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Abstract

Machine learning (ML)-based data-driven methods have promoted the progress of modeling in many engineering domains.
These methods can achieve high prediction and generalization performance for large, high-quality datasets. However, ML
methods can yield biased predictions if the observed data (i.e., response variable y) are corrupted by outliers. This paper
addresses this problem with a novel, robust ML approach that is formulated as an optimization problem by coupling locally
weighted least-squares support vector machines for regression (LWLS-SVMR) with one weight function. The weight is a
function of residuals and allows for iteration within the proposed approach, significantly reducing the negative interference of
outliers. A new efficient hybrid algorithm is developed to solve the optimization problem. The proposed approach is assessed
and validated by comparison with relevant ML approaches on both one-dimensional simulated datasets corrupted by various
outliers and multi-dimensional real-world engineering datasets, including datasets used for predicting the lateral strength of
reinforced concrete (RC) columns, the fuel consumption of automobiles, the rising time of a servomechanism, and dielectric
breakdown strength. Finally, the proposed method is applied to produce a data-driven solver for computational mechanics
with a nonlinear material dataset corrupted by outliers. The results all show that the proposed method is robust against non-
extreme and extreme outliers and improves the predictive performance necessary to solve various engineering problems.

Keywords Data-driven methods - Support vector machines - Robust regression - Outliers - Locally weighted least squares -
Nonlinear elasticity

1 Introduction

Data-driven methods, where progress in an activity (e.g.,
prediction or decision-making) is driven by data instead of
being driven by personal experience and inference, have
attracted considerable interest and also achieved great suc-
cess in the engineering fields [1-4]. For example, many such
methods [e.g., machine learning (ML) techniques] have been
applied to: extract constitutive manifolds [5—10], identify
the stress—strain relation [11-15], produce data-driven
solvers [16—19], and predict the strength and deformation
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of engineering structures and materials [20-23]. Typically,
the existing ML-based data-driven approaches are able to fit
and generalize the input data well and can produce extremely
good prediction capabilities if the input data are high quality
and reasonably large in size [24]. However, if the input data
are corrupted by outliers, these data-driven methods (e.g.,
methods for regression), especially those that are sensitive
to outliers, will yield unreliable prediction. Some of them
even break down when the data are contaminated by extreme
outliers. Outliers are those observations that are far away
from all other observations due to misplaced decimal points,
recording or transmission errors, or exceptional phenom-
ena. These are all common occurrences in real-world data
[25]. In general, there are two commonly employed ways
to deal with the outliers for regression problems [25]. The
first is to use robust regression approaches, while the second
method is to construct outlier diagnostics. A robust regres-
sion approach first fits a regression model that adequately
addresses the normal data points and then discovers the out-
liers as those points having large residuals estimated from
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the robust regression model [26-28]. On the contrary, outlier
diagnostics first identify the outliers and then remove them
and fit the remaining normal data points [29-32]. In some
applications, both methods yield exactly the same result.
However, outlier diagnostics may result in outliers which
are not entirely detected, leading to biased results, while
robust regression does not pose such a risk. For this reason,
attention of this paper is only focused on the robust regres-
sion approaches.

Robust regression approaches include least absolute
deviations (LAD), least trimmed squares (LTS), M-esti-
mators, etc., which were proposed to address the fact that
the least-squares (LS) method is easily affected by outli-
ers [25]. These robust methods were originally developed
for parametric regression (e.g., linear regression). Recently,
many efforts have been made to incorporate these regression
approaches into the reformulation of data-driven methods
to enhance their robustness. For example, LTS has been
integrated into backpropagation neural networks (BPNNs)
to replace the mean squared error (MSE) as the minimiza-
tion criterion [33], and LAD has been applied in random
forests (RFs) to replace the original LS as the splitting rule
for building the regression trees [34]. Least-squares support
vector machines for regression (LS-SVMR) [35] is one of
the more frequently used data-driven regression methods in
civil engineering disciplines [36—47]. The LS-SVMR [35]
is a reformulation of SVMR [48], which uses the sum of
squared errors (SSE) as the loss function and equality con-
straints in place of inequality constraints to greatly simplify
the SVMR formulation. Due to this, the LS-SVMR solves
a linear system problem instead of the complex quadratic
programming (QP) problem, leading to greater computa-
tional efficiency. However, the use of SSE as the loss func-
tion in the formulation of LS-SVMR leads to a non-robust
property. To overcome this problem, the weighted SSE has
been adapted as the loss function by Suykens et al. [49]
to substitute the original SSE for the reformulation of LS-
SVMR, which resulted in the new LS-SVMR variant called
WLS-SVMR that is robust to outliers. The weight function
used in WLS-SVMR is a function of residuals estimated by
LS-SVMR, where the potential outliers tend to have larger
residuals. The points which have larger residuals in the train-
ing set will then be assigned smaller weights to reduce their
associated negative influence. However, WLS-SVMR breaks
down under non-Gaussian noise distribution with heavy
tails (i.e., extreme outliers) [50]. To solve this problem, De
Brabanter et al. [50] proposed an iterative version of WLS-
SVMR (IWLS-SVMR), where the weights are updated in
each iteration to reduce the negative influence of extreme
outliers until convergence criteria are reached.

Both WLS-SVMR and IWLS-SVMR are robust, global
data-driven regression models, meaning that their solution
requires the fitting of the entire training set. However, in
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many cases, the performance of global models can be further
improved by local models [51-55]. As introduced in Bot-
tou and Vapnik [53], the local learning algorithms attempt
to locally adjust the capacity of the training system to the
properties of the training set in each area of the input space.
This results in a local model that only requires the fitting of
a subset of the training data nearby (relevant to) the query
point and can overcome the potential negative influence
of irrelevant points. Therefore, a robust, local model may
provide an improvement under these circumstances when
compared to the robust, global models. This is because the
robust, local model can yield a model that both overcomes
the negative interference of outliers and avoids the potential
negative influence of irrelevant points, achieving a suitable
trade-off between the capacity of the learning system and the
number of training data points [46, 53-55]. A local version
of LS-SVMR, called moving LS-SVMR (M-LS-SVMR),
was proposed by Karevan et al. [55] for weather temperature
prediction. In this method, the Gaussian- and cosine-based
weight functions are used to measure the similarity between
training sample and test data. However, this method does not
use a robust weighting scheme to reduce the negative influ-
ence of outliers. Further, the majority of existing local mod-
els are based on polynomial regression, which means that
the local models are polynomial functions [56-59]. These
local models are not real data-driven regression methods
because of the assumption of polynomial functions within
local regions. Thus, the families of such local models are out
of the scope of this paper. One local data-driven regression
model, called locally weighted LS-SVMR (LWLS-SVMR),
was recently developed for generalized prediction of the
drift capacity of RC columns [46]. LWLS-SVMR [46] inte-
grates LS-SVMR with a locally weighted learning algorithm
[56-59] to locally adjust the capacity of LS-SVMR to the
properties of the training set in each area of the input space,
thus enhancing the generalization performance of the LS-
SVMR. However, the use of SSE as the loss function and the
weight that is a function of the Euclidean distance between
data points in the training set and query points resulted in a
lack of robustness to outliers, especially those outliers close
to query points. This is because the SSE is sensitive to out-
liers [25] as introduced previously, and in LWLS-SVMR,
larger weights are given to points close to query points (i.e.,
small distances) and smaller weights are assigned to points
far away from the query points (i.e., large distances). This
formulation can lead LWLS-SVMR to produce a signifi-
cantly biased prediction on query points which are nearby
outliers (i.e., larger weights will be given to outliers, which
significantly increases the contribution of outliers to predic-
tion on query points).

