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Abstract
Machine learning (ML)-based data-driven methods have promoted the progress of modeling in many engineering domains. 
These methods can achieve high prediction and generalization performance for large, high-quality datasets. However, ML 
methods can yield biased predictions if the observed data (i.e., response variable y) are corrupted by outliers. This paper 
addresses this problem with a novel, robust ML approach that is formulated as an optimization problem by coupling locally 
weighted least-squares support vector machines for regression (LWLS-SVMR) with one weight function. The weight is a 
function of residuals and allows for iteration within the proposed approach, significantly reducing the negative interference of 
outliers. A new efficient hybrid algorithm is developed to solve the optimization problem. The proposed approach is assessed 
and validated by comparison with relevant ML approaches on both one-dimensional simulated datasets corrupted by various 
outliers and multi-dimensional real-world engineering datasets, including datasets used for predicting the lateral strength of 
reinforced concrete (RC) columns, the fuel consumption of automobiles, the rising time of a servomechanism, and dielectric 
breakdown strength. Finally, the proposed method is applied to produce a data-driven solver for computational mechanics 
with a nonlinear material dataset corrupted by outliers. The results all show that the proposed method is robust against non-
extreme and extreme outliers and improves the predictive performance necessary to solve various engineering problems.

Keywords  Data-driven methods · Support vector machines · Robust regression · Outliers · Locally weighted least squares · 
Nonlinear elasticity

1  Introduction

Data-driven methods, where progress in an activity (e.g., 
prediction or decision-making) is driven by data instead of 
being driven by personal experience and inference, have 
attracted considerable interest and also achieved great suc-
cess in the engineering fields [1–4]. For example, many such 
methods [e.g., machine learning (ML) techniques] have been 
applied to: extract constitutive manifolds [5–10], identify 
the stress–strain relation [11–15], produce data-driven 
solvers [16–19], and predict the strength and deformation 

of engineering structures and materials [20–23]. Typically, 
the existing ML-based data-driven approaches are able to fit 
and generalize the input data well and can produce extremely 
good prediction capabilities if the input data are high quality 
and reasonably large in size [24]. However, if the input data 
are corrupted by outliers, these data-driven methods (e.g., 
methods for regression), especially those that are sensitive 
to outliers, will yield unreliable prediction. Some of them 
even break down when the data are contaminated by extreme 
outliers. Outliers are those observations that are far away 
from all other observations due to misplaced decimal points, 
recording or transmission errors, or exceptional phenom-
ena. These are all common occurrences in real-world data 
[25]. In general, there are two commonly employed ways 
to deal with the outliers for regression problems [25]. The 
first is to use robust regression approaches, while the second 
method is to construct outlier diagnostics. A robust regres-
sion approach first fits a regression model that adequately 
addresses the normal data points and then discovers the out-
liers as those points having large residuals estimated from 
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the robust regression model [26–28]. On the contrary, outlier 
diagnostics first identify the outliers and then remove them 
and fit the remaining normal data points [29–32]. In some 
applications, both methods yield exactly the same result. 
However, outlier diagnostics may result in outliers which 
are not entirely detected, leading to biased results, while 
robust regression does not pose such a risk. For this reason, 
attention of this paper is only focused on the robust regres-
sion approaches.

Robust regression approaches include least absolute 
deviations (LAD), least trimmed squares (LTS), M-esti-
mators, etc., which were proposed to address the fact that 
the least-squares (LS) method is easily affected by outli-
ers [25]. These robust methods were originally developed 
for parametric regression (e.g., linear regression). Recently, 
many efforts have been made to incorporate these regression 
approaches into the reformulation of data-driven methods 
to enhance their robustness. For example, LTS has been 
integrated into backpropagation neural networks (BPNNs) 
to replace the mean squared error (MSE) as the minimiza-
tion criterion [33], and LAD has been applied in random 
forests (RFs) to replace the original LS as the splitting rule 
for building the regression trees [34]. Least-squares support 
vector machines for regression (LS-SVMR) [35] is one of 
the more frequently used data-driven regression methods in 
civil engineering disciplines [36–47]. The LS-SVMR [35] 
is a reformulation of SVMR [48], which uses the sum of 
squared errors (SSE) as the loss function and equality con-
straints in place of inequality constraints to greatly simplify 
the SVMR formulation. Due to this, the LS-SVMR solves 
a linear system problem instead of the complex quadratic 
programming (QP) problem, leading to greater computa-
tional efficiency. However, the use of SSE as the loss func-
tion in the formulation of LS-SVMR leads to a non-robust 
property. To overcome this problem, the weighted SSE has 
been adapted as the loss function by Suykens et al. [49] 
to substitute the original SSE for the reformulation of LS-
SVMR, which resulted in the new LS-SVMR variant called 
WLS-SVMR that is robust to outliers. The weight function 
used in WLS-SVMR is a function of residuals estimated by 
LS-SVMR, where the potential outliers tend to have larger 
residuals. The points which have larger residuals in the train-
ing set will then be assigned smaller weights to reduce their 
associated negative influence. However, WLS-SVMR breaks 
down under non-Gaussian noise distribution with heavy 
tails (i.e., extreme outliers) [50]. To solve this problem, De 
Brabanter et al. [50] proposed an iterative version of WLS-
SVMR (IWLS-SVMR), where the weights are updated in 
each iteration to reduce the negative influence of extreme 
outliers until convergence criteria are reached.

Both WLS-SVMR and IWLS-SVMR are robust, global 
data-driven regression models, meaning that their solution 
requires the fitting of the entire training set. However, in 

many cases, the performance of global models can be further 
improved by local models [51–55]. As introduced in Bot-
tou and Vapnik [53], the local learning algorithms attempt 
to locally adjust the capacity of the training system to the 
properties of the training set in each area of the input space. 
This results in a local model that only requires the fitting of 
a subset of the training data nearby (relevant to) the query 
point and can overcome the potential negative influence 
of irrelevant points. Therefore, a robust, local model may 
provide an improvement under these circumstances when 
compared to the robust, global models. This is because the 
robust, local model can yield a model that both overcomes 
the negative interference of outliers and avoids the potential 
negative influence of irrelevant points, achieving a suitable 
trade-off between the capacity of the learning system and the 
number of training data points [46, 53–55]. A local version 
of LS-SVMR, called moving LS-SVMR (M-LS-SVMR), 
was proposed by Karevan et al. [55] for weather temperature 
prediction. In this method, the Gaussian- and cosine-based 
weight functions are used to measure the similarity between 
training sample and test data. However, this method does not 
use a robust weighting scheme to reduce the negative influ-
ence of outliers. Further, the majority of existing local mod-
els are based on polynomial regression, which means that 
the local models are polynomial functions [56–59]. These 
local models are not real data-driven regression methods 
because of the assumption of polynomial functions within 
local regions. Thus, the families of such local models are out 
of the scope of this paper. One local data-driven regression 
model, called locally weighted LS-SVMR (LWLS-SVMR), 
was recently developed for generalized prediction of the 
drift capacity of RC columns [46]. LWLS-SVMR [46] inte-
grates LS-SVMR with a locally weighted learning algorithm 
[56–59] to locally adjust the capacity of LS-SVMR to the 
properties of the training set in each area of the input space, 
thus enhancing the generalization performance of the LS-
SVMR. However, the use of SSE as the loss function and the 
weight that is a function of the Euclidean distance between 
data points in the training set and query points resulted in a 
lack of robustness to outliers, especially those outliers close 
to query points. This is because the SSE is sensitive to out-
liers [25] as introduced previously, and in LWLS-SVMR, 
larger weights are given to points close to query points (i.e., 
small distances) and smaller weights are assigned to points 
far away from the query points (i.e., large distances). This 
formulation can lead LWLS-SVMR to produce a signifi-
cantly biased prediction on query points which are nearby 
outliers (i.e., larger weights will be given to outliers, which 
significantly increases the contribution of outliers to predic-
tion on query points).

