2790

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

A Neural Database for Answering Aggregate Queries
on Incomplete Relational Data

Sepanta Zeighami “”, Raghav Seshadri

Abstract—Real-world datasets are often incomplete due to data
collection cost, privacy considerations or as a side effect of data
integration/preparation. We focus on answering aggregate queries
on such datasets, where data incompleteness causes the answers
to be inaccurate. To address this problem, assuming typical rela-
tional data, existing work generates synthetic data to complete the
database, a challenging task, especially in the presence of bias in
observed data. Instead, we propose a paradigm shift by learning to
directly estimate query answers, circumventing the difficult data
generation step. Our approach, dubbed NeuroComplete, learns
to answer queries in three steps. First, NeuroComplete generates
a set of queries for which accurate answers can be computed
given the incomplete dataset. Next, it embeds queries in a feature
space, through which each query is effectively represented with
the portion of the database that contributes to the query answer.
Finally, it trains a neural network in a supervised learning fashion:
both query features (input) and correct answers (labels) are known.
The learned model generates accurate answers to new queries at
test time, exploiting the generalizability of the learned model in the
embedding space. Extensive experimental results on real datasets
show up to 4 times for AVG queries and 10 times for COUNT queries
error reduction compared with the state-of-the-art.

Index Terms—Analytical queries, machine learning, missing
data, relational database.

I. INTRODUCTION

EAL-WORLD databases are often incomplete [13], [15],

[18], [19], [20], [26], [28]. One reason is data collection
cost. To know housing prices in an area, collecting information
for every house is costly, if not impossible, (US Census spends
$1.505 billion yearly for door-to-door data collection [5]), but
Airbnb already provides a sample for free [1] (dataset is a sample
because it only contains Airbnb prices and not other housing
sources). Another reason is privacy. Studies show lower response
rate to questions regarding sensitive attributes, e.g., income, in
surveys [23], [24]. A landlord may provide their demographic
information in a survey, but is less likely to list their properties
and prices. Another reason is data integration across databases
with schema mismatch [8], [9], [15], [16]. Two different agencies

Manuscript received 1 February 2023; revised 11 July 2023; accepted 26
August 2023. Date of publication 27 October 2023; date of current version
10 June 2024. This work was funded by the Intelligence Advanced Research
Projects Activity (IARPA) via the Department of Interior/Interior Business Cen-
ter (DOI/IBC), under Grant 140D0423C0033, in part by the NSF under Grants
CNS-2125530 and IIS-2128661, and NIH RO1LM014026. Recommended for
acceptance by S. Salihoglu. (Corresponding author: Sepanta Zeighami.)

The authors are with the University of Southern California, Los Angeles, CA
9008 USA (e-mail: zeighami@usc.edu; rseshadr@usc.edu; shahabi @usc.edu).

Digital Object Identifier 10.1109/TKDE.2023.3310914

, and Cyrus Shahabi ¥, Fellow, IEEE

may track housing prices in two different regions. One region
may track both housing and landlord information while the other
only stores housing information. After integrating the databases,
landlord information will be incomplete.

In all such scenarios, some records are entirely missing from
the datasets. Given a dataset, one often knows whether data is in-
complete by comparing aggregate statistics [13], [18], [19], [20]
(e.g., Census population counts), by inspecting the mismatch
of records within the database [28] (e.g., when an individual’s
record does not appear in certain tables but exists in others), or
through knowledge of schema mismatches [8], [9], [15] known
during data integration.

Meanwhile, OLAP applications require answering aggregate
queries on such incomplete datasets, yielding inaccurate an-
swers. Consider the example of average housing price in an area.
Richer landlords may be less willing to share the cost of their
houses, leading to an overall underestimation of the housing
prices in a region. In this paper, we assume the underlying
incomplete data is stored in a relational database, where some
records are entirely missing from some tables. We focus on
answering aggregate queries, that is, SQL queries that ask for
aggregation of some attribute, optionally with WHERE, JOIN
and GROUP BY clauses on other attributes. Relational datasets
cover many (if not all) of the discussed applications. If data
is missing due to data integration across databases, the data is
already likely from an OLTP system and in a relational format.
If one wants to use public data sources (e.g., information about a
city) in a query, such information can also be added as a table to a
relational database. A relational setting allows for a systematic
study of answering aggregate queries on incomplete datasets.
In such a setting, a table is systematically missing some of its
records.

Recent work studies answering queries on incomplete
datasets [15], [20], [34]. The only existing approach for rela-
tional datasets, ReStore [15], generates new data to complete the
existing database based on the existing foreign key relationship.
ReStore’s data generation step can be seen as an extension of
data imputation methods (that impute missing attributes [10],
[22], [29], [32]) to impute entire missing records. For instance,
given a complete table of landlords but incomplete table of
apartments, ReStore [15] generates synthetic apartments for
landlords whose apartments are missing. However, synthetic
data generation is challenging. (1) The model needs to learn
fine-grained and record-level information from an often small
and biased training set. (2) Real-world datasets often contain

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

ZEIGHAMI et al.: NEURAL DATABASE FOR ANSWERING AGGREGATE QUERIES ON INCOMPLETE RELATIONAL DATA

missing attributes, based on which generating synthetic data can
be inaccurate. For example, landlord’s gender might be missing
for some landlords, making it more difficult to accurately create
synthetic apartments for them. (3) Generated data that respects
foreign key relationships is challenging, since multiple foreign
key relationships per table are possible. In [15], since only one
foreign key relationship (or path [15]) is used to generate data,
information available in other tables that can potentially improve
accuracy is effectively ignored.

We propose a paradigm shift from generating synthetic data
to learning a model that directly estimates the query answers.
Such a model takes queries as input and directly outputs the
query answer, bypassing the data generation step. This approach
avoids the above short-comings: (1) since the goal is answering
aggregate queries, such a model will be able to learn aggre-
gate information of interest without being hampered down by
record-level details, (2) which also makes it less sensitive to
missing attributes. (3) Since it does not generate new data,
foreign key relationships and the relational structure impose no
constraints. Nonetheless, accurately learning the query answers
is non-trivial. An approach that learns to mimic observed query
answers will fail, since the model learns the wrong answers from
the biased observed query answers.

We introduce NeuroComplete, an approach that utilizes query
embedding and neural networks to accurately estimate query
answers. NeuroComplete learns to answer queries in three steps.
First, it generates a set of training queries for which accurate
answers can be computed given the incomplete dataset. Intu-
itively, any query that is “restricted” such that its answer only
depends on the data in the incomplete database can be answered
accurately. Next, NeuroComplete extracts a set of features for
each of these queries. Each feature corresponds to the contextual
information available about the query answers in the database,
and is computed based on how related a database record is
to the query. Finally, NeuroComplete trains a neural network
in a supervised learning fashion to learn a mapping from the
embedding space (i.e., query features) to query answers. The
learned model then generates accurate answers to new queries
at test time, exploiting the generalizability of the learned model
in the embedding space.

