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Abstract—Real-world datasets are often incomplete due to data
collection cost, privacy considerations or as a side effect of data
integration/preparation. We focus on answering aggregate queries
on such datasets, where data incompleteness causes the answers
to be inaccurate. To address this problem, assuming typical rela-
tional data, existing work generates synthetic data to complete the
database, a challenging task, especially in the presence of bias in
observed data. Instead, we propose a paradigm shift by learning to
directly estimate query answers, circumventing the difficult data
generation step. Our approach, dubbed NeuroComplete, learns
to answer queries in three steps. First, NeuroComplete generates
a set of queries for which accurate answers can be computed
given the incomplete dataset. Next, it embeds queries in a feature
space, through which each query is effectively represented with
the portion of the database that contributes to the query answer.
Finally, it trains a neural network in a supervised learning fashion:
both query features (input) and correct answers (labels) are known.
The learned model generates accurate answers to new queries at
test time, exploiting the generalizability of the learned model in the
embedding space. Extensive experimental results on real datasets
show up to 4 times for AVG queries and 10 times for COUNT queries
error reduction compared with the state-of-the-art.

Index Terms—Analytical queries, machine learning, missing
data, relational database.

I. INTRODUCTION

R
EAL-WORLD databases are often incomplete [13], [15],

[18], [19], [20], [26], [28]. One reason is data collection

cost. To know housing prices in an area, collecting information

for every house is costly, if not impossible, (US Census spends

$1.505 billion yearly for door-to-door data collection [5]), but

Airbnb already provides a sample for free [1] (dataset is a sample

because it only contains Airbnb prices and not other housing

sources). Another reason is privacy. Studies show lower response

rate to questions regarding sensitive attributes, e.g., income, in

surveys [23], [24]. A landlord may provide their demographic

information in a survey, but is less likely to list their properties

and prices. Another reason is data integration across databases

with schema mismatch [8], [9], [15], [16]. Two different agencies
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may track housing prices in two different regions. One region

may track both housing and landlord information while the other

only stores housing information. After integrating the databases,

landlord information will be incomplete.

In all such scenarios, some records are entirely missing from

the datasets. Given a dataset, one often knows whether data is in-

complete by comparing aggregate statistics [13], [18], [19], [20]

(e.g., Census population counts), by inspecting the mismatch

of records within the database [28] (e.g., when an individual’s

record does not appear in certain tables but exists in others), or

through knowledge of schema mismatches [8], [9], [15] known

during data integration.

Meanwhile, OLAP applications require answering aggregate

queries on such incomplete datasets, yielding inaccurate an-

swers. Consider the example of average housing price in an area.

Richer landlords may be less willing to share the cost of their

houses, leading to an overall underestimation of the housing

prices in a region. In this paper, we assume the underlying

incomplete data is stored in a relational database, where some

records are entirely missing from some tables. We focus on

answering aggregate queries, that is, SQL queries that ask for

aggregation of some attribute, optionally with WHERE, JOIN

and GROUP BY clauses on other attributes. Relational datasets

cover many (if not all) of the discussed applications. If data

is missing due to data integration across databases, the data is

already likely from an OLTP system and in a relational format.

If one wants to use public data sources (e.g., information about a

city) in a query, such information can also be added as a table to a

relational database. A relational setting allows for a systematic

study of answering aggregate queries on incomplete datasets.

In such a setting, a table is systematically missing some of its

records.

Recent work studies answering queries on incomplete

datasets [15], [20], [34]. The only existing approach for rela-

tional datasets, ReStore [15], generates new data to complete the

existing database based on the existing foreign key relationship.

ReStore’s data generation step can be seen as an extension of

data imputation methods (that impute missing attributes [10],

[22], [29], [32]) to impute entire missing records. For instance,

given a complete table of landlords but incomplete table of

apartments, ReStore [15] generates synthetic apartments for

landlords whose apartments are missing. However, synthetic

data generation is challenging. (1) The model needs to learn

fine-grained and record-level information from an often small

and biased training set. (2) Real-world datasets often contain
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missing attributes, based on which generating synthetic data can

be inaccurate. For example, landlord’s gender might be missing

for some landlords, making it more difficult to accurately create

synthetic apartments for them. (3) Generated data that respects

foreign key relationships is challenging, since multiple foreign

key relationships per table are possible. In [15], since only one

foreign key relationship (or path [15]) is used to generate data,

information available in other tables that can potentially improve

accuracy is effectively ignored.

We propose a paradigm shift from generating synthetic data

to learning a model that directly estimates the query answers.

Such a model takes queries as input and directly outputs the

query answer, bypassing the data generation step. This approach

avoids the above short-comings: (1) since the goal is answering

aggregate queries, such a model will be able to learn aggre-

gate information of interest without being hampered down by

record-level details, (2) which also makes it less sensitive to

missing attributes. (3) Since it does not generate new data,

foreign key relationships and the relational structure impose no

constraints. Nonetheless, accurately learning the query answers

is non-trivial. An approach that learns to mimic observed query

answers will fail, since the model learns the wrong answers from

the biased observed query answers.

We introduce NeuroComplete, an approach that utilizes query

embedding and neural networks to accurately estimate query

answers. NeuroComplete learns to answer queries in three steps.

First, it generates a set of training queries for which accurate

answers can be computed given the incomplete dataset. Intu-

itively, any query that is “restricted” such that its answer only

depends on the data in the incomplete database can be answered

accurately. Next, NeuroComplete extracts a set of features for

each of these queries. Each feature corresponds to the contextual

information available about the query answers in the database,

and is computed based on how related a database record is

to the query. Finally, NeuroComplete trains a neural network

in a supervised learning fashion to learn a mapping from the

embedding space (i.e., query features) to query answers. The

learned model then generates accurate answers to new queries

at test time, exploiting the generalizability of the learned model

in the embedding space.

Our experimental results on real-world datasets show that

NeuroComplete provides up to 4x and 10x reduction in er-

ror for AVG and COUNT queries, respectively, compared with

state-of-the-art, ReStore [15]. The amount of data required for

accurate answers depends on how biased the observed data is.

Our results show that NeuroComplete provides accurate answers

when 5% (or more) of the data is available, and the data is less

biased, while we see that 40% of the data needs to be observed

in more biased settings. Specifically, our contributions are as

follows.
� We present NeuroComplete, a query modeling approach

that estimates query answers on incomplete databases with-

out synthesizing new data
� NeuroComplete is the first approach that uses generaliza-

tion in the query embedding space as an effective method

to address data bias and incompleteness.

Fig. 1. Running Example of Apartments Dataset.