Motivated by these existing solutions introduced pre-
viously, a novel, robust version of the local data-driven 
regression model, LWLS-SVMR, called RLWLS-SVMR, 
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is proposed in this paper to address the problem associated 
with non-robustness of LWLS-SVMR to input data cor-
rupted by outliers. The proposed RLWLS-SVMR approach 
is validated according to its capability to broaden the appli-
cation of LWLS-SVMR-based data-driven regression for 
cases where the input data may be contaminated by both 
non-extreme and extreme outliers. To be specific, three illus-
trative examples are given. First, simulated datasets with 
non-extreme and extreme outliers are provided for validat-
ing the performance of the proposed approach in univariate 
function approximation. Second, real-world multi-dimen-
sional datasets are used to demonstrate the performance of 
the proposed method in multivariate function approximation 
for practical prediction in engineering disciplines. Third, the 
proposed approach is applied to extract the material proper-
ties for data-driven computational mechanics with a material 
dataset corrupted by outliers. For each example, the pro-
posed approach is compared with existing relevant meth-
ods. The rest of this paper is organized as follows. Section 2 
presents the methodology of the proposed RLWLS-SVMR, 
including the formulation of the RLWLS-SVMR and an 
iterative algorithm for RLWLS-SVMR. Section 3 presents 
the implementation procedure based on a hybrid algorithm 
of LWLS-SVMR and RLWLS-SVMR. Illustrative examples 
are given in Sect. 4. Finally, in Sect. 5, the conclusions are 
drawn.

2 � Methodology

In this section, we present a novel robust data-driven regres-
sion approach, called robust LWLS-SVMR (RLWLS-
SVMR), which is designed to overcome the fact that LWLS-
SVMR is sensitive to outliers close to query points. The 
main difference between RLWLS-SVMR and LWLS-SVMR 
is the integration of an extra weight into the formulation of 
RLWLS-SVMR, which is a function of residuals and allows 
for iteration within the RLWLS-SVMR procedure, signifi-
cantly reducing the negative interference of outliers. The 
major advantage of the proposed method over LWLS-SVMR 
is that it not only establishes the data-driven regression that 
is robust to input data contaminated by various types of out-
liers (i.e., non-extreme and extreme outliers) but also main-
tains the local nature, where, to predict a query point, the 
entire set of training data does not need to be fit. Instead, it 
only requires the fitting of a subset of training data nearby 
(relevant to) the query point. These characteristics yield a 
model that both overcomes the negative interference of outli-
ers and avoids the potential negative influence of irrelevant 
points, achieving a suitable trade-off between the capac-
ity of the learning system and the number of training data 
points. The detailed information regarding the mathematical 

equations and derivations for the formulation of the pro-
posed RLWLS-SVMR is as follows.

2.1 � Robust locally weighted least‑squares support 
vector machines for regression (RLWLS‑SVMR)

This section presents the mathematical formulation of the 
novel RLWLS-SVMR. Assume a multi-dimensional training 
set 

{(
xi, yi

)}n

i=1
 is collected from a domain of interest and 

some observations (i.e., data points) have been corrupted by 
outliers. For the remainder of this paper, the following nota-
tions are utilized. Let R be the real numbers set; xi ∈ Rp is 
a column vector with p dimensions (i.e., p variables) which 
can be written as xi =

(
xi1;… ;xip

)
, and xT

i
∈ Rp represents 

the transpose of xi and is a row vector with p dimensions 
which can be written as xT

i
=
(
xi1,… , xip

)
, yi ∈ R is a real 

number; X ∈ Rn×p is an n × p matrix which can be writ-
ten as X =

(
x1,… , xn

)T; the training set 
{(

xi, yi
)}n

i=1
 is an 

n × (p + 1) matrix which includes n data points and each data 
point contains p explanatory variables (i.e., xi ∈ Rp ) and one 
response (i.e., yi ∈ R).

The mathematical formulation of the proposed RLWLS-
SVMR is as follows:

(1)	 Given an independent test set 
{(

xq, yq
)}m

q=1
 that is not 

included in the training set, for each query point 
xq, q = 1,… ,m , where the response value yq is to be 
predicted and thus not considered in the following pro-
cess.

(2)	 Define a subset 
{(

x(s), y(s)
)}r

s=1
 from the training set {(

xi, yi
)}n

i=1
 by a parameter fq , where fq can take any 

value in the range (0, 1] ; the number of data points in 
the subset is equivalent to r = Ceil

(
fq × n

)
, and the 

points in the subset are determined by the Euclidean 
distance metric via the following procedure:

	 (a))	 Calculate the Euclidean distance from each 
data point in the training set to each query 
point ‖xi − xq‖, i = 1,… , n;q = 1,… ,m ,  so 
for each query point, there is a distance vector 
dq =

(
dq1,… , dqn

)
, q = 1,…m;

	 (b))	 Sort the entries in each distance vector 
increasingly, so a new sorted distance vector 
d(q) =

(
d(q1),… , d(qn)

)
, q = 1,…m is obtained;

	 (c))	 The data points in the training set 
{(

xi, yi
)}n

i=1
, 

corresponding to the first r entries in the sorted 
distance vector d(q) (i.e., d(q1),… , d(qr) ), can be 
selected as the subset 

{(
x(s), y(s)

)}r

s=1
. Note that, 

for different query points, the subset may vary.

(3)	 After the subset is determined, the learning objective of 
the proposed RLWLS-SVMR is to solve an optimiza-
tion problem formulated by finding model parameters 
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w =
(
w1;w2;… ;wh

)
∈ Rh and b ∈ R , which is written 

as

w h e re  �q ∈ R, q = 1,… ,m  i s  a  r e g u l a r i z a t i o n 
parameter;  es ∈ R, s = 1,… , r  is  the er ror term; 
�q
(
x(s)

)
, vq

(
x(s)

)
∈ R, s = 1,… , r;q = 1,… ,m are weights 

that can take any value in the range[�, 1] , �q
(
x(s)

)
 is a func-

tion of the Euclidean distance where data points in a sub-
set close to a query point have larger weights and far away 
from the query point have smaller weights; vq

(
x(s)

)
 is a func-

tion of the residual where data points in a subset around 
the query point having large residuals have smaller weights 
and having small residuals have larger weights ;� ∈ R is a 
real number approaching 0; �

(
x(s)

)
 is a feature vector, and 

(1)
Minimize ∶ J

(
w, es

)
=

1

2
w
T
w +

1

2
�q
∑r

s=1
�q
(
x(s)

)
�q
(
x(s)

)
e2
s
, q = 1,⋯ ,m

(2)
Subject to ∶ y(s) = w

T�
(
x(s)

)
+ b + es, s = 1,⋯ , r,

�(∙) ∶ Rp
→ Rh is a mapping function from p dimensions to 

a higher h-dimensional feature space.
Note: x(s) is a column vector; thus, �

(
x(s)

)
 is also a col-

umn vector.
If �q

(
x(s)

)
 takes a value approaching � , it means the point (

x(s), y(s)
) is far away from the query point 

(
xq, yq

)
 (relatively 

large Euclidean distance) and plays a lesser role in the deter-
mination of yq ; while, if �q

(
x(s)

)
 takes a value approaching 

one, it means the point 
(
x(s), y(s)

)
 is close to the query point (

xq, yq
)
 (relatively small Euclidean distance) and plays an 

important role in the determination of yq.
The Lagrangian function is established by the Lagrange 

multipliers method to solve Eqs. (1) and (2)

where �s ∈ R, s = 1,… , r is a Lagrange multiplier (also 
called support values).

