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The Kruskal-Szekeres coordinate construction for the Schwarzschild spacetime could be inter-
preted simply as a squeezing of the t-line into a single point, at the event horizon r = 2M . Starting
from this perspective, we extend the Kruskal charting to spacetimes with two horizons, in particu-
lar the Reissner-Nordström manifold, MRN . We develop a new method to construct Kruskal-like
coordinates through casting the metric in new null coordinates, and find two algebraically distinct
ways to chart MRN . We pedagogically illustrate our method by crafting two compact, conformal,
and global coordinate systems labeled GKI and GKII as an example for each class respectively,
and plot the corresponding Penrose diagrams. In both coordinates, the metric differentiability can
be promoted to C∞ in a straightforward way. Finally, the conformal metric factor can be written
explicitly in terms of the t and r functions for both types of charts. We also argued that the chart
recently reported in [1] could be viewed as a type-II chart.

I. INTROUDCTION

Reissner–Nordström (RN) spacetime is a unique,
static, spherically symmetric, and asymptotically flat so-
lution to the coupled set of Maxwell equations and Ein-
stein field equations. It describes spacetime with the
mass M , measured in the asymptotic region, and a static
spherical electric field sourced by the charge Q in the
background, with the corresponding nonzero stress en-
ergy tensor. Spherical-like coordinates, (t, r, θ, ϕ), known
as the Reissner–Nordström coordinates are the natural
coordinates to represent the metric tensor gµν [2–6]. This
chart could be assigned to an asymptotic observer, say
Bob, at r → ∞ equipped with a clock measuring the co-
ordinate t. The RN metric in natural units (c = G = 1)
can be written as

dS2
RN =

−(r − r+)(r − r−)

r2
dt2 +

r2 dr2

(r − r+)(r − r−)

+ r2
(
dθ2 + sin2 θdϕ2

)
.

(1)

This coordinate system is ill-defined at two null hyper-
surfaces. Similar to the Schwarzschild spacetime, the co-
ordinate singularity, at which gtt = 0; locates the Killing
horizons of the spacetime related to the Killing vector ∂t.

gtt (r±) = 0,

r± = M ±
√
M2 −Q2.

(2)

For the non-extremal case, M > Q, the Reiss-
ner–Nordström black hole has an inner r− and outer
r+ horizon, which makes its interior somewhat similar
to the interior of the Kerr Spacetime [7, 8]. Further,
in these coordinates the region E− = {r|0 < r < r−}
the metric will have the same signature as in the region
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E+ = {r | r+ < r < ∞}. Consequently, the physi-
cal point-like singularity at r = 0 is timelike in nature, in
disagreement with the Schwardchild spacelike singularity.
The metric is dynamical in the trapped and anti-trapped
regions E = {r | r− < r < r+} (if we consider the maxi-
mal analytical extension of the RN manifold), since the r
coordinate becomes timelike due to the flip of the metric
signature in these coordinates [5].

We can easily illustrate the inconvenience of this chart
in proximity to the RN’s black hole event horizon. Let
us examine Bob’s clock, which times his girlfriend Alice’s
trip, who is for some mysterious reasons, freely falling
towards the outer horizon. While Alice measures a fi-
nite amount of time, ∆τ , using her own clock in her
rest frame, Bob measures a significantly dilated dura-
tion of time, ∆t, by timing Alice’s worldline. In other
words, Bob will never see Alice crossing the outer event
horizon in his lifetime. Generically, timelike (spacelike)
intervals suffer from infinite dilation (contraction) once
measured near the RN’s horizons using Bob charting de-
vices. Therefore, better charts are needed to describe
phenomena where Bob’s tools fail [9].

Finding a new charting system to describe regions near
and across the null hypersurfaces in different spacetimes
is a long-standing business. Novikov coordinates [10],
Lemâıtre coordinates [11], Gullstrand–Painlevé coordi-
nates [12, 13], Eddington–Finkelstein coordinates [14],
and Kruskal–Szekeres coordinates [15–17] are all exam-
ples of charts developed to overcome the incompetents
of the Schwarzchild coordinates near its event horizon
located at r = 2M where M is the Schwarzchild BH
mass. Some of them have been generalized to Reiss-
ner–Nordström [4] and Kerr spacetimes [18, 19]. Most
of them were constructed by studying timelike and nul-
llike geodesics behavior around the blackhole. However,
we decided to follow a different and more algebraic ap-
proach to find new global charts, relying on the simplest
mathematical way to interpret what define a good coor-
dinate. Our argument is analogous to the one found in
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[9].

Although astrophysical black holes are expected to be
electrically neutral [20], even a small amount of charge on
a large black hole could be important when we encounter
certain phenomena such as cosmic rays [21]. Also, small
primordial black holes that did not live long enough to
get neutralized can carry a significant amount of charge.
Another exception might be black holes charged under
some other hidden U(1) gauge group different from elec-
tromagnetism [22, 23]. This provides enough motivation
to study RN black holes not only for academic interests
but also from a phenomenological point of view. On the
other hand, studying the causal structure of the RN black
hole, which is entirely different from the one associated
with the Schwardchild spacetime, is important also as it
shares some generic features with other types of black
holes with two horizons, e.g. the Kerr black hole which
is much more relevant in astrophysical situations [8, 24].

Klösch and Strobl managed to provide non-conformal
global coordinates for the extreme and non-extreme RN
spacetimes [25]. Moreover, most of the attempts to con-
struct conformal global coordinates were based on patch-
ing two sets of the Kruskal–Szekeres coordinates K±,
where each set is well-behaved on one horizon r± while
it fails on the other one r∓. This makes the region of
validity for each chart E+ = E+ ∪ {r|r− < r ≤ r+} and
E− = E− ∪ {r|r− ≤ r < r+} respectively. Switching be-
tween the two charts was the key to covering the whole
RN manifold and constructing a global Penrose diagram
in [24, 26, 27]. Such patched Penrose diagrams, found in
[5] for example, will still prove inconvenient if we want
to study geodesics across the horizons [28, 29]. To over-
come this obstacle, a global conformal coordinate system
is required.