� We present novel training set generation and query em-

bedding techniques to train a model whose query answers

generalize to the complete database
� Our experiments on real-world datasets show that Neuro-

Complete provides up to 4x and 10x reduction in error

for AVG and COUNT queries, respectively, compared with

state-of-the-art, ReStore [15]

II. DEFINITIONS AND OVERVIEW

Aggregate Queries on Relational Database: Consider a re-

lational database, D, with k tables, T1,..., Tk. Foreign key

relationships connect (some of) the tables. Each table has a

primary key, which we assume to be a column named id and

uniquely identifies the rows within each table. We consider

analytical queries, q, on this database. Informally, q asks for an

aggregation of an attribute in some table, where the records in the

table are filtered based on some predicate. Formally, q consists of

an aggregation function, AGGq , on an attributeMq of a table Tiq ,

where M is called the measure attribute. It furthermore consists

of a predicate function Pq(D) that, when applied to D, returns a

subset of Tiq . We call the set of rows that satisfy a predicate the

matching rows of the predicate. Such a query can be represented

as a SQL statement that asks for aggregation of some attribute,

with WHERE and optionally JOIN and GROUP BY clauses on

other attributes. The answer to the query q is AGGq(Pq(D).Mq).
We define the query function f(q) as f(q) = AGG((P (D)).M).
We drop the dependence of AGG, P and M on q when it is

understood from the context. The predicateP can be based on the

attributes in Ti or Tj , for j �= i, and applied to Ti through JOIN

of the tables. To simplify the discussion, we do not consider

the GROUP-BY clause for now, but, in Section V-A, we show

how it can be incorporated into queries. Our experiments include

queries with GROUP-BY and JOIN clauses (see Section VI-A).

We focus on aggregate queries. Our approach estimates query

answers by learning patterns of the query answers. Answering

non-aggregate queries requires memorizing specific data points,

and thus cannot be supported by our approach.

We use Fig. 1 as our running example. The figure shows a

database of apartments, their landlord and the zip code for the

apartments. An analytical query on this database can ask for

average rent for apartments whose landlord is female.

Incomplete Database: We consider the case when we only

have access to a subset of records, T̄i of the table Ti for some
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i ∈ {1, . . ., k} (tables Tj , j �= i being incomplete is discussed

in Section V). We refer to table Ti as incomplete or partially ob-

served and refer to tablesTj , j �= i as complete or fully observed.

We let the incomplete database D̄ be the database consisting of

T̄i and Tj for all j. We often refer to D (respectively, T ) as

the true database (resp., true table) and D̄ as observed database

(resp., observed table). Finally, we define the observed query

function, f̄(q), as f̄(q) = AGG((P (D̄)).M). We consider the

case when the observed database is a biased sample of the true

database, i.e., IED̄∼D[f̄(q)] �= f(q). Thus the error in answering

queries on the observed database isn’t only due to the variance

in sampling, but also due to its bias. We denote by n = |Ti|
and n̄ = |T̄i|, the size of the observed table and true table,

respectively.

In our running example, we assume apartments table is incom-

plete, where data records missing are marked with a different

colour in Fig. 1. Answering the average rent query on the

observed database will lead to incorrect answers.

Problem Definition: The goal of this paper is to, given the

observed database, D̄, answer a query q so that its answer is

similar to f(q). However, performing the query on the observed

database, D̄, provides an inaccurate answer f̄(q). Using D̄, we

train a model f̂(.; θ) that takes the query as an input and outputs

an estimate of its answer. The model is trained given only D̄, but

its answer is expected to be similar to performing queries on D.

The asked queries can have arbitrary predicates (our approach

makes no assumption on the form of the predicates, and in

practice, we’ve evaluated our approach on common predicates

with equality and inequality across multiple attributes), a fixed

aggregation function AGG and a fixed measure attribute M
(different models can be learned for differentAGG andM values,

as discussed in Section V). Let Q be the set of all such queries

from a query workload. Formally, we study

Problem 1: Given access only to an observed incomplete

database D̄, train a model, f̂ , so that 1
|Q|

∑
q∈Q |f̂(q; θ)− f(q)|

is minimized, where f is the query function corresponding to

the complete database D.

In our running example, the goal is to train a model that

can utilize the observed database to answer queries that ask for

AVG(rent) (for any query predicate) more accurately than

merely calculating the answer on the database.

System Setup: We follow the setup of [15] and ask the users to

(1) annotate tables with missing records and (2) annotate rows

that have complete foreign key relationships, where for such

rows, the foreign keys are not missing. If data incompleteness is

due to schema mismatch [9], [15], [16] during data integration

(e.g., because a table that exists in one database does not exist in

another), such annotations are known and do not add any manual

overhead. In our running example, we can mark landlords stored

in the LA dataset to have complete foreign key relationships

(recall that LA dataset contained landlord and apartment ta-

bles and thus the foreign key relationships in LA database are

complete, while NY database only contained landlord table they

do not have complete foreign key relationships). Furthermore,

such annotations can be provided by inspecting available ag-

gregate statistics [13], [18], [20]. For instance, if the number of

Algorithm 1: NeuroComplete Framework.

Input: Observed database D̄, query function f̄ , training

size s
Output: Neural network ˆ̄f
1: procedure TrainNeuroCompleteD̄, f̄ , s
2: Q ← GENERATEQUERIES(D̄, s) � Generate training

set

3: Z ← {zi = ρ(qi, D̄), 1 ≤ i ≤ s} � Create

embedding

4: Y ← {yi = f̄(qi), 1 ≤ i ≤ s}

5: Initialize the parameters, θ, of f̂(.; θ)
6: repeat

7: Sample a set of indexes, I , up to at most |Y |

8: Update θ in direction −∇θ

∑
i∈I

(f̂(zi;θ)−yi)
2

|I|
9: until convergence

10: returnf̂
Input: Test time query q∗ on database D̄
Output: Estimated answer for query q∗

1: procedure UseNeuroCompleteq∗, D̄
2: z∗ ← ρ(q∗, D̄)
3: if q∗ is count-sensitive then

4: returnn
n̄
× f̂(z∗; θ)

5: else

6: returnf̂(z∗; θ)

users in an area is lower than the available Census population, the

records in that area will be incomplete. Finally, the incomplete-

ness can be known from means of data collection, e.g., collected

dataset might be for a certain region (such as Foursquare dataset

collected in New York and Tokyo [30]), so one can readily infer

data incompleteness (see case-study in Section VI-G). For ease

of discussion, for now, we also assume that the size, n, of true

table Ti is known. We relax this assumption in Section V-B.