Our experimental results on real-world datasets show that
NeuroComplete provides up to 4x and 10x reduction in er-
ror for AVG and COUNT queries, respectively, compared with
state-of-the-art, ReStore [15]. The amount of data required for
accurate answers depends on how biased the observed data is.
Our results show that NeuroComplete provides accurate answers
when 5% (or more) of the data is available, and the data is less
biased, while we see that 40% of the data needs to be observed
in more biased settings. Specifically, our contributions are as
follows.

e We present NeuroComplete, a query modeling approach
that estimates query answers on incomplete databases with-
out synthesizing new data

e NeuroComplete is the first approach that uses generaliza-
tion in the query embedding space as an effective method
to address data bias and incompleteness.

2791

LandLord (LL) 2 2K
6 3 3 3k 11211 Zip code
—> Foreign Key 71 4 1 1.5k 10019

O] Observed Data

Apartment (Apt)
[Missing Data

Fig. 1. Running Example of Apartments Dataset.

e We present novel training set generation and query em-
bedding techniques to train a model whose query answers
generalize to the complete database

e Qur experiments on real-world datasets show that Neuro-
Complete provides up to 4x and 10x reduction in error
for AVG and COUNT queries, respectively, compared with
state-of-the-art, ReStore [15]

II. DEFINITIONS AND OVERVIEW

Aggregate Queries on Relational Database: Consider a re-
lational database, D, with k tables, 77,..., T},. Foreign key
relationships connect (some of) the tables. Each table has a
primary key, which we assume to be a column named id and
uniquely identifies the rows within each table. We consider
analytical queries, g, on this database. Informally, ¢ asks for an
aggregation of an attribute in some table, where the records in the
table are filtered based on some predicate. Formally, ¢ consists of
an aggregation function, AGG,, on an attribute M, of atable T;_,
where M is called the measure attribute. It furthermore consists
of a predicate function P, (D) that, when applied to D, returns a
subset of T;_. We call the set of rows that satisfy a predicate the
matching rows of the predicate. Such a query can be represented
as a SQL statement that asks for aggregation of some attribute,
with WHERE and optionally JOIN and GROUP BY clauses on
other attributes. The answer to the query ¢ is AGG, (P, (D).M,).
We define the query function f(q) as f(q) = AGG((P(D)).M).
We drop the dependence of AGG, P and M on g when it is
understood from the context. The predicate P can be based on the
attributes in T; or 77, for j # 4, and applied to 7; through JOIN
of the tables. To simplify the discussion, we do not consider
the GROUP-BY clause for now, but, in Section V-A, we show
how it can be incorporated into queries. Our experiments include
queries with GROUP-BY and JOIN clauses (see Section VI-A).
We focus on aggregate queries. Our approach estimates query
answers by learning patterns of the query answers. Answering
non-aggregate queries requires memorizing specific data points,
and thus cannot be supported by our approach.

We use Fig. 1 as our running example. The figure shows a
database of apartments, their landlord and the zip code for the
apartments. An analytical query on this database can ask for
average rent for apartments whose landlord is female.

Incomplete Database: We consider the case when we only

have access to a subset of records, 7; of the table 7T; for some

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

2792

ie{l,...,k} (tables T}, j # i being incomplete is discussed
in Section V). We refer to table T; as incomplete or partially ob-
served and refer to tables T;, j # i as complete or fully observed.
We let the incomplete database D be the database consisting of
T; and T} for all j. We often refer to D (respectively, T') as
the true database (resp., true table) and D as observed database
(resp., observed table). Finally, we define the observed query
function, f(q), as f(q) = AGG((P(D)).M). We consider the
case when the observed database is a biased sample of the true
database, i.e., IE5_p[f(q)] # f(q). Thus the error in answering
queries on the observed database isn’t only due to the variance
in sampling, but also due to its bias. We denote by n = |T}]
and n = |T;|, the size of the observed table and true table,
respectively.

In our running example, we assume apartments table is incom-
plete, where data records missing are marked with a different
colour in Fig. 1. Answering the average rent query on the
observed database will lead to incorrect answers.

Problem Definition: The goal of this paper is to, given the
observed database, D, answer a query ¢ so that its answer is
similar to f(q). However, performing the query on the observed
database, D, provides an inaccurate answer f (¢). Using D, we
train a model f (.; 0) that takes the query as an input and outputs
an estimate of its answer. The model is trained given only D, but
its answer is expected to be similar to performing queries on D.
The asked queries can have arbitrary predicates (our approach
makes no assumption on the form of the predicates, and in
practice, we’ve evaluated our approach on common predicates
with equality and inequality across multiple attributes), a fixed
aggregation function AGG and a fixed measure attribute M
(different models can be learned for different AGG and M values,
as discussed in Section V). Let Q be the set of all such queries
from a query workload. Formally, we study

Problem 1: Given access only to an observed incomplete
database D, train a model, f, so that @ >qco I (q:0) — f(q)|
is minimized, where f is the query function corresponding to
the complete database D.

In our running example, the goal is to train a model that
can utilize the observed database to answer queries that ask for
AVG (rent) (for any query predicate) more accurately than
merely calculating the answer on the database.

System Setup: We follow the setup of [15] and ask the users to
(1) annotate tables with missing records and (2) annotate rows
that have complete foreign key relationships, where for such
rows, the foreign keys are not missing. If data incompleteness is
due to schema mismatch [9], [15], [16] during data integration
(e.g., because a table that exists in one database does not exist in
another), such annotations are known and do not add any manual
overhead. In our running example, we can mark landlords stored
in the LA dataset to have complete foreign key relationships
(recall that LA dataset contained landlord and apartment ta-
bles and thus the foreign key relationships in LA database are
complete, while NY database only contained landlord table they
do not have complete foreign key relationships). Furthermore,
such annotations can be provided by inspecting available ag-
gregate statistics [13], [18], [20]. For instance, if the number of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Algorithm 1: NeuroComplete Framework.

Input: Observed database D, query function f, training
size s .