Recently in [1], Farshid proposed a smoothing tech-
nique that could be used to provide a C2-conformal
global chart for the RN spacetime, and pointed out the
possibility of generalizing the method to spherically sym-
metric spacetimes. The used method was reported to
be a generalization of one used by Andrew Hamilton
in [24] aiming to promote the differentiability of the
map. One can also find Penrose diagrams constructed
using this method in [29]. The central idea of this work
was to find coordinates that extrapolate to each of the
Kruskal–Szekeres coordinates K± when approaching the
horizon located at r = r±. In addition, smoothing was
achieved through the use of the bump functions [30, 31].
A similar technique was used by Schindler in [32, 33] to
overcome the limitations of the Carter method of chart-
ing two-horizons spacetimes [26]. This technique was de-
signed to provide a global chart regular for a special class
of spherically symmetric spacetimes with multiple hori-
zons defined in the work as the Strong Spherical Symmet-
ric spacetimes. The reader can also find a comprehensive
summary of the Penrose diagram theory in the chapter

FIG. 1. Penrose Diagram for a single Reissner Nordstrom
(M = 1, Q = .96) Universe constructed using the example
for Type-I coordinates given in IVA. The Kruskal coordi-
nates (T,R) are plotted on the y-axis and x-axis respectively.
The constant-r and constant-t curves are plotted in cyan and
magenta while the null-geodesics are plotted in gray. The
outer r+ and inner r− horizons are described by T = ±R and
T = ±R−1 lines. The physical singularity at r = 0 is plotted
as a curve in dashed purple.

one of Schindler’s doctoral thesis [34].

In this work, we will define a new procedure that can
produce compact, conformal, and global (CCG) charts
that are valid at both the inner and outer horizons of RN
spacetime, and for which the metric could be infinitely
differentiable C∞. Using this procedure we will cast the
possible two CCG coordinate systems for the RN space-
time into two categorizes, which we label as type-I and
type-II coordinates. The reader can find a Penrose dia-
gram of a single and Block Universe of the RN spacetime
in figure [1] and figure [2] constructed using examples
of type-I and type-II CCGs respectively. Moreover, the
coordinates provided in [1] could be thought of as coor-
dinates of type-II. Our method makes no underlying as-
sumptions about the nature of the spacetime, other than
it should possess two horizons and that there exist some
double null coordinates to chart it locally. Therefore, to
facilitate future applications of this procedure, we will
present here a detailed pedagogical approach.
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FIG. 2. Penrose Diagram for a block universe of Reissner
Nordstrom (M = 1, Q = .96) Universes using type-II co-
ordinates found in IVB. The Kruskal coordinates (T,R) are
plotted on the y-axis and x-axis respectively. The constant-r
and constant-t curves are plotted in green and orange while
the null-geodesics are plotted in gray. The outer r+ and in-
ner r− horizons are described by T = ±R and T = ±R ± 1
lines, while the physical singularity at r = 0 is plotted as a
red curve.

The structure of this paper is as follows. In section
IIA, we begin by reformulating the core idea of the
Kruskal chart, and then revisit the Kruskal charting of
the Schwarzchild II B and the RN IID spacetimes. In sec-
tion III, the main procedure for constructing generalized
Kruksal charts is presented. The type-I and type-II coor-
dinates as well as their relaxed versions for RN spacetime
are given in IVA and IVB. Finally, we discuss the out-
come of the analysis and possible future work in section
V. Also the reader can find an argument why Soltani’s
smoothing technique could be thought of Type-II chart
in Appendix A, and an example on the relaxation step
as an optional part of the procedure in Appendix B.

II. PRELIMINARY

A. Kruskal–Szekeres coordinates

Kruskal–Szekeres coordinates represent a maximal
CCG chart for the Schwarzschild metric and has been
studied extensively in the literature [15–17, 35, 36]. Their
global nature is attributed to two features: (i) they can
cover the null hypersurface located at radius r = 2M
which Bob will fail to chart, and (ii) it is a maximal ex-
tension of the Schwarzchild chart representing two copies
of the Schwarzschild universe. The metric written in
the spherical-like coordinate known as the Schwarzschild
Spacetime (t, r, θ, ϕ) 1 where t ∈ R, r ∈ R+\{0}, θ ∈
(0, π), and ϕ ∈ [0, 2π) takes the well-known form

dS2
Sch =

(
r − 2M

r

){
−dt2 + dr2∗

}
=

1

r(r∗)
(r(r∗)− 2M) dS2

Con,

(3)

where dS2
Sch and dS2

Con stand for the Schwarzschild and
conformal metric2 respectively. Here, r∗ is defined3 as
follows

exp (r∗) = exp (r) |r − 2M |2M . (4)

It is worth emphasizing that the map from r-coordinate
to its tortoise version r∗ is bijective and its inverse is
differentiable on each of S+ and S− separately as defined
below. This is obviously due to the modulus included in
the definition of these coordinates in equation (4).

A rigorous procedure would involve solving the Ein-
stein Field Equations in Kruskal coordinates (which is
the top-down approach as in [9, 37]4) by means of null-
casting and the null gauge5. Since the Schwarzschild co-
ordinates cover only the regions S− = {r|0 < r < 2M}
and S+ = {r|2M < r < ∞}6 of one universe of the
Kruskal metric, trying to map the local chart to the
global one (i.e. the bottom-up approach) is not quite rig-
orous, because the map between the two charts as well as

1 Since examining the behavior and possible problems of the spher-
ical coordinates as r → ∞ falls beyond the scope of this work,
the angular dependence (θ, ϕ) will be neglected from now on for
simplicity.