A. NeuroComplete Framework

NeuroComplete embeds queries into a space Z and trains a

model, f̂ , from Z to query answers. To do so, NeuroComplete

defines an embedding function ρ that takes a query q as an input

and outputs an embedding z. To answer any query, q, we first

find z = ρ(q) and then provide the estimate f̂(z; θ) for the query

answer. The input to the neural network is a query embedding

(detailed in Section IV), which represents the query in terms

of the observed information related to the query. Intuitively,

the embedding function ρ (formally defined in Section IV)

aggregates the observed database rows based on how related

they are to the query, to represent the query in terms of such

relevant information. This process is shown in Fig. 2. During

training, NeuroComplete (1) creates a set, Q, of queries for the

purpose of training, (2) uses the embedding function, ρ, to find

the query embedding for the queries inQ, and (3) uses the queries

together with their answer (computed on the observed database)

to train a neural network f̂ in a supervised learning setting. The

neural network learns a mapping from the embedding space to
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Fig. 2. NeuroComplete Framework.

query answers. To answer a query, NeuroComplete first finds

its query embedding and performs a forward pass of the trained

neural network with the embedding as its input to provide an

estimate of the query answer.

Because the database is incomplete, it is non-trivial to gen-

erate a training set with accurate labels or to define an embed-

ding function that allows for the desired model generalizability,

challenges that are addressed in the remaining of this paper.

We first use Algorithm 1 to concretely present NeuroComplete

framework. Sections III and IV, respectively, present training

set generation and query embedding in details and Section V

discusses the final NeuroComplete system.

Our discussion makes a distinction between count-sensitive

and count-insensitive aggregations. Count-sensitive aggrega-

tions are aggregation functions where scale of the answers

changes with the size of the database. COUNT and SUM belong

to this category because the answer to such queries increases

with data size. On the other hand, count-insensitive aggregation

functions are queries where the scale of the answer does not

depend on the number of data points, e.g., AVG and MEDIAN.

We make this distinction to improve our modeling, because,

when answering count-sensitive queries, one needs to take into

account the size of the database, while count-insensitive queries

can be answered without explicitly accounting for database

size.

NeuroComplete Training: TRAINNEUROCOMPLETE in

Algorithm 1 shows the NeuroComplete training procedure.

Line 2 corresponds to training set generation where a set of

queries, Q, are created for the purpose of model training. The

function GENERATEQUERIES(D̄) takes the observed database

D̄ as an input and generates queries for the purpose of training.

We present how to define this query generation function for

accurate training on incomplete databases in Section III. After

training set generation, line 3 creates query embeddings for

the generated training set using the embedding function ρ.

We present the embedding function in Section IV. Finally,

lines 4-9 correspond to model training where the training labels

are calculated and a neural network is trained using stochastic

gradient descent and with mean squared loss. Line 7 in the

algorithm samples a set of indexes I to generate the current

batch for training, which are the indexes of queries used in

training for the current batch. That is, after sampling I , the

current training batch is {(zi, yi), i ∈ I}.

Answering Queries: After the model is trained, for a test query

q, we first find its embedding, by calling embedding function ρ
and then performing a forward pass of the trained model with

the embedding as an input. If the query is count-insensitive,

the estimate for the query answer is the output of the model.

Otherwise, the query answer is scaled based on the ratio of the

observed data size to the true data size to account for the scale

of the answers.

III. TRAINING SET CREATION

This step generates the training queries. Since the observed

database is incomplete, the answer to most queries on the ob-

served database will be inaccurate and training a model using

such queries can lead to an inaccurate model. Consider a train-

ing query q. If Pq(D) contains rows in T but not in T̄ , then

f̄(q) �= f(q) and thus, the training label created for query q will

be wrong. The challenge is creating queries for which we can

calculate correct training labels.

Restricted Queries: Our main insight is to learn from re-

stricted queries. We define restricted queries as queries whose

answers are the same in both D̄ and D. Intuitively, if we restrict

the database to the observed database the answer to restricted

queries does not change. Formally, defineQr = {q ∈ Q, f̄(q) =
f(q)}. Most real-world queries are not restricted. For instance,

in our running example (Fig. 1), the query of AVG(rent)

of apartments whose landlord is female is not restricted (its

answer on the observed database is different from the answer

on the true database). However, the query of AVG(rent) of

apartments whose id is equal to 1 or 2 is a restricted query (since

apartment ids 1 and 2 are in the observed database, and therefore,

the correct answer can be evaluated by only using the observed

database).

Training labels created based on restricted queries are accu-

rate, so that learning from restricted queries creates a model that

learns an accurate mapping from queries to their true answers.

However, it is difficult to verify if a given query belongs to Qr,

without access toD. Nonetheless, it is easy to generate restricted

queries. Given any query q we can create a restricted query q′

by adding a conjunctive clause to the predicate of q. Let I be the

set of id values of the rows in the observed incomplete table T̄i.

We can create a conjunction between the predicate of q and the

statement Ti.id IN I . Since primary keys are unique, such a

query will only match records whose id is in I and thus are in T̄i.

Example: In our running example (Fig. 1), consider the query

of AVG(rent) of apartments whose landlord is female. Per-

forming this query on the observed database results in a wrong

answer, because the apartment with id=7 matches the predicate

but is not in the observed database. Nonetheless, we can turn

this query into a restricted query. The query of AVG(rent) of

apartments whose landlord is female and whose apartment.id is

one of 1, 2, 3 or 4 is a restricted query and can be answered

accurately from data.

Query Generation: Any query can be turned into a restricted

query, so the query generation process can use any existing

query. For instance, if a query workload is available, each query

in the workload can first be restricted to the observed database

and then used for training.

In the absence of a query workload, our query generation

process creates synthetic predicates by randomly picking an
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Algorithm 2. Training Query Generation

Input: The observed database D̄ and training size s
Output: A query set, Q
1: procedure GenerateQueriesD̄, s
2: Q ← ∅
3: I ← set of ids of rows in T̄i

4: for i ← 1 to s do

5: A ← a randomly selected attribute from Ti

6: v ← a value in range of A
7: op ← one of ≤, ≥ or =
8: q ← ”SELECT AGG(M) FROM Ti WHERE A

op v”
9: q += ”AND Ti.id IN I”
10: Q.append(q)
return Q

attribute, a value for the attribute and an operation among ≤,

≥ and =. The generated query is then modified to be restricted

to the observed database. This process is shown in Algorithm 2,

where for a desired number of queries s, the algorithm defines

a predicate in lines 5–8. In line 7, we use ‘=’ for categorical

attributes and ‘≤’ or ‘≥’ for numerical attributes. Finally, line 9

turns the query into a restricted query by ensuring that it only

matches the records in the observed database. We note that both

more sophisticated query generation approaches, such as [35] or

extending Algorithm 2 to generate more predicate clauses per

query, or contain joins, are possible. Nonetheless, we observed

this query generation process to be sufficient. In fact, due to

our embedding approach described in Section IV, we expect the

complexity of the WHERE clauses used for training not to have a

significant impact on the accuracy of the learned model. This is

because our query embedding only depends on the distribution

of matching rows to the query, and not the complexity of finding

those matching rows.

