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Recent years have seen the rapid deployment of low-cost CubeSats in low-Earth orbit, many of which experi-
ence significant latency (several hours) from the time information is gathered to the time it is communicated
to the ground. This is primarily due to the limited availability of ground infrastructure that is bulky to deploy
and expensive to rent. This article explores the opportunity in leveraging the extensive terrestrial LoRa infras-
tructure as a solution. However, the limited bandwidth and large amount of Doppler on CubeSats precludes
these LoRa links to communicate rich satellite Earth images—instead, the CubeSats can at best send short
messages. This article details our experience in designing LoRa-based satellite ground infrastructure that re-
quires software-only modifications to receive packets from LoRa-enabled CubeSats recently launched by our
team. We present Vista, a communication system that adapts encoding onboard the CubeSat and decoding
configuration on commercial LoRa ground stations to allow images to be communicated. We perform a de-
tailed evaluation of Vista by leveraging wireless channel measurements from a recent CubeSat (2021), and
show that Vista can achieve 55.55% lower latency in retrieving data with 12.02 dB improvement in packet
retrieval in the presence of terrestrial interference. We then evaluate Vista on a case study on land-use clas-
sification over images transmitted over the CubeSat link to further demonstrate a 4.56 dB improvement in
image PSNR and 1.38× increase in classification accuracy over baseline approaches.
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1 Introduction
The massive reduction in costs of launching satellite payloads [22] has led to a proliferation of
CubeSats in Low Earth Orbit and truly democratized access to space for small players—researchers,
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students, and satellite enthusiasts. Today, such CubeSats target varied geo-sensing and imaging
applications and number in the thousands [37]. However, most CubeSats launched today fail to
answer a simple question at low-latency: “Is my satellite online right now, and if so, what is it imag-
ing?”. Most current CubeSats rely on existing wireless technologies, developed for larger satellites,
for downlink communication. However, ground stations for these technologies are extremely ex-
pensive to rent/install for small teams—with most teams able to downlink from CubeSats quite
rarely—often once per few hours [86], i.e., whenever a ground station is in range. Imagine a time-
critical event that occurs during this long window where the satellite is simply inaccessible. For
instance, consider an interesting Earth image that needs to be sent downlink. Such images could
be time-sensitive, capturing on-Earth emergencies such as flooding or weather events around spe-
cific locations on the ground observed by the CubeSat. Today, if the CubeSat happens to be in an
area without this dedicated ground station infrastructure, it may take several hours to received the
data downlink. In this article, we propose to break this infrastructure coverage bottleneck for low-
latency access to satellites by adapting existing ground infrastructure that is widespread around
the world—specifically, commercial LoRa base stations. Specifically, we propose and demonstrate
how LoRa can act as a quick and dirty complementary modality for conventional CubeSat de-
ployments to push time-sensitive information to the ground anywhere in the world. Specifically,
we believe LoRa can be deployed (Section 5) on the next-generation of earth-observation satel-
lites to retrieve a quick rough estimate of observed terrain to reduce the first-contact latency1 of
downlink communication.

The reasons behind why LoRa is an attractive wireless technology to enable this capability to
communicate with CubeSats in a timely manner is three-fold: (i) There is a vast existing ground in-
frastructure that continuously listens for LoRa packets that can be used to receive packets around
the globe. While these are not optimized for satellite communication, commercial LoRa base sta-
tions are capable of receiving communication signals from satellites, albeit at a lower data-rate. (ii)
It’s chirp-spread-spectrum narrowband modulation is immune to much of the on-ground commu-
nication in these bands. Furthermore, it has been shown that other technologies also are affected
minimally due to LoRa traffic at these frequencies [39, 87]. (iii) It accommodates a large number of
transmitters simultaneously. Our motivation study in Section 7.1 demonstrates the clear latency
benefits of leveraging existing LoRa ground station infrastructure.

Yet, there are two key challenges in communicating data from LoRa-equipped CubeSats to ex-
isting ground stations—the limited bandwidth of LoRa and a highly lossy wireless medium. These
stem from a mismatch between the typical LoRa client (a mostly static terrestrial device deployed
a few kilometers away) and a CubeSat (a device in space moving at seven kilometers per second
and hundreds or thousands of kilometers away). In fact, theoretical analysis of the impact of these
Doppler effects on LoRa at high frequencies [46] has shown significant amount of packet drops and
error in detection. Indeed, that is why most of the recently launched LoRa CubeSats [6, 7, 15, 19] op-
erate at lower frequencies (137 MHz and 407–450 MHz) and leverage specialized receivers instead
of utilizing the existing 915 MHz ISM band ground infrastructure.

In this article, we describe our experience in adapting commodity ground LoRa infrastructure
to effectively communicate with LoRa-enabled CubeSats in low-earth orbit. We present Vista (see
Figure 1), a CubeSat communication system that uses conventional LoRa modulation to directly
deliver data downlink with high efficacy, by overcoming the challenges of limited bandwidth and
infrastructure compatibility. We study the performance of LoRa communication in the ISM band

1Note, that first-contact latency is the the delay to reach the next zone of downlink connectivity, while traditional latency
deals with the overall downlink of all captured data instead of just a snapshot. In this article, we primarily use latency to
refer to this first-contact latency.
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Fig. 1. Vista enables low-latency practical imaging and inference applications for LoRa CubeSats.

by collecting data from a launch of a LoRa CubeSat (launched by our team in 2021). We then use
wireless channel measurements from this CubeSat deployed in space to demonstrate that Vista
can provide an effective 55.55% lower latency and 12.02 dB improvement in packet detection SINR.
We further perform a case study on land-use classification over images transmitted over this link
to show 4.56 dB improvement in image retrieval SNR and 1.38× improvement in classification
tasks.

The rest of this article details Vista’s approach to address these challenges, namely: (1) Enabling
existing LoRa ground station infrastructure to detect and decode CubeSat LoRa signals. (2) Design-
ing channel-aware solutions for encoding images and performing inference on these images sent
over the CubeSat LoRa link.
Connecting LoRa CubeSats with ground infrastructure: Engineering a terrestrial LP-WAN
technology to communicate at a range fifty times larger than its conventional range is a challeng-
ing task. There are two primary challenges (apart from larger attenuation) that existing ground
stations need to resolve for receiving packets from LoRa-enabled CubeSats: (1) Larger Doppler
Shifts (by an order of magnitude) and (2) Co-existence with terrestrial LoRa clients. At the ground
stations, the massive Doppler shift renders the packets from CubeSats undecodable at pre-existing
LoRa base stations. Vista mitigates this by leveraging the fact that existing base stations typically
have several hardware modules for packet detection which are typically multiplexed on the
same receive chain that operate at various different bandwidths—LoRa traditionally provides
these as part of its data-rate adaptation pipeline. We demonstrate how a careful selection of
these pre-existing correlation modules can enable terrestrial ground stations to detect these
missed packets with a simple software update. Next, we need to ensure that terrestrial clients’
packets do not overwhelm packet transmissions from the CubeSats. Vista achieves this by
understanding an unique behavior of CubeSat packets—the Doppler frequency shifts experi-
enced by these packets are governed by their trajectory. Thus, Vista develops CubeSat-specific
Doppler-division multiple access (DDMA) mechanism for LoRa that significantly improve
the SINR (signal-to-interference-noise ratio) of packet detection for CubeSat packets in presence
of interference from terrestrial clients and other CubeSats. Section 3 describes both of these
solutions.
Channel-Aware Image Encoding: Given this bandwidth-starved CubeSat link, it is critical to
maximize the utility of every byte to communicate data downlink. We specifically focus on com-
municating image data for the purpose of performing inference tasks. A näive solution would be to
use traditional compression algorithms such as JPEG with appropriate compression ratio. Yet, there
exists an exciting opportunity in the satellite image context, where rich prior information is avail-
able in how these images are structured, e.g., image data from NOAA LEO weather satellites [11].
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Furthermore, compression of image data can also be actively guided by the nature of machine-
learning tasks performed on these images. Most importantly, one can also account for the nature
of the wireless channel between CubeSats and the LoRa ground stations, where factors such as
intra-packet Doppler shift, noise, and satellite trajectories play a key role in the nature of image
bit errors one can expect. In other words, rather than building a channel, data and task-agnostic im-
age compression scheme, Vista designs an image encoding that is informed by the general nature
of wireless channels, the structure of satellite imagery, and the tasks performed on this data.