Motivated by these existing solutions introduced pre-
viously, a novel, robust version of the local data-driven
regression model, LWLS-SVMR, called RLWLS-SVMR,
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is proposed in this paper to address the problem associated
with non-robustness of LWLS-SVMR to input data cor-
rupted by outliers. The proposed RLWLS-SVMR approach
is validated according to its capability to broaden the appli-
cation of LWLS-SVMR-based data-driven regression for
cases where the input data may be contaminated by both
non-extreme and extreme outliers. To be specific, three illus-
trative examples are given. First, simulated datasets with
non-extreme and extreme outliers are provided for validat-
ing the performance of the proposed approach in univariate
function approximation. Second, real-world multi-dimen-
sional datasets are used to demonstrate the performance of
the proposed method in multivariate function approximation
for practical prediction in engineering disciplines. Third, the
proposed approach is applied to extract the material proper-
ties for data-driven computational mechanics with a material
dataset corrupted by outliers. For each example, the pro-
posed approach is compared with existing relevant meth-
ods. The rest of this paper is organized as follows. Section 2
presents the methodology of the proposed RLWLS-SVMR,
including the formulation of the RLWLS-SVMR and an
iterative algorithm for RLWLS-SVMR. Section 3 presents
the implementation procedure based on a hybrid algorithm
of LWLS-SVMR and RLWLS-SVMR. Illustrative examples
are given in Sect. 4. Finally, in Sect. 5, the conclusions are
drawn.

2 Methodology

In this section, we present a novel robust data-driven regres-
sion approach, called robust LWLS-SVMR (RLWLS-
SVMR), which is designed to overcome the fact that LWLS-
SVMR is sensitive to outliers close to query points. The
main difference between RLWLS-SVMR and LWLS-SVMR
is the integration of an extra weight into the formulation of
RLWLS-SVMR, which is a function of residuals and allows
for iteration within the RLWLS-SVMR procedure, signifi-
cantly reducing the negative interference of outliers. The
major advantage of the proposed method over LWLS-SVMR
is that it not only establishes the data-driven regression that
is robust to input data contaminated by various types of out-
liers (i.e., non-extreme and extreme outliers) but also main-
tains the local nature, where, to predict a query point, the
entire set of training data does not need to be fit. Instead, it
only requires the fitting of a subset of training data nearby
(relevant to) the query point. These characteristics yield a
model that both overcomes the negative interference of outli-
ers and avoids the potential negative influence of irrelevant
points, achieving a suitable trade-off between the capac-
ity of the learning system and the number of training data
points. The detailed information regarding the mathematical

equations and derivations for the formulation of the pro-
posed RLWLS-SVMR is as follows.

2.1 Robust locally weighted least-squares support
vector machines for regression (RLWLS-SVMR)

This section presents the mathematical formulation of the
novel RLWLS-SVMR. Assume a multi-dimensional training
set {( x;, yl) } is collected from a domain of interest and
some observatlons (i.e., data points) have been corrupted by
outliers. For the remainder of this paper, the following nota-
tions are utilized. Let R be the real numbers set; x; € R” is
a column vector with p dimensions (i.e., p variables) which
can be written as x; = (x;;; ... ;x;,), and x” € R’ represents
the transpose of x; and is a row vector with p dimensions
which can be written as x” = (x;;.....x;,), y; € Ris a real
number; X € R is an nxp matrlx Wthh can be writ-
tenas X = (x,... ,xn) the training set { (x l,yl)}. is an
n X (p + 1) matrix which includes » data points and each data
point contains p explanatory variables (i.e., x; € R”) and one
response (i.e., y; € R).

The mathematical formulation of the proposed RLWLS-
SVMR is as follows:

(1) Given an independent test set { (x,.y, ) }I:zl that is not

included in the training set, for each query point
X, q= 1,...,m, where the response value Yy is to be
predicted and thus not considered in the following pro-
cess.

(2) Define a subset {(x(J) y(f))} from the training set
{( x;, yl) }l , by a parameter f, Where Jf, can take any
value in the range (0, 1]; the number of data points in
the subset is equivalent to r = Ceil(f, X n), and the
points in the subset are determined by the Euclidean
distance metric via the following procedure:

(a)) Calculate the Euclidean distance from each
data point in the training set to each query
point ||x,-—xq||,i= 1,....m;g=1,...,m, so
for each query point, there is a distance vector
dq = (dql, ,dqn),q =1,...m

(b)) Sort the entries in each distance vector
increasingly, so a new sorted distance vector
d(q) = (d(q]),. ,.d(qn)),q = 1 ...mis obtainel9;

(c)) The data pelnts in the training eet { (xl-,yl-) }[.:1,
corresponding to the first r entries in the sorted
distance vector d ) (i.e., d(y), - .- d(q,)) can be
selected as the subset { (x(s) y(s))} . Note that,
for different query points, the subset may vary.

(3) After the subset is determined, the learning objective of

the proposed RLWLS-SVMR is to solve an optimiza-
tion problem formulated by finding model parameters
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— e h PRI :
w = (wiw; ..., ) € R"and b € R, which is written @(+) : R* = R"is a mapping function from p dimensions to
as a higher h-dimensional feature space.
Note: X(5) is a column vector; thus, (/’(x(s)) is also a col-
| : (D
C . T r 2
Minimize : J(w,e,) = P+ 2, 2s=1 v, (x(s))ﬂq(x(s))es,q =1,-,m
Subject to 1 y,, = w'ep(x,)+b+e,s=1,--,r, ~ Umnvector.
2) If g, (x(s)) takes a value approaching €, it means the point
. . . is far away from the query point (x_, relativel
where Y, €ER.q= I,...,m 1is a regularization (x(s),y(x)) Y queryp ( q y")( Y

parameter; e, €R,s=1,...,r is the error term;
ﬁq(x(s)),vq(x(s)) €R,s=1,....,r;g=1,...,m are weights
that can take any value in the range[e, 1], §, (x(y) is a func-
tion of the Euclidean distance where data points in a sub-
set close to a query point have larger weights and far away
from the query point have smaller weights; v, (x(x)) is a func-
tion of the residual where data points in a subset around
the query point having large residuals have smaller weights
and having small residuals have larger weights ;e € Ris a
real number approaching 0; (p(x(s)) is a feature vector, and

I ow = Zr a,p(x)

oa

ow s=1
oL r
% = 0 - 0 = Za‘:l C{s

1 oL %
_:O—)esz—‘ssz 1’”.
de; no (x () ) ﬂq (x (s) )
oL

= 0oy = welx) + b+ e =

large Euclidean distance) and plays a lesser role in the deter-
mination of Vg while, if ﬂq (x(s)) takes a value approaching
one, it means the point (x), ) is close to the query point
(x,.y,) (relatively small Euclidean distance) and plays an
important role in the determination of y,.