The Karush–Kuhn–Tucker (KKT) conditions for optimal-
ity are used by differentiating the variables in Eq. (3) above, 
which results in the following:

Rearranging Eq. (4) and eliminating w and es , using ker-
nel function replace the inner product of feature vectors, 
the following matrix equation can be obtained:

(3)

L
(
w, b, es, �s

)
= J

(
w, es

)
−

r∑
s=1

�s
(
w
T�

(
x(s)

)
+ b + es − y(s)

)
,

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�L

�w
= 0 → w =

�r

s=1
�s�

�
x(s)

�

�L

�b
= 0 → 0 =

�r

s=1
�s

�L

�es
= 0 → es =

�s

�qvq
�
x(s)

�
�q
�
x(s)

� , s = 1,⋯ , r; q = 1, ⋯ , m

�L

��s
= 0 → y(s) = w

T�
�
x(s)

�
+ b + es, s = 1,⋯ , r

.

(5)

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 1 ⋯ 1

1 K
�
x(1), x(1)

�
+

1

�qvq(x(1))�q(x(1))
K
�
x(1), x(2)

�
⋯ K

�
x(1), x(r)

�

1 K
�
x(2), x(1)

�
K
�
x(2), x(2)

�
+

1

�qvq(x(2))�q(x(2))
⋯ K

�
x(2), x(r)

�

⋮ ⋮ ⋮ ⋱ ⋮

1 K
�
x(r), x(1)

�
K
�
x(r), x(2)

�
⋯ K

�
x(r), x(r)

�
+

1

�qvq(x(r))�q(x(r))

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

b

�1
�2
⋮

�r

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

0

y(1)
y(2)
⋮

y(r)

⎤⎥⎥⎥⎥⎥⎦
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where q = 1,… ,m  and the kernel  function is 
K
(
x(s), x(t)

)
= �T

(
x(s)

)
�
(
x(t)

)
, s = 1,… , r;t = 1,… , r.

For  t he  de t e r mina t ion  o f  �q
(
x(s)

)
∈ R, s = 1,

… , r;q = 1,… ,m , for each query point xq , let d(qr) be the 
distance from xq to the rth nearest neighbor x(r) [i.e., d(qr) 
is the maximum distance compared to d(q1),… , d(q(r−1))] , 
and let �q

�
x(s)

�
= T

�
d−1
(qr)

‖x(s) − xq‖
�

 , where T(∙) is a tri-
cube weight function [56], which is defined as follows:

where � can take any values close to 0, and in this work, � = 
1e − 4 to avoid a zero in the denominator in Eq. (5).

The weight vq
(
x(s)

)
 in Eq.  (5) is associated with the 

robustness to outliers close to a query point, and the deter-
mination of vq

(
x(s)

)
∈ R, s = 1,… , r;q = 1,… ,m , for each 

query point xq is discussed in detail in the next sub-sec-
tion. The initial values of vq

(
x(s)

)
 for all points in the subset {(

x(s), y(s)
)}r

s=1
 are set to one. Since the coefficient matrix in 

Eq. (5) is symmetric but not positive definite, it is difficult to 
directly solve Eq. (5) as there may be no inverse of the coef-
ficient matrix which exists in the case where the coefficient 
matrix is close to singular. The method proposed by Suykens 
et al. [60] is used to solve this problem. After solving Eq. (5) 
[60], the Lagrange multiplier � =

(
�1,… , �r

)
 and parameter 

b can be obtained, which can then be utilized to predict the 
query point xq using the following:

The RBF kernel is utilized, which is defined as follows:

It should be noted that the proposed approach has three 
hyper-parameters that need to be tuned, while standard 
LS-SVMR with RBF kernels only require two tuning 
parameters. However, the hyper-parameter tuning process 
for the proposed approach is still straightforward. First, 
the parameter space for the additional tuning parameter 
(i.e., subset parameter fq ∈ (0, 1] ) is known, and thus, it 
is simple to incorporate the subset parameter fq with the 
regularization and kernel parameters into the parameter 
optimization process using the grid search algorithm. 
Moreover, although the grid search algorithm requires 
more computational effort to optimize three parameters 
(rather than two), this problem can be effectively solved 
using a parallel scheme. This is because different com-
binations of these three hyper-parameters are evaluated 
independently, which allows these different combinations 

(6)T(g) = f (x) =

{(
1 − |g|3)3, |g| < 1

𝜀, |g| ≥ 1
,

(7)ŷ
(
xq
)
=

r∑
s=1

�sK
(
xq, x(s)

)
+ b.

(8)K
�
xq, x(s)

�
= exp

�
−
‖xq − x(s)‖22

2�2
q

�
.

to be evaluated simultaneously rather than separately. This 
parallel scheme significantly enhances the computational 
efficiency.

2.2 � Detection of negative effects due to outliers 
by proposed RLWLS‑SVMR

As introduced in Sect. 2.1, the proposed RLWLS-SVMR is 
a robust local ML model. In this sense, all the points of the 
training set 

{(
xi, yi

)}n

i=1
 are not necessarily considered in 

the training procedure for prediction of an individual query 
point xq . Considering the fact that the outliers are just a 
small portion of the entire training set, it is possible that 
outliers only exist in certain regions of the training set rather 
than distributed across the entire training set. In this case, the 
advantage of the proposed RLWLS-SVMR model is distinct. 
This is because, given a query point xq , the selected subset {(
x(s), y(s)

)}r

s=1
 around the query point may not contain outli-

ers, or the subset may contain outliers, but the outliers are 
sufficiently far away from the query point (see Fig. 1), such 
that the outliers have little negative effect on the prediction 
of the query point.

Figure 1 shows a schematic sketch illustrating how an 
outlier affects the prediction of a query point. Figure 1(a) 
shows the case where an outlier (red square point) exists 
in a selected subset 

{(
x(s), y(s)

)}r

s=1
 but far away from the 

query point (black triangular point), while Fig. 1(b) shows 
the case where an outlier occurs close to the query point. 
Each point 

(
x(s), y(s)

)
 in this subset has a weight �q

(
x(s)

)
 , and 

points close to the query point have larger �q
(
x(s)

)
 while 

points far away from the query point have smaller �q
(
x(s)

)
 . 