Output: Neural network f

1: procedure TrainNeuroCompleteD, f, s

2: @ < GENERATEQUERIES(D, s) > Generate training

set
33 Z+{z =p(q,D),1<i<s}r> Create
embedding
&Y e {yi= fla)1<i < s}
5 Initialize the parameters, 6, of f (;0)
6: repeat
7: Sample a set of indexes, I, up to at most |Y|
8 Update 6 in direction —Vp >_._; W
9: until convergence
10: return f

Input: Test time query ¢* on database D
Output: Estimated answer for query ¢*
procedure UseNeuroCompleteq*, D
z" «+ p(q*, D)
if ¢* is count-sensitive then
returnz x f(z%;0)
else
returnf(z*; 6)

AN S

users in an area is lower than the available Census population, the
records in that area will be incomplete. Finally, the incomplete-
ness can be known from means of data collection, e.g., collected
dataset might be for a certain region (such as Foursquare dataset
collected in New York and Tokyo [30]), so one can readily infer
data incompleteness (see case-study in Section VI-G). For ease
of discussion, for now, we also assume that the size, n, of true
table 7} is known. We relax this assumption in Section V-B.

A. NeuroComplete Framework

NeuroComplete embeds queries into a space Z and trains a
model, f , from Z to query answers. To do so, NeuroComplete
defines an embedding function p that takes a query ¢ as an input
and outputs an embedding z. To answer any query, g, we first
find z = p(q) and then provide the estimate f(z;) for the query
answer. The input to the neural network is a query embedding
(detailed in Section IV), which represents the query in terms
of the observed information related to the query. Intuitively,
the embedding function p (formally defined in Section IV)
aggregates the observed database rows based on how related
they are to the query, to represent the query in terms of such
relevant information. This process is shown in Fig. 2. During
training, NeuroComplete (1) creates a set, (), of queries for the
purpose of training, (2) uses the embedding function, p, to find
the query embedding for the queries in (), and (3) uses the queries
together with their answer (computed on the observed database)
to train a neural network f in a supervised learning setting. The
neural network learns a mapping from the embedding space to

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

ZEIGHAMI et al.: NEURAL DATABASE FOR ANSWERING AGGREGATE QUERIES ON INCOMPLETE RELATIONAL DATA

1 Prepare Training Set |2 Create Train Model

Embedding

* zi=p(a; D) |3
vilsiss |calc true answers vi=£(g:),Vi

k= q1|wWHERE B.A = 2

[¢2|WHERE T,.B > 0 T % o o ||teatures: Zz = {z1,22,..., 25}

= i Embedding| .°_.° labels: Y = {y1, 2, - -, Ys}
;| WHERE T,.C= 7 Space,Z " (_»train f

4 |1 Receive New Query |2 Create . o 3 Return Answer

& ¢ WHERET.A=7 Embedding , *— p(q* D) |perform forward pass, f(2*,)

Fig. 2. NeuroComplete Framework.

query answers. To answer a query, NeuroComplete first finds
its query embedding and performs a forward pass of the trained
neural network with the embedding as its input to provide an
estimate of the query answer.

Because the database is incomplete, it is non-trivial to gen-
erate a training set with accurate labels or to define an embed-
ding function that allows for the desired model generalizability,
challenges that are addressed in the remaining of this paper.
We first use Algorithm 1 to concretely present NeuroComplete
framework. Sections III and IV, respectively, present training
set generation and query embedding in details and Section V
discusses the final NeuroComplete system.

Our discussion makes a distinction between count-sensitive
and count-insensitive aggregations. Count-sensitive aggrega-
tions are aggregation functions where scale of the answers
changes with the size of the database. COUNT and SUM belong
to this category because the answer to such queries increases
with data size. On the other hand, count-insensitive aggregation
functions are queries where the scale of the answer does not
depend on the number of data points, e.g., AVG and MEDIAN.
We make this distinction to improve our modeling, because,
when answering count-sensitive queries, one needs to take into
account the size of the database, while count-insensitive queries
can be answered without explicitly accounting for database
size.

NeuroComplete Training: TRAINNEUROCOMPLETE in
Algorithm 1 shows the NeuroComplete training procedure.
Line 2 corresponds to training set generation where a set of
queries, (), are created for the purpose of model training. The
function GENERATEQUERIES (D) takes the observed database
D as an input and generates queries for the purpose of training.
We present how to define this query generation function for
accurate training on incomplete databases in Section III. After
training set generation, line 3 creates query embeddings for
the generated training set using the embedding function p.
We present the embedding function in Section IV. Finally,
lines 4-9 correspond to model training where the training labels
are calculated and a neural network is trained using stochastic
gradient descent and with mean squared loss. Line 7 in the
algorithm samples a set of indexes I to generate the current
batch for training, which are the indexes of queries used in
training for the current batch. That is, after sampling I, the
current training batch is {(z;,v;),¢ € I}.

Answering Queries: After the model is trained, for a test query
q, we first find its embedding, by calling embedding function p
and then performing a forward pass of the trained model with
the embedding as an input. If the query is count-insensitive,

2793

the estimate for the query answer is the output of the model.
Otherwise, the query answer is scaled based on the ratio of the
observed data size to the true data size to account for the scale
of the answers.

III. TRAINING SET CREATION

This step generates the training queries. Since the observed
database is incomplete, the answer to most queries on the ob-
served database will be inaccurate and training a model using
such queries can lead to an inaccurate model. Consider a train-
ing query ¢. If P,(D) contains rows in 7" but not in 7', then
f(q) # f(q) and thus, the training label created for query ¢ will
be wrong. The challenge is creating queries for which we can
calculate correct training labels.

Restricted Queries: Our main insight is to learn from re-
stricted queries. We define restricted queries as queries whose
answers are the same in both D and D. Intuitively, if we restrict
the database to the observed database the answer to restricted
queries does not change. Formally, define Q, = {q € Q, f(q) =
f(q)}. Most real-world queries are not restricted. For instance,
in our running example (Fig. 1), the query of AVG (rent)
of apartments whose landlord is female is not restricted (its
answer on the observed database is different from the answer
on the true database). However, the query of AVG (rent) of
apartments whose id is equal to 1 or 2 is a restricted query (since
apartment ids 1 and 2 are in the observed database, and therefore,
the correct answer can be evaluated by only using the observed
database).

Training labels created based on restricted queries are accu-
rate, so that learning from restricted queries creates a model that
learns an accurate mapping from queries to their true answers.
However, it is difficult to verify if a given query belongs to Q,.,
without access to D. Nonetheless, it is easy to generate restricted
queries. Given any query ¢ we can create a restricted query ¢
by adding a conjunctive clause to the predicate of g. Let I be the
set of id values of the rows in the observed incomplete table 7T;.
We can create a conjunction between the predicate of ¢ and the
statement 7;.ed IN [. Since primary keys are unique, such a
query will only match records whose id is in I and thus are in T}.