2 Conformal to 2D minkowskian manifold
3 Usually, the constant of integration in defining the tortoise co-
ordinate, r∗, is chosen to be −2Mln(2M) in order to maintain
dimensionless quantity inside the natural logarithm. Here, for
simplicity, we omit this step.

4 The conformal factor in these references is written in terms of r,
however, it is more instructive to think of r(U, V ) as a function
of U and V , and not as the areal coordinate r.

5 freedom to redefine the null coordinates while preserving the null
structure of the spacetime.

6 where only the attribution to an asymptotic observer is defined
in the region S+.
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the Jacobian, Hessian, and the higher-versions of it will
be singular at the event horizon [38].

Nevertheless, we seek a global chart in which the met-
ric is at least C2 everywhere on the manifold in order to
satisfy the coupled Field Equations which contain first
and second derivatives of the metric. Thus, we can apply
this bottom-up approach (as in most of the General Rela-
tivity textbooks [3, 39]) by studying the limit at r = 2M
and analytically continuing the metric there. Finally, the
metric gµν must be written explicitly in the Kruskal co-
ordinates (T,R, θ, ϕ) only. In this paper, we will follow
the bottom-up approach to find the generalized Kruksal
coordinates which chart the whole RN spacetime. Tak-
ing the Kruskal charting of the Schwarzschild black hole
as our guide, we review the traditional derivation of the
Kruskal coordinates.

B. Construction of the Kruskal coordinates:
Schwardchild Spacetime

We begin by mapping the Schwarzschild coordinates
to intermediate null coordinates first, in particular the
retarded (u) and advanced (v) time coordinates, defined
as u = t − r∗ and v = t + r∗. To handle the coordinate
singularity of the former at the horizon, r = 2M , the null
freedom is used to map the latter set to another set of the
null coordinates using u → U ≡ h(u) and v → V ≡ k(v).
This gives

dS2
con = −dudv = −dUdV

dh

du

dk

dv

≡ −Q(U, V )dUdV

r(U, V )− 2M
, (5)

where Q(U, V ) is at least C2-function S = S+ ∪ S− ∪
{r|r = 2M}. This is achieved by employing the definition
of r∗. A sufficient coordinate transformation is given by

U ≡ νexp

(
−u

4M

)
, V ≡ νexp

( v

4M

)
, (6)

where

ν =

{
+1 r > 2M

−1 r < 2M
, (7)

The signs ± are included to achieve the maximal ana-
lytical extension of the metric. The product UV is posi-
tive in the regions II and III, and negative in the regions
I and IV, following the convention given in [3]. The r
coordinate is defined implicitly as

UV = exp
( r

2M

)
(r − 2M). (8)

This equation can be explicitly solved for r by employing
the multi-valued Lambert function W [40, 41],

r = 2M

[
W

(
UV

−2Me

)
+ 1

]
. (9)

where e is the Euler number. Then, the Schwarzchild
metric will have the following form in the new double
null coordinates

dS2
Sch = −16M2e

−
r(U, V )

2M

r(U, V )
dUdV + r2(U, V )dΩ2. (10)

Finally, the Kruskal coordinates TKS and RKS are re-
lated to the new null coordinates through the following
transformations

U ≡ 1
2 (TKS −RKS) ,

V ≡ 1
2 (TKS +RKS) .

(11)

It is worth writing the final version of the metric in the
Kruskal coordinates as

dS2
Sch = ω(TKS , RKS)(−dT 2

KS + dR2
KS)

+ 4M2 (W (TKS , RKS) + 1)
2
dΩ2,

(12)

where

ω(TKS , RKS) =
8Mexp [−W (TKS , RKS)− 1]

W (TKS , RKS) + 1
. (13)

As a cross-check, one could verify that the Einstein ten-
sor Gµν corresponding to the Kruskal metric is zero ev-
erywhere on the Schwarzschild manifold, thus confirming
that the stress-energy tensor Tµν is identically zero (as
it must be for the Schwarzschild solution). This is true
despite the fact that taking the derivatives of the met-
ric with respect to the coordinates (T,R) (using implicit
differentiation with respect to (t, r)) will be ill-defined at
the event horizon. One could also verify that the maps
between the Kruskal and the Schwarzschild chart are dif-
feomorphic in the regions S+ and S− [38].

C. A simple interpretation of the Kruskal charting

The procedure of constructing Kruskal coordinates for
Schwarzschild spacetime outlined in the previous section
becomes limited when applied to spacetimes with more
than one horizon. To be able to resolve this obstacle,
we re-interpret the main premise of the construction. If
Bob lived in a four-dimensional Minkowski spacetime,
his clock would be able to properly time the events tak-
ing place there globally. However, once the spacetime
is only asymptotically Minkowskian, the chart will fail
near the null hypersurfaces. We can illustrate this sce-
nario through the cartoon shown in figure [3].
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FIG. 3. Bob, an asymptotic observer; is trying to time out the
duration of an event (or the time interval between two suc-
cessive events) taking place in two different locations. In the
upper picture, there is no curvature, and Bob’s clock timed
both events in finite and equal intervals of time. However,
when Bob uses the same clock in the lower picture with a
curved spacetime, the time interval keeps getting longer as
the event take place near to the event horizon, until the in-
terval becomes infinite exactly at the horizon (the red circle).
Credit for this illustration to the artist Haidi Fawzi

But what if the charting method (the ruler and the
clock) were ill-defined in a Minkowski spacetime at pre-
cisely these locations which correspond to the null hyper-
surfaces in a curved spacetime? For example, we can
define a ”bad” chart Z in the conformal spacetime with
the metric gCon

µν , in which any given timing of ∆τ of Al-

ice’s trip to the r = 2M7 is mapped to ∆t̃ → 0. Ap-
parently, there is a family of these “bad” charts Z that
would be well defined on the physical spacetime, with
the metric gµν = ω(x)gCon

µν , where ω(x) is the conformal
factor. They are only conditioned to contract the time
interval ∆τ at the same rate as the dilation of time in
Bob’s frame. One can find an equivalent argument in [9]
that we quote here ”A better coordinate system, one be-
gins to believe, will take these two points at infinity and
spread them out into a line in a new (rnew, tnew)-plane;
and will squeeze the line (r = 2M, t from −∞ to ∞)
into a single point in the (rnew, tnew)-plane”. A cartoon
similar to figure [3] can be made for such clocks which
we will name Kruskal’s clock in figure [4]. In this step,

7 In our analysis the conformal spacetime is Minkowski, so there
are no horizons at the radius r = 2M .

we are not associating such a chart with any particular
observer.