IV. QUERY EMBEDDING

We discuss the query embedding function ρ. We first present

the approach in a two table setting (i.e., assuming database

only has two tables, one fully observed and one with missing

records) in Sections IV-A, IV-B, and IV-C. For ease of notation,

in the two table setup, we call the table Ti that contains missing

records T (and T̄ is the observed subset of T ) and refer as O
to the complete table in the database (i.e., all records in O are

observed). During query embedding, we have access toO and T̄ ,

but not T . Thus, the incomplete (or observed) database contains

tables O and T̄ . The goal is to answer queries on T (which we

do not have access to) using the information available in O and

T̄ . We discuss multi-table setting in Section IV-D.

A. Overview

Query embeddings are created based on the observed database

(we do not have access to the complete database). To do so, we

utilize rows in the fully observed tableO (and not the incomplete

table T̄ ). This is done to avoid biases in the incomplete table T̄

Fig. 3. Query Embedding Example.

affecting our query embedding. In this section, we present an

overview of this approach. To better illustrate the main concepts,

here, we assume we have access to the complete database. We

discuss, in detail, how we generate query embeddings while

having access only to the observed database in Sections IV-B

and IV-C.

We define query embedding as a summary of rows in O that

are relevant to the query q. We propose a two step process, where

we (1) for each row in O find their row relevance (RR), a weight

that quantifies how related each row is to the query q and (2)

aggregate the rows in O based on the calculated row relevance

to represent q in terms of rows ofO. An example assuming access

to the complete database, is shown in Fig. 3. For the apartment

table and a given query, we calculate row relevance of records

in Landlord table, and thus the query embedding is based on

records in Landlord table and uses its schema (even though the

query asks for apartment rent information).

Row Relevance: Row relevance (RR) of a row in O to a query

q captures how related the row is to the query answer. Let Tq

be the set of matching rows in T for the query q. We define, for

a row in O with O.id = i for an integer i, its row relevance αi

to be αi = COUNT(σO.id=i(Tq �� O)). The above expressions

considers the weight of the i-th row as how many times the row

appears whenO is joined with the matching rows Tq . Intuitively,

if αi is large, it means the i-th row of O has a strong relationship

to the set of rows that match the query. If αi is zero, it means

deleting the i-th row, and its related rows in T (i.e., delete with

cascade) will have no impact on the query q, and thus, the i-th
row should not impact the representation of q. In practice, we

cannot calculate row relevance exactly, because we do not have

access to the complete database. We discuss in Section IV-B how

row-relevance is calculated in practice.

Fig. 3 shows how the row relevance values are calculated in

our running example (based on the complete database). We see

that for the query shown in Fig. 3, the row relevance for landlord

with id 2 and 3 is 0, while landlord with id 1 has RR equal to 3.

Intuitively, removing Landlords with id 2 and 3 does not change

the query answer (and thus, RR=0) while landlord with id 1 has

a significant impact on the query answer (so larger RR).

Row Aggregation: To summarize information in O that relate

to the query q, we perform a weighted aggregation of the values

in O, weighted according to their RR values. Fig. 3 shows how

the rows are aggregated to create the final query embedding

in our example. The embedding contains the weighted average
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Fig. 4. Row Relevance Calculation.

of the income of the landlords (i.e., (2× 3 + 4× 1)/(3 + 1) =
2.5) and the distribution of the gender of the landlords (in this

case, they are all female).

B. Row Relevance Calculation

Row relevance of a record in O is defined as

COUNT(σO.id=i(Tq �� O)), where i is the id of the record in

O. In practice, we do not have access to the true database, but

only the observed database. Because we only see T̄ , we will not

know all the records in Tq �� O and cannot directly evaluate

their row relevance. Instead, we estimate the row relevance

when it cannot be evaluated exactly based on the observed

data. To do so, we divide the rows into two sets: (1) rows with

Known Row Relevance (KRR rows) which are rows for which

row relevance can be accurately calculated on the observed

data, and (2) rows with Unknown Row Relevance (URR rows)

which are rows for which row relevance cannot be calculated

on observed data.

Known and Unknown Row Relevance: More formally, KRR

rows are defined as rows for which σO.id=i(Tq �� O) =
σO.id=i(T̄q �� O) and URR rows are the remainder of the table.

Given that we do not have access to T , we cannot evaluate if a

row is KRR by checking the definition. Here, we describe two

conditions used to decide if a row is KRR.

Condition 1. q is a restricted query: If q is restricted, by

definition, Tq �� O and T̄q �� O are the same. Thus, row

relevance for all rows in O can be exactly calculated.

Condition 2.Oi has complete foreign key relationship: By def-

inition, if Oi (the row in O with id=i) has complete foreign key

relationship, then σO.id=i(T �� O) = σO.id=i(T̄ �� O). This

implies that σO.id=i(Tq �� O) = σO.id=i(T̄q �� O), since Tq

and T̄q are subsets of T̄ and T respectively.

Condition 1 implies that for training queries all rows are KRR,

so row relevance is exactly calculated based on observed data.

Condition 2 means at test time, for some records we can exactly

calculate row relevance but for others we need to estimate it.

This process is described below.

Row Relevance Calculation for KRR: Row relevance calcu-

lation for KRR rows is straightforward. we calculate it exactly

by evaluating the expression COUNT(σO.id=i(Tq �� O)). For

example, in Fig. 4, this expression can be exactly calculated for

landlord with ids 1 and 2. We see that landlord 1 appears three

time and landlord 2 appears zero times in Tq �� O, so that their

RR are 3 and 0 respectively.

Row Relevance Calculation for URR: We learn to estimate the

row relevance for URR rows using the calculated row relevance

of KRR rows. For a query, let OKRR be the set of KRR rows

in O, YKRR their calculated row relevance and OURR the URR

rows. We train a neural network in supervised learning fashion,

where OKRR are the training features and YKRR the training

labels. We call this model row relevance model to distinguish

it from the model that is trained to predict query answers (i.e.,

in Algorithm 1). After training row relevance model, a forward

pass of the model estimates row relevance of URR rows.

Fig. 4 shows row relevance calculation in our running exam-

ple. (1) Row relevance is calculated for the two KRR rows. Then

(2) each KRR row is used as a training sample to train a neural

network that estimates row relevance. The model takes gender

and income as input and outputs an estimate RR. After the model

is trained (3) we input the gender and income of the URR rows

into the model and (4) obtain RR estimates for the URR rows.

Fig. 4 shows that the model estimates RR for landlord 3 to be 1

(while true RR is 0) and RR for landlord 4 to be 2 (while true

RR is 1).

C. Row Aggregation

We aggregate the rows in O according to the row relevance

values. If categorical attributes are present in O, we one-hot

encode them before aggregation. We aggregate rows for count-

insensitive aggregation functions (e.g.,AVG,MEDIAN,STD) and

count-sensitive aggregation functions (e.g.,COUNT,SUM) differ-

ently. Count-insensitive aggregations are aggregation functions

where the scale of the answers does not change with the size

of the database. Thus embedding does not need to contain

information about the number of matching rows. On the other

hand, for count-sensitive aggregation functions, the embedding

needs to contain information about the number of matching rows

to allow the model to adjust to the scale of the answers.