Example: In our running example (Fig. 1), consider the query
of AVG (rent) of apartments whose landlord is female. Per-
forming this query on the observed database results in a wrong
answer, because the apartment with id=7 matches the predicate
but is not in the observed database. Nonetheless, we can turn
this query into a restricted query. The query of AVG (rent) of
apartments whose landlord is female and whose apartment.id is
one of 1, 2, 3 or 4 is a restricted query and can be answered
accurately from data.

Query Generation: Any query can be turned into a restricted
query, so the query generation process can use any existing
query. For instance, if a query workload is available, each query
in the workload can first be restricted to the observed database
and then used for training.

In the absence of a query workload, our query generation
process creates synthetic predicates by randomly picking an

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

2794

Algorithm 2. Training Query Generation

Input: The observed database D and training size s
Output: A query set, Q)
1: procedure GenerateQueriesD, s
2 Q0
3 I + set of ids of rows in T}
4: fori< 1tosdo
5: A < arandomly selected attribute from 7}
6: v < a value in range of A
7 op < one of <, > or =
8 q < "SELECT AGG (M)
op v”
9: q+="AND 7;.id IN [”
10: Q.append(q)
return ()

FROM 7T; WHERE A

attribute, a value for the attribute and an operation among <,
> and =. The generated query is then modified to be restricted
to the observed database. This process is shown in Algorithm 2,
where for a desired number of queries s, the algorithm defines
a predicate in lines 5-8. In line 7, we use ‘=’ for categorical
attributes and ‘<’ or ‘>’ for numerical attributes. Finally, line 9
turns the query into a restricted query by ensuring that it only
matches the records in the observed database. We note that both
more sophisticated query generation approaches, such as [35] or
extending Algorithm 2 to generate more predicate clauses per
query, or contain joins, are possible. Nonetheless, we observed
this query generation process to be sufficient. In fact, due to
our embedding approach described in Section IV, we expect the
complexity of the WHERE clauses used for training not to have a
significant impact on the accuracy of the learned model. This is
because our query embedding only depends on the distribution
of matching rows to the query, and not the complexity of finding
those matching rows.

IV. QUERY EMBEDDING

We discuss the query embedding function p. We first present
the approach in a two table setting (i.e., assuming database
only has two tables, one fully observed and one with missing
records) in Sections IV-A, IV-B, and I'V-C. For ease of notation,
in the two table setup, we call the table 7; that contains missing
records 7" (and T is the observed subset of 7°) and refer as O
to the complete table in the database (i.e., all records in O are
observed). During query embedding, we have access to O and T,
but not 7'. Thus, the incomplete (or observed) database contains
tables O and T'. The goal is to answer queries on 7" (which we
do not have access to) using the information available in O and

T'. We discuss multi-table setting in Section IV-D.

A. Overview

Query embeddings are created based on the observed database
(we do not have access to the complete database). To do so, we
utilize rows in the fully observed table O (and not the incomplete
table T'). This is done to avoid biases in the incomplete table T

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Que .SELECT AVG(rent) FROM Apt JOIN LL
TY: WHERE gender="female’

g 4 RR
B A
o > 3
3o
58 0 -
&« 9 don’t impact
2k mn | "% 0 query answer
6| 3 3 3k mn |8 7 1
L N
7 4 1 1.5k 10019 i R
[JObserved Data Query ¢ male|female|other| income i@eﬁon
[Missing Data] Calculated Embedding [~ 0 1 0 2.5k
Fig. 3. Query Embedding Example.

affecting our query embedding. In this section, we present an
overview of this approach. To better illustrate the main concepts,
here, we assume we have access to the complete database. We
discuss, in detail, how we generate query embeddings while
having access only to the observed database in Sections IV-B
and I'V-C.

We define query embedding as a summary of rows in O that
are relevant to the query ¢q. We propose a two step process, where
we (1) for each row in O find their row relevance (RR), a weight
that quantifies how related each row is to the query ¢ and (2)
aggregate the rows in O based on the calculated row relevance
torepresent ¢ in terms of rows of O. An example assuming access
to the complete database, is shown in Fig. 3. For the apartment
table and a given query, we calculate row relevance of records
in Landlord table, and thus the query embedding is based on
records in Landlord table and uses its schema (even though the
query asks for apartment rent information).

Row Relevance: Row relevance (RR) of a row in O to a query
q captures how related the row is to the query answer. Let T},
be the set of matching rows in 7" for the query q. We define, for
arow in O with O.id = i for an integer i, its row relevance «;
to be o; = COUNT(0 ja=i (T, <1 O)). The above expressions
considers the weight of the i-th row as how many times the row
appears when O is joined with the matching rows 7. Intuitively,
if a; is large, it means the i-th row of O has a strong relationship
to the set of rows that match the query. If «; is zero, it means
deleting the ¢-th row, and its related rows in 7" (i.e., delete with
cascade) will have no impact on the query ¢, and thus, the i-th
row should not impact the representation of ¢. In practice, we
cannot calculate row relevance exactly, because we do not have
access to the complete database. We discuss in Section IV-B how
row-relevance is calculated in practice.

Fig. 3 shows how the row relevance values are calculated in
our running example (based on the complete database). We see
that for the query shown in Fig. 3, the row relevance for landlord
with id 2 and 3 is 0, while landlord with id 1 has RR equal to 3.
Intuitively, removing Landlords with id 2 and 3 does not change
the query answer (and thus, RR=0) while landlord with id 1 has
a significant impact on the query answer (so larger RR).

Row Aggregation: To summarize information in O that relate
to the query ¢, we perform a weighted aggregation of the values
in O, weighted according to their RR values. Fig. 3 shows how
the rows are aggregated to create the final query embedding
in our example. The embedding contains the weighted average

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

ZEIGHAMI et al.: NEURAL DATABASE FOR ANSWERING AGGREGATE QUERIES ON INCOMPLETE RELATIONAL DATA

i SELECT AVG(rent) FROM Apt JOIN LL
Query: WHERE gender— female’
RR
I'OWSI

3

0
Labels

L. Features Labels |

5 3 2 2k 1211 @ Train model LI _> @

..... o , Obtain
6| 3 3 | sk [men @‘Lm‘“oim"‘%i;% 3, estimate
7] 4 | 1 |15k | 1009 S

[observed Data [] Calculated
[Missing Data [7Y Neural Network

2

URRI -
rows

Row Relevance Calculation.

Fig. 4.

of the income of the landlords (i.e., (2 x 34+ 4 x 1)/(3+ 1) =
2.5) and the distribution of the gender of the landlords (in this
case, they are all female).