FIG. 4. In the upper flat spacetime, the clock is constructed
in a way to squeeze the time interval to zero at the particu-
lar location where the horizon would be located in a curved
spacetime (the blue circle). Consequently, if Bob used this
weird clock in a flat universe, the measurements won’t make
any sense. However, if the same Kruskal’s clock is used in the
curved spacetime, it will report finite time intervals in prox-
imity and across the horizon (the red circle). Credit for this
illustration to the artist Haidi Fawzi

As we will show here later, applying this simple argu-
ment to spacetimes with more than one horizon would
be a tedious algebraic task. Mathematically, the funda-
mental premise of the construction is to find conformal
coordinates Z that generate poles of the same rank as
zeros of the conformal factor. Then in this bottom-up
approach the zeros and poles cancel out, and the phys-
ical metric in Z will be CCG. In the next subsections,
we will review the Kruskal charting of the RN spacetime
following the notation in [4, 24].

D. Outer and inner Kruskal coordinatse:
Reissner-Nordstrom spacetime

One example where the standard Schwarzchild-like
Kruskal charting will fail in constructing a CCG is the
RN spacetime.

dS2
RN =

(r − r+) (r − r−)

r2
{
−dt2 + dr2∗

}
=

(r − r+) (r − r−)

r2
dS2

Con,

(14)
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where dS2
RN stands for RN metric, while (u, v) represents

the double null coordinates constructed in the same man-
ner as in the Schwardchild case. The RN radial tortoise
coordinate r∗ is defined as

exp (r∗) = exp (r) |r − r+|
α+

2 |r − r−|
−
α−

2 ,

α+ ≡
2r2+

r+ − r−
,

α− ≡
2r2−

r+ − r−
,

(15)

where α− and α+ are the surfaces gravity at r− and r+
respectively.

Similar to the Schwardchild tortoise coordinate, r∗(r)
is bijective and its inverse is differentiable on E+, E, and
E− separately. However, there is a potential to solve
explicitly for r by employing generalized Lambert func-
tions W [42–45]. Since this is a tedious task on its own,
we confine our analysis to the main objective, while this
step could be addressed in future work.

By examining the tortoise coordinate definition, it is
obvious that a zero at r± is always coupled with a pole at
r∓, hence it is not straightforward to factor out a prod-
uct of simple poles at r+ and r− in the conformal met-
ric. Nevertheless, it remains possible to construct regu-
lar charts at one horizon that is ill-defined at the other.
These coordinates are regular in the domain E+ and E−,
respectively. The outer K+ and inner K− Kruskal coordi-
nates are simply related to the “−” null-chart (U−,V−)
and “+” null-chart (U+,V+) following the similar but
unitless definitions as those found in (11). We will work
with the following sign convention

U+ = ν+U+,

U+ = exp

(
−u

α+

)
,

V+ = ν+V+

V+ = exp

(
v

α+

)
,

(16)

where

ν+ =

{
+1 r > r+

−1 r < r+
, (17)

to represent the maximal analytical extension of these co-
ordinates. Then the t and r coordinates are characterized
by the following curves in the (U+,V+)-plane:

U+V+ = exp

(
r

2α+

)
(r − r+) |r − r−|−α

,

V+

U+
= ±exp

(
+

2t

α+

)
.

(18)

Similarly,

U− = ν−U−,

U− = exp

(
u

α−

)
,

V− = ν−V−,

V− = exp

(
−v

α−

)
(19)

where

ν− =

{
+1 r > r−

−1 r < r−.
(20)

The t and r curves in the (U−,V−)-plane are defined as

U−V− = exp

(
− r

2α−

)
(r − r−) |r − r+|−ᾱ

,

V−

U−
= ±exp

(
− 2t

α−

)
,

(21)

Consequently, the metric in these “+” or “-” null-charts
becomes

dS2
RN = −α±

(r − r+) (r − r−)

r2
dU±dV±

U±V±

= −α+

exp

(
− 2r

α+

)
r2

(r − r−)
1+α

dU+dV+

= −α−

exp

(
2r

α−

)
r2

(r+ − r)
1+ᾱ

dU−dV−,

x‘x‘

(22)
where8

α ≡ α−

α+
=

(
r−
r+

)2

→ 0 < α < 1,

ᾱ ≡ α+

α−
=

(
r+
r−

)2

→ 1 < ᾱ.

(23)

It is easy to check that the metric in “+” (“−”) null-
coordinates is regular at the outer (inner) horizon r+(r−).
However, the coordinates fail 9 at the inner (outer) hori-
zon r− (r+). Moreover, the metric in the “+”-null co-
ordinates is not asymptotically flat in agreement with
the Schwarzschild induced metric defined on the hyper-
surfaces with fixed θ and ϕ in equation (12), where the
conformal factor approaches zero as r → ∞. Neverthe-
less, global Kruskal coordinates could be built by com-
bining these two definitions in (16, 19) together (see e.g.
the work of Carter[26], Hamilton[24] Schindler[32], and
Farshid [1]). Although they all managed to find a regu-
lar metric across the horizon, yet the metric at maximum
was only C2.