In this way, points close to the query point have important 
contribution to the prediction of the query point, while those 
far away have little influence. If an outlier is far away from 
the query point, it is possible that the outlier will yield lit-
tle negative influence on the prediction of the query point 
(see Fig. 1a) due to the smaller �q

(
x(s)

)
 . This means that the 

weight vq
(
x(s)

)
= 1, s = 1,… , r in Eq. (5) does not need to 

be updated, since the outlier does not cause significantly 
negative interference on the prediction. Thus, it is necessary 
to detect these types of negative effects, such that a compu-
tationally expensive iteration procedure to update the value 
of the weight vq

(
x(s)

)
 is not needed.

This can be achieved by selecting an appropriate region 
encompassing the query point (e.g., the region enclosed 
by the blue dashed rectangle in Fig. 1) by way of imposing 
a threshold. Then, the residuals between observed and pre-
dicted values within this region can be calculated, and a 
bound (positive number) can be selected. If the absolute 
average of the calculated residuals is smaller than the 
bound, it means that the outlier has little negative effect 
on prediction of the query point (e.g., Fig. 1a); however, 
if the absolute average is greater than the bound, the 
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outlier is considered to have a sufficiently negative influ-
ence (e.g., Fig. 1b). The reason for choosing the absolute 
average of the residuals within the selected region as the 
judgment criterion is explained as follows. Considering 
the observation form yi = yitrue + ei , if the proposed 
RLWLS-SVMR with weight vq

(
x(s)

)
= 1 perfectly fits the 

true function, the predicted value will equal the true value 
( ̂yi = yitrue ). Thus, the residuals can be obtained by 

yi − ŷi = yi − yitrue = ei . As ei in classical statistical learn-
ing approaches is assumed zero mean [25], the absolute 
average of residuals within the selected region (i.e., the 
range within the blue dashed rectangle) will be zero, that 
is, 

||||E
({

ei
}l

i=1

)|||| = 0 (assume there are l data points within 

the blue dashed rectangle). The following algorithm based 
on the proposed RLWLS-SVMR is developed to realize 
this detection procedure:

In the above algorithm, flag = 1 represents the case 
when a negative influence is detected, while flag = 0 rep-
resents the opposite.

2.3 � Robust regression by iterative RLWLS‑SVMR

When outliers exist close to a query point xq in the sub-
set 

{(
x(s), y(s)

)}r

s=1
 , the response value predicted by the 

proposed RLWLS-SVMR with vq
(
x(s)

)
= 1, s = 1,… , r , 

for the query point xq will be negatively affected by those 
outliers (see Fig. 1b). Thus, the algorithm 2 is developed 
here to eliminate the negative influence of outliers based 
on the proposed RLWLS-SVMR by iteratively updating 
the weight vq

(
x(s)

)
 , as a function of es . These weights are 

computed via Eq. (9) and according to Suykens et al. [49]

                                              (a)                                                                                      (b)
x

y
Normal points
Query point
Outlier
True function
Fitted model

q(x(s)) threshold

q(x(s)) < threshold q(x(s)) < threshold

x

y

Normal points
Query point
Outlier
True function
Fitted model

q(x(s)) threshold

q(x(s)) < threshold q(x(s)) < threshold

Fig. 1   Schematic sketch for detection of negative effects due to an 
outlier: a outlier far away from the query point has a diminished 
negative effect on prediction of the query point; b outlier close to the 

query point has a significantly negative effect on prediction of the 
query point. (Color figure online)
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w h e r e  c1 = 2.5  ,  c2 = 3  ,  � = 10−4  ,  a n d 
� = 1.483MAD

({
es
}r

s=1

)
 is a robust estimate where MAD 

(9)vq
�
x(s)

�
=

⎧
⎪⎨⎪⎩

1 if ��es∕��� ≤ c1
c2−�es∕��
c2−c1

ifc1 ≤
��es∕��� ≤ c2

� otherwise

,

is the median absolute deviation and other variables are 
defined previously.

After the calculation of vq
(
x(s)

)
 is carried out, the itera-

tive RLWLS-SVMR to predict the response value of a 
query point xq is achieved by the following procedure:

Since there is no weight function vq
(
x(s)

)
 in the LWLS-

SVMR, the obtained Lagrange multiplier � and parameter 
b cannot be updated. If outliers surround the query points, 
the obtained � and b will be negatively affected, result-
ing in the final predictive model that is negatively influ-
enced by outliers. However, from Algorithm 2, it can be 
observed that, compared to LWLS-SVMR, the Lagrange 

multiplier � and parameter b for the proposed RLWLS-
SVMR can be updated in each iteration due to the update 
of the weight vq

(
x(s)

)
 until convergence is reached. At this 

time, the finally updated � and b can result in a predic-
tive model (i.e., Eq. 7) that is robust to both non-extreme 
and extreme outliers. This is because, in each iteration, 
the negative effect induced by non-extreme and extreme 
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outliers is reduced by the updated weight vq
(
x(s)

)
 , which 

in turn updates the predictive model by updating the 
Lagrange multiplier � and parameter b . When conver-
gence is reached, the negative effect from non-extreme and 
extreme outliers is almost eliminated, and thus, the finally 
updated predictive model is not affected by the outliers.

3 � Implementation of a hybrid algorithm 
for proposed RLWLS‑SVMR

This section introduces the implementation procedure of 
the proposed RLWLS-SVMR using a hybrid algorithm. As 
introduced in Sect. 2.2, outliers are only representative of a 

small amount of the training data, and therefore, not all of 
the regions will necessarily contain outliers. It is true that 
some query points may be far away from outliers. In this 
case, the negative effect from outliers for the predictions 
of these query points can be ignored, and the results pre-
dicted by LWLS-SVMR [i.e., the proposed RLWLS-SVMR 
with the weight vq

(
x(s)

)
= 1, s = 1,… , r ] can be trusted. By 

combining detection of the negative effect of outliers and 
the iterative version of RLWLS-SVMR, an efficient hybrid 
algorithm is developed to predict query points by adaptively 
using either LWLS-SVMR or iterative version of RLWLS-
SVMR depending on whether or not a negative effect is 
detected. The hybrid algorithm is implemented in this paper 
as the following:

In addition to the implementation of RLWLS-SVMR, other 
relevant ML approaches are also implemented for performance 
comparison. The relevant ML approaches are LS-SVMR [35], 
weighted LS-SVMR (WLS-SVMR) [49], and iterative WLS-
SVMR (IWLS-SVMR) [50]. Note that the LWLS-SVMR is 
already incorporated into the hybrid algorithm and the dis-
advantage of LWLS-SVMR for training input datasets cor-
rupted by outliers is already discussed in theory (Sect. 2.2). 
Thus, direct implementation of LWLS-SVMR is not included 
in this study. The LS-SVMR serves as the baseline, since 
other models used in this study are all variants of LS-SVMR, 
to address the problems associated with input datasets cor-
rupted by outliers. The main difference between the proposed 
RLWLS-SVMR and WLS-SVMR and IWLS-SVMR is that 
the RLWLS-SVMR is a robust, local model, whereas both 
WLS-SVMR and IWLS-SVMR are robust, global models. 
The difference between robust local and global models has 
been introduced in Sects. 1 and 2. The detailed formulations 
for LS-SVMR, WLS-SVMR, and IWLS-SVMR can be found 
in the original references [35, 49, 50]. The RBF kernel is also 
applied for both LS-SVMR, WLS-SVMR, and IWLS-SVMR. 
The optimal hyper-parameter combinations for all four models 

are obtained using fivefold cross-validation on the training data 
[61].