For count-insensitive aggregations, we use the weighted av-

erage of the features in O as the query embedding, where the

weights are based on row relevance values. For count-sensitive

aggregations, we use weighted sum of features in O, normalized

by n̄ if the queries are restricted or by n if they aren’t. By

incorporating the total row relevance values in count-sensitive

aggregations, we allow the embedding to contain information

about the number of matching rows. At the same time, we

normalize the embedding by table size to ensure the number

of matching rows is considered as a proportion of the table size.

This creates an embedding that adjusts to data size while also

containing information about the number of matching rows to a

query.

Row aggregation creates a semantically meaningful summary

of the matching rows in O. For numerical values, the summary

is the sum or average of the values. For categorical columns (that

are one-hot encoded) the summary shows the distribution of the

categories existing in the rows.

D. Multiple Tables and Final Embedding Algorithm

Our approach simply extends to multiple tables by consid-

ering each table separately. We iterate over the tables in the
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Algorithm 3. Complete Query Embedding Algorithm

Input: A query q on observed database D̄
Output: Query embedding

1: procedure ρq, D̄
2: for all tables Tj in {T1, . . ., Tk} \ {Ti} do

3: for all KRR rows with id=x in Tj do

4: αx ← COUNT(σTj .id=x(Pq(D̄) �� Tj))
5: if Any URR row exists in Tj then

6: ĝ(.; θ) ← Trained row relevance model

7: for all URR rows with id=x in Tj do

8: αx ← ĝ(σTj .id=x(Tj); θ)
9: zj ←

∑
x αxσTj .id=x(Tj) � Column-wise sum

10: if AGG is not count-sensitive then

11: zj ←
zj∑
x αx

12: else

13: if q is a restricted query then

14: zj ←
zj
n̄

15: else

16: zj ←
zj
n

17: return [z1z2. . .zk]

Fig. 5. Multi table query embedding.

database, and for every table Tj , j �= i, and given that the

incomplete table is Ti, we consider every Ti and Tj pair. For

every pair we repeat the same algorithm as before, which yields a

query embedding based on the table Tj . Finally, the embeddings

based on each Tj are concatenated together to provide the final

query embedding.

Fig. 5 shows the process for our running example, now with

all three tables. We first find an embedding using the landlord

table, as discussed before. Next, the same process is repeated

for the zip code table, to obtain a zip code embedding. The two

embeddings are then concatenated to create a single embedding

vector shown in the figure.

Final Algorithm: Algorithm 3 presents the final query em-

bedding algorithm. The algorithm iterates over the tables and

calculates the row embedding by finding row relevance and

then performing row aggregation. Finally, all the embedding are

concatenated ([x1, . . ., xn] denotes concatenating x1, . . ., xn) to

create the final query embedding.

Performing Joins and Choosing Tables: The notion of joins

in the algorithm is overloaded when referring to tables without

explicit foreign key relationships with each other. We call it a

join between two tables if there exists a non-empty set of foreign

key relationships connecting Ti and Tj . We can limit the number

of tables used to generate the embedding based on the length of

the path (i.e., number of foreign key relationships connecting

Ti and Tj). That is, we can only consider the set of tables that

are joinable with Ti through at most a limited number of other

tables. This can be beneficial because often the longer the join

path is, the less relevant the table to the information in Ti will

be. Overall, we let τ be the number of fully observed tables used

to create the embedding.

Embedding Time Complexity: For each fully observed table,O
(among the τ used for embedding in total), the algorithm goes

over rows in OKRR �� Tq to calculate row relevance for the

KRR rows. LetO′ = OURR ∪ (OKRR \OKRR �� Tq), where

OKRR \OKRR �� Tq are the KRR rows that don’t match the

predicate q (so their row relevance is 0). The algorithm then

goes over the rows in O′, where for KRR rows in O′ it sets

row relevance to zero, while for URR rows in O′ it performs a

forward pass of the row relevance model. Assuming training a

row relevance model takes tT , model forward pass takes time tF ,

and finding the result of the join OKRR �� Tq takes tJ , the em-

bedding computation takes O(tT + tF × |OURR|+ |OKRR|+
|OKRR �� Tq|+ tJ). This process is repeated τ times, each

time for a different fully observed table O. We perform the

process in parallel across the τ tables. In our experiments, this

process takes 4-15 seconds across all settings (see Section VI-E),

which is comparable to performing queries on the true (much

larger) database, where the cost of performing joins is higher.

V. END-TO-END SYSTEM AND DISCUSSION

A. End-to-End System

Setup: NeuroComplete setup requires minimal effort to (1)

annotate tables with missing records and (2) annotate rows for

which complete foreign key relationship is available. As dis-

cussed in Section II, such information is often readily available

as a result of the database integration processes. In this setup,

NeuroComplete will accompany a relational database system

for table with missing data.

Supported Queries: The query answering process follows

Algorithm 1, where a model is first trained and then used to

answer the query. A NeuroComplete model is trained to answer

queries with aggregation AGG of an attribute T.M , where M
is an attribute in table T . Thus, after a NeuroComplete model

is trained, it can answer queries with any predicate that ask

for AGG(T.M ). Such queries can contain JOIN or GROUP BY

clauses as well as any SQL predicates (in fact, NeuroCom-

plete supports general predicates, as defined in Section II, e.g.,

arbitrary polygons). NeuroComplete supports GROUP BY by

iteratively estimating the query answer for each group in the

GROUP BY by adding the group membership as a predicate to

the query.

B. Further Considerations

Efficiency Considerations: Recall that to answer a query, we

first obtain a query embedding (where we utilize row relevance

models) and perform a forward pass of the NeuroComplete to
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obtain the query answer estimate. For efficient querying, we

train NeuroComplete models at a pre-processing step and use

them at query time. A single NeuroComplete model answers all

queries for a fixed measure attribute and aggregation function.

When measure attribute and/or aggregation function changes

for different queries, multiple models may need to be trained

to answer different queries. We decide which queries to build a

model for based on the incomplete tables and query workload.

We build a NeuroComplete model for queries in the workload

where measure attribute is in an incomplete table. NeuroCom-

plete models are small (less than 1 MB in all our experiments),

and storing several models based on workload is practical. As

discussed in Section IV-D, query embedding (including row

relevance model training) is fast and is done at query time.

More Missing Data: In a database we may have (1) multiple

tables with missing records or (2) some records may contain

missing attributes. For case (1), our approach can be used without

modification, if, in addition to Ti any other table Tj , j �= i is

also incomplete. Nonetheless, given that NeuroComplete relies

on Tj tables for query embedding, enough information needs

to be available in those tables to allow for accurate predictions.