The Lagrangian function is established by the Lagrange
multipliers method to solve Eqgs. (1) and (2)

L(w,be,a,) = J(w,e,) — Za-&' (wT(p(x(s)) +b+e —yy)

=1
3)
where @, € R,s = 1,...,r is a Lagrange multiplier (also
called support values).
The Karush—Kuhn—-Tucker (KKT) conditions for optimal-
ity are used by differentiating the variables in Eq. (3) above,
which results in the following:

“

1 I
1
UK (xa) *0) + s K(xa) *a)

1 K(x@)x)) K(x@) %) 1

1 K (%% 1)) K(x(),x0)

IR S
Yeve(¥))By ()

Rearranging Eq. (4) and eliminating w and e, using ker-
nel function replace the inner product of feature vectors,
the following matrix equation can be obtained:

1
b 0
K(xa) %) ol |y
1 (€8] (5)
K (%0, %()) o |=|ye
o K (%X, x,,) + ——— || % Yo
( « o) AN ACTEYE '
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where 9=1:--™ and the kernel function is
K?x(s),x(,)) =o' (xy)o(xy).s=1,....rt=1,....r.
For the determination of ﬁq(x(s)) ER,s=1,
...,riqg = 1,...,m, for each query point x,, let d,, be the
distance from x, to the ' nearest neighbor X, lie., d,
is the maximum distance compared to d(,y), ..., dy—1y)]-

and let g, (x,)) = T(a"1 Il ) —xq||>, where T(e) is a tri-

(gr)
cube weight function [56], which is defined as follows:
(1-1gP) " 1gl <1
T(g) =f(x) = , (6)
&gl 21

where € can take any values close to 0, and in this work, € =
le — 4 to avoid a zero in the denominator in Eq. (5).

The weight v, (x,) in Eq. (5) is associated with the
robustness to outliers close to a query point, and the deter-
mination oqu(x(s)) €R,s=1,...,rng=1,...,m, for each
query point x, is discussed in detail in the next sub-sec-
tion. The initial values of v, (x(s)) for all points in the subset
{ (x(s), y(s)) }:=1 are set to one. Since the coefficient matrix in
Eq. (5) is symmetric but not positive definite, it is difficult to
directly solve Eq. (5) as there may be no inverse of the coef-
ficient matrix which exists in the case where the coefficient
matrix is close to singular. The method proposed by Suykens
et al. [60] is used to solve this problem. After solving Eq. (5)
[60], the Lagrange multiplier & = (a,, ..., &) and parameter
b can be obtained, which can then be utilized to predict the
query point x,, using the following:

(x,) = X aK(x, %) +b. )

s=1

The RBF kernel is utilized, which is defined as follows:

ke, — x I
K(xq,x(s)) = exp(—T . (8)
q

It should be noted that the proposed approach has three
hyper-parameters that need to be tuned, while standard
LS-SVMR with RBF kernels only require two tuning
parameters. However, the hyper-parameter tuning process
for the proposed approach is still straightforward. First,
the parameter space for the additional tuning parameter
(i.e., subset parameter fq € (0, 1]) is known, and thus, it
is simple to incorporate the subset parameter f, with the
regularization and kernel parameters into the parameter
optimization process using the grid search algorithm.
Moreover, although the grid search algorithm requires
more computational effort to optimize three parameters
(rather than two), this problem can be effectively solved
using a parallel scheme. This is because different com-
binations of these three hyper-parameters are evaluated
independently, which allows these different combinations

to be evaluated simultaneously rather than separately. This
parallel scheme significantly enhances the computational
efficiency.

2.2 Detection of negative effects due to outliers
by proposed RLWLS-SVMR

As introduced in Sect. 2.1, the proposed RLWLS-SVMR is
a robust local ML model. In this sense, all the points of the
training set {(xi, yi) }?:1 are not necessarily considered in
the training procedure for prediction of an individual query
point x,. Considering the fact that the outliers are just a
small portion of the entire training set, it is possible that
outliers only exist in certain regions of the training set rather
than distributed across the entire training set. In this case, the
advantage of the proposed RLWLS-SVMR model is distinct.
This is because, given a query point x,, the selected subset
{(x()-¥) }_, around the query point may not contain outli-
ers, or the subset may contain outliers, but the outliers are
sufficiently far away from the query point (see Fig. 1), such
that the outliers have little negative effect on the prediction
of the query point.

Figure 1 shows a schematic sketch illustrating how an
outlier affects the prediction of a query point. Figure 1(a)
shows the case where an outlier (red square point) exists
in a selected subset { (x,).y(,) }._, but far away from the
query point (black triangular point), while Fig. 1(b) shows
the case where an outlier occurs close to the query point.
Each point (x(s), y(s)) in this subset has a weight B, (x(s)), and
points close to the query point have larger g, (x,)) while
points far away from the query point have smaller f, (x(x)).
In this way, points close to the query point have important
contribution to the prediction of the query point, while those
far away have little influence. If an outlier is far away from
the query point, it is possible that the outlier will yield lit-
tle negative influence on the prediction of the query point
(see Fig. 1a) due to the smaller 5, (x(s)), This means that the
weight v, (x,) = 1,s = 1,...,r in Eq. (5) does not need to
be updated, since the outlier does not cause significantly
negative interference on the prediction. Thus, it is necessary
to detect these types of negative effects, such that a compu-
tationally expensive iteration procedure to update the value
of the weight v, (x(x)) is not needed.

This can be achieved by selecting an appropriate region
encompassing the query point (e.g., the region enclosed
by the blue dashed rectangle in Fig. 1) by way of imposing
a threshold. Then, the residuals between observed and pre-
dicted values within this region can be calculated, and a
bound (positive number) can be selected. If the absolute
average of the calculated residuals is smaller than the
bound, it means that the outlier has little negative effect
on prediction of the query point (e.g., Fig. 1a); however,
if the absolute average is greater than the bound, the
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q7(s)” = ! ! i i
1 True function True function
||—Fitted model — Fitted model
1 o o
]
>‘ 1
1
]
]
U
14

(x,_,) < threshold

(s)

(a)

Fig. 1 Schematic sketch for detection of negative effects due to an
outlier: a outlier far away from the query point has a diminished
negative effect on prediction of the query point; b outlier close to the

outlier is considered to have a sufficiently negative influ-
ence (e.g., Fig. 1b). The reason for choosing the absolute
average of the residuals within the selected region as the
judgment criterion is explained as follows. Considering
the observation form y; =y;.. +e¢;, if the proposed
RLWLS-SVMR with weight v, (x(s)) = 1 perfectly fits the
true function, the predicted value will equal the true value
(¥; = Yime)- Thus, the residuals can be obtained by

Algorithm 1:

<threshold], ~ By X))

B¥s)) q

query point has a significantly negative effect on prediction of the
query point. (Color figure online)

Vi =i =¥ — Yirue = €;- As ¢, in classical statistical learn-
ing approaches is assumed zero mean [25], the absolute
average of residuals within the selected region (i.e., the
range within the blue dashed rectangle) will be zero, that

is, E({ei}izl >‘ = 0 (assume there are / data points within

the blue dashed rectangle). The following algorithm based
on the proposed RLWLS-SVMR is developed to realize
this detection procedure:

For each query point x,,q = 1,...,m, do

(a) Given an optimal combination ( for Vo aj), define a subset {(x(s), y(s))}zzland weights S, (x(s)) using Eq. (6);

(b) Set all weights v, (x(s)) in Eq. (5) for the subset {(x(), y(s))}:=1 to 1;

(c) Solve Eq. (5) to obtain «, b, and compute residuals e; = o/ (yqvq (x(s)),b’q (x(s))), where s = 1, ...,1;

(d) Set a threshold value and select the residuals within the region where the points having weights , (x(s)) are

greater than the threshold;

In the above algorithm, flag =1 represents the case
when a negative influence is detected, while flag=0 rep-
resents the opposite.