B. Row Relevance Calculation

Row relevance of a record in O is defined as
COUNT(00.ia=i(Ty <1 O)), where ¢ is the id of the record in
O. In practice, we do not have access to the true database, but
only the observed database. Because we only see T', we will not
know all the records in T, ><1 O and cannot directly evaluate
their row relevance. Instead, we estimate the row relevance
when it cannot be evaluated exactly based on the observed
data. To do so, we divide the rows into two sets: (1) rows with
Known Row Relevance (KRR rows) which are rows for which
row relevance can be accurately calculated on the observed
data, and (2) rows with Unknown Row Relevance (URR rows)
which are rows for which row relevance cannot be calculated
on observed data.

Known and Unknown Row Relevance: More formally, KRR
rows are defined as rows for which 0 iq=;(T, ><1 O) =
00.id=i (Tq ><1 O) and URR rows are the remainder of the table.
Given that we do not have access to 1, we cannot evaluate if a
row is KRR by checking the definition. Here, we describe two
conditions used to decide if a row is KRR.

Condition 1. q is a restricted query: If q is restricted, by
definition, T, ><1 O and Tq >< O are the same. Thus, row
relevance for all rows in O can be exactly calculated.

Condition 2. O; has complete foreign key relationship: By def-
inition, if O; (the row in O with id=7) has complete foreign key
relationship, then 0¢ jq—; (T >< O) = 00 .iq—; (T >< O). This
implies that 00 j4=i (T, ><1 O) = O’o_id:i(Tq >< 0), since T,
and T, are subsets of 7" and T’ respectively.

Condition 1 implies that for training queries all rows are KRR,
so row relevance is exactly calculated based on observed data.
Condition 2 means at test time, for some records we can exactly
calculate row relevance but for others we need to estimate it.
This process is described below.

Row Relevance Calculation for KRR: Row relevance calcu-
lation for KRR rows is straightforward. we calculate it exactly
by evaluating the expression COUNT(c ¢ ja=i (T, ><1 O)). For
example, in Fig. 4, this expression can be exactly calculated for
landlord with ids 1 and 2. We see that landlord 1 appears three
time and landlord 2 appears zero times in T, ><I O, so that their
RR are 3 and 0 respectively.

2795

Row Relevance Calculation for URR: We learn to estimate the
row relevance for URR rows using the calculated row relevance
of KRR rows. For a query, let Ox rr be the set of KRR rows
in O, Yk rp their calculated row relevance and Oy grr the URR
rows. We train a neural network in supervised learning fashion,
where O rp are the training features and Yx rp the training
labels. We call this model row relevance model to distinguish
it from the model that is trained to predict query answers (i.e.,
in Algorithm 1). After training row relevance model, a forward
pass of the model estimates row relevance of URR rows.

Fig. 4 shows row relevance calculation in our running exam-
ple. (1) Row relevance is calculated for the two KRR rows. Then
(2) each KRR row is used as a training sample to train a neural
network that estimates row relevance. The model takes gender
and income as input and outputs an estimate RR. After the model
is trained (3) we input the gender and income of the URR rows
into the model and (4) obtain RR estimates for the URR rows.
Fig. 4 shows that the model estimates RR for landlord 3 to be 1
(while true RR is 0) and RR for landlord 4 to be 2 (while true
RRis 1).

C. Row Aggregation

We aggregate the rows in O according to the row relevance
values. If categorical attributes are present in O, we one-hot
encode them before aggregation. We aggregate rows for count-
insensitive aggregation functions (e.g., AVG, MEDIAN, STD) and
count-sensitive aggregation functions (e.g., COUNT, SUM) differ-
ently. Count-insensitive aggregations are aggregation functions
where the scale of the answers does not change with the size
of the database. Thus embedding does not need to contain
information about the number of matching rows. On the other
hand, for count-sensitive aggregation functions, the embedding
needs to contain information about the number of matching rows
to allow the model to adjust to the scale of the answers.

For count-insensitive aggregations, we use the weighted av-
erage of the features in O as the query embedding, where the
weights are based on row relevance values. For count-sensitive
aggregations, we use weighted sum of features in O, normalized
by n if the queries are restricted or by n if they aren’t. By
incorporating the total row relevance values in count-sensitive
aggregations, we allow the embedding to contain information
about the number of matching rows. At the same time, we
normalize the embedding by table size to ensure the number
of matching rows is considered as a proportion of the table size.
This creates an embedding that adjusts to data size while also
containing information about the number of matching rows to a
query.

Row aggregation creates a semantically meaningful summary
of the matching rows in O. For numerical values, the summary
is the sum or average of the values. For categorical columns (that
are one-hot encoded) the summary shows the distribution of the
categories existing in the rows.

D. Multiple Tables and Final Embedding Algorithm

Our approach simply extends to multiple tables by consid-
ering each table separately. We iterate over the tables in the

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

2796

Algorithm 3. Complete Query Embedding Algorithm

Input: A query q on observed database D
Output: Query embedding

1: procedure pg, D

2 for all tables 7 in {T1,..., T3} \ {T;} do
3 for all KRR rows with id=x in T}; do

4: 0ty < COUNT (077, ig—z (Py(D) <1 T}))
5: if Any URR row exists in 7; then

6 §(.;) < Trained row relevance model
7 for all URR rows with id=x in T); do

8

oy < §(o1;ia=2(T}); 0)

9: 2j <= 4 0207 id=2 (1)) > Column-wise sum
10: if AGG is not count-sensitive then
11: zj ij%
12: else
13: if ¢ is a restricted query then
14: zj + 2
n
15: else
16: zj ¢ 2
17: return (2129 . .2

andlord i
embedding 7 4 1 1.5k 10019 | let)) c((j)dde
i —...-embedding
. Final T 1T = Q“e Y
N male|female|other]i dian i SELECT AVG(rent) Y
3 0 4/5 1/5 2.3k 2.25k FROM Apt JOIN LL
WHERE gender="female’
Fig. 5. Multi table query embedding.

database, and for every table 1}, j # 4, and given that the
incomplete table is T;, we consider every T; and T pair. For
every pair we repeat the same algorithm as before, which yields a
query embedding based on the table 7. Finally, the embeddings
based on each T are concatenated together to provide the final
query embedding.

Fig. 5 shows the process for our running example, now with
all three tables. We first find an embedding using the landlord
table, as discussed before. Next, the same process is repeated
for the zip code table, to obtain a zip code embedding. The two
embeddings are then concatenated to create a single embedding
vector shown in the figure.

Final Algorithm: Algorithm 3 presents the final query em-
bedding algorithm. The algorithm iterates over the tables and
calculates the row embedding by finding row relevance and
then performing row aggregation. Finally, all the embedding are
concatenated ([x1, . . .,] denotes concatenating x1, . . ., Ty,) to
create the final query embedding.

