list can have a different spatial
resolution. This list is then passed to the loss function.
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3.2 Loss function

Since the network is not trained using the same heuristics as classi-
cal AMR solvers, we do not expect both to refine the exact same
regions of the input. Stitching together the output of CFD solvers
at different spatial resolutions is not feasible as this results in phys-
ically inconsistent and numerically incorrect solutions. It is also
not computationally practical to run the iterative AMR solver for
every intermediate mesh configuration during training to calculate
the loss. As a result, we face the challenge of not having ground
truth data to train the model.

To tackle the above challenge, we use a hybrid loss function for
semi-supervised training. It consists of data and PDE residual loss
functions, where the governing equations are imposed. Equation 1
shows our loss function.

np nc fo NC ne

L= h fvzzznyuk vijil +NC ZZ||PJ(1>||

i=1 j=1k=1 i=1 j=
1)

The loss function L consists of two parts. The first term, shown
on the right-hand side of Equation 1, is the data loss. It is calculated
as the mean squared error (MSE) between the predicted and ground
truth data for each flow variable (fv) at each cell (nc) of the LR
patches (np). The ground truth data is obtained using the physics
solver. The second term in the right-hand side is the L2 norm of
the residual of each PDE (ne) for all cells (NC) of the output image,
belonging to either low or high-resolution patches. We enforce the
continuity equation and the two conservation of momentum equa-
tions, hence ne = 3. The gradients of the variables are computed
through automatic differentiation. To constrain the PDE residual of
the HR patches, we downsample them using bicubic interpolation
to the lowest resolution and match the ground truth data in the
downsampled space [10]. With this semi-supervised learning for-
mulation, we avoid HR labels, an advantage over SOTA SR methods
that require expensive HR training data [14, 18]. Since we do not
train with ground truth data from AMR solvers, the network does
not learn the solver’s heuristics that have a high degree of user
intervention. Therefore, ADARNet makes its own refining decisions
to learn a DL-based model for AMR.

3.3 End-to-end framework

Once the network is trained and calibrated, we use it to predict
the non-uniform HR flow field of a new problem. However, this
prediction has an approximation error and might not satisfy the
same convergence constraints as traditional physics solvers with
PDE residual values close to the machine round-off errors, which
is critical for many practitioners. We correct this by refining the
DNN’s prediction using the physics solver [23, 24].

Figure 6 illustrates ADARNet’s end-to-end framework compared
with the traditional AMR solver. In ADARNet, the LR flow field is
input to the DNN (see Section 3.1). After inference, we feed the
DNN’s non-uniform output into the physics solver that drives this
inference to convergence. Note that the physics solver does not do
any further refinement or coarsening. The final discretization is an
output of the DNN. As a result, we obtain a solution that satisfies
the same convergence constraints as traditional numerical meth-
ods. Since we anticipate the DNN’s inference to be "close" to the
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Figure 6: Top: Traditional AMR solver simulation. Bottom: ADARNet framework. After performing non-uniform SR with the DNN, we feed
the output field into the physics solver, which takes the inferred solution to convergence.

final solution, convergence is accelerated. Section 5.1 empirically
evaluates the performance of ADARNet against both classical AMR
solvers and SOTA DL models.

4 EXPERIMENT SETUP

In this section, we present the methodology to train and evaluate
ADARNet. We first present the case studies that form the dataset to
train and validate ADARNet. Then, we outline the training/testing
setup, parameters, and results. Finally, we describe the physics
solver and the traditional AMR heuristics used for comparison.