2.3 Robust regression by iterative RLWLS-SVMR

When outliers exist close to a query point x, in the sub-
r .
set {(x(s),y(x)) }v=1’ the response value predicted by the

@ Springer

proposed RLWLS-SVMR with v, (x)) = Ls=1,....7,
for the query point x, will be negatively affected by those
outliers (see Fig. 1b). Thus, the algorithm 2 is developed
here to eliminate the negative influence of outliers based
on the proposed RLWLS-SVMR by iteratively updating
the weight v, (x,,)). as a function of e,. These weights are
computed via Eq. (9) and according to Suykens et al. [49]
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1 lfles/él S Cl
cy—|eg /6 .
wlxe) =1 S ey <lese] <c ©
& otherwise
where ¢, =25, «¢=3, e=10", and
5 = 1.483MAD({e,}_, ) is a robust estimate where MAD

is the median absolute deviation and other variables are
defined previously.

After the calculation of v, (x(s)) is carried out, the itera-
tive RLWLS-SVMR to predict the response value of a
query point x, is achieved by the following procedure:

(e) Set a bound value and calculate the absolute of average of the selected residuals, and compare the absolute and

bound;
If absolute > bound then
Flag=1
else
Flag=0
end if
end for

For each query pointx,,q = 1,...,m, do
1. Initialization stage:

(a) Given an optimal combination ( for Yo a‘f), define a subset {(x(s), y(s))}zzland weights S, (x(s)) using Eq. (6);

(b) Set all weights v, (x(5)),s = 1, ..., 7 in Eq. (5) for the subset {(x(s),y(s))};l to 1;

(c) Solve Eq. (5) to obtain a, b, and compute e; = a;/ (yqvq (x(s))[)’q (x(s))), wheres =1, ..., 1.

2. Iterative stage:

Set the maximum iterative number N, tolerance tol, counti = 0, and t = Inf

while t > tol && i < N do

(@) Seta® = a, b® = b, e = ¢, and véi) (%) =
(b) Compute the robust estimate § @ = 1.483MAD ({

Vg (x(s)), s=1,..,r;
e, ... e0]):

(c) Update the weights vé”l) (x(s)) from §® and es(i) using Eq. (9);

(d) Solve Eq. (5) to obtain the a*?) and hU*1);

(e) Update the egi“) = as(i“)/ (yqv;iﬂ) (x(s))[)’q (x(s))),s =1,..r;

(f) Calculate t = ||a(i+1) - “(i)”?

(@) Seta = al*D, b = b, e = " and v, (x) = vé”l)(x(s)),s =1..r1;

(h)Seti=i+1
end while
3. Output stage:
(a) Output the final & and b from the procedure 2

(b) Given a and b, predict the response value J, of the query point x,, using Eq. (7).

end for

Since there is no weight function v, (x, ) in the LWLS-
SVMR, the obtained Lagrange multiplier @ and parameter
b cannot be updated. If outliers surround the query points,
the obtained a and b will be negatively affected, result-
ing in the final predictive model that is negatively influ-
enced by outliers. However, from Algorithm 2, it can be
observed that, compared to LWLS-SVMR, the Lagrange

multiplier @ and parameter b for the proposed RLWLS-
SVMR can be updated in each iteration due to the update
of the weight v, (x(s)) until convergence is reached. At this
time, the finally updated @ and b can result in a predic-
tive model (i.e., Eq. 7) that is robust to both non-extreme
and extreme outliers. This is because, in each iteration,
the negative effect induced by non-extreme and extreme
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outliers is reduced by the updated weight v, (x, ), which
in turn updates the predictive model by updating the
Lagrange multiplier @ and parameter b. When conver-
gence is reached, the negative effect from non-extreme and
extreme outliers is almost eliminated, and thus, the finally
updated predictive model is not affected by the outliers.

3 Implementation of a hybrid algorithm
for proposed RLWLS-SVMR

This section introduces the implementation procedure of
the proposed RLWLS-SVMR using a hybrid algorithm. As
introduced in Sect. 2.2, outliers are only representative of a

Hybrid algorithm:

small amount of the training data, and therefore, not all of
the regions will necessarily contain outliers. It is true that
some query points may be far away from outliers. In this
case, the negative effect from outliers for the predictions
of these query points can be ignored, and the results pre-
dicted by LWLS-SVMR [i.e., the proposed RLWLS-SVMR
with the weight v, (xi) = 1,s=1,...,r] canbe trusted. By
combining detection of the negative effect of outliers and
the iterative version of RLWLS-SVMR, an efficient hybrid
algorithm is developed to predict query points by adaptively
using either LWLS-SVMR or iterative version of RLWLS-
SVMR depending on whether or not a negative effect is
detected. The hybrid algorithm is implemented in this paper
as the following:

For each query point x,,q = 1,...,m, do

Given an optimal combination (fq,yq, 05), detect if there is any negative influence induced by outliers using

Algorithm 1
If flag =0 then

Predict the response J, of the query point x,; according to & and b obtained in Algorithm I using Eq. (7) and

record the predicted result;
else

Perform an iterative procedure using Algorithm 2 and record the final predicted result;

end if
end for

In addition to the implementation of RLWLS-SVMR, other
relevant ML approaches are also implemented for performance
comparison. The relevant ML approaches are LS-SVMR [35],
weighted LS-SVMR (WLS-SVMR) [49], and iterative WLS-
SVMR (IWLS-SVMR) [50]. Note that the LWLS-SVMR s
already incorporated into the hybrid algorithm and the dis-
advantage of LWLS-SVMR for training input datasets cor-
rupted by outliers is already discussed in theory (Sect. 2.2).
Thus, direct implementation of LWLS-SVMR is not included
in this study. The LS-SVMR serves as the baseline, since
other models used in this study are all variants of LS-SVMR,
to address the problems associated with input datasets cor-
rupted by outliers. The main difference between the proposed
RLWLS-SVMR and WLS-SVMR and IWLS-SVMR is that
the RLWLS-SVMR is a robust, local model, whereas both
WLS-SVMR and IWLS-SVMR are robust, global models.
The difference between robust local and global models has
been introduced in Sects. 1 and 2. The detailed formulations
for LS-SVMR, WLS-SVMR, and IWLS-SVMR can be found
in the original references [35, 49, 50]. The RBF kernel is also
applied for both LS-SVMR, WLS-SVMR, and IWLS-SVMR.
The optimal hyper-parameter combinations for all four models
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are obtained using fivefold cross-validation on the training data
[61].

