
Poster: Empirically Testing the PacketLab Model
Tzu-Bin Yan

University of Illinois at
Urbana-Champaign

tbyan2@illinois.edu

Zesen Zhang
UC San Diego

zez003@eng.ucsd.edu

Bradley Hu�aker
CAIDA/UC San Diego
bradley@caida.org

Ricky Mok
CAIDA/UC San Diego
cskpmok@caida.org

kc cla�y
CAIDA/UC San Diego

kc@caida.org

Kirill Levchenko
University of Illinois at
Urbana-Champaign

klevchen@illinois.edu

ABSTRACT
PacketLab [2] is a recently proposed model for accessing remote
vantage points. The core design is for the vantage points to ex-
port low-level network operations that measurement researchers
could rely on to construct more complex measurements. Motivating
the model is the assumption that such an approach can overcome
persistent challenges such as the operational cost and security con-
cerns of vantage point sharing that researchers face in launching
distributed active Internet measurement experiments. However,
the limitations imposed by the core design merit a deeper analysis
of the applicability of such model to real-world measurements of
interest. We undertook this analysis based on a survey of recent
Internet measurement studies, followed by an empirical compari-
son of PacketLab-based versus native implementations of common
measurement methods. We showed that for several canonical mea-
surement types common in past studies, PacketLab yielded similar
results to native versions of the same measurements. Our results
suggest that PacketLab could help reproduce or extend around
16.4% (28 out of 171) of all surveyed studies and accommodate a
variety of measurements from latency, throughput, network path,
to non-timing data.

ACM Reference Format:
Tzu-Bin Yan, Zesen Zhang, Bradley Hu�aker, Ricky Mok, kc cla�y, and Kir-
ill Levchenko. 2023. Poster: Empirically Testing the PacketLab Model. In
Proceedings of the 2023 ACM Internet Measurement Conference (IMC ’23), Oc-
tober 24–26, 2023, Montreal, QC, Canada. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3618257.3624999

1 INTRODUCTION
In a short IMC ‘17 paper, Levchenko et al. [2] proposed a new mea-
surement endpoint model called PacketLab that aimed to address
the high-cost problem for vantage point sharing, which is critical
toward performing distributed active network measurement experi-
ments. The core of the PacketLab design is to provide experimenters
(researchers) with a VPN-like interface to measurement endpoints.
To run an experiment, an experimenter runs a machine acting as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IMC ’23, October 24–26, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0382-9/23/10.
https://doi.org/10.1145/3618257.3624999

the experiment controller that interacts with measurement endpoints
to send and receive packets on behalf of the controller. Unlike a
simple VPN endpoint, PacketLab timestamps all sent and received
packets and allows a controller to schedule packet sending from the
endpoint. These two features enable various timing-based network
measurement that would otherwise be impossible to do accurately
using a VPN endpoint.

Like a VPN, PacketLab introduces delay for controller packet
issuance and reception. Such characteristic imposes limitations on
the possible set of measurements that is feasible under PacketLab,
and are critical toward the applicability of the model for distributed
active networkmeasurement experiments of interest to the research
community. Though the PacketLab authors claimed that the Packet-
Lab model could e�ectively support the deployment of a signi�cant
fraction of such experiments, the authors did not substantiate their
claim with evidence. For this work, we addressed this gap by in-
vestigating the applicability of PacketLab toward distributed active
network measurement experiments. We empirically analyzed the
applicability of the PacketLab model based on commonly-used mea-
surement methods used in distributed active network measurement
experiments of past studies in IMC and SIGCOMM. We then imple-
mented the representative methods (traceroute and TCP through-
put) under the PacketLab model using existing tools released by the
PacketLab team on their website (https://pktlab.github.io)
and compared the performance of the PacketLab implementations
against their native counterparts. Our �ndings showed that the
representative common measurement methods are doable under
PacketLab and could give similar results as their native counter-
part. Such �ndings along with on-paper analysis of other methods
suggest that the PacketLab is suitable for a large fraction of mea-
surement methods of interest, which e�ectively substantiate the
claim made by the original PacketLab paper.

2 SURVEY OF MEASUREMENT STUDIES
To understand if the PacketLab model would be applicable to stud-
ies of current interest, we surveyed measurement studies published
in the last three years at IMC and SIGCOMM (SIGCOMM limited
to measurement/telemetry sessions for relevance). Among 171 sur-
veyed studies, we found 30 whose main contributions contained
a distributed active measurement experiment, as well as 6 that
contained experiments that could bene�t from access to external
vantage points either based on claims made by the authors or if the
work involved an Internet-wide scan of HTTP/HTTPS services.

https://doi.org/10.1145/3618257.3624999
https://doi.org/10.1145/3618257.3624999
https://pktlab.github.io


IMC ’23, October 24–26, 2023, Montreal, QC, Canada Yan et al.

Type Studies Common Collected Data

Latency 13 (36.1%) DNS query latency,
traceroute hop latency,
ping latency, browser latency metrics.

Throughput 8 (22.2%) TCP pipe �lling throughput
trace-inferred throughput.

Network Path 9 (25%) Hop address.
Non-timing Data 25 (69.4%) DNS resource records, web content.

Table 1: Summary of Internet Measurement Studies Survey Results

Categorizing measurement methods used in the identi�ed ex-
periments of the 36 studies, we identi�ed four main categories of
measurements: latency, throughput, network path, and non-timing
data. Table 1 gives a summary of our results.