4 � Numerical experiments

This section presents three illustrative examples for validating 
the proposed approach. First, to assess the proposed approach 
for a dataset 

{(
xi, yi

)}n

i=1
 corrupted by outliers, we present 

two examples using both simulated and multi-dimensional 
real-world datasets. The proposed method is compared with 
LS-SVMR, WLS-SVMR, and IWLS-SVMR for all these 
two examples. Then, the proposed approach is applied for 
data-driven computational elasticity with a material dataset 
corrupted by outliers. The generalization performances for 
simulated datasets are quantified by the coefficient of deter-
mination (R2) (Eq. 10), mean absolute error (MAE) (Eq. 11), 
and root-mean-square error (RMSE) (Eq. 12). Since R2, MAE, 
and RMSE are sensitive to outliers in the test set, and the test 
set in the real-world datasets may contain outliers (i.e., we 
never know the true value in the real-world dataset, but we do 
know the true value in the simulated dataset), the performance 
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for real-world datasets is quantified by a robust variant of R2 
( R2

R
 ) (Eq. 13) [62], which has been successfully demonstrated 

as robust to outliers in the test set [63, 64]. Given response 
variable y =

{
yi
}n

i=1
 and predicted response ŷ =

{
ŷi
}n

i=1
 , R2, 

MAE, RMSE, and R2
R
 are calculated as follows:

where mad(y) = median(|y − median(y)|) is the median 
absolute deviation of y.

Both the original and robust variants of R2 are typically 
in the range of [0, 1] with 1 representing a perfect predic-
tion. However, in some cases, the R2 could be negative and 
a negative R2 value corresponds to extremely poor predic-
tion, which means that the model breaks down. Both MAE 
and RMSE values will be equal to or greater than 0, with 0 
representing perfect prediction. We now use a very simple 
example to illustrate that original R2, MAE, and RMSE 
are sensitive to outliers in the test set, but the robust vari-
ant of R2 is robust to outliers in the test set. Assume a 
response variable in the test set is corrupted by one outlier, 
y = (2, 4, 6, 8, 100, 12, 14) [i.e., the fifth element (100) is 
corrupted, and the actual value is 10]. A robust model is 
applied to predict the response values for the test set, and 
the predicted response is ŷ = (2, 4, 6, 8, 10, 12, 14) , which 
means that the robust model perfectly predicts the response 
in the test set. However, if we use the statistical indicators 
above (i.e., Eq. 10–13) to quantify the performance of 
the robust model, one can obtain the performance of this 
robust model is − 0.09, 12.86, 34.01, and 1, respectively. 
Therefore, only the robust variant of R2 reflects the actual 
performance of the robust model, and the other statistics 
are sensitive to outliers and fail to quantify the actual per-
formance. Note that if more outliers exist in the test set, 
the robust variant of R2 may also fail to reflect the actual 
performance, but it is still more robust than RMSE, MAE, 
and the original R2 [62].

(10)R2 = 1 −

∑n

i=1

�
yi − ŷi

�2
∑n

i=1

�
yi − y

�2

(11)MAE =
1

n

n∑
i=1

||yi − ŷi
||

(12)RMSE =

�∑n

i=1

�
yi − ŷi

�2
n

(13)R2
R
= 1 −

(
median

(||y − ŷ||
)

mad(y)

)2

,

4.1 � Example 1: simulated datasets

In this example, we generate four synthetic datasets cor-
rupted by four combinations of two different types of 
random error terms and two different types of outliers to 
show the robustness of RLWLS-SVMR. In the real-world, 
the random error term reflects the data noise that cannot 
be avoided (note that noise is not necessarily representa-
tive of an outlier [25]) as purely clean data are impossible 
[25]. The error model proposed by [65] is used to generate 
these four synthetic datasets. Specifically, the random error 
terms (i.e., noise) are simulated using Gaussian distribution 
of zero mean and either constant or non-constant variance. 
The outliers are simulated by either a Gaussian distribution 
with higher variance or a standard Cauchy distribution with 
heavy tails. In this setting, a dataset 

{(
xi, yi

)}n

i=1
 not cor-

rupted by outliers is simulated from a sinc function, which 
is defined in this way

where xi is drawn from a uniform distr ibution 
xi ∼ U[−10, 10] , and ei is a random error term that is drawn 
from a Gaussian distribution using either constant vari-
ance, i.e., ei ∼ N

(
0, 0.012

)
 or non-constant variance, i.e., 

ei ∼ N
(
0, �2

i

)
 and �i ∼ U[0.01, 0.05] . We select the smaller 

variance to distinguish the noise from outliers in the regres-
sion setting (Fig. 2).

The number of normal data points following the defi-
nition above is 162. Another 38 points are defined as the 
potential outliers, where ei is drawn from either a Gauss-
ian distribution with higher variance, i.e., ei ∼ N

(
0, 12

)
 

or a standard Cauchy distribution with heavy tails, i.e., 
ei ∼ C(0, 1) . A total of 200 data points, serving as the train-
ing data, are drawn from the mixture procedure introduced 
above. By setting different random number seeds, four 
combinations of error terms and outliers are performed to 
form four synthetic training datasets where the locations of 
outliers differ to more extensively evaluate the robustness 
of these four ML models, as shown in Fig. 2 (a, c, e, g). 
In Fig. 2, the four synthetic training datasets are shown in 
the left subfigures (a, c, e, g) which differ according to the 
error and outlier distributions as follows, while the cor-
responding test sets are shown in the right subfigures (b, d, 
f, h): (a, b) Synthetic 1: the error terms for normal points 
are drawn by ei ∼ N

(
0, 0.012

)
 and the potential outliers 

are drawn by ei ∼ N
(
0, 12

)
 ; (c, d) Synthetic 2: the error 

terms for normal points are drawn by ei ∼ N
(
0, �2

i

)
 and 

�i ∼ U[0.01, 0.05] , and the potential outliers are drawn by 
ei ∼ N

(
0, 12

)
 ; (e, f) Synthetic 3: the error terms for normal 

yi =
sin

(
xi
)

xi
+ ei,



3680	 Engineering with Computers (2023) 39:3671–3689

1 3

points are drawn by ei ∼ N
(
0, 0.012

)
 and the potential out-

liers are drawn by ei ∼ C(0, 1) ; and (g, h) Synthetic 4: the 
error terms for normal points are drawn by ei ∼ N

(
0, �2

i

)
 

and �i ∼ U[0.01, 0.05] and the potential outliers are drawn 

Fig. 2   Left subfigures (a, c, e, 
g): training of a sinc function 
with four synthetic training 
datasets (with various error and 
simulated outlier characteristics 
employed to plague the training 
data). Right subfigures (b, d, 
f, h): testing (estimation of the 
sinc function) by LS-SVMR, 
WLS-SVMR, IWLS-SVMR, 
and RLWLS-SVMR. (Color 
figure online)
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by ei ∼ C(0, 1) . Note that the potential outliers are only 
applied to the four synthetic training datasets. It is clearly 
observed that not all of the potential outliers are real outli-
ers, and only the points far from the bulk of the data points 
are true outliers (i.e., y-outliers). Another 200 independent 
test data points [i.e., Fig. 2 (b, d, f, h)] not corrupted by 
outliers (i.e., there are no outliers in the test data) corre-
sponding to four different synthetic training datasets are 
drawn to test the performance of data-driven regression 
constructed by LS-SVMR, WLS-SVMR, IWLS-SVMR, 
and the proposed RLWLS-SVMR. The scatter plots of 
training and test data as well as the predictions on the 
test data by LS-SVMR, WLS-SVMR, IWLS-SVMR, and 
RLWLS-SVMR are presented in Fig. 2.