4.1 Case studies

To train the DNN shown in Figure 3, we collect LR data from three
widely studied canonical flows. The resolution of this dataset is

64 X 256, which is typical for LR solutions of these training cases.

We use the RANS equations with the one-equation SA model to
collect the data. The RANS equations describe turbulent flows as:

aU;
o = @
1
ou; o aU; an
Ui— = bii + (v+ 3
j ox; 3xj —(p)dij+ (v+vy) ( ;o (3)

where U is the mean velocity, p is the kinematic mean pressure,
v is the fluid laminar viscosity, and v; is the eddy viscosity. We
model v; with the SA one-equation model, that provides a transport
equation to compute the eddy viscosity [25], described in Equation 4
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From Equation 4 we can compute the eddy viscosity from ¥ as
vy = Vfy1. These equations represent the most popular implemen-
tation of the SA model. The terms f;1, S, and f;2 are model-specific
and contain, for instance, first order ﬂow features (magnitude of the
vorticity). Cp1, Cwi, Cpa, k, and o are constants specific to the model,
found experimentally. d is the closest distance to a solid surface.
The constants of the model are those in its original reference [25].
Turbulent flow in a channel. 2D channel flow has been widely
studied in the literature. A common strategy to evaluate channel
flow is to vary the input velocity to the channel. This is the same
as varying the Reynolds number!. Here, we adhere to this practice
and vary the input velocity to the channel to collect 10000 samples.
Specifically, we collect 300 samples from Re = 2e3 (when turbulent
effects start to appear) to Re = 2.3e3, and then, 9700 more samples
from Re = 2.7e3 to Re = 1.35e4. We leave Re = 2.5e3 and Re = 1.5e4
as our test cases. Section 5 presents a more in-depth discussion of
the selection of the test cases. The physical domain of the channel
flow is a diameter of 0.1 meters and a length of 6 meters so we find
fully developed flow. The inlet is at the left and the outlet at the
right. The top and the bottom are both walls and hence have the
no-slip boundary condition.

IThe Reynolds number, or Re, is a non-dimensional coefficient that quantifies the flow
conditions of the problem. Re = % , where U is the input velocity to the problem at
hand, L is a characteritic length, and v is the laminar viscosity
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Turbulent flow over a flat plate. Flat plate is also a canoni-
cal flow, part of the wall-bounded flows family, used to study the
boundary layer in both laminar and turbulent conditions. By vary-
ing the incoming velocity we collect 10000 samples. For flat plate,
incompressible turbulent effects do not appear up until Re = 1.35e5
and scale up to Re = 5e6. We collect 2000 samples from Re = 1.35e5
to Re = 2e5 and another 8000 additional samples from Re = 3e5
until Re = 1.1e6. We leave Re = 2.5e5 and Re = 1.35e6 as test cases.
The physical domain of the flat plate case is a height of 0.2 meters
and a length of 10 meters, as found in different benchmarks. The
boundaries are a wall at the bottom (the flat plate), symmetry at
the top, an inlet at the left, and an outlet at the right.

Turbulent flow around ellipses. External aerodynamics simu-
lations are relevant for aerospace industrial applications. We gather
LR solutions from flow around ellipses. In real scenarios, different
geometries at a variety of flow conditions are explored. Our train-
ing data consists of 10000 samples of flow around different ellipses
at different flow conditions. Figure 7 shows these configurations.
The training data is obtained by changing the aspect ratio of the
ellipses: 0.05,0.07, 0.09, 0.1, 0.15, 0.2, 0.25, 0.35, 0.55, and 0.75. Each
of these ellipses is simulated under 5 different flow conditions by
changing randomly the angle of attack « and the pitching angle 8
between —2 and 6 degrees. We collect all of these configurations
at 200 different Re numbers between 5e4 and 9e4. We select flow
around a cylinder at Re = 1e5, flow around a symmetric airfoil
(NACAO0012) at Re = 2.5e4, and flow around a non-symmetric airfoil
(NACA1412) at Re = 2.5e4 as test cases. The physical domain of the
ellipse/cylinder/airfoil cases consists of a solid body of chord (c) 1
meter, and the far-field limit is located 30c from the tip and tail of
the solid body (O-grid type of mesh).

Figure 7: Ellipse geometry and characteristics (i) aspect ratio, (ii)
angle of attack «, and (iii) pitch angle 0 are tunable parameters.