In practice, especially when systematic bias exists in multiple

tables, one can choose to exclude tables with missing records

from being used in embedding of other queries. For case (2), we

need to ensure that row aggregation supports missing values.

This is achieved by simply ignoring the massing values when

performing row aggregation.

True Data Size,n: So far, we’ve assumed true data sizen, used

to scale NeuroComplete answers for count-sensitive queries, is

known. In practice, this is often true: such information may be

publicly available (e.g., we know population of an area based on

census data), data owners may be willing to share such aggregate

information (e.g., a house rental agency may release number of

apartments they have in an area but not the detailed apartment

information) or may be known based on domain knowledge (e.g.,

a rental agency may be able to estimate the number of apartments

they have but there may not be a detailed record of the apartments

in the database). If n is not known, we can estimate it using

methods similar to those in [15], [20]. We observed that [15] does

estimate the true table size accurately, so we use their method

for our estimation of true table size. Note that estimating true

table size does not require generating accurate synthetic records,

and only requires correctly estimating how many records are

missing. Thus, if true data size is not known, estimating it is

added as an extra step to the NeuroComplete system.

VI. EMPIRICAL STUDY

A. Experimental Setup

Our experimental setup largely follows [15]. Each experiment

uses a real-world dataset. We remove a set of records to obtain a

biased subset which is provided to the algorithms to answer a set

of queries. The goal is to answer queries accurately. Experiments

were performed on a machine with Ubuntu 18.04 LTS, an Intel

i9-9980XE CPU (3 GHz), 128 GB RAM and a GeForce RTX

2080 Ti NVIDIA GPU.

Fig. 6. Dataset information [15].

TABLE I
INCOMPLETE DATASET GENERATION SETUP

Complete Datasets: We use two real datasets, Housing and

Movies, whose schema and size is shown in Fig. 6 (image

from [15]). Housing contains information about different Airbnb

listings (such as the apartment type, its neighbourhood and

landlord) and is obtained from [1]. Movies contains information

about movies listed on IMDB (such as their genre, production

year, their directors and actors and company that made them) and

is obtained from [2]. We use datasets as pre-processed by [15].

Incomplete Dataset Generation: The incomplete dataset gen-

eration is done as follows. First, we pick a table, as the in-

complete table, and an attribute from the table, as the biased

attribute. For a keep rate parameter x, we keep x% of the total

records in the incomplete table, i.e., |T̄ | = x× |T |. We select

this subset T̄ based on a bias factor parameter, b ∈ [0, 1]. To

choose the records, we (1) sort T based on the biased attribute

and select the top |T | × x× b records (i.e., records with the

highest biased attribute value) and (2) select |T | × x× (1− b)
records from the remaining records of T (i.e., from records not

selected in step (1)) uniformly at random. If b = 1, the sample

is completely biased and if b = 0 the sample is unbiased. Based

on the above procedure, we create 2 setups for each dataset, as

shown in Table I.

Test Queries: We consider test queries with COUNT and

AVG aggregation functions and with JOIN, GROUP BY and/or

WHERE clauses. None of the test queries are restricted queries,

and thus test queries do not overlap with our training queries,

all of which are restricted queries. For AVG queries, to be

able to study the impact of bias on query answers, we let the

measure attribute be the same as the biased attribute for each

setup (e.g., queries in H1 all ask for AVG(price)). We use the

same GROUP BY and/or WHERE clauses as [15]. Each query

has a GROUP BY and/or WHERE clause on a subset of columns
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TABLE II
TESTING QUERY PREDICATE AND GROUP BY ATTRIBUTES

shown in Table II. For example, an AVG query in H1 asks for

AVG(price) WHERE room_type=1. The query involves

a JOIN if WHERE/GROUP BY is on a column from a different

table than the measure attribute. For COUNT queries, we report

results on predicates on the biased attribute. This is to isolate the

impact of bias on query answers as otherwise a query answer

can be unaffected by our sampling procedure.

Metrics: As discussed above, each setup consists of a set of

test AVG and test COUNT queries Q. For AVG queries, we report

mean absolute error (MAE), calculated as 1
|Q|

∑
q∈Q |f(q)− y|,

where y is the estimated answer. As discussed in Section V-A,

GROUP BY queries are considered as multiple queries, each

query with a WHERE clause corresponding to a group member-

ship. ForCOUNTqueries, to evaluate whether a method de-biases

the results (rather than just scaling up the answers), we compare

the MAE in normalized counts. That is, if the estimated size ofT
is n̂ and the size of T̄ is n̄, then we report 1

|Q|

∑
q∈Q | f(q)

n
− y

n̄
|.

For NeuroComplete, we set n̄ to be the same as in ReStore. We

train NeuroComplete for 5 different random initialization and

report the average and standard deviation of MAEs across runs.

Compared with [15], we use absolute error instead of relative

error due to its robustness when ground truth is close to zero,

and we do not present bias reduction since bias reduction is only

applicable to methods that generate synthetic data.

Baselines: We compare NeuroComplete with the state-of-the-

art, ReStore [15]. We used their implementation in [6]. ReStore

trains a model to generate more data to complete the dataset and

answers queries on the completed dataset. For ReStore, we spent

a week on parameter tuning, performing extensive parameter

search for each setup. For each setting, we ran the model with

various possible modeling choices (SSAR vs. AR) and various

completion paths, evaluated it on the test set and chose the result

with the best test set performance. This ensures that ReStore’s

model hyperparameters are set to best possible, but is an unre-

alistic evaluation (showing better performance than possible in

practice, since in practice we do not know the ground truth for

test set queries). Therefore, we call it ReStore+ as a reminder of

this unfair advantage. We also use Sample as a baseline, which

answers queries only based on the observed samples.

NeuroComplete Implementation: We implemented Neuro-

Complete in python and JAX (code available at [33]). The model

is a 10 layer fully connected neural network with width 60 in

each layer, trained with mean squared error loss function (as

shown in Algorithm 1 line 8) and Adam optimizer. Training

consists of 1,000 iterations, and the model with smallest training

error is used to perform test queries. Row relevance models have

Fig. 7. Results for H1 AVG Queries.

Fig. 8. Results for H2 AVG Queries.

Fig. 9. Results for M1 AVG queries.

Fig. 10. Results for M2 AVG queries.

the same architecture as above. We use between 1,000-2,000

training samples across the settings.

B. Comparison Results

Results for AVG: Figs. 7, 8, 9, and 10 compare NeuroCom-

plete with other methods across settings for AVG queries. Each

figure shows, for a setting, how the error changes for different

keep rates and bias factors. For NeuroComplete, the shaded

area shows one standard deviation above/below error, where

standard deviation is over 5 training runs. We observe that

NeuroComplete outperforms the baselines across settings in

almost all cases, improving accuracy of state-of-the-art by up

to a factor of 4. For AVG queries, NeuroComplete provides

large improvements in the housing dataset, while methods are

comparable on Movies dataset for AVG queries.