It should be noted that for LS-SVMR, WLS-SVMR, and 
IWLS-SVMR, a global model is formed using the entire 
training dataset before predicting the query points in the 
test dataset. For the proposed RLWLS-SVMR, different 
query points in the test dataset (i.e., points in the test data-
set are also query points to be predicted) are predicted by 
distinct, individual local models formed by training differ-
ent subsets of training data to achieve trade-off between 
prediction capacities of learning systems and number of 
training data for different query points. A comparison 
of the results between LS-SVMR, WLS-SVMR, IWLS-
SVMR, and the proposed RLWLS-SVMR on the four test 
datasets is shown in Fig. 2(b, d, f, h). By observation, com-
pared to the true function, LS-SVMR is negatively affected 
by outliers, especially by those produced by the standard 
Cauchy distribution with heavy tails (i.e., extreme out-
liers), where the LS-SVMR is influenced heavily in the 

direction of outliers, leading to the significant deviation 
from the true function (Figs. 2f and h). The WLS-SVMR 
improves the performance of LS-SVMR but still suffers 
negative effects. By contrast, both IWLS-SVMR and the 
proposed RLWLS-SVMR perform much more robustly to 
both non-extreme and extreme outliers, where both meth-
ods overcome the negative interference from outliers and 
very closely fit the true function.

To show how the proposed approach works under the 
presence of non-extreme and extreme outliers in the train-
ing datasets, two points in the test datasets (i.e., red ‘X’ 
points in Figs. 2b and h) are selected to explicitly investi-
gate the relation between the predicted absolute error (i.e., |||ypredict − ytrue

||| ) and number of iterations. The reason to 
select these two points is because the location of one point 
(i.e., red ‘X’ points in the Figs.  2b) is next to a non-
extreme outlier in the training dataset (see Fig. 2a), and 
the location of another point (i.e., red ‘X’ points in the 
Figs. 2h) is close to an extreme outlier in the training data-
set (see Fig. 2g). This strategy can clearly show how the 
proposed method reduces the negative effect from non-
extreme and extreme outliers and further emphasizes how 
the proposed approach differs from the existing relevant 
approaches. The comparisons of results between LS-
SVMR, WLS-SVMR, IWLS-SVMR, and proposed 
RLWLS-SVMR are reported in Fig. 3. By observation of 
Fig. 3, when the number of iterations is equal to zero, the 
proposed RLWLS-SVMR produces the largest error under 
the presence of non-extreme (see Fig. 3a) and extreme (see 
Fig. 3b) outliers. This is because at this time, the weight 
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Fig. 3   The comparison of results in terms of predicted absolute error 
versus number of iterations for the selected two points (i.e., red ‘X’ 
points in Fig.  2b and h) between LS-SVMR, WLS-SVMR, IWLS-
SVMR, and proposed RLWLS-SVMR. a Non-extreme outlier case: 

results for the data point denoted by a red ‘X’ in Fig. 2b. b Extreme 
outlier case: results for the data point denoted by a red ‘X’ in Fig. 2h. 
(Color figure online)
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vq
(
x(s)

)
= 1 and is not updated (see steps 1b and c in Algo-

rithm 2 for more details), which results in the reversion of 
the proposed RLWLS-SVMR to LWLS-SVMR as intro-
duced in Sect. 2. Since the outliers are close to the selected 
two points, the LWLS-SVMR gives larger weights to outli-
ers, which enhances the negative effect of outliers and 
causes the largest error. However, when the number of 
iterations increases [i.e., the weight vq

(
x(s)

)
 is updated], 

the error produced by the proposed method decreases until 
it is no longer reduced (i.e., convergence is reached). This 
is reflected by the red ‘line + rectangular points’ in Fig. 3a 
and b. At this time, the proposed RLWLS-SVMR almost 
eliminates the negative effect induced by outliers and pro-
duces the predicted values that are close to the true values 
for the selected two points. Additionally, in comparison 
with the three global models (i.e., LS-SVMR, WLS-
SVMR, and IWLS-SVMR), the proposed RLWLS-SVMR 
yields the best performance, as shown in Fig. 3. This is 
because these three global models require the entire train-
ing dataset to be used for predicting the selected two 
points, while the proposed RLWLS-SVMR only requires 
the subsets nearby (or relevant to) the selected two points 
as introduced in Sect. 2. Therefore, the proposed approach 
further improves the performance of global models by 
both overcoming the negative interference of outliers and 
avoiding the potential negative influence of irrelevant 

points, achieving a suitable trade-off between the capacity 
of the learning system and the number of training data 
points.

Table 1 presents the metrics of original R2, RMSE, and 
MAE for LS-SVMR, WLS-SVMR, IWLS-SVMR, and 
RLWLS-SVMR in terms of test datasets. Since these data-
sets are simulated and we know the true values of them, 
these metrics can give correct quantifications for the actual 
performance of these four ML models. Thus, it can be 
concluded that both IWLS-SVMR and RLWLS-SVMR 
do adequately capture the true function, and the proposed 
RLWLS-SVMR has the highest R2 and lowest RMSE and 
MAE values, which deem it as the best model for these types 
of datasets among the four ML models.

4.2 � Example 2: multi‑dimensional real‑world 
datasets

To further investigate the robustness of the proposed 
RLWLS-SVMR for multi-dimensional problems and 
demonstrate its practical application in engineering, we 
employ four multi-dimensional real-world engineering 
datasets to test the model performance and compare it with 
LS-SVMR, WLS-SVMR, and IWLS-SVMR. These eight 
benchmark datasets (and associated tasks) are the follow-
ing: (1) Reinforced concrete (RC) columns (predicting the 
lateral strength) [66]; (2) Automobile characteristics (pre-
dicting the fuel consumption) [67]; (3) Servo (predicting 
the rising time of a servomechanism) [67]; and (4) Nelson 
(predicting the dielectric breakdown strength) [68]. The 
detailed information for all four real-world datasets can be 
found in the provided websites in the references. The final 
results are reported for all four datasets to demonstrate 
the broad application of the proposed approach in solving 
various engineering problems, and a detailed discussion of 
how the models perform is carried out for the RC column 
dataset to thoroughly explain the proposed approach and 
its performance.