The training set consists of 30000 samples, 10000 from each
canonical flow. From this training dataset, 27000 samples are used
for training the DNN and 3000 samples are reserved for validation.

4.2 Training and Testing Setup

The methodology described in Section 3 allows for multiple combi-
nations of parameters. For instance, we can select different patch
sizes or different number of target resolutions. In this section, we
explain our training design choices.

First, the DNN’s convolutional kernels of size 3 X 3 require a min-
imum input image size to extract relevant information. Therefore,
we fix our patch sizes at ph X pw = 16 X 16, which leads to N = 64
total number of patches for each sample. Larger patch sizes do not
offer enough granularity to make critical distinctions between re-
gions of the flow. Second, we choose the number of bins b = 4, and
hence four different target resolutions. Each target resolution re-
fines the original LR patch by 4(n) X, where n = 0, 1, 2, 3. We choose
b = 4 because not more than 4 levels of refinement is an extended
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practice in the AMR literature [15] to avoid tiny computational cells.
This also allows us to compare ADARNet with SOTA approaches
that attempt 64x SR. The patch size and the number of bins are the
same during training of the DNN and evaluation of the results.

We implement the DNN using the Tensorflow 2.4 backend, and
perform distributed training on four Tesla V100 GPUs connected
with PCle. After training the network with a batch size of 8, a
learning rate of le — 4, no specific initialization, and using the
Adam optimizer [16] for 350 epochs, the training and validation
data and PDE residual loss for all equations reach a MSE of 9e-
6. Note that the training of ADARNet’s DNN is done on GPUs.
However, ADARNet is evaluated entirely on the CPU in this paper
for a fair comparison with the AMR solver, which only supports
CPU.

4.3 Physics solver and AMR solver

Once the model is trained, it is used for inference. Recall that the
DNN'’s output is input into the physics solver to drive the flow
field from inference to convergence (see Section 3.3). We use Open-
FOAM’s pimpleFoam solver as the physics solver in this paper.

As for the AMR solver to compare ADARNet with, we use
the dynamicMeshRefine utility in OpenFOAM together with the
pimpleFoam solver. This solver is a feature-based AMR solver [30].
Therefore, it requires user intervention: for all of the test cases,
we set the AMR solver to refine those areas where the gradients
of the eddy viscosity are the highest, and the maximum level of
refinement is set to 4. This heuristic is popular and works well for
a wide range of problems, including our test problems.

Architecture and Libraries. The OpenFOAM simulations are
run in parallel on a dual-socket Intel Xeon Gold 6148 using double
precision due to the lack of GPU support. Each socket has 20 cores,
for a total of 40 cores. We use the OpenMPI implementation of
MPI integrated with OpenFOAM v8 that is optimized for shared-
memory communication. The grid domain is decomposed into 40
partitions using the integrated Scotch partitioner and each partition
is assigned to 1 MPI process that is pinned to a single core. We set
the numactl -localalloc flag to bind each MPI process to
its local memory.

5 RESULTS AND DISCUSSION

After training and validating the network, we evaluate ADARNet’s
ability for non-uniform SR on two different use cases:

o Same geometry but different boundary conditions. We use ADAR-
Net to refine the LR solution of flow on a geometry observed
during training but at a different boundary condition. Here, the
test flows configurations are channel flow and flat plate on inter-
polated (int) and extrapolated (ext) boundary conditions. For the
former, we test on Re = 2.5e3 (int) and Re = 15e3 (ext). For the
latter, we test on Re = 2.5e5 (int) and Re = 1.35e6 (ext).