We believe that PacketLab has the necessary mechanisms to sup-
port all of the above measurements in some form. To con�rm this,
we implemented two representative experiments: a TCP through-
put test, meant to broadly represent all throughput measurements,
and traceroute, meant to represent both latency and network path
measurements. Our implementation results are given in section 3.

3 EVALUATION
For the TCP throughput and traceroute experiments, we deployed 6
PacketLab endpoints: one on an Intel NUC (7i7BNH) under a local
residential �ber connection running Ubuntu 22.04 (kernel v5.19.0)
and �ve endpoints on t2-medium AWS instances running Ubuntu
22.04 (kernel v5.15.0), located in the following regions: Oregon,
Tokyo, Montréal, Frankfurt, and San Paulo.

For the two experiments, our native implementation counter-
parts for comparison were Butskoy’s traceroute [1] for the tracer-
oute experiment and custom TCP throughput client and server
programs written by us. Butskoy’s traceroute is a well-known
traceroute implementation on Linux, where the default probes used
are UDP probes. The custom TCP throughput client and server
programs allow transmission of 25 MB of random data in either di-
rection. To allow for more accurate peak throughput estimation, we
skipped the TCP slow start phase during throughput computation.

For the PacketLab implementations, we designed them to follow
the native implementations as closely as possible. For traceroute,
the PacketLab implementation (pl_traceroute) sends out UDP
probes that contain the exact same values as Butskoy’s traceroute,
except that IPv4 IPID and UDP source port �elds are selected uni-
formly at random from the range used by the kernel. For TCP
throughput, the PacketLab implementation acts similarly to the
native client program. However, to accommodate the unique char-
acteristics of PacketLab, we also designed the PacketLab implemen-
tation to (1) schedule future endpoint sending to achieve the desired
pipe-�lling behavior for the server-upload direction and (2) disable
and re-enable endpoint to controller events after a su�ciently long
period (10 seconds) to prevent bandwidth competition.

We ran both experiments 100 times and collected three metrics:
throughput, hop latency, and total unique address count. Our results
showed that both implementations gave similar means for through-
put and hop latency, with the di�erence always being less than 7%
of those reported by the native implementations (�uctuating be-
tween either implementation giving higher mean). For total unique
address count, we found that in our experiment pl_traceroute

always saw more distinct addresses (< 7% of those reported by
the native implementation for all endpoints), which we suspected
was caused by the value selection method of IPv4 IPID and UDP
source port in pl_traceroute. We con�rmed this by capturing
the probes for 100 runs of both implementations and looking at
their IPID and UDP source port �elds, where we found a given num-
ber of probes, pl_traceroute gave more unique IPID (+1.8%) and
source port (+3.6%) values than the native implementation. With
similar statistical results shown for collected metrics, we consider
as a whole that the PacketLab model is applicable in producing
accurate results for the selected experiments.

PacketLab Feasibility. The fact that PacketLab was successful at
performing the representative experiments we chose gives some
hope that perhaps PacketLab could support all measurements of the
tested category. To further understand the limitations of PacketLab,
we examined each experiment and considered how we might imple-
ment each experiment in PacketLab. While our armchair exercise
does not carry the weight of an actual implementation, we believe
most studies (28 out of 36, 77.8%) can be implemented in PacketLab,
among which 18 are strictly of the non-timing-data-measurement
type. Of the remaining 8 experiments, we found the main reason an
experiment is not possible under PacketLab is that it also measured
some client-side computation such as browser page load time, game
client response delay, and video conferencing performance.

Acknowledgments. AWS results presented in this paper were
obtained using CloudBank[3], which is supported by the National
Science Foundation (NSF) under award #1925001. The PacketLab
project is also supported by NSF award #1764055 / 1903612 and
a gift from Comcast. The views herein are those of the authors
and do not necessarily represent endorsements, either expressed or
implied, of NSF.

REFERENCES
[1] Dmitry Butskoy. 2023. TRACEROUTE for Linux. (2023). https://traceroute.

sourceforge.net/
[2] Kirill Levchenko, Amogh Dhamdhere, Bradley Hu�aker, kc cla�y, Mark Allman,

and Vern Paxson. 2017. Packetlab: A Universal Measurement Endpoint Interface.
In Proceedings of the 2017 Internet Measurement Conference (IMC ’17). Association
for Computing Machinery, New York, NY, USA, 254–260. https://doi.org/
10.1145/3131365.3131396

[3] Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande,
Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone, Amanda Tan, Katherine
Yelick, Eric Van Dusen, and James Mitchell. 2021. CloudBank: Managed Services to
Simplify Cloud Access for Computer Science Research and Education. In Practice
and Experience in Advanced Research Computing (PEARC ’21). Association for
Computing Machinery, New York, NY, USA, Article 45, 4 pages. https://doi.
org/10.1145/3437359.3465586

https://traceroute.sourceforge.net/
https://traceroute.sourceforge.net/
https://doi.org/10.1145/3131365.3131396
https://doi.org/10.1145/3131365.3131396
https://doi.org/10.1145/3437359.3465586
https://doi.org/10.1145/3437359.3465586

	Abstract
	1 Introduction
	2 Survey of Measurement Studies
	3 Evaluation
	References