III. GLOBAL CONFORMAL CHART CRITERIA

We start our analysis by studying the conditions
needed for a valid conformal global chart. We want

8 The extreme cases (Q = M and Q > M) of the RN metric are
not considered here.

9 dS2
RN = 0 at r = r− (r+) in the “+” (“−”) coordinates accord-

ing to equation (22).
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to map the double null coordinates (u, v) to the global
double null coordinates (ũ, ṽ). The most direct way to
achieve that will be to use only the null gauge [46, 47] as
follows

ũ ≡ h(u) → du =
1

dh

du

dũ,

ṽ ≡ k(v) → dv =
1

dk

dv

dṽ.

(24)

To construct a well-defined chart on the entire Reiss-
ner–Nordström manifold, we identify three distinct pos-
sibilities with reference to the singularity structure of

the term
dh

du

dk

dv
, focusing on its behavior at r = r− and

r = r+. The three options are:

1. Type-O :
dh

du

dk

dv
has a zero either at r = r− or r =

r+. The regularity of the metric in the new (ũ, ṽ)
coordinates would be achieved at r = r− or r =
r+ but not simultaneously. “±” null coordinates
are examples for this case. However, generating
nontrivial coordinates out of (U±, V±) is possible

10

11. This condition could be formulated as follows

dh

du

dk

dv
= (r − r±) ζ (r∗, t) (25)

2. Type-I :
dh

du

dk

dv
has a product of zeros at r = r−

and r = r+.

If we manage to factor out this product of zeros
while keeping the associated poles decoupled, then
we will have a conformal global coordinate for the
RN spacetime. We will illustrate this case with an
example in IVA. This condition can be formulated
as

dh

du

dk

dv
= (r − r+) (r − r−) γ (r∗, t) (26)

3. Type-II : a sum of decoupled simple zeros at r =
r+ and r = r−, each coupled to a pole, and possi-
bly zeros of constrained rank at r = r− for former
and r = r+ for later. In principle, this mixture of
poles and zeros might be easier to find compared
to Type-I, however, the metric is expected to be
more complicated form-wise. We will illustrate this

10 The transformations that lead to such coordinates are expected
to be more complicated as they are restricted by the require-
ment to leave the singularity structure invariant or to generate
a decoupled zero at the other horizon.

11 For example, the transformation of the form f(U) ≡ Up and
g(V ) ≡ V p where p ∈ R are allowed since they clearly change

the singularity structure of the term
dh

du

dk

dv
.

case with an example in IVB. This condition can
be formulated as

dh

du

dk

dv
= (r − r+)M+(r∗, t) + (r − r−)M−(r∗, t)

+ β(r∗, t),
(27)

The three differential equations listed above are sufficient
to construct the desired singularity structure in each case,
while the constraints are encoded within ζ, γ, M± and
β.

IV. CONSTRUCTING CCGS FOR
REISSNER–NORDSTRÖM SPACETIME

A. Type-I CCG Global Chart

As we mentioned before, just by looking at the defini-
tion of r∗, there is no simple way of factorizing the zeros
(r − r+) or (r − r−) without invoking poles at r− or r+.
Still, we can consider combining equations (21) and (18)

U+U−V+V− =
(r − r+)

|r − r+|ᾱ
(r − r−)

|r − r−|α
exp

(
r

2α+
− r

2α−

)
(28)

This may give us a hint for how to find (ũ, ṽ) with the
desired map to fulfill the singularity structure of type-I.
For example, we can start with the following definitions
of GKI

dh

du
=

µu

U−1
+ + U−1

−
,

dk

dv
=

µv

V −1
+ + V −1

−
,

(29)
where can define a sign function µ

µ =

{
+1 r > r+ | | r < r−

−1 r− < r < r+.
(30)

The definition we give in (29) reduces to evaluating the
I1-integration given here

I1 =

∫
1

xq + 1
dx, (31)

where q > 1. This integration has an upper and lower
bound, hence the sign convention we use here will locate
the inner horizon r−, outer horizon r+ and the asymp-
totically flat region r → ∞ according to the choice of the
reference point. We choose that point to be the outer
horizon u → −∞ (v → ∞). Accordingly, if we stick to
the µ = µv = µu in (30), we can have a monotonic map
from u(v), defined in any of the regions E± and E; to ũ
(ṽ). However, as we want to explicitly chart one of the
RN universe let’s choose µv = 1 while µ = µu. As the
ODEs in (29) could be easily integrated in terms of the



8

Hypergeometric functions 2F1(a, b; c;x) [48–50].

ũ =


S−(u)
S0

− 1 r > r+

1− S−(u)
S0

r+ > r > r−
S−(u)
S0

− 2 r− > r

(32)

and

ṽ =
S+(v)

S0
− 1 (33)

while

S±(x) =α±e
x

α± 2F1 (1, k±, 1 + k±,−eκx)

S0 =max[S±(x)]
(34)

and

k± =
α±

α+ + α−

κ =
1

α+
+

1

α−

(35)

These coordinates have a compact domain and, hence,
could be used directly to construct Penrose diagrams for
the RN spacetime. The choice of signs µv and µu does
not harm the continuity or differentiability of the map,
still, it will cause signature flip of the metric once written
in those Generalized null Kruskal Coordinate of type-I,
however this is straightforwardly treatable by absorbing
the signs while defining their (TKS , RKS) version. The
function of µv and µu is simply to define the maximal
analytical extension of RN manifold. The metric in the
CCG type-I coordinates will take the following form:

dS2
RN = −µvµu

dũdṽ

r2

{
|r − r−|α+1

exp

(
− 2r

α+

)
+ |r − r+|ᾱ+1

exp

(
2r

α−

)
+ 2 cosh

[
t

(
1

α+
+

1

α−

)]
×exp

(
r

[
−1

α+
+

1

α−

])
|r − r+|

ᾱ+1
2 |r − r−|

α+1
2

}
.