Furthermore, NeuroComplete is the most effective when bias

factor is less than 1 and when keep rate is less than 80%. When

bias factor is 1, NeuroComplete does not see enough variation in

query answers during training to be able to accurately extrapolate

to unseen queries. On the other hand, when keep rate is 80%,

Sample itself is very accurate, and inherent modeling errors

do not allow for much improvement for NeuroComplete over

observed values.
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Fig. 11. Results for H1 COUNT Queries.

Fig. 12. Results for H2 COUNT Queries.

Fig. 13. Results for M1 COUNT Queries.

Fig. 14. Results for M2 COUNT Queries.

Interestingly, for bias less than 1, NeuroComplete’s error is

only marginally impacted by change in keep rate For instance,

Fig. 7(a) shows NeuroComplete’s error changes from 40 at 5% to

20 at 80% keep rate, compared with Sample and Restore+ whose

error changes from 150 to 20 in the same range of keep rates. This

is because NeuroComplete, unlike ReStore+, does not directly

use the observed data points for training (i.e., the training size of

NeuroComplete is the same independent of the keep rate). On

the other hand, NeuroComplete relies on the generalizability

of learning based on the observed query embeddings. Thus,

results in Figs. 7, 8, 9, 10 suggest that generalization in query

embedding space is robust to the number of observed data points.

We also see that, in the cases where NeuroComplete error is

not affected by increase in keep rate (e.g., Fig. 9(a) or Fig. 10(a)),

NeuroComplete’s standard deviation goes down as keep rate

increases. That is, often, more data increases the generalization

robustness in NeuroComplete, reducing the reliance on initial-

ization.

Results for COUNT: Figs. 11,12, 13, and 14 show the results

for COUNT queries. Similar to AVG, NeuroComplete improves

the accuracy by multiple factors across settings. Compared with

Fig. 15. (a) and (b): visualizing training and test distributions. (c): Avg.
distance to the nearest training query from test queries.

AVG, NeuroComplete is able to improve the accuracy forCOUNT

aggregation functions even at the bias factor of 1.

Compared with ReStore+, NeuroComplete is always better,

up to a factor of 10. Our results show that ReStore+ often

has larger error than Sample. To understand this result, recall

that ReStore+ generates new records. In fact, in most reported

settings, total number of records in the database synthesized

by ReStore+ closely matches the true number of records.

Nonetheless, the distribution of attribute values (measured

by our error metric) is further from the ground-truth than in

the observed database. For instance, in M2 setup (Fig. 14),

we observed that ReStore+ generates many new records to

match the number of records in the ground-truth. However,

almost none of the newly generated records match the query

predicate (while most of the true record do in fact match the

predicate). That is, even though the number of records that

match the predicate in ReStore+ is closer to ground-truth

compared with Sample, the number of records that match the

predicate as a proportion of data size is further away from

ground-truth compared with Sample. Our error metric measures

the latter which we believe to be more important (as it measures

distribution of the records irrespective of data size).

Finally, for high bias factor or low keep rate, NeuroComplete

has higher standard deviation, i.e., not all random neural network

initializations converge to a good minima. This shows difficulty

of generalization when training queries are from a different

distribution than test queries.

C. Training versus Test Query Distribution Analysis

We analyze impact of training distribution on NeuroComplete

accuracy. We compare two settings: low bias defined as keep

rate=0.8 and bias factor=0.6 and high bias defined as keep

rate=0.05 and bias factor=1. In both settings, even though the

observed data size is different, NeuroComplete creates the same

number of training queries. However, the training queries are

embedded differently, resulting in the embedding distribution

used for training to be different. This impacts the accuracy of

NeuroComplete, since answering test queries depends on how

well the model generalizes in the embedding space to the unseen

test query distribution. To investigate this, Fig. 15(a) and (b)

show the training and test query embeddings for AVG queries

in H1 and M1 settings. We use t-SNE [27] for visualization,

which uses neighborhood graphs for dimensionality reduction

to allow for visualizing the structure of the high-dimensional

space. In this experiment, to isolate the impact of embedding

distribution, row relevance for test queries is calculated based

on the complete dataset (i.e., assuming a perfectly accurate row
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Fig. 16. Robustness to missing attributes.

Fig. 17. Query time.

relevance model), so that test query embedding is not affected

by the data bias.

Fig. 15(a) and (b) visually show that test embedding dis-

tribution is more similar to training embeddings distribution

in the low bias setting compared with the high bias setting.

Fig. 15(c) quantifies this similarity. It plots dist. NTS, defined

as the average distance to the nearest training sample from test

samples. That is, for the test setQ and each test query, q ∈ Q, let

dq be the distance from q to q’s nearest training query and define

dist. NTS= 1
|Q|

∑
q dq . We use Euclidean distance in the original

embedding space (without dimensionality reduction). The lower

dist. NTS, the more similar training and test query embeddings

are. Fig. 15(c) shows that across datasets, in the low bias setting,

test queries are more similar to training queries. This justifies the

results in Figs. 7, 8, 9, 10, 11, 12, 13, and 14, where the increase

in error from low bias to high bias setting can be attributed

to the increase in distance between train and test embedding

distribution. As this distance increases, generalization becomes

more difficult, thus accuracy decreases.

D. Multiple Incomplete Tables

We evaluate NeuroComplete when there is more missing

data beyond a single incomplete table. We introduce missing

attributes in tables that were assumed to be complete in previous

experiments. Here, experiments are in the H1 setting, where

previously Landlord was assumed to be complete. For every

landlord attribute and for each record, we remove its value with

a probability, dr, referred to as drop rate.

In Fig. 16, we vary dr for COUNT (Fig. 16(a)) and AVG

(Fig. 16(b)) queries to study its impact on the performance of the

models. We observe that this parameter has little impact when

keep rate is 20% or 80%, showing the robustness of our approach

to missing values. At keep rate 5% for AVG, the error increases

when drop rate increases, while for COUNT query the error first

increases then decreases. This result suggests NeuroComplete is

less robust to missing attributes when observed data is too small.

E. Scalability and Efficiency Anlysis

Query Time: Fig. 17 studies query time of the various algo-

rithms across two different settings and for different observed

Fig. 18. Training size and duration.

data sizes (each observed data size corresponds to a specific keep

rate). We see that Sample is the fastest algorithm, as it performs

no processing besides answering queries on the observed data.

We see that NeuroCompletes’ query time varies between 4

and 15 seconds across settings. Row relevance model training

accounts for most of the query time, where models are trained for

a fixed number of iterations. The difference in query time across

settings is due to the difference in the dimensionality of the

embedding space, where H1, which has the highest embedding

dimensionality takes the longest. Compared with Restore+ we

see that Restore+ answers queries faster in the setting H1 but

slower in M1. This is because Restore+ synthesizes data when

it receives a query, and how much data it needs to generate

depends on the complexity of the relational schema. As a result,

it becomes slower in M1, which has a more complex schema,

compared with H1.