Performing Joins and Choosing Tables: The notion of joins
in the algorithm is overloaded when referring to tables without
explicit foreign key relationships with each other. We call it a
join between two tables if there exists a non-empty set of foreign

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

key relationships connecting 7; and T';. We can limit the number
of tables used to generate the embedding based on the length of
the path (i.e., number of foreign key relationships connecting
T; and T). That is, we can only consider the set of tables that
are joinable with 7; through at most a limited number of other
tables. This can be beneficial because often the longer the join
path is, the less relevant the table to the information in 7; will
be. Overall, we let T be the number of fully observed tables used
to create the embedding.

Embedding Time Complexity: For each fully observed table, O
(among the 7 used for embedding in total), the algorithm goes
over rows in Ok rr >< T to calculate row relevance for the
KRR rows.LetO' = Oyrr U (OKRR \ OkRrr >4 Tq),where
Okrr \ Oxrr >< T, are the KRR rows that don’t match the
predicate ¢ (so their row relevance is 0). The algorithm then
goes over the rows in O, where for KRR rows in O’ it sets
row relevance to zero, while for URR rows in O’ it performs a
forward pass of the row relevance model. Assuming training a
row relevance model takes 7, model forward pass takes time ¢ 7,
and finding the result of the join O rr ><1 T}, takes ¢ 7, the em-
bedding computation takes O(tr + tp X |Ovrr| + |Orxrr| +
|Okx rr < T,| +t ;). This process is repeated 7 times, each
time for a different fully observed table O. We perform the
process in parallel across the 7 tables. In our experiments, this
process takes 4-15 seconds across all settings (see Section VI-E),
which is comparable to performing queries on the true (much
larger) database, where the cost of performing joins is higher.

V. END-TO-END SYSTEM AND DISCUSSION
A. End-to-End System

Setup: NeuroComplete setup requires minimal effort to (1)
annotate tables with missing records and (2) annotate rows for
which complete foreign key relationship is available. As dis-
cussed in Section II, such information is often readily available
as a result of the database integration processes. In this setup,
NeuroComplete will accompany a relational database system
for table with missing data.

Supported Queries: The query answering process follows
Algorithm 1, where a model is first trained and then used to
answer the query. A NeuroComplete model is trained to answer
queries with aggregation AGG of an attribute 7. M, where M
is an attribute in table 7. Thus, after a NeuroComplete model
is trained, it can answer queries with any predicate that ask
for AGG(T.M). Such queries can contain JOIN or GROUP BY
clauses as well as any SQL predicates (in fact, NeuroCom-
plete supports general predicates, as defined in Section I, e.g.,
arbitrary polygons). NeuroComplete supports GROUP BY by
iteratively estimating the query answer for each group in the
GROUP BY by adding the group membership as a predicate to
the query.

B. Further Considerations

Efficiency Considerations: Recall that to answer a query, we
first obtain a query embedding (where we utilize row relevance
models) and perform a forward pass of the NeuroComplete to

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

ZEIGHAMI et al.: NEURAL DATABASE FOR ANSWERING AGGREGATE QUERIES ON INCOMPLETE RELATIONAL DATA

obtain the query answer estimate. For efficient querying, we
train NeuroComplete models at a pre-processing step and use
them at query time. A single NeuroComplete model answers all
queries for a fixed measure attribute and aggregation function.
When measure attribute and/or aggregation function changes
for different queries, multiple models may need to be trained
to answer different queries. We decide which queries to build a
model for based on the incomplete tables and query workload.
We build a NeuroComplete model for queries in the workload
where measure attribute is in an incomplete table. NeuroCom-
plete models are small (less than 1 MB in all our experiments),
and storing several models based on workload is practical. As
discussed in Section IV-D, query embedding (including row
relevance model training) is fast and is done at query time.

More Missing Data: In a database we may have (1) multiple
tables with missing records or (2) some records may contain
missing attributes. For case (1), our approach can be used without
modification, if, in addition to 7; any other table T, j # i is
also incomplete. Nonetheless, given that NeuroComplete relies
on T} tables for query embedding, enough information needs
to be available in those tables to allow for accurate predictions.
In practice, especially when systematic bias exists in multiple
tables, one can choose to exclude tables with missing records
from being used in embedding of other queries. For case (2), we
need to ensure that row aggregation supports missing values.
This is achieved by simply ignoring the massing values when
performing row aggregation.

True Data Size, n: So far, we’ve assumed true data size n, used
to scale NeuroComplete answers for count-sensitive queries, is
known. In practice, this is often true: such information may be
publicly available (e.g., we know population of an area based on
census data), data owners may be willing to share such aggregate
information (e.g., a house rental agency may release number of
apartments they have in an area but not the detailed apartment
information) or may be known based on domain knowledge (e.g.,
arental agency may be able to estimate the number of apartments
they have but there may not be a detailed record of the apartments
in the database). If n is not known, we can estimate it using
methods similar to those in [15], [20]. We observed that [15] does
estimate the true table size accurately, so we use their method
for our estimation of true table size. Note that estimating true
table size does not require generating accurate synthetic records,
and only requires correctly estimating how many records are
missing. Thus, if true data size is not known, estimating it is
added as an extra step to the NeuroComplete system.

VI. EMPIRICAL STUDY
A. Experimental Setup

Our experimental setup largely follows [15]. Each experiment
uses a real-world dataset. We remove a set of records to obtain a
biased subset which is provided to the algorithms to answer a set
of queries. The goal is to answer queries accurately. Experiments
were performed on a machine with Ubuntu 18.04 LTS, an Intel
19-9980XE CPU (3 GHz), 128 GB RAM and a GeForce RTX
2080 Ti NVIDIA GPU.

2797

Director
(=300K tuples)

N M

Movie_Director
(=1.7M tuples)

v

Movie
(=250K tuples)

Landlord
(=360K tuples)

.

Apartment Movie_Company Movie_Actor
(=500K tuples) (=2.6M tuples) (=20M tuples)

A v v

Neighborhood Company Actor
(=8K tuples) ‘ (=240K tuples) ’ { (=2.7M tuples) ’
(a) Housing Schema. (b) Movie Schema.
Fig. 6. Dataset information [15].
TABLE 1
INCOMPLETE DATASET GENERATION SETUP
Setup | Dataset | Incomplete Table | Biased Attribute
H1 Housing Apartment Price
H2 Housing Landlord Response rate
M1 Movies Movie Production year
M2 Movies Director Birth year

Complete Datasets: We use two real datasets, Housing and
Movies, whose schema and size is shown in Fig. 6 (image
from [15]). Housing contains information about different Airbnb
listings (such as the apartment type, its neighbourhood and
landlord) and is obtained from [1]. Movies contains information
about movies listed on IMDB (such as their genre, production
year, their directors and actors and company that made them) and
is obtained from [2]. We use datasets as pre-processed by [15].