4 Numerical experiments

This section presents three illustrative examples for validating
the proposed approach. First, to assess the proposed approach
for a dataset {(xl-, yi) }:.;1 corrupted by outliers, we present
two examples using both simulated and multi-dimensional
real-world datasets. The proposed method is compared with
LS-SVMR, WLS-SVMR, and IWLS-SVMR for all these
two examples. Then, the proposed approach is applied for
data-driven computational elasticity with a material dataset
corrupted by outliers. The generalization performances for
simulated datasets are quantified by the coefficient of deter-
mination (R?) (Eq. 10), mean absolute error (MAE) (Eq. 11),
and root-mean-square error (RMSE) (Eq. 12). Since R*, MAE,
and RMSE are sensitive to outliers in the test set, and the test
set in the real-world datasets may contain outliers (i.e., we
never know the true value in the real-world dataset, but we do
know the true value in the simulated dataset), the performance
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for real-world datasets is quantified by a robust variant of R
(R12e) (Eq. 13) [62], which has been successfully demonstrated
as robust to outliers in the test set [63, 64]. Given response

variable y = { y,-}:;l and predicted response y = {S}‘i}?zl, R?,
MAE, RMSE, and R12e are calculated as follows:
n 2
i= Yi— )i
R*=1- % (10)
o (=)
1 n
MAE = ;;Iy,»—y,»l (11
" 2
RMSE = 2ol (yi - yi) (12)
n
AN 2
) median(|y — 31)
Re=1 < mad(y) ’ (13)

where mad(y) = median(|ly — median(y)|) is the median
absolute deviation of y.

Both the original and robust variants of R? are typically
in the range of [0, 1] with 1 representing a perfect predic-
tion. However, in some cases, the R? could be negative and
a negative R” value corresponds to extremely poor predic-
tion, which means that the model breaks down. Both MAE
and RMSE values will be equal to or greater than 0, with 0
representing perfect prediction. We now use a very simple
example to illustrate that original R?>, MAE, and RMSE
are sensitive to outliers in the test set, but the robust vari-
ant of R? is robust to outliers in the test set. Assume a
response variable in the test set is corrupted by one outlier,
y=(2,4,6,8,100, 12, 14) [i.e., the fifth element (100) is
corrupted, and the actual value is 10]. A robust model is
applied to predict the response values for the test set, and
the predicted response is y = (2,4, 6,8, 10, 12, 14), which
means that the robust model perfectly predicts the response
in the test set. However, if we use the statistical indicators
above (i.e., Eq. 10-13) to quantify the performance of
the robust model, one can obtain the performance of this
robust model is —0.09, 12.86, 34.01, and 1, respectively.
Therefore, only the robust variant of R? reflects the actual
performance of the robust model, and the other statistics
are sensitive to outliers and fail to quantify the actual per-
formance. Note that if more outliers exist in the test set,
the robust variant of R* may also fail to reflect the actual
performance, but it is still more robust than RMSE, MAE,
and the original R? [62].

4.1 Example 1: simulated datasets

In this example, we generate four synthetic datasets cor-
rupted by four combinations of two different types of
random error terms and two different types of outliers to
show the robustness of RLWLS-SVMR. In the real-world,
the random error term reflects the data noise that cannot
be avoided (note that noise is not necessarily representa-
tive of an outlier [25]) as purely clean data are impossible
[25]. The error model proposed by [65] is used to generate
these four synthetic datasets. Specifically, the random error
terms (i.e., noise) are simulated using Gaussian distribution
of zero mean and either constant or non-constant variance.
The outliers are simulated by either a Gaussian distribution
with higher variance or a standard Cauchy distribution with
heavy tails. In this setting, a dataset {(xi,yi) }:.;1 not cor-
rupted by outliers is simulated from a sinc function, which
is defined in this way
sin (xi)
yi= +e;

X

where x; is drawn from a uniform distribution
x; ~ U[-10,10], and ¢, is a random error term that is drawn
from a Gaussian distribution using either constant vari-
ance, i.e., ¢; ~ N(O, 0.012) or non-constant variance, i.e.,
¢; ~ N(0,07) and o; ~ U[0.01,0.05]. We select the smaller
variance to distinguish the noise from outliers in the regres-
sion setting (Fig. 2).

The number of normal data points following the defi-
nition above is 162. Another 38 points are defined as the
potential outliers, where e; is drawn from either a Gauss-
ian distribution with higher variance, i.e., ¢; ~ N(0,1?)
or a standard Cauchy distribution with heavy tails, i.e.,
e; ~ C(0,1). A total of 200 data points, serving as the train-
ing data, are drawn from the mixture procedure introduced
above. By setting different random number seeds, four
combinations of error terms and outliers are performed to
form four synthetic training datasets where the locations of
outliers differ to more extensively evaluate the robustness
of these four ML models, as shown in Fig. 2 (a, c, e, g).
In Fig. 2, the four synthetic training datasets are shown in
the left subfigures (a, c, e, g) which differ according to the
error and outlier distributions as follows, while the cor-
responding test sets are shown in the right subfigures (b, d,
f, h): (a, b) Synthetic 1: the error terms for normal points
are drawn by e; ~ N(O, 0.012) and the potential outliers
are drawn by e; ~ N(O, 12); (c, d) Synthetic 2: the error
terms for normal points are drawn by e; ~ N(O, al.z) and
o; ~ U[0.01,0.05], and the potential outliers are drawn by
e; ~ N(0,1?); (e, f) Synthetic 3: the error terms for normal

@ Springer



3680

Engineering with Computers (2023) 39:3671-3689

Fig.2 Left subfigures (a, c, e,
g): training of a sinc function
with four synthetic training
datasets (with various error and
simulated outlier characteristics
employed to plague the training
data). Right subfigures (b, d,

f, h): testing (estimation of the
sinc function) by LS-SVMR,
WLS-SVMR, IWLS-SVMR,
and RLWLS-SVMR. (Color
figure online)

Normal pt
ol Potential outliers | {
1F e ° 1
o 00g °
8e8 L *®
> 0 S Do e ¥y 0 0, 0 Moo gmtnn ¢
ar . ’ il Ty 1
ol ° ]
_-10 8 6 4 -2 0 2 4 6 8 10
X
(a)
3
2r o
® e
1r ° e . 1
. S o B
° S v * °
> 0 gtre S e FOT o o Tageiapeagain ¢
o ° e © @ ]
o
2t N
10 8 6 4 -2 0 2 4 6 8 10
X
(©

points are drawn by e; ~ N(0,0.01%) and the potential out-
liers are drawn by e; ~ C(0, 1); and (g, h) Synthetic 4: the

@ Springer

> 4r 4
6F ]
81 o0 4

o ©o 000 o °® .o ©, © % e © o o
-10
-10 8 6 4 -2 0 2 4 6 8 10
X
(e
60
a0l ° Normal points °
= Potential outliers
20 -
0 gacoe o ¥
-20 -

> 40+ p

-60 -

-80 - .