Training Time: Fig. 18(a) shows impact of training time on

NeuroComplete error in H1 setup with bias factor 0.8 at various

keep rates (kr). The lines show the error for different keep rates.

Fig. 18(a) shows average accuracy for 5 different runs, and the

shaded area is the standard deviation of model error across runs.

Overall, the results show that models fit within a few seconds

of training, and more epochs, especially for smaller keep rates

causes over-fitting. Furthermore, we see that standard deviation

is larger for smaller keep rates and the model performance is

more sensitive to initialization in that case.

F. Number of Training Samples

Fig. 18(b) shows how model accuracy changes based on

number of training samples in H1 setup with bias factor 0.8

at various keep rates (kr), where error drops with more training

samples used. Interestingly, even 75 training samples with keep

rate 80% performs better than using 2025 training samples at

keep rate 5%. This shows that, even with small number of

samples, the model can adjust to the scale of required answers,

thus providing reasonable estimates.

G. Case-Study: Estimating AVG Visit Duration

We present an example where real-world contextual informa-

tion is represented in relational format and used to provide query

answers for queries where data is not complete.

Dataset: We use a dataset of location report of individuals

(i.e., latitude and longitude of user locations) which contains the

time duration users spent at different locations in a city. Each

record is a tuple of the format (lat., lon., duration). Furthermore,

each city is divided into various neighbourhoods. The goal is to

answer the query of AVG time spent in a neighbourhood by users

(i.e., range predicate on lat. and lon, and duration is the measure
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Fig. 19. Comparison of sampling and learning.

attribute). We also have a dataset of Point-of-Interests (POIs),

where each record consists of lat, lon and POI information. This

information can be placed in a relation database with three tables:

Visits, Neighbourhoods and POI. Visit table has schema (lat, lon,

duration, neighbourhood id), POI table has schema (lat, lon, POI

information, neighbourhood id) and neighbourhood table has

schema (id, neighbourhood information).

For the visit table, we use Veraset (VS) dataset, a proprietary

dataset that contains anonymized location reports of cell-phones

across the US collected by Veraset [3], a data-as-a-service com-

pany. Each location report contains an anonymized id, timestamp

and the latitude and longitude of the location. We performed

stay point detection [31] on this dataset (to, e.g., remove location

signals when a person is driving), extracted location visits where

a user spent at least 15 minutes, and recorded the duration of

each visit. 527,932 location visits in downtown Houston were

thus extracted to form the dataset used in our experiments, which

contains three columns: latitude, longitude and visit duration.

For POI table, we use Safegraph Places [4], a publicly avail-

able dataset containing POI information in the US. For Neigh-

bourhood table, we partition city of Houston with a 20x20 grid,

yielding 400 neighbourhoods. We use grid location for each

neighbourhood, without other neighbourhood specific informa-

tion. 352 neighbourhoods had at least one visit in VS dataset

and we only kept those neighbourhoods.

Incomplete Dataset Generation: We let Visit table be the

incomplete table. We assume we have visits data for some

neighbourhoods and no data for others. For a parameter x, we

randomly sample a set of, x neighborhoods, keep all visits that

fall in those neighbourhoods, and remove the visits for all other

neighbourhoods to generate our observed database. We expect to

see such a geographical bias in data collection in practice. Many

datasets are only available for a single area (e.g., Foursquare [30]

covers New York and Tokyo and CABS dataset is only available

for San Francisco [21]). Furthermore, for data collected from

mobile apps, there is a bias based on who uses the app which

translates into location (e.g., older people may not use the app,

and there will be less data for areas with older population).

Results: Given x neighbourhoods with data, we apply Neuro-

Complete to find AVG visit duration for neighbourhoods without

data. We compare this with the alternative of collecting data for

the neighbourhoods without data to answer queries. Fig. 19(a)

depicts these two alternatives. The two lines in Fig. 19(a) are not

directly comparable and they are plotted with different y-axes

(NeuroComplete: left axis, Sampling: right axis). Sample size

refers to number of new points sampled for neighbourhoods

without data, to obtain an estimate for the query in those neigh-

bourhoods.

Fig. 19(a) shows that given an error tolerance level, one has

two alternatives in answering the query. For instance, for error

of 75 mins, one can either sample around 2,000 points from the

neighbourhood in question, or use 130 other neighbourhood’s

information and train NeuroComplete to obtain an estimate.

Fig. 19(b) shows this trade-off, but from the perspective of

accuracy improvement per point sampled. If one has information

of 30 neighbourhoods, one needs to sample at least 2,000 points

for a new neighbourhood to be able to obtain an estimate

better than what NeuroComplete provides using the known 30

neighbourhoods.

VII. RELATED WORK

There has been recent effort in answering queries on incom-

plete datasets [10], [15], [20], [22], [29], [32]. Data imputation

approaches [10], [15], [22], [29], [32] use the observed data to es-

timate the missing values. Except ReStore [15], other work only

consider attribute values missing and aren’t applicable to our

setting where entire records are missing. ReStore [15] utilizes

foreign key relationships to synthesize new data records, and

the synthetically generated data is added to the database. After

data generation, the query is answered as in a typical relational

database. NeuroComplete learns to directly predict query an-

swers and is fundamentally different from such a data generation

approach. Specifically, NeuroComplete learns a model that takes

queries as input and outputs query answers; in contrast, Restore

learns the probability distribution of the data in order to synthe-

size new data. To do so, NeuroComplete designs novel query em-

bedding and training data generation steps to allow the models’

query answers to generalize to the complete dataset. Our experi-

ments show up to an order of magnitude accuracy gain in Neuro-

Complete over ReStore, showing the benefits of this approach.

NeuroComplete is also related to [20], [34], but [20] only con-

siders a single table setting and requires aggregate information

to answer queries, and [34] considers answering spread queries

on incomplete spatiotemporal datasets. Furthermore, [11], [17]

study the impact of incompleteness on the query results which

is orthogonal to our work.

Moreover, our work is related to uncertain and probabilis-

tic databases, where attribute values or their presence in the

database is uncertain [7], [12], [14], [25]. However, unlike

NeuroComplete, such approaches cannot handle missing records

directly and require manual insertion and annotation of records

with probabilities, which is challenging since such information

is often not available.

VIII. CONCLUSION

We proposed NeuroComplete, the first query modeling ap-

proach for answering queries on incomplete data. By restricting

queries to the observed database, NeuroComplete generates

training queries whose correct query answers can be computed

from the incomplete database. It uses row relevance to create

query embeddings based on summary of relevant information

to the query within the database. Experiments show Neuro-

Complete answers queries more accurately than state-of-the-art.

Future work includes using our query embedding for complete
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databases and considering more robust training approaches (e.g.,

drop out).
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