(36)
Using these coordinates a block Penrose diagram is con-
structed as shown in figure [5].

.
The metric possesses a conformal factor resembling the

sum of the conformal factors of the K± in addition to a
new time-dependent term that vanishes on both horizons.
The metric is well-behaved on both of the horizons and
takes the following asymptotic behavior as r → r+,

dS2
RN (r → r+) → −

exp

(
− 2r

α+

)
r2

(r − r−)
1+α

dũdṽ,

(37)
Similarly as r → r−,

dS2
RN (r → r−) → −

exp

(
2r

α−

)
r2

(r+ − r)
1+ᾱ

dũdṽ, (38)

FIG. 5. Penrose Diagram for a block of Reissner Nord-
strom (M = 1, Q = .96) Universes. The Kruskal coordi-
nates (T,R) are plotted on the y-axis and x-axis respectively.
The constant-r and constant-t curves are plotted in cyan and
magenta while the null-geodesics are plotted in gray. The
outer r+ and inner r− horizons are described by T = ±R and
T = ±R ± 1 lines. While the physical singularity at r = 0 is
plotted as a dashed purple curve.

However, this is not the end of the story. Similar to
the Schwarzschild case, the Jacobian and its higher-order
relatives will be undefined at the horizons, thus it is not
straightforward to take the derivatives of the conformal
factor implicitly. This is some kind of warning to the
reader to avoid inferring that the modulus invoked in
equation (36) means that the metric is not differentiable
there. At the end of the day, the Jacobian itself is ill-
defined or invertable near to the horizons. In other words,
to check the differentiability of the metric in these coor-
dinates, the metric should be fully written in terms of the
CCG Kruksal coordinate first, as this will invoke gener-
alized Lambert functions. This might be easier to handle
numerically. However, no matter if these kinks cause a
non-differentiablility of the metric or not near the hori-
zons, we can always get rid of them; for instance via the
use of relaxation functions.

In short, another set of coordinates (ũ, ṽ) can be intro-
duced which will inherit the properties mentioned above



9

and possess a relaxed (without Kinks) conformal factor
at r+ and r−. As a consequence, the metric will be guar-
anteed to be C∞ if these Kinks were the only problem
in these old coordinates. We list the relaxed version of
the example of type-I in Appendix B. Before we move
to construct the type-II coordinates GKII , there are two
features of the metric worth commenting on. First, the
metric is not asymptotically flat and is different from the
K± coordinates where the induced metric on the sub-
manifold M2 = M\SO(3) is asymptotically vanishing.
In GKI coordinates the induced metric on M2 blows up.
This is completely natural as the coordinates are com-
pact, hence the proper distances is invariant. Second,
the GKI coordinates are dynamically casting [46, 47] the
metric since the conformal factor includes explicit time
dependence after and before the relaxation. This pre-
vents the r and t from being related to (ũ, ṽ) by simple
transformation similar to (18, 21).

B. Type-II Global Chart

While constructing GKI , a simple zero at each hori-
zon r± was a coupled one at the other horizon r∓. This
product of zeros had a semi-positive regular amplitude
everywhere as shown in equation (36) or (B2). However,
for GKII we will have a different singularity structure
that serves the same purpose: sum of two zeros at each
horizon r±, each coupled to a semi-positive singular am-
plitude at the other horizon r∓ that is singular at the
other horizon. In principle, this class of charts should
contain families of coordinates at which the coordinates
themselves are extrapolation between the two Outer and
Inner Kruksal coordinates. In light of this statement, the
chart given in [1] plausibly belongs to that class, for more
details look Appendix A.

The conformal metric will have a simple pole at r =
r± coupled to M±(r∗, t), while β (r∗, t) is effectively a
residual term for completeness. M±(r∗, t) and β(r∗, t)
are satisfying the following constraints. As r → r±

M± (r∗, t) → constant,

M∓ (r∗, t) → 0,

β (r∗, t) → 0.

(39)

Alternatively, we can restate the first constraint as: M±
must have no overall pole at r+ (r−). Later, through this
analysis, we will learn that β will be the key to finding the
global conformal charts in this procedure for the type-II
coordinates. Given equation (15), we can rewrite this in

terms of the K± or the double null coordinates as follows

dh

du

dk

dv
=

exp

(
2(r∗ − r+)

α+

)
|r − r−|α

M+(r∗, t) + β(r∗, t)

+

exp

(
−2(r∗ − r−)

α−

)
|r − r+|ᾱ

M−(r∗, t),

(40)

Revisiting the condition in equation (39), M+ (M−) must
have zeros at r = r− (r = r+) of rank higher than α (ᾱ)
respectively. Searching for solutions for equation (40)

could be more fruitful if we were able to find functions
M± and β with (r∗ ± t) dependence. Accordingly, the
residual term β could be used to easily factorize the right-
hand side of the equation (40) into a product of u- and
v-dependent functions. The task of generating a solution
to equation (40) is not trivial, but if we findM±(u, v) and
β(u, v), this will boost our progress towards achieving
this task. The easiest hint we can get from the form of
that equation is to try to construct M+(M−) from the
K+ (K−). Following this logic, using the trial and error
method, we learn that if we define M± as

M+ ≡ µuµv(
1 + U1+2ᾱ

+

) (
1 + V 1+2ᾱ

+

)
M− ≡ µuµv(

1 + U2
−
) (

1 + V 2
−
) , (41)

we can find β that can do the factorization for us

β ≡ µuµvU+V−(
1 + U1+2ᾱ

+

) (
1 + V 2

−
) +

µuµvU−V+(
1 + V 1+2ᾱ

+

) (
1 + U2

−
) .
(42)

This will leave us eventually with the following choices

for
dh

du
and

dk

dv

dh

du
= µu

[
U+

1 + U1+2ᾱ
+

+
U−

1 + U2
−

]
dk

dv
= µv

[
V+

1 + V 1+2ᾱ
+

+
V−

1 + V 2
−

] (43)

We can also integrate these ODEs in terms of the hyper-
geometric and arctan functions.