o Different geometry and boundary conditions. We stress the gen-
eralization capacity of ADARNet by finding the non-uniform
high-resolution solution of flow around geometries unseen dur-
ing training. We use the same model to predict the flow around
a cylinder at Re = 1e5, the flow around a symmetric NACA0012
airfoil at Re = 2.5e4, and the non-symmetric NACA1412 airfoil at
Re = 2.5e4, as seen in Figure 8.
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For the described test cases, we first present the accuracy and
correctness of ADARNet by comparing it, both qualitatively and
quantitatively, with the traditional AMR solver (described in Sec-
tion 4.3). Then, we present a performance analysis of ADARNet by
evaluating (1) its speedup over the AMR solver and (2) the inference
time and memory usage compared to a SOTA neural network model
that performs uniform SR. The baseline neural network used for
comparison is described in Section 5.2.

o

Figure 8: Non-symmetric NACA1412 airfoil (left), symmetric
NACAO0012 airfoil (center), and cylinder (right) as test geometries.
These test cases stress the generalization capacity of ADARNet on
geometries unseen-during-training.

<

5.1 Correctness and Accuracy of ADARNet

We first conduct a qualitative evaluation by visualizing (a) the re-
fined/unrefined areas and (b) the final flow field by both ADARNet
and AMR solver. Because of the difference in their inherent heuris-
tics (ADARNet follows a DL-based approach, while the AMR solver
follows user-given heuristics as explained in Section 4.3), we do not
expect the exact same output. However, the qualitative results eval-
uate whether ADARNet can act as an AMR surrogate for multiple
flow problems resulting from a single training.

Next, we conduct a quantitative comparison between the two
methods using a grid convergence study [8]. Recall that both ADAR-
Net and the AMR solver solve the same problem. We impose the
same strong-form boundary conditions in the fluid domain, which
well-pose the problem and guarantee uniqueness. The only metric
that changes between the two is the mesh, and therefore, they will
present different discretization errors. However, these discretiza-
tion errors reduce as we increase the resolution of refinement and
global quantities tend to converged solutions. Hence, to evaluate
the quality of ADARNet’s inferred mesh, we compare the solution
from both ADARNet’s mesh and the AMR solver mesh as we in-
crease the required levels of refinement. Both meshes are refined
4"x gradually, from n = 0 to n = 3. Then, we report the value of
specific quantities of interest (Qol) at steady-state. The choice of
the Qol follows the CFD literature.

Qualitative results. Figure 9 shows the refined/unrefined re-
sults for five test cases: channel flow at Re = 2.5e3, flat plate at Re =
1.35e6, cylinder, and the two airfoil test cases. It shows ADARNet’s
predicted mesh (left) and the AMR solver’s output mesh (right).
ADARNet splits the domain into 64 16 X 16 patches and we show
the output resolution (with respect to the coarse resolution) of each
patch. Because the AMR solver allows more granularity as it per-
forms mesh refinement on a per-cell basis, the domain is divided
into smaller (4 x 8) patches?. At the borders of each test case, we
show the physical boundaries which play a key role in determining
the areas where both algorithms refine the mesh.

We make three main observations. First, ADARNet can distin-
guish between boundary conditions. For the channel flow case
2We do not show per-cell refinement as too many cells are created to offer good

visualization. However, 4 X 8 patch sizes have been found optimal for both gathering
cells with equal levels of refinement and visualization quality.
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Figure 9: Per-patch fluid domain and the level of refinement of each
patch for the test cases. We compare ADARNet’s prediction (left)
versus AMR solver’s output (right). Both axes are in meters.

(first row in Figure 9), ADARNEet refines the fluid areas close to
both the upper and the lower wall, whereas, for the flat plate case
(second row), it refines the areas close to the wall but leaves the
outer regions (outlet/freestream) at low resolution. Second, ADAR-
Net respects the symmetry of the problem, as we observe in the
channel flow case and in the symmetric airfoil case. Third, ADAR-
Net’s fine/coarse regions are in excellent agreement with those of
the AMR solver for the channel flow, flat plate, and airfoil cases.
This agreement in the cylinder case is also notable. For instance,
ADARNet refines the region of the flow from the back of the cylin-
der to the outlet (i.e., the wake behind the cylinder). However, we
observe some discrepancy in the back-bottom-front-top region. The
front-bottom-back and front-top-back regions (which refer to the
entire solid boundary of the cylinder) require a higher resolution
from ADARNet. This difference, together with the channel flow
and flat plate results, indicates that the DNN is refining those areas
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with higher values of the gradients for all fluid variables, which
take place in solid wall boundaries. This is opposed to the AMR
solver’s heuristic, that focuses only on areas with high gradients of
the eddy viscosity.