Incomplete Dataset Generation: The incomplete dataset gen-
eration is done as follows. First, we pick a table, as the in-
complete table, and an attribute from the table, as the biased
attribute. For a keep rate parameter x, we keep % of the total
records in the incomplete table, i.e., |T| = x x |T|. We select
this subset T based on a bias factor parameter, b € [0, 1]. To
choose the records, we (1) sort 7" based on the biased attribute
and select the top |T| X « X b records (i.e., records with the
highest biased attribute value) and (2) select |T'| x @ x (1 — b)
records from the remaining records of 7 (i.e., from records not
selected in step (1)) uniformly at random. If b = 1, the sample
is completely biased and if b = 0 the sample is unbiased. Based
on the above procedure, we create 2 setups for each dataset, as
shown in Table I.

Test Queries: We consider test queries with COUNT and
AVG aggregation functions and with JOIN, GROUP BY and/or
WHERE clauses. None of the test queries are restricted queries,
and thus test queries do not overlap with our training queries,
all of which are restricted queries. For AVG queries, to be
able to study the impact of bias on query answers, we let the
measure attribute be the same as the biased attribute for each
setup (e.g., queries in H1 all ask for AVG(price)). We use the
same GROUP BY and/or WHERE clauses as [15]. Each query
has a GROUP BY and/or WHERE clause on a subset of columns

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

2798

TABLE II
TESTING QUERY PREDICATE AND GROUP BY ATTRIBUTES

Setup Predicate and Group By attribute
H1 Apt.room_type, Apt.price,LL.host_since,
Apt.property_type, Apt.accommodates,

H2 LL.host_since, LL.response_time,
LL.response_rate, Apt.room_type
M1 Movie.genre, Movie.production_year,
Director.birth_country
M2 Director.gender, Director.birth_year

shown in Table II. For example, an AVG query in H1 asks for
AVG (price) WHERE room_type=1. The query involves
a JOIN if WHERE/GROUP BY is on a column from a different
table than the measure attribute. For COUNT queries, we report
results on predicates on the biased attribute. This is to isolate the
impact of bias on query answers as otherwise a query answer
can be unaffected by our sampling procedure.

Metrics: As discussed above, each setup consists of a set of
test AVG and test COUNT queries (). For AVG queries, we report
mean absolute error (MAE), calculated as \%I > ogeq 1 f(@) =yl
where vy is the estimated answer. As discussed in Section V-A,
GROUP BY queries are considered as multiple queries, each
query with a WHERE clause corresponding to a group member-
ship. For COUNT queries, to evaluate whether a method de-biases
the results (rather than just scaling up the answers), we compare
the MAE in normalized counts. That is, if the estimated size of T’
is 7 and the size of T'is 71, then we report ﬁ > 4c0 |@ -4
For NeuroComplete, we set 72 to be the same as in ReStore. We
train NeuroComplete for 5 different random initialization and
report the average and standard deviation of MAEs across runs.
Compared with [15], we use absolute error instead of relative
error due to its robustness when ground truth is close to zero,
and we do not present bias reduction since bias reduction is only
applicable to methods that generate synthetic data.

Baselines: We compare NeuroComplete with the state-of-the-
art, ReStore [15]. We used their implementation in [6]. ReStore
trains a model to generate more data to complete the dataset and
answers queries on the completed dataset. For ReStore, we spent
a week on parameter tuning, performing extensive parameter
search for each setup. For each setting, we ran the model with
various possible modeling choices (SSAR vs. AR) and various
completion paths, evaluated it on the zest set and chose the result
with the best test set performance. This ensures that ReStore’s
model hyperparameters are set to best possible, but is an unre-
alistic evaluation (showing better performance than possible in
practice, since in practice we do not know the ground truth for
test set queries). Therefore, we call it ReStore™ as a reminder of
this unfair advantage. We also use Sample as a baseline, which
answers queries only based on the observed samples.

NeuroComplete Implementation: We implemented Neuro-
Complete in python and JAX (code available at [33]). The model
is a 10 layer fully connected neural network with width 60 in
each layer, trained with mean squared error loss function (as
shown in Algorithm 1 line 8) and Adam optimizer. Training
consists of 1,000 iterations, and the model with smallest training
error is used to perform test queries. Row relevance models have

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

—e— Sample o ReStore* —e

(a) Bias Factor:0.6
[

NeuroComplete
(c) Bias Factor:1

(b) Bias Factor:0.8

1501,

00.05 0.1 02 04 08 00.05 01 02 04 08

Keep Rate Keep Rate

00.05 01 02 04 038
Keep Rate

Fig. 7. Results for HI AVG Queries.

—e— Sample e ReStore* —e

~ (a) Bias Factor:0.6 (b) Bias Factor:0.8
.
20{* 3, g S ~_

I N B

0().05 01 02 04 08

Keep Rate

NeuroComplete
(c) Bias Factor:1

MAE

O0.05 01 02 04 038
Keep Rate

O0.05 01 02 04 08
Keep Rate

Fig. 8. Results for H2 AVG Queries.

—e— Sample o ReStore* —e— NeuroComplete
(a) Bias Factor:0.6 (b) Bias Factor:0.8 (c) Bias Factor:1
20fg——o— oo

—e_
20
EIO el g20
N
0 0 0
0.05 0.1 02 04 08 0.05 0.1 02 04 08 0.05 01 02 04 08
Keep Rate Keep Rate Keep Rate
Fig. 9. Results for M1 AVG queries.

—e— Sample o ReStore* —e— NeuroComplete
(a) Bias Factor:0.6 (b) Bias Factor:0.8 (c) Bias Factor:1

40

. [-y
20! TS 30 .
] w201 8.0
1o 2 |ess s
10-.)—4\" .
——8—o"° L]
0 0 — 0
0.05 0.1 02 04 08 005 0.1 02 04 08 005 0.1 02 04 08
Keep Rate Keep Rate Keep Rate

Fig. 10. Results for M2 AVG queries.
the same architecture as above. We use between 1,000-2,000
training samples across the settings.

B. Comparison Results

Results for AVG: Figs. 7, 8, 9, and 10 compare NeuroCom-
plete with other methods across settings for AVG queries. Each
figure shows, for a setting, how the error changes for different
keep rates and bias factors. For NeuroComplete, the shaded
area shows one standard deviation above/below error, where
standard deviation is over 5 training runs. We observe that
NeuroComplete outperforms the baselines across settings in
almost all cases, improving accuracy of state-of-the-art by up
to a factor of 4. For AVG queries, NeuroComplete provides
large improvements in the housing dataset, while methods are
comparable on Movies dataset for AVG queries.