S±(x) = α− tan−1
(
e

x
α−

)
+ᾱ±e

x
ᾱ± 2F1

(
1, 1− k̄±, 2− k̄±,−eκ̄x

) (44)

where

k̄± =
ᾱ±

ᾱ+ + ᾱ−

κ̄ =
1

ᾱ−
+

1

ᾱ+

ᾱ− =
α−

2
ᾱ+ = α+

(45)



10

FIG. 6. Penrose Diagram for a single universe of Reissner
Nordstrom (M = 1, Q = .96) Universes using type-II coor-
dinates. The Kruskal coordinates (T,R) are plotted on the
y-axis and x-axis respectively. The constant-r and constant-t
curves are plotted in green and orange while the null-geodesics
are plotted in gray. The outer r+ and inner r− horizons are
described by T = R and T = −R−1 lines. While the physical
singularity at r = 0 is plotted as a red curve.

The definition for the (ũ,ṽ) follows in the same way as
type-I ones in (32). One more time, the choice we made
for GKII coordinates is naturally compact which means
we can use these coordinates directly to build the Penrose
diagrams . Again, our choice of the integration reference
point will be the outer horizon r+. We can now write the
metric

dS2
RN = − 1

r2
{
A−1

+ (r, t) +A−1
− (r, t) +A−1(r, t)

}−1
dũdṽ

(46)
where A±(r, t) and A(r, t) are defined as follows

A+(r, t) ≡ exp

(
− 2r

α+

)
|r − r−|α+1

+ exp

(
2r

α−

)
|r − r+|1+2ᾱ |r − r−|−1

+ 2 cosh

[
t

(
1

α+
+

2

α−

)]
× exp

(
r

[
− 1

α+
+

2

α−

])
|r − r+|ᾱ+

1
2 |r − r−|

α
2

(47)

A−(r, t) ≡ exp

(
2r

α−

)
|r − r+|ᾱ+1

+ exp

(
− 2r

α−

)
|r − r−|2 |r − r+|−ᾱ+1

+ 2 cosh

[
2t

α−

]
|r − r−| |r − r+|

(48)

A(r, t) ≡ 2 cosh [κt] exp(−κ̄r) |r − r+|
1+ᾱ
2 |r − r−|

1+α
2

+ 2 cosh [κ̄t] exp (−κr) |r − r+|
1−ᾱ
2 |r − r−|

3+α
2

+ 2 cosh

[
−t

α−

]
exp

(
3r

α−

)
|r − r+|

2+3ᾱ
2 |r − r−|

−1
2

+ 2 cosh

[
−3t

α−

]
exp

(
r

α−

)
|r − r+|

2+ᾱ
2 |r − r−|

1
2 ,

(49)
with the following limits

A+ (r → r+, t) → exp

(
− 2r

α+

)
|r − r−|α+1

,

A− (r → r−, t) → exp

(
2r

α−

)
|r − r+|ᾱ+1

,

A± (r → r∓, t) → ∞,

A (r → r±, t) → ∞.

(50)

Consequently, the metric will take the following asymp-
totic limit

dS2
RN (r → r+) = −e

−2r
α+ |r − r−|1+α

r2
dũdṽ,

dS2
RN (r → r−) = −e

2r
α− |r − r+|1+ᾱ

r2
dũdṽ.

(51)

.

V. DISCUSSION AND CONCLUSION

After reinterpreting the premises of the Kruskal chart-
ing of the Schwarzschild spacetime, we were able to pro-
vide a new approach to chart the Reissner–Nordström
spacetime featuring two horizons. The technique itself
showed to be employable in two distinctive ways, result-
ing in two families of charting systems: conformal global
type-I and type-II charts. In both cases, the asymptotic
form of the metric approaches the form of metric written
in terms of Type-O charts. We illustrated the success of
the provided technique by constructing compact confor-
mal global coordinates of type-I GKI and of type-II GKII
for the RN spacetime. The price we pay for covering the
whole spacetime with two horizons with only one chart
is time dependence [46, 47].

After the construction, for both type-I and type-II
charts, the metric becomes C∞ if the kinks in the confor-
mal factor near the horizons cause any ill-differentiability
through the extra relaxation step in the procedure, we
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FIG. 7. Penrose Diagram for a maximal analytical extension
of Reissner Nordstrom (M = 1, Q = .96) using type-II coor-
dinates. The Kruskal coordinates (T,R) are plotted on the
y-axis and x-axis respectively. The constant-r and constant-t
curves are plotted in green and orange while the null-geodesics
are plotted in gray. The outer r+ and inner r− horizons are
described by T = ±R± constant and T = ±R± 1± constant
lines. While the physical singularity at r = 0 is plotted as a
dashed red curve.

give an example of how to apply this step to the example
of type-I chart in appendix B. As expected, it is compli-
cated to write the generalized Kruskal coordinates (ũ, ṽ)
explicitly in terms of the RN coordinates (t, r), related
through equation (18, 21). However, we hinted that this
could be achieved by utilizing the generalized Lambert
function W in similar manner to the use of the Lambert
function W in Schwarzchild case.

For the charts we have provided of both types, we
found that the Hypergeometric functions could be em-
ployed to map the non-global null coordinate to type-
I and type-II CCG charts. Finally, we demonstrated
that the smoothing technique developed in [1] could be
thought of as a special case of the type II family of coordi-
nates, as could be found in Appendix A. We believe that
it is straightforward to apply this technique to spherical
symmetric spacetimes with two horizons including non-
strong spherical symmetric ones. Whether this procedure
is applicable to glued spacetimes through thin shell ap-
proximation or to only the axial symmetric Kerr is fuzzy
to authors and we believe separate and further analysis
is required in order to answer such questions.