Unlike prior work in joint source-channel coding for wireless image transmission [34, 35, 38,
42, 55] which deals with general uniform error distributions, operating LoRa (a technology that
encodes data in frequency shifts) in 915 MHz ISM band (large amount of Doppler) leads to a non-
uniform distribution of errors across bits. Section 4 describes our design of a data-task-driven
autoencoder which is optimized for such space-to-ground wireless channels. We train this au-
toencoder with real satellite image data, our satellite trajectory, as well as our own LoRa channel
measurements. We further make this encoding resilient to information loss due to discretization
and wireless impairments. We provide various design points in our autoencoder that balances the
diversity of tasks that can be performed with the image encoding on the ground and the amount
of data that needs to be communicated.

We study Vista by developing a communication stack driven by channel-traces from a LoRa-
enabled CubeSat in the ISM band launched in 2021 [21]. We study and report the observed Doppler
effects and improved ground-station latency of this LoRa satellite. We then collect long-term wire-
less channel traces measured from the satellite in orbit across an year. We implement, evaluate
and emulate various flavors of Vista on these channel measurements to showcase the potential
benefits in terms of latency, packet detection and inference accuracy, demonstrating:

— 55.55% reduction in latency with a coverage across 44.92% of the CubeSat orbit vs. 33.27% of
existing infrastructure.

— Up to 15 dB improvement in SNR for packet detection in high Doppler scenarios and 12.02
dB improvement in interference resilience towards terrestrial clients.

— 4.56 dB PSNR improvement in images retrieved and 38% improvement in accuracy of ML
tasks over images communicated using Vista.

Contributions: Our contributions include:
— A novel CubeSat wireless communication system that uses conventional LoRa modulation

to enable high-quality image inference over bandwidth starved links.
— A system that makes software modifications to commercial LoRa ground gateways to detect

highly Doppler shifted packets from LoRa CubeSats in presence of intereference.
— Detailed implementation and evaluation through wireless channel measurements from a

commercial LoRa enabled satellite launched by our team.

2 Overview
Vista is a CubeSat communication system that uses LoRa modulation at the satellite and conven-
tional ground infrastructure, making software-only modifications at both ends to improve delivery
and processing of images. Figure 2 depicts Vista’s contributions. The rest of the article discusses
the two key components of Vista’s design.
Adapting LoRa CubeSat—Ground Station Links: We show how we can redesign existing com-
mercial off-the-shelf LoRa base stations to detect and decode CubeSat packets accounting for the
extremely high Doppler shifts these packets experience. Further, we leverage the special nature
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Fig. 2. Vista develops channel aware data-task driven encodings and Doppler-resilient packet detection to
enable fine-grained imaging and low-latency inference from LoRa-enabled CubeSats using existing LoRa
ground infrastructure.

of these satellite signals to develop trajectory-aware preambles for overcoming interference from
other terrestrial LoRa sources. Section 3 describes our solution.
Channel-Aware CubeSat Image Encodings: At the satellite, Vista encodes data ensuring re-
silience to Doppler and other wireless impairments, while remaining cognizant of structure of the
data and the applications ahead. Our case study evaluation of Vista decodes images and/or per-
forms desired inference on the images, such as identifying land use patterns. Section 4 describes
Vista’s solutions at both the CubeSat and the ground infrastructure to enable this at low-latency.

3 Adapting LoRa Ground Stations
This section describes our solutions at the ground station for detecting LoRa packets being trans-
mitted from CubeSats and improving SINR of detecting these packets in presence of terrestrial and
CubeSat interference.

3.1 Detecting CubeSat Packets on LoRa Ground Station
Conventional LoRa ground infrastructure (operating at the 915 MHz ISM band) is not designed to
receive LoRa signals from CubeSats. Furthermore, any approach that requires us to build custom
ground infrastructure would negate the latency gains of leveraging existing infrastructure. Primar-
ily, there are two key differences between the signals received at LoRa base stations from terrestrial
sensors and those from the CubeSats. First, the satellites are traveling at speeds of several km/s
(∼7 km/s for our satellite), much larger than any terrestrial mobile LoRa clients. Second, is the
fact that CubeSats operate in the low earth orbit (300–800 km altitude; 525 km for our CubeSat)
which is a significantly larger distance. At the core, the base station needs to perform two tasks:
(1) Detect and Decode the CubeSat packets, and (2) Know when the CubeSat is overhead.
Detecting and Decoding LoRa CubeSat packets: The attenuation of the transmitted signal at
the base station in a good pass (∼90o elevation peak) is roughly 150 dB at an average. This leads to
an average received power of –123 dBm significantly above the detection threshold of off-the-shelf
LoRa base stations (–148 dBm). Fundamentally speaking, by leveraging the existing infrastructure
(high gain antennas and LNAs), it is entirely feasible to detect and decode signals from the LoRa
CubeSats. Indeed, prior deployments on hot-air balloons have demonstrated communication as far
as 832 km using LoRa [83]. Thus, existing LoRa infrastructure with high-gain antennas can easily
overcome its range bottleneck.

However, the massive amount of Doppler shifts in the CubeSat context present a difficult chal-
lenge. While LoRa was developed to be inherently resilient to terrestrial Doppler (a few Hz), the
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Fig. 3. Unlike CubeSats operating at lower frequencies (red), traditional ISM band LoRa base stations cannot
detect LoRa CubeSat packets (blue) due to the large amount of Doppler frequency offset.

Fig. 4. Correlation of preambles and SYNC symbols with the already present wideband correlators in off-the-
shelf LoRa base stations enables high Doppler packet detection and accurate Doppler estimation in Vista
ground stations.

amount of Doppler seen from these CubeSats is on the order of several kHz (a significant pro-
portion of the bandwidth). This means up to a third of the signal might be outside the receiver
bandwidth. Along with the large communication range, this renders a large fraction of the packets
undetectable (see Figure 3). If one were to use a software-defined radio with wide bandwidth, it
would be easy to collect the raw signal data and post-process it to overcome this bottleneck. In-
stead, Vista takes the approach of re-configuring existing LoRa base stations with a simple software
update to estimate and overcome Doppler.
Packet Detection using wideband correlators: The key reason for packet loss due to Doppler
in LoRa base stations is because the correlation peak is far outside the bandwidth of the sampling
unit at the receiver. To overcome this challenge, we tradeoff some noise resilience for improved
Doppler robustness. Specifically, we set the receiver to the widest bandwidth correlators (250 kHz)
and leverage the fact that even low-bandwidth LoRa preambles can correlate with these wide-
band correlators if configured properly. To see why this is possible, consider Figure 4: Notice that
carefully configured correlators at 250 kHz share common signal fragments with those at lower
bandwidths. However, only some fragments match (four out of eight preamble signals in Figure 4
(top)), meaning that this process results in a 3 dB reduction of detection SNR—trading off some
SNR resilience for improved detectability. At this point, Vista can simply estimate Doppler using
the SYNC symbols of a larger bandwidth (much like traditional LoRa) to obtain a coarse estimate
of Doppler frequency shift. We illustrate this process in Figure 4 (bottom).
Adapting off-the-shelf hardware for wideband correlators: One crucial aspect of the above
approach is the wide-band correlators that it requires for detecting the high-Doppler packets. Thus,
to enable this approach on off-the-shelf ground stations it is critical to demonstrate that there ex-
ist correlators at higher bandwidths with the same frequency slope as that of narrow bandwidth
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Fig. 5. Off-the-shelf ground stations are capable of receiving signals of various configurations across spread-
ing factors (SF) and bandwidths (BW). The color-coded figure shows how each low bandwidth signal at a
spreading factor between 7–10 has a higher bandwidth preamble with the same preamble slope (one such
example has been marked in the figure).

transmissions. Most off-the-shelf ground stations [17, 76] support multiple spreading factors and
bandwidths while CubeSat deployments [21] typically operate on the narrowest bandwidth config-
urations. As shown in Figure 5, all low-bandwidth configurations at lower spreading factors have
an equivalent higher bandwidth correlator (preamble) that provides the same frequency slope
as the original low-bandwidth transmission. In fact, this is not really that surprising as increas-
ing bandwidth quadruples the slope while increasing spreading factor halves the slope. Thus, we
can leverage these higher bandwidth configurations with the same frequency slope to detect the
Doppler offset and use interrupts on the base station to decode the rest of the packet in the right
configuration with the Doppler offset corrected.
Satellite trajectory to inform Doppler and vice-versa: As the above approach of estimating
and correcting Doppler requires us to use wider preambles and accumulates more noise, it becomes
critical for the base station to know when the CubeSat is overhead to switch into high Doppler-
resilient mode—trading off SNR for detectability. However, most small CubeSats cannot be tracked
by ground radars for the first few weeks (the most critical time for a CubeSat mission) [4]—owing to
being highly clumped up in a volume with other entities launched with them. However, the few ini-
tial Doppler measurements obtained from our LoRa ground stations can help us indirectly inform
satellite orbits, much earlier than ground radars can capture them. These orbital measurements can
then directly inform future expected Doppler values for these same satellites in subsequent passes.