-100

-120

_140 L L L L L L ° L L

10 8 6 4 -2 0 2 4 6 8 10

X
(&

o Testset

True function
+LS-SVMR
~WLS-SVMR
=IWLS-SVMR
----- RLWLS-SVMR

X
(b)
2
o Test set
sl True function
---------- LS-SVMR
| P WLS-SVMR
- - -IWLS-SVMR
----- RLWLS-SVMR

o Testset
15t True function
~LS-SVMR

e WLS-SVMR
== -IWLS-SVMR
----- RLWLS-SVMR

o Testset

True function
LS-SVMR
WLS-SVMR
=-IWLS-SVMR
-~RLWLS-SVMR

error terms for normal points are drawn by e¢; ~ N (0, al.z)
and o; ~ U[0.01, 0.05] and the potential outliers are drawn



Engineering with Computers (2023) 39:3671-3689

0.6
—A— |WLS-SVMR
05T . WLS-SVMR ||
—+—LS-SVMR
oo, —=—RLWLS-SVMR| |
204
>
1
5 0.3F 1
g
o
2Q 0.2+ 1
A
0.1+ 1
0 Il I - I Il Il
0 1 2 3 4 5 6 7 8
lterations
(a)

Fig.3 The comparison of results in terms of predicted absolute error
versus number of iterations for the selected two points (i.e., red ‘X’
points in Fig. 2b and h) between LS-SVMR, WLS-SVMR, IWLS-
SVMR, and proposed RLWLS-SVMR. a Non-extreme outlier case:

by e; ~ C(0,1). Note that the potential outliers are only
applied to the four synthetic training datasets. It is clearly
observed that not all of the potential outliers are real outli-
ers, and only the points far from the bulk of the data points
are true outliers (i.e., y-outliers). Another 200 independent
test data points [i.e., Fig. 2 (b, d, f, h)] not corrupted by
outliers (i.e., there are no outliers in the test data) corre-
sponding to four different synthetic training datasets are
drawn to test the performance of data-driven regression
constructed by LS-SVMR, WLS-SVMR, IWLS-SVMR,
and the proposed RLWLS-SVMR. The scatter plots of
training and test data as well as the predictions on the
test data by LS-SVMR, WLS-SVMR, IWLS-SVMR, and
RLWLS-SVMR are presented in Fig. 2.

It should be noted that for LS-SVMR, WLS-SVMR, and
IWLS-SVMR, a global model is formed using the entire
training dataset before predicting the query points in the
test dataset. For the proposed RLWLS-SVMR, different
query points in the test dataset (i.e., points in the test data-
set are also query points to be predicted) are predicted by
distinct, individual local models formed by training differ-
ent subsets of training data to achieve trade-off between
prediction capacities of learning systems and number of
training data for different query points. A comparison
of the results between LS-SVMR, WLS-SVMR, IWLS-
SVMR, and the proposed RLWLS-SVMR on the four test
datasets is shown in Fig. 2(b, d, f, h). By observation, com-
pared to the true function, LS-SVMR is negatively affected
by outliers, especially by those produced by the standard
Cauchy distribution with heavy tails (i.e., extreme out-
liers), where the LS-SVMR is influenced heavily in the
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results for the data point denoted by a red ‘X’ in Fig. 2b. b Extreme
outlier case: results for the data point denoted by a red ‘X’ in Fig. 2h.
(Color figure online)

direction of outliers, leading to the significant deviation
from the true function (Figs. 2f and h). The WLS-SVMR
improves the performance of LS-SVMR but still suffers
negative effects. By contrast, both IWLS-SVMR and the
proposed RLWLS-SVMR perform much more robustly to
both non-extreme and extreme outliers, where both meth-
ods overcome the negative interference from outliers and
very closely fit the true function.

To show how the proposed approach works under the
presence of non-extreme and extreme outliers in the train-
ing datasets, two points in the test datasets (i.e., red ‘X’
points in Figs. 2b and h) are selected to explicitly investi-
gate the relation between the predicted absolute error (i.e.,
’yp,edict - ytme‘) and number of iterations. The reason to

select these two points is because the location of one point
(i.e., red ‘X’ points in the Figs. 2b) is next to a non-
extreme outlier in the training dataset (see Fig. 2a), and
the location of another point (i.e., red ‘X’ points in the
Figs. 2h) is close to an extreme outlier in the training data-
set (see Fig. 2g). This strategy can clearly show how the
proposed method reduces the negative effect from non-
extreme and extreme outliers and further emphasizes how
the proposed approach differs from the existing relevant
approaches. The comparisons of results between LS-
SVMR, WLS-SVMR, IWLS-SVMR, and proposed
RLWLS-SVMR are reported in Fig. 3. By observation of
Fig. 3, when the number of iterations is equal to zero, the
proposed RLWLS-SVMR produces the largest error under
the presence of non-extreme (see Fig. 3a) and extreme (see
Fig. 3b) outliers. This is because at this time, the weight
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Table 1 Performance comparison between LS-SVMR, WLS-SVMR,
IWLS-SVMR, and RLWLS-SVMR in terms of original R2, RMSE,
and MAE

Datasets Models RMSE MAE R?
Synthetic dataset I LS-SVMR 0.1163 0.0742 0.5182
WLS-SVMR 0.1115 0.0589 0.5576
IWLS-SVMR 0.0213  0.0070 0.9839
RLWLS-SVMR  0.0052  0.0040 0.9990
Synthetic dataset2 LS-SVMR 0.1380 0.0992 0.5834
WLS-SVMR 0.0847 0.0515 0.8428
IWLS-SVMR 0.0137 0.0106 0.9959
RLWLS-SVMR  0.0083 0.0051 0.9985
Synthetic dataset 3 LS-SVMR 1.7270 1.6301 -43.5127
WLS-SVMR 1.7160 1.6964 -42.9457
IWLS-SVMR 0.0490 0.0164 0.9642
RLWLS-SVMR  0.0019 0.0011 0.9999
Synthetic dataset 4 LS-SVMR 1.6499 1.0328 -42.4528
WLS-SVMR 0.1997 0.1062 0.3633
IWLS-SVMR 0.0229 0.0179 0.9916
RLWLS-SVMR  0.0085 0.0050 0.9989

The synthetic datasets represent the training data corrupted by out-
liers and the original R%, RMSE, and MAE are computed on corre-
sponding test datasets between predicted and true values

The bold values represent the best performance

v,(x)) = 1and is not updated (see steps 1b and ¢ in Algo-
rithm 2 for more details), which results in the reversion of
the proposed RLWLS-SVMR to LWLS-SVMR as intro-
duced in Sect. 2. Since the outliers are close to the selected
two points, the LWLS-SVMR gives larger weights to outli-
ers, which enhances the negative effect of outliers and
causes the largest error. However, when the number of
iterations increases [i.e., the weight v, (x,) is updated],
the error produced by the proposed method decreases until
it is no longer reduced (i.e., convergence is reached). This
is reflected by the red ‘line + rectangular points’ in Fig. 3a
and b. At this time, the proposed RLWLS-SVMR almost
eliminates the negative effect induced by outliers and pro-
duces the predicted values that are close to the true values
for the selected two points. Additionally, in comparison
with the three global models (i.e., LS-SVMR, WLS-
SVMR, and IWLS-SVMR), the proposed RLWLS-SVMR
yields the best performance, as shown in Fig. 3. This is
because these three global models require the entire train-
ing dataset to be used for predicting the selected two
points, while the proposed RLWLS-SVMR only requires
the subsets nearby (or relevant to) the selected two points
as introduced in Sect. 2. Therefore, the proposed approach
further improves the performance of global models by
both overcoming the negative interference of outliers and
avoiding the potential negative influence of irrelevant
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points, achieving a suitable trade-off between the capacity
of the learning system and the number of training data
points.