Appendix A: Soltanti’s Smoothing Technique as
Type-II

Following the notation in [1] and starting from equa-
tions (31-34), the metric could be written as follows

dS2
RN =

(r − r+) (r − r−)

r2
dUdV

{
g↓(U)g↓(V )

k2+UV

+
g↑(U)g↑(V )

k2(U − 1)(V − 1)
+

M(U, V )

k+k−

}
+ r2dΩ2

(A1)

where

M(U, V ) =M1(U, V ) +M2(U, V ) +M3(U, V )

M1(U, V ) =
g↓(U)g↑(V )

U(V − 1)
+

g↑(U)g↓(V )

V (U − 1)

M2(U, V ) =g′↓(U)g′↓(V )ln|U |ln|V |
+g′↑(U)g′↑(V )ln|U − 1|ln|V − 1|
+g′↑(U)g′↓(V )ln|U − 1|ln|V |
+g′↓(U)g′↑(V )ln|U |ln|V − 1|

M3(U, V ) =g′↓(U)

{
g↓(V )

V
+

g↑(V )

V − 1

}
ln|U |

+g′↑(U)

{
g↓(V )

V
+

g↑(V )

V − 1

}
ln|U − 1|

+g′↓(V )

{
g↓(U)

U
+

g↑(U)

U − 1

}
ln|V |

+g′↑(V )

{
g↓(U)

U
+

g↑(U)

U − 1

}
ln|V − 1|

(A2)

First let us discuss the behaviour of M near the horizons.
As we can see from figure [8] the M2 function will be
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FIG. 8. the g↑(x) and g↓(x) and their derivatives of the g′↑(x)
and g′↓(x).

vanishing near to each horizon which are located at 0, 1
of the coordinates U(V ). Similarly we can approximate
equation (31-32) and only keeping the poles near each
horizon to study the behaviour of M1, as r → r+

ek+u ≃ 1

U
∝ 1

|r − r+|
1
2 |r − r−|

−1
2k−

e−k+v ≃ 1

V
∝ 1

|r − r+|
1
2 |r − r−|

−1
2k−

(A3)

and as r → r−

ek−u ≃ 1

U − 1
∝ 1

|r − r−|
1
2 |r − r+|

−1
2k+

e−k−v ≃ 1

V − 1
∝ 1

|r − r−|
1
2 |r − r+|

−1
2k+

(A4)

Consequently, the product of h(r)M1 is extrapolating to
zero near to each horizon. Finally, a similar argument ap-
plies to h(r)M3 with the extra piece of information that
g′↓(↑)(x) growth rate is exponential approach the zero near

the horizons which will overwhelm the ln|U(V )| blowing
up there, thus this product will also extrapolate to zero
near horizons. Accordingly, h(r)M → 0 in agreement to
the conditions we imposed on type-II coordinate β func-
tion.

Based on equations (A3, A4), it is easy to show that the

terms
1

UV
and

1

(U − 1)(V − 1)
will follow the behaviour

imposed on M±.

.

Appendix B: Relaxed Version of Type-I CCG
example

We choose the function tanhx to do this job. The
relaxed coordinate transformation is

dh

du
=

µu

tanh
[
U2
−
]
U−1
+ + tanh

[
U2
+

]
U−1
−

,

dk

dv
=

µv

tanh
[
V 2
−
]
V −1
+ + tanh

[
V 2
+

]
V −1
−

.

(B1)

The metric now becomes

dS2
RN = −µuµv

dũdṽ

r2

{
Q−(r, t) |r − r−|α+1

exp

(
− 2r

α+

)
+Q+(r, t) |r − r+|ᾱ+1

exp

(
2r

α−

)
+Q̃(r, t)exp

(
r

[
−1

α+
+

1

α−

])
|r − r+|

ᾱ+1
2

|r − r−|−
α+1
2

}
,

(B2)

where Q−, Q+, and Q̃ are defined as

Q−(r, t) = tanh

[
exp

(
2(t− r)

α−

)
|r − r−|
|r − r+|ᾱ

]
× tanh

[
exp

(
−2(t+ r)

α−

)
|r − r−|
|r − r+|ᾱ

]
Q+(r, t) = tanh

[
exp

(
2(r − t)

α+

)
|r − r+|
|r − r−|α

]
× tanh

[
exp

(
−2(−t+ r)

α+

)
|r − r+|
|r − r−|α

]
Q̃(r, t) = Q1(r, t)exp

(
t

(
1

α+
+

1

α−

))
+Q2(r, t)exp

(
−t

(
1

α+
+

1

α−

))
Q1(r, t) = tanh

[
exp

(
2(t− r)

α−

)
|r − r−|
|r − r+|ᾱ

]
× tanh

[
exp

(
−2(−t+ r)

α+

)
|r − r+|
|r − r−|α

]
Q2(r, t) = tanh

[
exp

(
−2(t+ r)

α−

)
|r − r−|
|r − r+|ᾱ

]
× tanh

[
exp

(
2(r − t)

α+

)
|r − r+|
|r − r−|α

]

(B3)

This relaxed version of the conformal factor is guaranteed
to be without any kinks everywhere in coordinates (ũ, ṽ).
The integral I2 defining (ũ, ṽ) is given by

I2 =

∫
dx

tanh (x2)xq+1 + tanh (x−2q)
, (B4)

The q > 1 cases could be evaluated numerically, how-
ever, analytical methods could still be helpful in study-
ing the relation between K± and GKI at any point. This
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could be achieved for example by employing series ex-
pansion, as mentioned earlier. Moreover, if we manage
to invert equations (B1) to solve explicitly for the null
coordinates in terms of GKI , then we could employ the
generalized Lambert function to solve for (t, r) explic-
itly as well. Such an expansion is expected to recover
equations (21) and (18) near to the horizons r = r− and
r = r+, respectively.
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