We use a simplified version of prior Doppler-to-orbit models [53, 54] to estimate the trajectory
from our coarse Doppler measurements using the algorithm described in Algorithm 1. While the
precise orbit of the CubeSat may not be known, one can still make very good predictions about its
general structure and allowable shape. Mathematically, the variation of Doppler in an overhead
pass from a CubeSat can be written in terms of two main parameters besides time (t ) [28]: ϕ, the
inclination angle and θmax , which is the maximum elevation achieved by the satellite as viewed
by the receiver:

∆f

f
= D(t ,ϕ,θmax ) = −1

c

Rer sin(ωf t) cos(cos−1(Re cos(θmax )
r ) − θmax )ωf√

R2
e + r 2 − 2Rer cos(ωf t) cos(cos−1(Re cos(θmax )

r ) − θmax )
,
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ALGORITHM 1: Trajectory Estimation using Doppler
Input: Measured Doppler f 1

o , f 2
o ... f n

o , Period tp
Output: Trajectory parameters θ∗max , ϕ∗, t∗star t
//Create Spline interpolated signal
//s(t)=Spline({0, tp , 2tp, ...},{f 1

o , f 2
o ... f n

o })
1 forall θmax ∈ {0 → π

2 },ϕ ∈ {0 → π } do
s∗(ϕ,θmax ) = D(t ,ϕ,θmax )
//D is the emulated Doppler Curve Γ(ϕ,θmax ) =max(s∗(t) ∗ s(t))
//Cross Correlation τ (ϕ,θmax ) = arg maxt (s∗(t) ∗ s(t))

2 ϕ∗,θ∗max = arg maxϕ,θmax
Γ(ϕ,θmax )

3 t∗star t = τ (ϕ∗,θ∗max )

where Re is the radius of Earth, r is the orbital radius of the satellite, ωf is the angular velocity
of the satellite (function of spacecraft trajectory and Earth’s rotation), and c is the speed of light.
Given these parameters, we formulate our optimization as finding the best orbital parameters that
fit our Doppler observations (f i

o ) across packets (i = 1, . . . ,N ), specifically:
arg min

tst ar t ,ϕ,θmax

|α |

where α =
N∑

i=0

###f i
o − D

(
tstar t + itper iod ,ϕ,θmax

)###
The above objective function is not easy to optimize given the complex expression of the Doppler

behavior. Specifically, while the expression is convex along the ϕ and θmax dimensions, the ran-
domness of tstar t stops us from using gradient descent. However, since the possibilities of ϕ and
θmax are bounded, we can directly iterate on them as shown in Algorithm 1.

While there are many more complex and accurate models for estimating the trajectory from
Doppler estimates, our results in Section 7.2 highlight the improvement in trajectory estimation
due to better Doppler estimation by Vista. Upon estimation of this trajectory, we can leverage this
information in future packets to get more accurate Doppler estimates of the incoming packets. Note
that we can also use this information to reduce the bandwidth of correlator symbols to improve
the SNR of reception. Finally, we can use this modified Doppler estimate to correctly decode the
communicated information on the ground infrastructure and leverage it for decoding images and
performing inference tasks.

3.2 Combating Interference from Other LoRa clients
As previously mentioned, the packets from LoRa-enabled LEO satellites are severely attenuated
when they reach the ground station infrastructure. However, despite that stark 150dB of attenua-
tion, these signals are still above the detection noise floor of the commercial off-the-shelf LoRa base
stations in the absence of other radio interference. Yet, these ground stations are also designed to
serve several terrestrial clients—their primary and original purpose. These clients are much closer
to the base stations than the CubeSats meaning that their signals are usually larger in signal power
compared with the CubeSat signals. Thus, the presence of terrestrial clients significantly reduces
the capability of ground stations to detect packets from CubeSat clients.

One approach to overcome this problem of packet collisions is to leverage existing solutions
for parallel decoding of collided LoRa packets such as Choir [48], MaLoRa [59], CoLoRa [84], and
so on. However, these solutions are designed to decode packets that can be detected. Yet, our
scenario, is plagued by an extreme near-far effect where the cubesat signal is undetectable owing
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Fig. 6. Accumulation of Doppler across preamble of CubeSat LoRa packets leads to inefficient correlation
with traditional preambles. Vista’s trajectory-driven packet filters remove these offsets to achieve good
packet detection in presence of terrestrial interference.

to being overwhelmed by ground clients. We, therefore, need a solution that somehow specializes
in detecting packets from CubeSats and filters out packets from terrestrial clients.

At first glance, one might presume such filtering cannot be done given that CubeSat LoRa pack-
ets use the exact same modulation as ground clients. Yet, while the transmitted signal is the same,
the channel between the satellite and the ground station is tightly coupled with the trajectory of
the satellite leading to an important effect on every individual packet—intra-packet Doppler shifts
(see Figure 8(a). Specifically, given that LoRa packets and symbols are several milliseconds long,
the large amount of Doppler drift that affects these packets changes within a packet. This means
instead being bound inside a bandwidth of the signal the signal may drift as much as several tens of
Hz (see Figure 6). Thus, given the trajectory of the satellite (see Section 3.1), we can develop special
packet detection filters that detect only the packets from a speci fic satellite instead of detecting
packets from all LoRa clients.
Doppler-division Multiple Access (DDMA): The key idea behind DDMA is that while the pack-
ets face different Doppler frequency shifts, they are not random. Further, these shifts can be es-
timated across time using NORAD trajectory parameters or our own trajectory estimates above.
Thus, the construction of these CubeSat packet detection filters given a Doppler trajectory ∆ft can
be formulated as follows. Given a detection time t0, we create the series of upchirps and downchirps
in the preamble x(t) similar to conventional LoRa packet detection. Given this basic preamble we
multiply this vector by a satellite trajectory compensation factor described by e−2π j(∆ft−∆ft0 )t . We
then use our new preamble y(t) = x(t)e−2π j(∆ft−∆ft0 )t to detect packets from that specific satellite.
Why does this work? Similar to how normal preambles correlate well with standard preambles,
this new preamble is designed to correlate perfectly with the packets of a specific CubeSat but par-
tially with conventional LoRa packets. This improves the packet detection of CubeSat by reducing
the correlation of noise/interference and improving the correlation with the desired signal.

Theorem 3.1. The signal-to-interference-noise gain of Vista trajectory-driven packet detection fil-
ters given Doppler ∆ft , start time of packet t0 and end time of preamble tpr eamble is given by:

SINRдain = 20 log10

(
tpr eamble − t0## ∫ tpr eambl e

t0
e−2π j(∆ft−∆ft0 )tdt

##
)
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Proof. Correlation of trajectory-driven preamble for CubeSat packets ∝####
∫ tpr eambl e

t0

e2π j(∆ft−∆ft0 )te−2π j(∆ft−∆ft0 )tdt

#### = (tpr eamble − t0)

Correlation of trajectory-driven preamble for ground packets ∝####
∫ tpr eambl e

t0
e−2π j(∆ft−∆ft0 )tdt

####
The rest follows. !

Combating interference from other LoRa CubeSats: Another source of interference would
originate from other satellites using the same modality as Vista to communicate information down-
link. However, the trajectories of these various LoRa satellites will always be different (otherwise,
they would collide!) either in time, or the axis of trajectory. Thus, by using the unique trajectories
of these satellites, we can detect and decode the packets from these satellites.