Accurate modeling of lateral strength of RC columns is 
a very important topic in structural and earthquake engi-
neering, as the lateral strength is an important factor for 
the design of buildings [76, 77]. In this specific example, 
we test the prediction performance of LS-SVMR, WLS-
SVMR, IWLS-SVMR, and the proposed RLWLS-SVMR 
on lateral strength prediction of RC columns. A database 
including 160 RC circular columns is utilized. This database 
is extracted from the PEER Structural Performance Database 
compiled by Berry et al. [66]. The input predictors (i.e., 
explanatory variables) are column gross sectional area ( X1 ), 
concrete compressive strength ( X2 ), column cross-sectional 
effective depth ( X3 ), longitudinal reinforcement yield stress 
( X4 ) and area ( X5 ), transverse reinforcement yield stress ( X6 ) 

Table 1   Performance comparison between LS-SVMR, WLS-SVMR, 
IWLS-SVMR, and RLWLS-SVMR in terms of original R2, RMSE, 
and MAE

The synthetic datasets represent the training data corrupted by out-
liers and the original R2, RMSE, and MAE are computed on corre-
sponding test datasets between predicted and true values
The bold values represent the best performance

Datasets Models RMSE MAE R2

Synthetic dataset 1 LS-SVMR 0.1163 0.0742 0.5182
WLS-SVMR 0.1115 0.0589 0.5576
IWLS-SVMR 0.0213 0.0070 0.9839
RLWLS-SVMR 0.0052 0.0040 0.9990

Synthetic dataset 2 LS-SVMR 0.1380 0.0992 0.5834
WLS-SVMR 0.0847 0.0515 0.8428
IWLS-SVMR 0.0137 0.0106 0.9959
RLWLS-SVMR 0.0083 0.0051 0.9985

Synthetic dataset 3 LS-SVMR 1.7270 1.6301 -43.5127
WLS-SVMR 1.7160 1.6964 -42.9457
IWLS-SVMR 0.0490 0.0164 0.9642
RLWLS-SVMR 0.0019 0.0011 0.9999

Synthetic dataset 4 LS-SVMR 1.6499 1.0328 -42.4528
WLS-SVMR 0.1997 0.1062 0.3633
IWLS-SVMR 0.0229 0.0179 0.9916
RLWLS-SVMR 0.0085 0.0050 0.9989
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and area ( X7 ), stirrup spacing to effective depth ratio ( X8 ), 
shear span to effective depth ratio ( X9 ), and applied axial 
load ( X10 ), and the response variable is lateral strength ( y ), 
defined at the maximum shear force (kN) in the hysteretic 
force–deformation curve. Detailed information regarding 
this dataset can be found in Berry et al. [66].

We use a leave-one-out (LOO) cross-validation pro-
cedure [24] to test the performance of LS-SVMR, WLS-
SVMR, IWLS-SVMR, and RLWLS-SVMR on lateral 
strength prediction of these 160 RC columns as well as for 
the other seven real-world datasets. The performance of 
these ML models on prediction in these eight real-world 
datasets is quantified by the robust variant of R2 defined 
in Eq. (13). Note that the true values of the response vari-
ables in the real-world datasets are unknown. This is because 
the observed value of the response variables in real-world 

datasets contains a random error term (i.e., y = ytrue + e ), 
and the random error is unknown. If outliers exist in the 
real-world dataset, the original R2, RMSE, and MAE will 
be sensitive to these outliers and fail to reflect the prediction 
performance of these four ML models based on the LOO 
cross-validation procedure, while the robust variant of R2 
is more robust to outliers and can give a more objective 
evaluation, as discussed previously. Additionally, it is worth 
noting that a robust estimator is able to detect outliers where 
points possess large residuals from the robust estimation, 
while a non-robust estimator cannot be used for this purpose, 
because the outliers may possess very small residuals [25].

A comparison of results is presented in Fig. 4. By obser-
vation of Fig. 4, the green points in all four ML models flock 
around the red lines which indicates that the predicted and 
observed values are equal (i.e., perfect prediction). However, 
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Fig. 4   Comparison of results using leave-one-out (LOO) cross-validation procedure on 160 RC columns of: a LS-SVMR, b WLS-SVMR, c 
IWLS-SVMR, and d RLWLS-SVMR. (Color figure online)
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compared to IWLS-SVMR (Fig. 4c) and RLWLS-SVMR 
(Fig.  4d), the green points in LS-SVMR (Fig.  4a) and 
WLS-SVMR (Fig. 4b) are much more scattered. Addition-
ally, there are three red square points in all four ML models 
which are distant from the red lines. Compared to LS-SVMR 
and WLS-SVMR, the two red points (i.e., values more than 
1000 kN in the observed value direction in Fig. 4) in IWLS-
SVMR and RLWLS-SVMR are much further from the red 
lines, which lead to higher residuals (i.e., difference between 
observed and predicted values). The other remaining red 
point (i.e., value less than 1000 kN in the observed value 
direction in Fig. 4) appears to maintain nearly the same 
deviation in all four ML models (i.e., the residuals for this 
red point in all four ML models are almost equivalent).

By analysis of the dataset, it is found that these two red 
points (i.e., values more than 1000 kN in the observed value 
direction in Fig. 4) correspond to two full-scale column 
tests conducted by Stone and Cheok [69], where the sec-
tion dimensions (explanatory variable) and lateral strength 
(response variable) of these two columns are extreme values 
which are far larger than all other remaining columns in the 
dataset. It is also found that the other remaining red point 
corresponds to a column test performed by Priestley et al. 
[70] where the applied axial load (explanatory variable) on 
this column is an extreme value which is much larger than all 
other columns in the dataset. Thus, these three red points are 
detected and identified as high leverage points (i.e., extreme 
values in the x direction; note that this does not take y into 
account, and if a high leverage point is also an outlier, it 
will negatively affect the performance of a non-robust esti-
mator [25]). By observation of Fig. 4, it is evident that the 
LS-SVMR is influenced heavily in the direction of these 
two high leverage points [i.e., values more than 1000 kN 
(outliers)]. This negative effect for LS-SVMR is exhibited by 
smaller residuals for the two high leverage points (outliers) 
but greater scatter in the remaining points than the results 
for WLS-SVMR, IWLS-SVMR, and RLWLS-SVMR. The 
WLS-SVMR slightly reduces the negative interference from 
these points where the residuals are slightly larger, and the 
green points are slightly less scattered in comparison to LS-
SVMR. However, both IWLS-SVMR and RLWLS-SVMR 

improve the prediction on green points by significantly 
reducing the negative interference, where the green points 
are much less scattered and those two red points are far away 
from the red lines. The proposed RLWLS-SVMR performs 
better than IWLS-SVMR where the green points in RLWLS-
SVMR are less scattered than those in IWLS-SVMR. Since 
the other remaining red point does not deleteriously change 
the prediction for all four ML models, it can be concluded 
that this leverage point is a good leverage point, while the 
other two red points mentioned above are bad leverage 
points that are also outliers. The final results for the RC 
column dataset as well as for the other seven datasets men-
tioned previously are reported in Table 2. From Table 2, it 
is observed that the proposed RLWLS-SVMR performs best 
across all eight benchmark real-world datasets.