During the calibration of the DNN, it is key to balance both
components of the loss function - the data loss and the PDE residual
loss (described in Section 3.2) so neither dominates the other. If
the data loss dominates, the network overfits to the given low-
resolution data which is undesired. On the other hand, if the PDE
residual loss dominates, the network yields a constant value of
the flow variables in the entire domain. After a sensitive study,
we observe the best predictive results at A = 0.03, which yields a
balanced contribution of each component of the loss. The data and
PDE residual losses reach a value of 9e — 6 for both the training
and the validation samples. During training, we scale the value
of the variables between 0 and 1 for learning stability purposes.
However, we can not scale the value of the gradients found by
automatic differentiation because this would result in inconsistent
PDE residual loss. These gradients reach higher absolute values
than those of the data, especially in areas of the flow with higher
variability, and hence get the attention of the MSE loss function.
Moreover, this also allows ADARNet to refine the back-outlet area,
where the wake region of the flow after the cylinder meets the
freestream (outlet) and we find a high gradient of the eddy viscosity.
The difference in the refining patterns between the cylinder and
the airfoil case is because the former presents flow separation from
the wall boundary that generates a wide wake region, whereas in
the airfoil case, the flow remains attached to the solid body.

Figure 9 also shows that in the channel flow, flat plate, and airfoil
test cases, the AMR solver reduces the refinement level gradually as
we increase the distance from the wall boundary. Instead, ADARNet
infers the maximum level of refinement in the patches close to the
wall and does not show this gradual reduction. This is due to the
maxpooling layer in the design of ADARNet’s scorer network (see
Section 3.1). Recall that the maxpooling layer chooses the highest
score present in the 16 X 16 region defined by the patch. Choosing a
maxpooling layer over an average pooling is a desired conservative
approach. Since an entire patch shares a resolution in ADARNet,
it is advantageous to choose the highest required resolution even
if only few cells within a patch require it for accuracy. Figure 9
shows that ADARNet and the AMR solver have inherently different
heuristics for mesh refinement/coarsening and do not produce the
same mesh - as expected. However, both are in excellent agreement
in their steady flow field prediction, as we qualitatively observe in
Figure 10 for the cylinder and non-symmetric airfoil test cases.

Quantitative results. We present a quantitative comparison
between ADARNet and the AMR solver using a grid convergence
study. We report, for the flat plate test cases, the coefficient of
friction (Cy) at x = 0.95L, where L is the length of the flat plate. For
the channel flow test cases, we also report the Cy on the lower wall
at x = 0.95L. For the cylinder and airfoil test cases, we monitor the
coefficient of drag or Cp. Figure 11 shows the value of the QoI for
each test case with increasing refinement level n.

We make two main observations from the plots in Figure 11.
First, we observe a good agreement between the Qol reported by
ADARNet and the AMR solver at all levels of refinement. At n =
0, the value of the QoI is the same because they start with the
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Figure 10: Comparison between ADARNet’s and the AMR solver
solutions for b = 4 levels of refinement for the cylinder and the non-
symmetric airfoil cases. Velocity in ms~! (top), kinematic pressure
in m?/s? (bottom), and modified eddy viscosity in m?/s (middle).

same coarse mesh. Second, we observe how ADARNet’s and the
AMR solver’s reported Qol show a notable convergence trend after
n = 1. The plot of the cylinder case in Figure 11 shows, in red,
the experimental value of Cp reported in Hoerner [13], which is
1.108, while ADARNet reports 1.0835, a 2.2% deviation, and the
AMR solver reports 1.085, a 2.1% deviation. These errors are in line
with those in the literature when comparing experimental results
with RANS simulations using the SA model [2].