Theoretically, these trajectory-driven preambles can achieve up to 13.12 dB (mean 5.54 dB, see
Figure 6) of SINR improvement per interfering client for packet detection in presence of terrestrial
interference. We evaluate these preambles in Section 7.2 for various combination of terrestrial
clients and LEO satellite trajectories.

4 Channel-Aware LoRa CubeSat Encoding for Images
In this section, we describe the key sources of information loss while decoding the detected packets
– noise, discretization and intra-packet Doppler. We then showcase how we can co-optimize real
world applications over this wireless channel for optimum performance via a case-study on LoRa
CubeSat imaging and inference.

4.1 Sources of Information Loss
There are three key sources of information loss over this wireless link between the LoRa CubeSat
and the ground station:
Noise causes LoRa chirps to be misclassified randomly across the frequency shifts. This means
that each bit has an equal likelihood of bit-flip regardless of the location of the chirp. To estimate
this error, we use the LEO satellite channel model as shown in Ref. [71]. We estimate the symbol
error rate (SER) using the theoretical model in Ref. [26]. Based on measurements from our LoRa
CubeSats launched in 2021 [21], our average SNR of –10 dB from these traces at LoRa ground
stations correspond to roughly 10−4 SER. This directly corresponds to a BER of 10−4.
Intra-packet Doppler affects bit errors asymmetrically. To understand how, we first need to un-
derstand how a LoRa chirp is decoded: The receiver typically deconvolves an incoming chirp with
another upchirp to ascertain the frequency shift relative to the frequency shift of the preamble.
Thus, generally much of the Doppler is overcome by the preamble and one would assume there
would be no effect on the decoding process. While this is true for traditional wide-band satellite
transmissions lasting a few millisecond, many LoRa packets last several hundreds of milliseconds.
This means a significantly larger amount of Doppler accumulates over the duration of the packet,
causing the relative offsets of chirps near the end of a packet to be severely deviated from the start
of the packet (Figure 7(a)). Doppler-induced frequency shifts lead to the decoded chirps shifting
into nearby bins. This phenomenon of misclassification into nearby bins instead of random fre-
quency bins leads to the asymmetric effect across bits (Figure 7(c)). Remember that most adjacent
bins only differ in the least significant bits, while the most significant bits (MSB) only change
across massive frequency shifts (LSB). In fact, going from the MSB to the LSB, the likelihood of
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Fig. 7. LoRa symbols face an additional frequency shift due to accumulation of Doppler across the packet.
Unlike gaussian noise which affects all bits of a symbol uniformly, intra-packet Doppler affects the LSB more
than the MSB.

Fig. 8. Intra-packet Doppler affects symbols in a packet asymmetrically. The error likelihood in frequency
bins offset follows an exponential distribution.

each bit getting affected increases exponentially. Figure 8 shows the distribution of symbol errors
across symbols and the likelihood of amount of frequency bins shifted.

Another source of error is discretization. Remember that we are limited to communicating
only 2048 discrete bits for every packet. Thus, we need to reduce the analog sensed information
to a few bits causing information loss. This restricts any information sent over the wireless link to
a very strict constraint.

While all satellite wireless links face the above challenges, these effects are magnified for LoRa
CubeSats due to the small bandwidth of LoRa (125 kHz vs. several MHz) and limited size of a
LoRa packet (256 bytes per packet). However, we show a unique opportunity that LoRa provides
in optimizing applications over this wireless link due to the deterministic nature of information
loss and improve data efficiency for inference over images.

4.2 LoRa CubeSat Imaging and Inference—A Case Study
Current approaches to communicate images: Traditional approaches to communicate images
such as JPEG, TIFF and PNG are not designed for such low packet sizes (hundreds of bytes). This
is due to the fact that much of the compression achieved using these approaches relies on care-
fully designed dictionaries, hash tables and encoding schemes, all of which take space to store
for decoding the image. Thus, to achieve any coherent image communication, CubeSats typically
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Fig. 9. Spatial and bit-level resolution tradeoff leads to large reduction in image quality of the baseline.

rely on two conventional compression approaches: subsampling and reducing bit resolution of ev-
ery pixel. Subsampling reduces the spatial resolution of the image while the reduced bit resolution
adds corruption due to discretization. Figure 9 demonstrates a few configurations that demonstrate
significant loss of features, motivating the need for better solutions.
Data-Channel-Task Aware Approach: To ensure useful data compression within the con-
straints of LoRa packet size, Vista’s key idea is to leverage important known information about
the images collected by CubeSats, the wireless channel that the signals propagate over, and tasks
performed on the ground. Specifically, we consider: (1) features extracted from a large dataset of
typical satellite images, (2) a broad set of tasks that are typically performed on those images, and
(3) a well-modelled LoRa-CubeSat channel.
Data Awareness: We first rely on the vast amount of Earth images taken by larger satellites
in similar orbits (NOAA [11], Sentinel [18]) to learn how best to compress the images. One ap-
proach would be performing a statistical analysis and identifying the patterns across images.
Vista instead chooses a more automated approach that learns these patterns using a convolutional
autoencoder.
Task Awareness: Furthermore, this autoencoder can be optimized not only for reconstructing
the images but also directed toward preserving maximal task-specific information. We design a
common encoder for both image and task-recovery that is actively aware of the set of tasks that
are intended to be performed at the ground. This loses a small amount of performance in both
tasks but retains maximal information feasible for each task.
Channel Awareness: Finally, training and evaluating this autoencoder must account for bit-
errors that these LoRa wireless packets typically encounter. We design a channel-task-aware image
encoder that maximizes the output accuracy while being constrained to the limits of a LoRa packet.
We do so by a two-stage process where the auto-encoder learns about noise, intra-packet Doppler
shift, and discretization losses. As shown in Figure 10, the output of our solution preserves much
of the useful information in the images for inference and imaging.
Vista Autoencoder Design: Our design of the autoencoder (shown in Figure 2) derives heavily
from existing conventional wisdom in designing autoencoders over images for inference applica-
tions. We adopt a 3-layer convolutional neural network design on the satellite to maximize the
accuracy-compute tradeoff. On the ground, we are relatively less resource constrained, and hence
can have more layers. Our architecture co-optimizes for both tasks and image reconstruction using
two parallel CNNs via a fully connected layer.
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Fig. 10. Vista preserves much of the useful information in the images for inference and imaging.

Our autoencoder design builds on conventional wisdom from traditional convolutional autoen-
coder designs. As we go from the image towards the signature, we increase the number of convo-
lution features captured by each layer and decrease the size of filters. This allows the Vista autoen-
coder to preserve the maximum amount of information while ensuring progressive compression.
After each layer, we pass the output via a Rectified Linear Unit (ReLU layer) to capture non-linear
behaviors which in turn maximizes the ability of Vista to improve over simple subsampling and
other linear baseline approaches. Finally, we use a tanh layer at the output.
LoRa Payload and Channel: This output is then discretized to a low-bit representation and sent
in a single packet with 256 byte payload. We note that encoder output size and discretization is
primarily limited by available bandwidth. These tradeoffs can be task specific, as well as dictated
by the wireless channel and we discuss these issues in Section 4.3. At the receiver, the LoRa base
station decodes the packet and retrieves the communicated values.
Decoder Design: At the decoder, this signature is then passed on to a fully connected layer to dis-
tribute the input to two separate networks optimized for image reconstruction and labeling tasks,
respectively. For image reconstruction, we have successive layers of upsampling, convolution, and
ReLU to increase the spatial dimensions to that of the original image. For the labeling task, we
have successive layers of convolution and ReLU layers with a final sigmoid layer to output the
probability of belonging to a class.
Training the Network: We use the Mean Squared Error loss and Cross Entropy Loss functions
for image reconstruction and multi-class classification, respectively:

ln = (xn − yn)2

loss(x , class) = w[class]
(
−x[class] + log

(∑
j

exp(x[j]
))

We then train our network with five-fold cross validation on the training data to avoid overfit-
ting while ensuring maximum accuracy. We have restricted our discussion in this section to pri-
marily build a data-task-aware encoding for images based on our constraints. In the next section,
we show how we can make this encoding robust to wireless impairments and improve inference
performance.