4.3 � Example 3: computational mechanics 
application

In computational mechanics, Kirchdoerfer and Ortiz [17] 
introduced the methodology of data-driven computational 
mechanics, where the traditional constitutive equations are 
substituted by the material dataset. This method has been 
extended to: identify the stress–strain relation of nonlinear 
elastic materials [13], problems with noisy material datasets 
[18], geometrically nonlinear problems [16], and dynamic 
problems [19]. Ibanez et  al. [6, 7] proposed a different 

Table 2   Performance comparison between LS-SVMR, WLS-SVMR, IWLS-SVMR and RLWLS-SVMR on four benchmark real-world engi-
neering datasets in terms of the robust variant of R2 using LOO cross-validation procedure

The bold values represent the best performance

Datasets Number of obser-
vations

Number of pre-
dictors

LS-SVMR WLS-SVMR IWLS-SVMR RLWLS-SVMR

Columns 160 10 0.9747 0.9756 0.9837 0.9928
Auto MPG 392 7 0.9393 0.9427 0.9434 0.9723
Servo 167 4 0.7367 0.8326 0.8789 0.9265
Nelson 128 2 0.8626 0.8657 0.8675 0.9012

Fig. 5   10 bar truss example taken from [12]
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data-driven method, which utilized a manifold learning tech-
nique to extract the constitutive manifold from a material 
dataset. This method has been applied to thermodynamic 
consistency problems [5] and to correct the hyperelastic 
models from data [9]. A series of spline interpolation meth-
ods have been developed to identify the stored energy in 
hyper-elasticity based on experimental data [71–75]. The 
material dataset may not only be higly noisy but also is likely 
corrupted by outliers. Although some of those mentioned 
methods have been validated to be effective and robust in 
the context of noisy material datasets, it is unclear if they are 
still robust in the presence of outliers in the material dataset 
(note that noise is not necessarily representative of an outlier 

[25]). In this paper, since the results shown in Sects. 4.2 and 
4.3 have demonstrated that the proposed approach has very 
good performance for data-driven regression in the pres-
ence of outliers, this section details the application of the 
proposed approach to data-driven computational mechan-
ics with a nonlinear material dataset consisting of 150 data 
points and corrupted by outliers. Specifically, we test the 
properties of RLWLS-SVMR by way of analysis of truss 
structures. To achieve this, the RLWLS-SVMR is incorpo-
rated into the data-driven solver in [12]. Consider a truss 
structure with m bars and denote u and p as the nodal dis-
placement vector and the external force vector, respectively. 
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Fig. 6   Material datasets used for the numerical experiments. a Material dataset 1 which is not corrupted by outliers. b Material dataset 2 which 
is corrupted by outliers
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The truss is subjected to compatibility conditions and force-
balance equation constraints, which are given by

where �i is the axial strain, �i is the axial stress, vi is the vol-
ume of member i , and bi ( i = 1,… ,m ) are constant vectors.

For a given experimental material dataset, which is 
denoted as 

{(
𝜀̌t, 𝜎̌t

)}d

t=1
 , where 𝜀̌t and 𝜎̌t are observed uni-

axial strain and stress values, respectively, and d is the num-
ber of observations. For each member i = 1,⋯ ,m , given a 

(14)�i = bT
i
u, i = 1,… ,m

(15)
∑m

i=1
vi�ibi = p,

material dataset 
{(

𝜀̌t, 𝜎̌t
)}d

t=1
 , the estimated stress �̂i at �i 

can be obtained using the proposed RLWLS-SVMR model, 
which is denoted as

Therefore, a data-driven solver for truss structures can be 
formulated by minimizing the following:

(16)𝜎̂i = f
(
𝜀i;

{(
𝜀̌t, 𝜎̌t

)}d

t=1

)
, i = 1,⋯ , m.

(17a)Minimize ∶ ‖‖� − �̂‖‖

(17b)Subject to ∶ Eqs.(14), (15), and (16).
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Fig. 8   Solutions obtained for � = 10 . a Solutions obtained based on Material dataset 1. b Solutions obtained based on Material dataset 2
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According to [12], Eq. (17a) and [18] can be reduced, 
such that it only solves a set of nonlinear equations. We 
utilize this method to solve Eq. (17a) [18] and the detailed 
implementation procedure can be found in [12].

A 10 bar truss taken from [12] is used as an illustrative 
example for validating the proposed data-driven solver. As 
shown in Fig. 5, the 10 bar truss is comprised of members 
with cross-sectional area of 2000 mm2. Two vertical external 
forces of 0.4� kN are applied at the bottom nodes, where � 
is a load multiplier. Figure 6 shows two material datasets 
where each is composed of 150 data points. Material dataset 
1, shown in Fig. 6(a), is taken from [12] and not corrupted 
by outliers. As a contrast, Fig. 6(b) shows Material dataset 
2, which is the same as Material dataset 1, but corrupted by 
outliers. The proposed data-driven solver is used to solve the 
10 bar truss using these two material datasets. Additionally, 
the data-driven solver in [12] is used for comparison.

Figure 7 shows the obtained equilibrium paths, where the 
variation of the vertical displacement for the bottom right-
most node is presented. Figure 7(a) shows the equilibrium 
paths obtained by the proposed data-driven solver based on 
the two material datasets. It is observed in Fig. 7(a) that 
although Material dataset 2 is corrupted by outliers, the pro-
posed data-driven solver can still be used to obtain the solu-
tions, which are almost the same as the solutions obtained 
based on Material dataset 1. This result demonstrates that 
the presence of outliers does not alter the solutions obtained 
by proposed data-driven solver. Figure 7(b) presents the equ-
librium paths obtained by the method in [12]. By obser-
vation, the data-driven solver in [12] is affected by outli-
ers, which is apparent based on the discrepancy between 
the solutions obtained based on Material datasets 1 and 2. 
Figure 8 shows a comparison of the solutions obtained for 
� = 10 . From Fig. 8(a) and (b), it is evident that both meth-
ods display some robustness to outliers. Figure 9 depicts the 
solutions for member A, as shown in Fig. 5. By comparing 
the results in Fig. 9(a) with those in Fig. 9(b), it is observed 
that the proposed data-driven solver obtains nearly the same 
solutions for both material datasets, while the method in [12] 
obtains slightly different solutions. All of these compari-
sons illustrate that the proposed data-driven solver is robust 
against outliers in a material dataset and is also more robust 
than the method proposed in [12].

5 � Conclusions

A novel robust ML approach is proposed for data-driven 
predictions in solving engineering problems, which is 
robust to input data corrupted by outliers. The proposed 
method is formulated as an optimization problem by cou-
pling LWLS-SVMR with one weight function to overcome 
the LWLS-SVMR’s drawback regarding lack of robustness 

to outliers close to query points, significantly reducing 
the negative interference of outliers. The formulation and 
implementation of the proposed method are introduced in 
detail. Furthermore, this method is a robust, local model, 
where prediction of a query point only requires the fit-
ting of a subset (not the entire training dataset) where the 
data points are relevant to the query point. In compari-
son to other robust, global approaches, this characteristic 
enables avoidance of a potential negative influence from 
irrelevant points and achieves a suitable trade-off between 
the capacity of the learning system and the size of the 
training dataset. Four one-dimensional simulated datasets 
corrupted by non-extreme and extreme outliers and four 
multi-dimensional real-world engineering datasets are 
employed to verify that the proposed approach is able to 
significantly reduce the negative effects of outliers. The 
proposed RLWLS-SVMR exhibits robustness to outli-
ers and performs best in comparison to the robust, global 
approaches in solving engineering problems. Furthermore, 
the proposed method is applied to produce a data-driven 
solver for structural analysis with a nonlinear material 
dataset corrupted by outliers. A truss structure is used to 
test the properties of the proposed data-driven solver. The 
results show that the proposed data-driven solver is robust 
against the presence of outliers in a material dataset.
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