5.2 Performance Analysis of ADARNet

In this section, we evaluate ADARNet’s performance. We first com-
pare its time-to-convergence (TTC) with the AMR solver’s TTC in
obtaining the results in Figure 11 at n = 3. Recall that ADARNet’s
TTC is the sum of obtaining the low-resolution input image, the
inference time, and the time the physics solver takes to drive the
solution from inference to convergence. Table 1 shows these times
and reports the iterations-to-convergence (ITC) taken by both the
physics solver and the AMR solver. ADARNet achieves 3 — 4.5%
speedup for interpolated cases and 2.6 — 3x for extrapolated cases
of channel flow and flat plate.

ADARNet obtains an impressive 2.7x speedup for flow around a
cylinder, which is an unseen-during-training geometry. The cylin-
der case is the most challenging test case for ADARNet since ac-
curately predicting the wake region behind the cylinder (as seen
in Figure 10), a region with highly nonlinear, complex flow behav-
ior is challenging. ADARNet also speeds up both airfoil test cases.
The speedup for this test cases is higher than the cylinder because
the flow behavior is smoother (no flow separation). However, we
observe a lower speedup for the non-symmetric (NACA1412) air-
foil case compared to the symmetric one. This result is expected
because the non-symmetric airfoil is an unseen-during-training
geometry and has a feature (non-symmetry) that is not present on
the training geometries (symmetric ellipses). Overall, ADARNet
refines regions of interest such as near-wall areas (channel flow
and flat plate) and the wake behind the solid body (cylinder), shows
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Figure 11: Value of the Qol versus refinement level n for ADARNet (blue) and the AMR solver (black) for each test case. Cr refers to coefficient
of friction, and Cp, to coefficient of drag. The red dot is the experimental value for the cylinder case found in [13]. Both algorithms converge as

we increase the mesh refinement level from the original coarse mesh.

excellent grid convergence properties, and significantly accelerates
the traditional AMR solver by 2.6 — 4.5x.

Table 1: Comparison of the time-to-convergence in minutes (TTC)
and iterations-to-convergence (ITC) of ADARNet and the AMR solver.
For ADARNet, we report separately the time spent in obtaining the
low-resolution flow field (Ir), inference (inf), and the time spent
by the physics solver (ps) driving the solution from inference to
convergence, together with the speedup over the AMR solver.

AMR solver ADARNet
TTC

ITC TTC | ITC It + inf+ ps Speedup
channel flow Re = 2.5e3 3369 3.0 | 2261 0.3 +0.012 + 0.68 3X
channel flow Re = 15e3 4940 3.1 | 2022 0.3 +0.110 + 0.80 2.6X
flat plate Re = 2.5e5 3389 2.7 | 1364 0.11 + 0.008 + 0.48 4.5X
flat plate Re = 1.35e6 5000 2.0 | 2214 0.24 + 0.009 + 0.42 3%
cylinder Re = 1e5 11155 4.8 | 4598  0.25 + 0.0063 + 1.50 2.7X
NO0012 Re = 2.5e4 2267 2.0 | 1150 0.06 + 0.005 + 0.55 33X
N1412 Re = 2.5e4 2637 2.1 | 1720 0.1 +0.005 + 0.62 2.9%

Next, we evaluate ADARNet’s performance by comparing it with
a baseline neural network. Recall that one of the goals of this paper
is to perform non-uniform SR to avoid high-resolution inference in
areas that do not require it. We hypothesize that ADARNet is advan-
tageous over SOTA methods that perform uniform SR [9, 10, 14, 24]
because these methods require 64% larger labels for 64x SR. To
validate our hypothesis, we build the SURFNet [24] framework and
use it as our baseline. We evaluate ADARNet and SURFNet using
two metrics. First, for a 64X SR, we compare the time required
to achieve the same level of accuracy. Both frameworks consist
of a DNN inference followed by a physics solver that guarantees
convergence requirements. Therefore, we compare the end-to-end
frameworks and report the inference and convergence times. Sec-
ond, we compare the memory consumption during inference. Since
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both models perform inference on a CPU, we report these metrics
on the CPU described in 4.3. The results are presented in Table 2.