4.3 Channel-Aware Vista Autoencoder Design
Given the above data-task-aware autoencoder design, we next endeavor to co-optimize the encod-
ing with the wireless impairments described in Section 4.1. Broadly, our approach modifies the
training of the autoencoder given the data, task and channel information by training it in two
stages. As shown in Figure 11: In the first stage, the network learns about the noise and Doppler
related bit-errors. In the second stage, it compensates for the discretization loss. Note that both
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Fig. 11. Vista uses two-stage training to make the autoencoder channel-aware – Stage 1: learning noise and
Doppler; Stage 2: calibration to discretization loss.

these stages of training will occur on the ground a priori and, hence, can be performed over a long
time to converge.
Overcoming noise and intra-packet Doppler: To model the effect of noise and intra-packet
Doppler, during the first stage of training, we add an additional layer that multiplies the input by a
bit-flip operation layer. For a one bit output, we achieve this by creating random bit vectors of bit
flips and then convert them to a (–1,1) vector (–1 signifying bit flip). Note that in a one-bit output
scenario, the output of the tanh layer lies between (–1,1) which means a simple multiplication
layer with our bit mask will work. Further, as this bit-mask remains constant during an epoch, the
multiplication layer is both continuous and differentiable. Thus, during emulation of the bit-error,
the gradient will also propagate over our custom layer and hence get corrected automatically. Note
that this makes the network aware of the behavior of these errors and maximizes accuracy for the
resulting image and task.

A new problem arises when each output is represented by multiple bits: The correct way to
emulate bit flips would be to take our bit mask and XOR with the output of the encoder. However,
it is well known that the XOR operation is not continuous or differentiable. To address this, we
use a known approximation of the XOR operation [8] by a 2-layer neural network for the number
of bits required to XOR. Hence, we add this XOR black box in place of the multiplication layer
where the inputs to the XOR are given by our bitmask. This enables multi-bit outputs to learn the
behavior of the bit error distributions caused by intra-packet Doppler.
Overcoming Discretization Loss: Discretization requires us to reduce these 4 byte float output
elements to a few bits causing information loss. This means that if we use a 2×32×32 sized output,
we can only send one bit of each floating point number to the actual decoder. On the other hand,
using a 1×16×16 output for the encoder would allow us to communicate 8 bits of information to
the output. As one can imagine, both of these scenarios severely affect the ability of the decoder
to decode this input into coherent output.

To address the problem of discretization, we first attempt to understand how it affects the output
of the decoder. We observe that the discretization loss at the input of the decoder propagates to
roughly equal information loss in the output of a well-trained CNN. For example, the output of
the 2×32×32 encoder becomes a single bit-mask on the output of the decoder. On the other hand,
1×16×16 image output suffers significantly less loss. However, this image output looks half the
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Fig. 12. Discretization of the encoding propagates to the output of the decoder.

resolution of the image output of 2×32×32 image, as each of the distorted pixels in the image is
much larger, spanning double the number of underlying pixels.

The average information loss for k-bit discretization is equal to 1
2k+1 . However, it is quite difficult

to quantify the amount of information lost due to reduction in spatial resolution. The only potential
way to solve this dilemma is to evaluate the loss on the prior available data across both axes and
use the least error configuration. Our evaluation shown in Figure 12 shows that the optimum
configuration näively operates at 4-bits.

However, we can do even better. We ask a simple question: “Can the decoder learn and specialize
for this discretization to maximize the accuracy of the output of the image and tasks?” The first
obviously direct approach would be to create a differentiable model of such discretization and add
it as an additional layer to the neural network. However, such discretization is neither continuous
nor differentiable. Furthermore, unlike XOR, there is no guarantee that it can be estimated with
a small enough neural network. Instead, we take an indirect approach to teach this behavior to
our decoder: We first freeze the encoder as it is already optimized to best represent the image
in the limited set of bins. We affect the output of the encoder with the necessary discretization to
create an intermediate input. We then relearn the decoder parameters for the image output on these
affected intermediate inputs. Our results show how our approach minimizes information loss and
maximizes the accuracy across configurations.

5 Discussion and Limitations
Impact of LoRa bandwidth on satellite imaging: While Vista achieves significant improve-
ment in enabling low-latency downlink for quick information retrieval, an important concern is
the LoRa’s inherent bandwidth limitations as the primary downlink technology for an expensive
commercial CubeSat deployment. In fact, our goal in this work is not to replace conventional
downlinks, but instead to promote LoRa as a low latency complementary backhaul for specific
applications. Furthermore, the contributions in this work are relevant broadly to the CubeSat com-
munity for the following reasons:

— There exist many smaller academic [3, 21] and industrial CubeSat deployments [10, 23] that
can leverage the proposed mechanisms to improve downlink communication for free with-
out significant cost investment quickly.

— LoRa has an extremely low power, weight and cost overhead [58] to be added as a secondary
communication technology in larger CubeSats as a low-latency alternative for various ap-
plications that may require quick low-quality images, for instance, forest fire detection, oil
fires in oceans.
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— Many of the algorithms and solutions developed by Vista are also applicable for other low
bandwidth technologies such as NB-IoT and FHSS transmitters traditionally used by other
smaller CubeSats and hence present a broad applicability.

Open Challenges: Based on our experience launching the CubeSats, it is quite evident that there
are several problems that need to solved to enable robust connectivity from CubeSats to the ground
infrastructure. On the CubeSat, the list of open challenges range from enabling secure robust geo-
location to new antenna designs and modulation schemes. On the ground station, it is critical
to develop new hybrid base stations that can simultaneously serve terrestrial as well as CubeSat
clients and accurately estimating the trajectory of these clients in the critical first month of their
operation. Finally, there is a new opportunity for data scientists to maximize the utility of these
bandwidth-starved CubeSat links by building better and more robust data-driven encodings.
Customizing Vista Training: A crucial component of Vista’s benefits stem from both the data
and application information that it presumes as well as the ability to operate across Doppler off-
set channels. Now the data and the application components will be mission specific and rely on
having prior mission data from larger and higher bandwidth satellites. In our case, we use the ap-
plication of land-use classification which has been explored quite extensively in prior work (See
Section 8). However, the heterogeneous error distribution created by the Doppler curve can be
computationally generated quite easily by knowing the altitude of the CubeSat (a factor that is
known significantly prior to launch). Further even small inaccuracy in the altitude creates roughly
similar Doppler curves creating similar error distributions for relevance to our requirements of
training the data-application-channel-aware model. Vista shows that if we have been performing
an application extensively using prior satellite missions, we can do so even at low-bandwidth with
enough fidelity for practical use-cases via these encodings. All of the training will be performed
a priori and programmed for the specific application. While the system will overcome channel-
aware aspects of the training always, the success of data-application-aware component relies on
the availability of high quality training data (which is true for all data-driven systems).
Spectrum Policy Concerns: There are two entities that govern the spectrum in the low-earth
orbit. The first is the Federal Communications Commission (FCC) [40] that provides licenses
to US-flagged spacecraft (i.e., any US company, university) for communication from satellites. The
other entity is National Telecommunications and Information Administration (NTIA) [70]
which provides special permissions for experiments on spacecraft backed by US government (i.e.,
NASA). The only policy-wise complicating factor in 915 MHz band [41] is that, it is specially
allocated for federal civil and naval operators for radio-location services among others. However,
recent meetings between these two entities point towards building a unified spectrum policy in
the near future [69]. The CubeSat built by our team operates in the ISM band received permission
to transmit a 915 MHz LoRa downlink communication at a bandwidth of less than 125 KHz.
Ground Station Feasibility Concerns: Another important feasibility concern for deploying
Vista is that there is presumption that LoRa is allowed to operate at the same band across the
world which is not true. However, SemTech has several transceivers that spans the complete spec-
trum utilized for LoRa across the world which can be multiplexed as well as specialized boards
can be developed that can operate at multiple bands. There further remains the problem of having
various antennas across these bands at the satellite which needs to be tackled in the future. Our
evaluation specifically focused and operated under the US spectrum policy.

Furthermore, another complex topic of importance is how will ground stations serve both ter-
restrial and satellite clients. While most terrestrial base stations are today deployed with antennas
with high lateral gains, most of the next generation of SemTech LoRa base stations have several
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Fig. 13. Estimated image throughput over one pass of Vista CubeSat over an urban city with max elevation
of 90o and inclination angle of 97.52o. Current terrestrial LoRa ground stations would be able to only detect
and decode only 2–4 packets compared with the 15 encodings decoded via Vista.