Table 1 presents the metrics of original R2, RMSE, and
MAE for LS-SVMR, WLS-SVMR, IWLS-SVMR, and
RLWLS-SVMR in terms of test datasets. Since these data-
sets are simulated and we know the true values of them,
these metrics can give correct quantifications for the actual
performance of these four ML models. Thus, it can be
concluded that both IWLS-SVMR and RLWLS-SVMR
do adequately capture the true function, and the proposed
RLWLS-SVMR has the highest R> and lowest RMSE and
MAE values, which deem it as the best model for these types
of datasets among the four ML models.

4.2 Example 2: multi-dimensional real-world
datasets

To further investigate the robustness of the proposed
RLWLS-SVMR for multi-dimensional problems and
demonstrate its practical application in engineering, we
employ four multi-dimensional real-world engineering
datasets to test the model performance and compare it with
LS-SVMR, WLS-SVMR, and IWLS-SVMR. These eight
benchmark datasets (and associated tasks) are the follow-
ing: (1) Reinforced concrete (RC) columns (predicting the
lateral strength) [66]; (2) Automobile characteristics (pre-
dicting the fuel consumption) [67]; (3) Servo (predicting
the rising time of a servomechanism) [67]; and (4) Nelson
(predicting the dielectric breakdown strength) [68]. The
detailed information for all four real-world datasets can be
found in the provided websites in the references. The final
results are reported for all four datasets to demonstrate
the broad application of the proposed approach in solving
various engineering problems, and a detailed discussion of
how the models perform is carried out for the RC column
dataset to thoroughly explain the proposed approach and
its performance.

Accurate modeling of lateral strength of RC columns is
a very important topic in structural and earthquake engi-
neering, as the lateral strength is an important factor for
the design of buildings [76, 77]. In this specific example,
we test the prediction performance of LS-SVMR, WLS-
SVMR, IWLS-SVMR, and the proposed RLWLS-SVMR
on lateral strength prediction of RC columns. A database
including 160 RC circular columns is utilized. This database
is extracted from the PEER Structural Performance Database
compiled by Berry et al. [66]. The input predictors (i.e.,
explanatory variables) are column gross sectional area (X)),
concrete compressive strength (X,), column cross-sectional
effective depth (Xj3), longitudinal reinforcement yield stress
(X,) and area (X5), transverse reinforcement yield stress (X)
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Fig.4 Comparison of results using leave-one-out (LOO) cross-validation procedure on 160 RC columns of: a LS-SVMR, b WLS-SVMR, ¢

IWLS-SVMR, and d RLWLS-SVMR. (Color figure online)

and area (X;), stirrup spacing to effective depth ratio (Xy),
shear span to effective depth ratio (Xy), and applied axial
load (X)), and the response variable is lateral strength (y),
defined at the maximum shear force (kN) in the hysteretic
force—deformation curve. Detailed information regarding
this dataset can be found in Berry et al. [66].

We use a leave-one-out (LOO) cross-validation pro-
cedure [24] to test the performance of LS-SVMR, WLS-
SVMR, IWLS-SVMR, and RLWLS-SVMR on lateral
strength prediction of these 160 RC columns as well as for
the other seven real-world datasets. The performance of
these ML models on prediction in these eight real-world
datasets is quantified by the robust variant of R? defined
in Eq. (13). Note that the true values of the response vari-
ables in the real-world datasets are unknown. This is because
the observed value of the response variables in real-world

datasets contains a random error term (i.e., y =y, + €),
and the random error is unknown. If outliers exist in the
real-world dataset, the original R?, RMSE, and MAE will
be sensitive to these outliers and fail to reflect the prediction
performance of these four ML models based on the LOO
cross-validation procedure, while the robust variant of R?
is more robust to outliers and can give a more objective
evaluation, as discussed previously. Additionally, it is worth
noting that a robust estimator is able to detect outliers where
points possess large residuals from the robust estimation,
while a non-robust estimator cannot be used for this purpose,
because the outliers may possess very small residuals [25].

A comparison of results is presented in Fig. 4. By obser-
vation of Fig. 4, the green points in all four ML models flock
around the red lines which indicates that the predicted and
observed values are equal (i.e., perfect prediction). However,
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Table 2 Performance comparison between LS-SVMR, WLS-SVMR, IWLS-SVMR and RLWLS-SVMR on four benchmark real-world engi-
neering datasets in terms of the robust variant of R? using LOO cross-validation procedure

Datasets Number of obser- ~ Number of pre- LS-SVMR WLS-SVMR IWLS-SVMR RLWLS-SVMR
vations dictors

Columns 160 10 0.9747 0.9756 0.9837 0.9928

Auto MPG 392 7 0.9393 0.9427 0.9434 0.9723

Servo 167 4 0.7367 0.8326 0.8789 0.9265

Nelson 128 2 0.8626 0.8657 0.8675 0.9012

The bold values represent the best performance

compared to IWLS-SVMR (Fig. 4c) and RLWLS-SVMR
(Fig. 4d), the green points in LS-SVMR (Fig. 4a) and
WLS-SVMR (Fig. 4b) are much more scattered. Addition-
ally, there are three red square points in all four ML models
which are distant from the red lines. Compared to LS-SVMR
and WLS-SVMR, the two red points (i.e., values more than
1000 kN in the observed value direction in Fig. 4) in IWLS-
SVMR and RLWLS-SVMR are much further from the red
lines, which lead to higher residuals (i.e., difference between
observed and predicted values). The other remaining red
point (i.e., value less than 1000 kN in the observed value
direction in Fig. 4) appears to maintain nearly the same
deviation in all four ML models (i.e., the residuals for this
red point in all four ML models are almost equivalent).

By analysis of the dataset, it is found that these two red
points (i.e., values more than 1000 kN in the observed value
direction in Fig. 4) correspond to two full-scale column
tests conducted by Stone and Cheok [69], where the sec-
tion dimensions (explanatory variable) and lateral strength
(response variable) of these two columns are extreme values
which are far larger than all other remaining columns in the
dataset. It is also found that the other remaining red point
corresponds to a column test performed by Priestley et al.
[70] where the applied axial load (explanatory variable) on
this column is an extreme value which is much larger than all
other columns in the dataset. Thus, these three red points are
detected and identified as high leverage points (i.e., extreme
values in the x direction; note that this does not take y into
account, and if a high leverage point is also an outlier, it
will negatively affect the performance of a non-robust esti-
mator [25]). By observation of Fig. 4, it is evident that the
LS-SVMR is influenced heavily in the direction of these
two high leverage points [i.e., values more than 1000 kN
(outliers)]. This negative effect for LS-SVMR is exhibited by
smaller residuals for the two high leverage points (outliers)
but greater scatter in the remaining points than the results
for WLS-SVMR, IWLS-SVMR, and RLWLS-SVMR. The
WLS-SVMR slightly reduces the negative interference from
these points where the residuals are slightly larger, and the
green points are slightly less scattered in comparison to LS-
SVMR. However, both IWLS-SVMR and RLWLS-SVMR

@ Springer

improve the prediction on green points by significantly
reducing the negative interference, where the green points
are much less scattered and those two red points are far away
from the red lines. The proposed RLWLS-SVMR performs
better than IWLS-SVMR where the green points in RLWLS-
SVMR are less scattered than those in IWLS-SVMR. Since
the other remaining red point does not deleteriously change
the prediction for all four ML models, it can be concluded
that this leverage point is a good leverage point, while the
other two red points mentioned above are bad leverage
points that are also outliers. The final results for the RC
column dataset as well as for the other seven datasets men-
tioned previously are reported in Table 2. From Table 2, it
is observed that the proposed RLWLS-SVMR performs best
across all eight benchmark real-world datasets.