Table 2: Comparison of ADARNet with SURFNet. Left column com-
pares the GB of memory consumed at each test case’s inference and
shows the reduction factor (rf) achieved by ADARNet. Right column
compares, in minutes, the inference time (inf) and the time to con-
vergence by the physics solver (ps) of both approaches and shows
ADARNet’s speedup over SURFNet. cf = channel flow, fp = flat plate,
cyl = cylinder, N0012 = NACA0012 (symmetric airfoil), and N1412 =
NACA1412 (non-symmetric airfoil).

Memory usage Time (inf + ps)

SURFNet ADARNet  rf | SURFNet ADARNet Speedup
cf Re = 2.5e3 3.9 0.88 4.4x10.25+14 1.2e —2+0.68 20.6X
cf Re = 15e3 3.9 0.82 4.8X10.25 +14.5 1.1e — 2 + 0.80 18.2X
fp Re = 2.5e5 3.9 0.62 6.3X[0.25 + 11 8e —3 +0.48 23.1X
fp Re = 1.35e6 3.9 0.68 5.7X10.25 + 12 9e — 3 +0.42 28.6X
cyl Re = 1e5 3.9 0.52 7.5%10.25 + 10.3 6.3e — 3 + 1.50 7X
NO0012 Re = 2.5e4 3.9 0.54 7.2X10.25 +835 5e —3+0.55 15.5X
N1412 Re = 2.5e4 3.9 0.51 7.7%X(0.25 + 8.6 5e — 3 +0.62 14.2X

Table 2 shows that ADARNet significantly outperforms SURFNet
for a 64% SR for all test cases. Specifically, we observe 7 — 28.5%
speedups over SURFNet. We observe the same behavior with the
memory usage at inference. SURFNet requires almost 4 GB whereas
ADARNet significantly reduces the memory consumption, realiz-
ing 4.4 — 7.65X reduction factors. Note that ADARNet’s inference
time and memory usage is not consistent through the test cases
because the fine/coarse regions change, as opposed to SURFNet
that performs uniform SR.
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6 CONCLUSIONS

This paper introduced ADARNet, a novel deep learning algorithm
designed for non-uniform SR. The end-to-end framework predicts
high-resolution accuracy only in regions of the domain where com-
plex flow features are present, while maintaining low-resolution in
areas with smooth variations. This approach significantly enhances
scalability and performance, making it more practical for large-scale
CFD simulations. Trained on low-resolution data from three canon-
ical flows, ADARNet can accurately predict non-uniform flow fields
for flow cases with boundary conditions or geometries unseen dur-
ing training. Quantitative evaluations show that ADARNet achieves
the same convergence guarantees as traditional AMR solvers, and
demonstrates excellent agreement with their heuristics, while out-
performing them by 2.6 — 4.5%. By super-resolving only regions
of interest, ADARNet significantly reduces the end-to-end time
and memory usage over state-of-the-art DL methods that perform
uniform SR. Note that while the case study considered in this paper
is solving the RANS equations coupled with a turbulence model,
our approach is agnostic to the specific PDE being solved. ADAR-
Net can be re-trained for other PDEs by changing the PDE loss,
making it versatile and applicable to a wide range of simulations.
Overall, ADARNet represents a significant advancement in the field
of non-uniform SR and has the potential to accelerate design space
exploration and optimization in CFD, paving the way for more
efficient and accurate computational studies in fluid dynamics and
beyond.
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