RF chains that have separate ADCs, and so on. Thus, it is quite feasible to use an antenna with
high longitudinal gain on one of the RF chains to receive only the satellite signals. However, given
the current extensive deployment with purely omnidirectional antennas, we demonstrate how the
new Doppler-correcting preambles suggested in Section 3.2 can serve as an intermediate solution
for disambiguating the satellite and terrestrial clients.
Evaluation Limitations: Our evaluation is limited in the following aspects: (1) Actual end-to-end
testing on the satellite is infeasible as ground-truth image information is unavailable due to lim-
ited satellite bandwidth. (2) Emulating high level Doppler offsets by actually moving a transceiver
on the ground is infeasible as the orbital velocity of Vista satellite is 7 km/s. Thus, we use the
signal measurements from our launched satellite to perform trace driven evaluation. (3) We use
images from public LEO satellites as candidate packet payloads for our trace-driven emulation.
Note that these are not from CubeSats due to limited public data of satellite imagery specifically
from CubeSats.

6 Implementation and Evaluation
Our evaluation leverages signal and channel measurements from the CubeSat to inform Vista’s
approach to overcome the wireless challenges described in the article. We collected various
channel traces from our own base station as well as other base stations around the world (via
SATNOGSDB [16]). We use these channel traces to interpolate the channel metrics (such as atten-
uation, noise floor of the receiver, other interference metrics) that we use to evaluate our system.
We implement a ground-based evaluation testbed that emulates CubeSats attenuation and Doppler
behavior using SemTech transceivers SX 1257 and SX 1262. The CubeSat orbit parameters were as
follows: altitude = 525 km, inclination angle (ϕ) = 97.52. The TLE information is described below:

1 70305C 21006E 21024.66625831 .00096549 00000-0 57652-2 0 03
2 70305 97.5225 88.3417 0007037 262.1956 98.7323 15.11146297 16

The output power from the CubeSat was 27 dBm and the received SNR on the ground with
conventional approaches varied between –10 to –30 dB. However, Vista solutions can improve
the packet detection SNR significantly by approaches mentioned in Section 3.1 and evaluated in
Section 7.2.
Baseline: As shown in Figure 13, the baseline of subsampling (Section 4.2) and communicating
images will lose several packets without getting decoded. However, comparing our solution with
pure noise would be unfair. Thus, we assume that packets were somehow detected for evaluation.
Training the channel-aware autoencoder: The training happens in two stages: (1) In the first
stage during training we add the noise and Doppler layer (weights set to not change internally) and
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Fig. 14. Process of Vista evaluation.

train the Vista on training data. (2) In the second stage we freeze the weights of the encoder and
first generate intermediate inputs as suggested in Section 4.3. We then discretize them to fit within
our communication budget of 256 bytes. We train the decoder chain on this discretized input to
calibrate for the discretization losses.
Evaluating Vista: Figure 14 shows an example run of how Vista evaluation is performed. The
input image is encoded at the encoder to output the signature which is then discretized and mod-
ulated atop LoRa. It is then passed through the channel model informed by wireless channel mea-
surements and analyzed noise and Doppler channel in Section 4.3. At the receiver, the signature
is demodulated and passed to the decoder for outputting class labels and reconstructed image. For
image reconstruction, we use the mean squared error loss and for classification, we estimate the
confusion matrix. The baseline is subsampled to minimize information loss as shown in Figure 9.
It is passed through the same architecture without the discretization, noise and Doppler effects to
ensure fair comparison.
Dataset used: We use publicly available labeled dataset with images captured from Sentinel-2,
EuroSat Land Use Dataset [56]: 27000 13-channel 64×64 images with 10 seperate land use labels.
For our evaluation, we restrict ourselves to RGB channels as those are the ones that image captures.

7 Results
We evaluate the three aspects of Vista: Latency Benefits (Section 7.1), Doppler and Interference Re-
silient Packet Detection (Section 7.2) and a case-study on Imaging and Inference for LoRa CubeSats
(Section 7.4).

7.1 Latency Benefits of Vista
Setup: We evaluate the potential latency benefits of using existing LoRa ground stations (oper-
ating on the 915 ISM band) over specialized ground infrastructure such as large generic satellite
base stations or LoRa ground stations in lower UHF bands. Now, it is virtually impossible to know
the locations of every possible ground station in all of these categories and thus we endeavor in
procuring the publicly known locations of these ground stations on three platforms : The Things
Network [24] (terrestrial LoRa network), T TinyGS [20] (LoRa grounds stations operating at lower
bands), SatNogsDB [16] (Satellite Ground Stations). Assuming the TLE information above obtained

ACM Trans. Sensor Netw., Vol. 20, No. 5, Article 102. Publication date: July 2024.



Adapting LoRa Ground Stations for Low-latency Imaging and Inference 102:19

Fig. 15. Vista Latency Benefits: Demonstrates the potential latency using different ground station infras-
tructures over the trajectory of Vista satellite across Feb 1, 2022 to Feb 3, 2022. LoRa ground infrastructure
operating in the ISM band can enable lower latency compared to other ground station infrastructures in
developing regions of the world.

Fig. 16. Vista Latency Benefits: ISM-band LoRa CubeSats can enable 55.55% lower latency and 44.92%
coverage compared to 33.27% due to the extensive availability of terrestrial ground infrastructure in the ISM
band. These benefits are geographically distributed across the globe with significant improvement noted in
developing countries around the world.

from NORAD, we use the location of our satellite across a year in space to evaluate the potential
latency of retrieving information from any of these networks. We further analyze the benefits
geographically from the satellite point-of-view (POV). Since, there is no clear definition of con-
tinental boundaries, we used the map described in (Figure 16, top right) to classify locations of the
satellite across continents and geographically analyze the benefits provided by Vista.
Results: Figure 15 shows the latency across trajectory of the satellite using various ground in-
frastructure during two days of operation. It is quite evident that across many developing regions
where it is difficult to develop and deploy expensive specialized ground infrastructure, leveraging
existing LoRa deployments in ISM bands provide a clear win. Our evaluation across a year of Vista
trajectory (Figure 16, left) demonstrates that that leveraging the widely deployed 915 MHz LoRa
ground infrastructure will enable significantly lower latency of image downlink compared to us-
ing generic satellite ground stations or specialized LoRa infrastructure. Across the orbit of an year,
LoRa infrastructure at 915 MHz provides a coverage of 44.92% compared to 21.23% of TinyGS and
33.27% of SatNogsDB. In terms of 90%ile latency, using Vista for LoRa CubeSats can potentially
reduce latency by up to 55.55%. This benefit indeed is distributed across the globe with improve-
ment across continents. As shown in Figure 16 (bottom right), the benefits are most pronounced
in Africa where there is a lack of satellite reception infrastructure as well as Europe which has the
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Fig. 17. Vista Packet Detection Benefits: (a) Demonstrates the ability of Vista to detect packets beyond
Doppler limits of standard LoRa receivers; (b) Vista’s accurate Doppler estimation leads to lower errors in pre-
dicting trajectory of the CubeSat; (c) Vista’s trajectory-driven preambles improve resilience to interference
from terrestrial clients and other CubeSats.

largest deployment of LoRa infrastructure. This demonstrates the potential of LoRa transceiver
using Vista to reduce the latency of transmitting a quick snapshot to ground infrastructure.