4.3 Example 3: computational mechanics
application

In computational mechanics, Kirchdoerfer and Ortiz [17]
introduced the methodology of data-driven computational
mechanics, where the traditional constitutive equations are
substituted by the material dataset. This method has been
extended to: identify the stress—strain relation of nonlinear
elastic materials [13], problems with noisy material datasets
[18], geometrically nonlinear problems [16], and dynamic
problems [19]. Ibanez et al. [6, 7] proposed a different

3.6m

(A) 0.41 kN 0.41 kN

3.6m 3.6 m

Fig.5 10 bar truss example taken from [12]
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Fig. 6 Material datasets used for the numerical experiments. a Material dataset 1 which is not corrupted by outliers. b Material dataset 2 which

is corrupted by outliers
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Fig. 7 Obtained equilibrium paths based on two material datasets. a Solutions of the proposed method. b Solutions obtained by the method in

[12]

data-driven method, which utilized a manifold learning tech-
nique to extract the constitutive manifold from a material
dataset. This method has been applied to thermodynamic
consistency problems [5] and to correct the hyperelastic
models from data [9]. A series of spline interpolation meth-
ods have been developed to identify the stored energy in
hyper-elasticity based on experimental data [71-75]. The
material dataset may not only be higly noisy but also is likely
corrupted by outliers. Although some of those mentioned
methods have been validated to be effective and robust in
the context of noisy material datasets, it is unclear if they are
still robust in the presence of outliers in the material dataset
(note that noise is not necessarily representative of an outlier

[25]). In this paper, since the results shown in Sects. 4.2 and
4.3 have demonstrated that the proposed approach has very
good performance for data-driven regression in the pres-
ence of outliers, this section details the application of the
proposed approach to data-driven computational mechan-
ics with a nonlinear material dataset consisting of 150 data
points and corrupted by outliers. Specifically, we test the
properties of RLWLS-SVMR by way of analysis of truss
structures. To achieve this, the RLWLS-SVMR is incorpo-
rated into the data-driven solver in [12]. Consider a truss
structure with m bars and denote u# and p as the nodal dis-
placement vector and the external force vector, respectively.

@ Springer
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Fig. 9 Results comparison for obtained strains and stresses of member (A). a Results obtained based on material dataset 1. b Results obtained

based on material dataset 2

The truss is subjected to compatibility conditions and force-
balance equation constraints, which are given by

g=blui=1..m (14)

m
Zi:] viobi = p,

where ¢, is the axial strain, o; is the axial stress, v; is the vol-

ume of member i, and b, (i = 1, ..., m) are constant vectors.
For a given experimental material dataset, which is

v v\ 4 v v .

denoted as {(5,, o-l)} , where £, and &, are observed uni-

=1 t t

axial strain and stress values, respectively, and d is the num-

ber of observations. For each memberi = 1, ---,m, given a

s)

@ Springer

material dataset {(ét 6,) }7:1, the estimated stress o; at €,
can be obtained using the proposed RLWLS-SVMR model,
which is denoted as

5, =f<s[;{(é,, &t)}le),i =1, m.

Therefore, a data-driven solver for truss structures can be
formulated by minimizing the following:

(16)

Minimize : ||o — || (17a)

Subject to : Eqgs.(14), (15), and (16). (17b)
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According to [12], Eq. (17a) and [18] can be reduced,
such that it only solves a set of nonlinear equations. We
utilize this method to solve Eq. (17a) [18] and the detailed
implementation procedure can be found in [12].

A 10 bar truss taken from [12] is used as an illustrative
example for validating the proposed data-driven solver. As
shown in Fig. 5, the 10 bar truss is comprised of members
with cross-sectional area of 2000 mm?. Two vertical external
forces of 0.44 kN are applied at the bottom nodes, where A
is a load multiplier. Figure 6 shows two material datasets
where each is composed of 150 data points. Material dataset
1, shown in Fig. 6(a), is taken from [12] and not corrupted
by outliers. As a contrast, Fig. 6(b) shows Material dataset
2, which is the same as Material dataset 1, but corrupted by
outliers. The proposed data-driven solver is used to solve the
10 bar truss using these two material datasets. Additionally,
the data-driven solver in [12] is used for comparison.

Figure 7 shows the obtained equilibrium paths, where the
variation of the vertical displacement for the bottom right-
most node is presented. Figure 7(a) shows the equilibrium
paths obtained by the proposed data-driven solver based on
the two material datasets. It is observed in Fig. 7(a) that
although Material dataset 2 is corrupted by outliers, the pro-
posed data-driven solver can still be used to obtain the solu-
tions, which are almost the same as the solutions obtained
based on Material dataset 1. This result demonstrates that
the presence of outliers does not alter the solutions obtained
by proposed data-driven solver. Figure 7(b) presents the equ-
librium paths obtained by the method in [12]. By obser-
vation, the data-driven solver in [12] is affected by outli-
ers, which is apparent based on the discrepancy between
the solutions obtained based on Material datasets 1 and 2.
Figure 8 shows a comparison of the solutions obtained for
4 =10. From Fig. 8(a) and (b), it is evident that both meth-
ods display some robustness to outliers. Figure 9 depicts the
solutions for member A, as shown in Fig. 5. By comparing
the results in Fig. 9(a) with those in Fig. 9(b), it is observed
that the proposed data-driven solver obtains nearly the same
solutions for both material datasets, while the method in [12]
obtains slightly different solutions. All of these compari-
sons illustrate that the proposed data-driven solver is robust
against outliers in a material dataset and is also more robust
than the method proposed in [12].

5 Conclusions

A novel robust ML approach is proposed for data-driven
predictions in solving engineering problems, which is
robust to input data corrupted by outliers. The proposed
method is formulated as an optimization problem by cou-
pling LWLS-SVMR with one weight function to overcome
the LWLS-SVMR’s drawback regarding lack of robustness

to outliers close to query points, significantly reducing
the negative interference of outliers. The formulation and
implementation of the proposed method are introduced in
detail. Furthermore, this method is a robust, local model,
where prediction of a query point only requires the fit-
ting of a subset (not the entire training dataset) where the
data points are relevant to the query point. In compari-
son to other robust, global approaches, this characteristic
enables avoidance of a potential negative influence from
irrelevant points and achieves a suitable trade-off between
the capacity of the learning system and the size of the
training dataset. Four one-dimensional simulated datasets
corrupted by non-extreme and extreme outliers and four
multi-dimensional real-world engineering datasets are
employed to verify that the proposed approach is able to
significantly reduce the negative effects of outliers. The
proposed RLWLS-SVMR exhibits robustness to outli-
ers and performs best in comparison to the robust, global
approaches in solving engineering problems. Furthermore,
the proposed method is applied to produce a data-driven
solver for structural analysis with a nonlinear material
dataset corrupted by outliers. A truss structure is used to
test the properties of the proposed data-driven solver. The
results show that the proposed data-driven solver is robust
against the presence of outliers in a material dataset.
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