7.2 Packet Detection Benefits of Vista

Setup: We evaluate the efficacy of Vista’s wider correlators and trajectory-driven preambles in
detecting Doppler offset packets. We use off-the-shelf Semtech SX1262 base stations to receive
LoRa packets with increasing Doppler offsets and measure the limits of packet detection limits.
We measure the received signal power across offsets using SemTech SX1257 base stations (with
access to I/Q samples) for Vista’s wideband correlators over standard narrowband decoding. We
use the state-of-the-art orbit models [53, 54] to emulate the behavior for LEO trajectory by varying
values of maximum elevation (θmax ), inclination angle (ϕ) and start time of transmission (tstar t ).
We also add additional frequency noise as expected from a real satellite due to angular velocities,
offset estimation resolution and other factors. We then use Vista’s approach to estimate the tra-
jectory using Algorithm 1. We then use this trajectory to test the efficacy of the trajectory-driven
preambles.
Doppler-Resilience: Our measurement study in Figure 17(a) demonstrates that the frequency
offset estimation limit of our wideband correlators is as good as the widest correlators supported
by the hardware. Furthermore, using these correlators adaptively shows large gains in SNR
reaching up to 15 dB when Doppler is as large as the bandwidth. Further, packet detection limits
quadruple the resilience to Doppler shifts compared with baseline LoRa base station. As shown
in Figure 13, this could lead to large increase in packet throughput when receiving signals from
a single CubeSat pass.
Trajectory Optimization: Our results show that using the preamble along with the sync symbols
achieves 4× better frequency offset estimation resolution compared with only two sync symbols.
Further, due to the better resolution in measuring the offset estimate, we can estimate the trajec-
tory with a resolution of 1.2o in inclination angle (ϕ) and 0.5o in max elevation (θmax ) which is
comparable to the accuracy of available TLE files for much bigger satellites [4] (see Figure 17(b)).
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Fig. 18. Vista Interference Resilience and Scalability: (a) Vista’s DDMA reduces interference signifi-
cantly for incumbent terrestrial clients as well as other CubeSats. (b) DDMA also enables roughly 4× scala-
bility of CubeSat clients operating within the same spectrum compared with traditional LoRa.

Furthermore, the inclination angle remains consistent within a margin of 1o over the lifetime of a
CubeSat, which can be further used to refine Doppler measurements.

7.3 Scalability and Interference Resilience of Vista
Setup: In this section, we evaluate the efficacy of our trajectory-dependent preambles’ based
Doppler-division multiple-access (DDMA, Section 3.2) to improve the interference resilience and
scalability of LoRa-enabled CubeSats. We first demonstrate the signal-to-interference-noise (SINR)
gain (in dB) by taking multiple 2 satellite configurations (by varying trajectory parameters) along
with 2 terrestrial clients (one each deployed close and far from the ground station) and demon-
strate the SINR benefits of leveraging a DDMA based packet reception. We take channel data for
ground clients by choosing the clients from publicly available datasets [51] and take the channel
data for clients in space by simulating various satellite trajectories. We then scale this evaluation
to multiple (upto 105 satellite orbits and demonstrate how both Vista’s packet detection solutions
(namely, wideband correlators and DDMA) work together to improve packet reception. While this
simulation assumes all the colliding packets are transmitted simulteneously, the true scalability of
LoRa will further amplify the number of satellites that can be simulteneously serviced by a single
ground station.
Interference Resilience: Our results in Figure 18(a) demonstrate the SINR gains of leveraging
trajectory-driven preambles described in Section 3.2 for detecting packets in presence of inter-
ference. As we can clearly see, when there are two concurrent CubeSat transmitters along with
two terrestrial clients, Vista preambles improves the interference resilience of packet detection by
12.02 dB for CubeSat clients and 11.08 dB for terrestrial clients at an average. Note that the baseline
absolute SINR of configurations with more clients will be lower and thus this valuable gain would
mean the difference between detecting a packet and missing it completely.
Scalability: Our results in Figure 18(b) show the key benefits of using the wideband preamble
detection and DDMA for multiple access in improving the packet reception rate of LoRa-based
CubeSats. First, as demonstrated in Figure 13, only 56% of packets transmitted across a single
CubeSat pass can be detected using conventional off-the-shelf ground stations leading to the lower
packet detection rate. Further, this improvement in packet detection SINR enables more packets to
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Fig. 19. Vista Channel-Aware Imaging and Inference: (a) Vista produces significantly lower per-pixel
error across 5120 RGB images captured by Sentinel-2 satellite leading to 4.56 dB improvement in PSNR (b)
The data-task-channel aware approach of Vista achieves 1.38× higher accuracy in classifying 10 different
land-use labels compared to baseline approaches.

be detected by the ground base station. Across the various packet detection rates, we can clearly
see an average 4–4.5× increase in number of CubeSat clients that can be supported. Note that
these numbers are bottlenecked by the noise floor which plays a crucial role in determining if
the packets are detected. This means there is a new opportunity to further improve scalability by
improving the noise resilience of the core LoRa technology (for instance, longer preambles and
interspersing the preamble symbols between the packet).

7.4 LoRa CubeSat Imaging and Inference

Setup: Our model (Figure 2) uses a fully-connected layer to co-train two parallel CNNs optimized
for image reconstruction and multi-class land-use classification with 50–50 (5,120 images each)
train-test split. The dataset is taken from Ref. [56], which contains labeled images captured from
Sentinel-2 [18] satellite from an altitude of 800km. We only choose the RGB spectrum inputs to
classify the image into the 10 labeled land-use patterns: Sea & Lake, Annual Crop, Forest, Herba-
ceous Vegetation, Highway, Industrial, Pasture, Permanent Crop, Residential and River. For the
baseline, we leverage a subsampled image with 8 bit resolution as input. For the data-aware
approach, we specially train a Vista autoencoder specifically for reconstructing images. Finally,
Vista’s approach co-trains two parallel CNNs optimized for image reconstruction and multi-class
land-use classification.
Improving Image Retrieval: Figure 19(a) shows that the baseline’s per pixel error is significantly
larger than Vista’s approach. One of the crucial characteristics to observe is that the 90th percentile
error is especially larger for the baseline which means while in some cases the baseline may do well,
as more fine grained features get involved the reconstruction becomes much worse. For example, a
lake may be easier to identify from even a low-resolution image of the baseline while an industrial
complex is far more challenging to make out. This enables Vista to achieve a lower mean squared
pixel error of 5.42 compared with 9.17 which is 40% lower error. This corresponds to an average
4.56 dB improvement in image SNR (note that the ideal image SNR is ∞). Note, however, that
Vista’s approach was not specialized for image reconstruction but also for accomplishing task
using the same 256 bytes of information. A specialized network such as data-aware approach
which is specialized for image reconstruction may perform even better at image reconstruction
but will perform poorly at tasks. This is due to the fact that the latent space of compression is not
necessarily tuned in the right dimensions for the task. Thus, we do not compare Vista with this
method as a fair comparison.
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Fig. 20. Vista Ablation Study: Training Vista on the exponential error distribution produced by the effect
of the Doppler on LoRa modulation makes Vista resilient to Doppler error distributions. As we can clearly
see, while a normal training procedure produces similar PSNR and MSE metrics for both errors, the two-step
training of Vista, significantly improves the PSNR and lowers the MSE in the presence of Doppler produced
bit errors.

Improving Inference Quality: As shown in Figure 19(b), Vista’s approach outperforms both the
baseline approach as well as data-aware approach significantly leading to 72.92% accuracy in clas-
sifying the images compared to 52.5% and 57.09% accuracy of the former over 5120 test images
(512 images for each class). The classification tasks where Vista’s approach achieves much of its
gains are those which require high resolution intricate details such as outlines of buildings for
residential and industrial complexes (higher spatial resolution). Further, industries and highways
are both made of concrete (grey colored) and face larger errors in the baseline. Note that prior
work on the complete 13-channel dataset achieves 84.48% classification accuracy in the original
work [56]. But since we use only RGB channels, our classification accuracy is lower.

7.5 Vista Ablation Study and Overhead
In this subsection, we present the impact of Vista on the CubeSat compute and memory resources
as well as the efficacy of training an autoencoder aware of the channel error characteristics.
Channel-aware Autoencoder vs. Autoencoder Performance: We evaluate the efficacy of our
training approach in improving the noise resilience of Vista’s channel-aware encodings. Note that
there have been several works that have developed and deployed better and more comprehensive
data-and-application aware encodings on satellites such as [43], and thus we will primarily focus
this evaluation on the channel-aware nature of our encoding. Setup: We train two autoencoders
on the same training data as follows: one trained with uniformly distributed errors (AWGN) and
one trained on Doppler noise errors as described in Section 4 and Figure 8. We then evaluate both
of these autoencoders using separate test data on both of these error distributions across bit errors.
Improvement of Channel-aware Autoencoder: As we see clearly see, an autoencoder trained
on the right distribution of Doppler errors does perform better compared with the autoencoder
that was not trained on the same distribution. In fact, this is not surprising as training on the
right distribution allows the autoencoder to ensure that the least valuable information is encoded
on those bits. As shown in Figure 20, we see that as the number of bit-errors reach 10 bit errors
(out of 2048 bits), the channel-aware autoencoder has a lower image reconstruction error in the
presence of Doppler errors.
Power, Compute and Memory Overheads: The three key resources on the CubeSat are power
available to use, compute resources available for processing the data collected, and memory to
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store the data prior to downlink transmission. (1) Power: It is a well known fact, that wireless
communication dominates the power consumption of CubeSats as enough transmit power is re-
quired for the signal to reach the ground. Typically, a CubeSat generates energy with solar and
consumes it when in eclipse. While the compute and sensors consume power on the order of a
few µW for each image capture, the power required for transmission downlink by the RF fron-
tend (even for a low-power technology like LoRa) is 1-2 W to enable efficient reception on the
ground infrastructure. Thus, the extra compute overhead of performing Vista has negligible im-
pact on the power budget of downlink transmission. Indeed, recent works [43] have deployed more
complex designed data-driven algorithms to compress images. (2) Compute: At first glance, one
might feel the extra compute required to implement Vista will be significant. However, remem-
ber that the training of Vista will be performed on the ground prior to the launch of the satel-
lite. Thus, the primary impact on compute latency would be to run Vista pre-trained algorithm
on images. Our evaluations on a replica of V-R3X [21] compute resources show that it requires
an average of 4.83 ms to encode one image.2 (3) Memory: The final constraining factor on the
CubeSat to deploy Vista is the amount of memory required to store the encoder model that cre-
ates the encodings. Our encoding model with 8-bit weight representations requires only 36 kB to
store.2

8 Related Work

Low-power wide-area networks (LP-WAN) based CubeSats: Past work has explored improv-
ing the range [45, 50], throughput [52, 81, 90], scalability [51, 52, 57, 77] and reliability [26] of
LP-WANs. Prior systems [68] have also delivered images over LoRa by communicating images
over several packets. However, CubeSats do not have the luxury of perennial coverage.

The idea of using LoRa for CubeSats has been explored by both, companies such as Swarm
Technologies [19] and Lacuna Space [9] as well as hobbyists as a simple off-the-shelf technology
for communication [62] over long ranges. Much of this prior work relies on dedicated ground
stations [20] that operate at lower frequencies (such as 137 MHz and 450 MHz) instead of tradi-
tional ISM-band (915 MHz) LoRa base stations. Since the launch of the satellite, there have been
several other significant launches by academic [31, 47, 66, 73, 91] and government entities [30, 65]
that have explored this alternative technology. Further, while there is some theoretical analysis
on understanding LoRa behavior in CubeSat scenarios, most of these miss important aspects that
become apparent when the CubeSat is actually deployed such as Doppler [49], ignore PHY layer
considerations [72]. There have been several works recently that have explored the theoretical
problems face by LoRa transceivers and how at low-orbits, these channels face several connec-
tivity issues [29, 46, 64]. With the publication of new cellular standards 5G New Radio Release
17 [1] and Release 18 [2], industries across areas spanning wildlife conservation [13], healthcare
logistics [14], banking [5] to oil and gas [12] have also adopted the cellular LP-WAN alternatives
such as NB-IoT [25] as the backhaul. Further academics have studied the impact of leveraging such
cellular technologies for backhaul [36, 75]. While cellular backhauls also present an attractive
low-latency backhaul opportunity, this work primarily focuses on LoRa due to availability of
satellite deployment for evaluation. There are two key issues that particularly hinder enabling
connectivity for LoRa satellites in the ISM band – (1) Packets go undetected due to limitations
of LoRa ground infrastructure (Figure 3) [17, 29, 46, 64] and (2) Intra-packet Doppler generates

2Note that given the evaluation of Vista was performed using trace-driven simulation, the real compute time and memory
required will also depend on the size of the image and the model being processed. However, we believe that it will remain
significantly low as shown in other works [43].
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heterogeneous errors that are atypical of wireless channels. Vista provides new solutions informed
by our CubeSats channel traces in the ISM band (Section 3) to overcome these limitations.
CubeSat Communication and Satellite Imaging: There has been much work on development
of satellites for various applications spanning agriculture, atmospheric monitoring and remote
sensing. On one end, are publicly funded programs such as NOAA, Sentinel, LandSat with large
historical data, where academics have recently shown new opportunities [79, 80] in developing
novel ground architectures for receiving image data. On the other hand, are private enterprises
entering this space such as Planet Labs, Microsoft [85, 86] and Boeing Aerospace. There has
been also much work in characterizing the trajectory [33, 78] and channel [61, 71] of these LEO
satellites. Further, there has been analysis [63] of how future satellite constellations can provide
instantaneous latency of data transfer (caveat to throughput of inter-satellite links). However,
inter-satellite links are highly difficult to create and all satellite constellations deployed for
earth-observation remain incapable of communicating significant amount of data between the
satellites. (instead they act like individual satellites working together to observe the earth in
spatially diverse locations). All of these above deployments are big satellites or large CubeSats
(≥ 6 unit), and leverage high throughput wideband technologies to communicate to ground
infrastructure. These technologies typically require specialized ground infrastructure which leads
to less number of base stations and hence larger latencies. Vista attempts to complement these
high-bandwidth technologies by leveraging a long-range technology with large terrestrial ground
infrastructure. Vista addresses the unfortunate consequences of using this narrowband technology
in LEO – the lower data rate as well as high Doppler-to-bandwidth ratio. Similar to L2D2 [86]
which leverages existing satellite ground infrastructure for other satellites, Vista enables the
ability to leverage existing LoRa ground infrastructure for communicating with LoRa enabled
CubeSats.

There has also been recent work [82] that deals with reducing the latency of transmitting high
fidelity data from satellites to distributed ground stations. While that work focuses on minimizing
the average overall latency of downlink transmissions from satellites to distributed ground sta-
tions by developing a globally optimal schedule, this work primarily focuses on reducing the first
contact latency of transmitting a quick and rough estimate of the image for low latency response.
We believe LoRa along with Vista can act as a complementary communication mode in special
circumstances (such as disaster management scenarios) to these solutions.
Error-Resilient Image Compression over wireless links: Imaging is one of the most important
applications for today’s CubeSats with usecases in weather monitoring, satellite imaging, cloud de-
tection, agriculture, and so on. [27, 32, 56, 67, 93]. Thus, these images are typically compressed over
the wireless link using autoencoders (deep neural networks with narrow waist) to create signature
optimized for a set of tasks [74, 88, 92]. These narrow outputs are used to communicate between the
sensor and the receiver as they maximize information density for a set of tasks [60]. Unfortunately,
if autoencoders are trained unaware of the communication channel, there is large information loss
due to discretization, and bit errors [89]. There is of course a lot of work in joint source-channel
coding for wireless image transmission [34, 35, 38, 42, 55] which deal with general uniform error
distributions seen in typical wireless channels. Further, there have been recent works [43, 44] that
show the efficacy of data and application-aware encodings in reducing computational bottlenecks
on the satellite. However, operating LoRa (a) technology that encodes data in frequency shifts) in
915 MHz ISM band (large amount of Doppler) leads to a non-uniform distribution of errors across
bits as described in Section4.3. In this article, Vista shows how, by making these data and appli-
cation driven encodings aware of this non-uniform distribution in the LoRa CubeSat context, we
can design extremely small encodings robust to an adverse communication channel (Section 4).
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9 Conclusion and Future Work
This article presents Vista, a LoRa-based CubeSat communication system that complements typ-
ical high-bandwidth satellite communication links to enable low-latency imaging and inference
by using existing commodity LoRa ground stations. We develop custom software-only solutions
to adapt existing LoRa ground infrastructure to receive packets from CubeSats. We then build a
channel-aware image encoding scheme that is informed by the physical-layer channel character-
istics of satellite signals. We present a detailed evaluation of Vista by leveraging wireless channel
measurements from from a recent CubeSat launched by our team. Our results demonstrate 55.55%
lower latency, a 4.56 dB improvement in recovered image quality and the 1.38× improvement in ac-
curacy of land-use classification. We plan to deploy Vista end-to-end on a future CubeSat mission
to estimate our system’s ability for varied Earth sensing applications.
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