Furthermore, NeuroComplete is the most effective when bias
factor is less than 1 and when keep rate is less than 80%. When
bias factor is 1, NeuroComplete does not see enough variation in
query answers during training to be able to accurately extrapolate
to unseen queries. On the other hand, when keep rate is 80%,
Sample itself is very accurate, and inherent modeling errors
do not allow for much improvement for NeuroComplete over
observed values.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

ZEIGHAMI et al.: NEURAL DATABASE FOR ANSWERING AGGREGATE QUERIES ON INCOMPLETE RELATIONAL DATA

—e— Sample o ReStore* —e— NeuroComplete
(a) Bias Factor:0.6 (b) Bias Factor:0.8 (c) Bias Factor:1
© [

@ - ® ™
0.2 \/\\

0.4 ¥ 0.4
0'00.05 0.1 02 04 08

MAE

20, H\\\Em |
—— . \\\:

0.0

0'00.05 0.1 0.2

0.05 0.1 02 04 08 04 0.8
Keep Rate Keep Rate Keep Rate
Fig. 11. Results for HI COUNT Queries.
—e— Sample o ReStore* —e— NeuroComplete
(a) Bias Factor:0.6 (b) Bias Factor:0.8 _ (c) Bias Factor:1
B Py °
0.4 . 0.4

goz

—e
0'00.05 01 02 04 08 0'00.05 0.1 02 04 08

Keep Rate Keep Rate

0.0, ».
0.05 0.1 02 04 08
Keep Rate

Fig. 12. Results for H2 COUNT Queries.

—e— Sample —*
(a) Bias Factor:0.6

ReStore* —e— NeuroComplete
(b) Bias Factor:0.8 (c) Blas Factor:l

502 \\\goz \\g

00.05 0.1 0005 011 04 08 %05 01 02 04 038
Keep Rate Keep Rate Keep Rate
Fig. 13. Results for M1 COUNT Queries.

ReStore* —e
(b) Bias Factor:0.8

—e— Sample o
(a) Bias Factor:0.6

NeuroComplete
(c) Bias Factor:1

0.75]——e—_ 075" e] e
° *~——
0.50 0.5014 0.50 |
g *1\‘\.\ g
'—“\w
0.25 S 0.25/% 0.25
— \
00%55 01 02 04 08 °%%05 01 o2 o4 o8 %065 01 02 04 08
Keep Rate Keep Rate Keep Rate
Fig. 14. Results for M2 COUNT Queries.

Interestingly, for bias less than 1, NeuroComplete’s error is
only marginally impacted by change in keep rate For instance,
Fig. 7(a) shows NeuroComplete’s error changes from 40 at 5% to
20 at 80% keep rate, compared with Sample and Restore™ whose
error changes from 150 to 20 in the same range of keep rates. This
is because NeuroComplete, unlike ReStore™, does not directly
use the observed data points for training (i.e., the training size of
NeuroComplete is the same independent of the keep rate). On
the other hand, NeuroComplete relies on the generalizability
of learning based on the observed query embeddings. Thus,
results in Figs. 7, 8, 9, 10 suggest that generalization in query
embedding space is robust to the number of observed data points.

We also see that, in the cases where NeuroComplete error is
not affected by increase in keep rate (e.g., Fig. 9(a) or Fig. 10(a)),
NeuroComplete’s standard deviation goes down as keep rate
increases. That is, often, more data increases the generalization
robustness in NeuroComplete, reducing the reliance on initial-
ization.

Results for COUNT: Figs. 11,12, 13, and 14 show the results
for COUNT queries. Similar to AVG, NeuroComplete improves
the accuracy by multiple factors across settings. Compared with

2799

® Train (low bias) ® Train (high bias) e Test

(b) M1 embedding
0

B Low bias mmm High bias
(c) Embedding distance

(a) H1 embedding

Dim. 2

Dim. 2
=]

f

y ’ '

Distance
T3

100 H1 H2 M1 M2

0
Dim. 1 Setting

Fig. 15. (a) and (b): visualizing training and test distributions. (c): Avg.
distance to the nearest training query from test queries.

AVG, NeuroComplete is able to improve the accuracy for COUNT
aggregation functions even at the bias factor of 1.

Compared with ReStore™, NeuroComplete is always better,
up to a factor of 10. Our results show that ReStore™ often
has larger error than Sample. To understand this result, recall
that ReStore™ generates new records. In fact, in most reported
settings, total number of records in the database synthesized
by ReStore™ closely matches the true number of records.
Nonetheless, the distribution of attribute values (measured
by our error metric) is further from the ground-truth than in
the observed database. For instance, in M2 setup (Fig. 14),
we observed that ReStore™ generates many new records to
match the number of records in the ground-truth. However,
almost none of the newly generated records match the query
predicate (while most of the true record do in fact match the
predicate). That is, even though the number of records that
match the predicate in ReStore™ is closer to ground-truth
compared with Sample, the number of records that match the
predicate as a proportion of data size is further away from
ground-truth compared with Sample. Our error metric measures
the latter which we believe to be more important (as it measures
distribution of the records irrespective of data size).

Finally, for high bias factor or low keep rate, NeuroComplete
has higher standard deviation, i.e., not all random neural network
initializations converge to a good minima. This shows difficulty
of generalization when training queries are from a different
distribution than test queries.

C. Training versus Test Query Distribution Analysis

We analyze impact of training distribution on NeuroComplete
accuracy. We compare two settings: low bias defined as keep
rate=0.8 and bias factor=0.6 and high bias defined as keep
rate=0.05 and bias factor=1. In both settings, even though the
observed data size is different, NeuroComplete creates the same
number of training queries. However, the training queries are
embedded differently, resulting in the embedding distribution
used for training to be different. This impacts the accuracy of
NeuroComplete, since answering test queries depends on how
well the model generalizes in the embedding space to the unseen
test query distribution. To investigate this, Fig. 15(a) and (b)
show the training and test query embeddings for AVG queries
in H1 and M1 settings. We use t-SNE [27] for visualization,
which uses neighborhood graphs for dimensionality reduction
to allow for visualizing the structure of the high-dimensional
space. In this experiment, to isolate the impact of embedding
distribution, row relevance for test queries is calculated based
on the complete dataset (i.e., assuming a perfectly accurate row

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

2800

—o— kr:0.05 —eo- kr:0.2 —e— kr:0.8
(a) COUNT Queries (b) AVG Queries
0.6 | e 150 =
o o .
‘ < "k= 100
: S e
50
0.2 e & P o - °
o ~eo—* — o —0—0 —9©

G0.01 0.02 0.04 0.08 0.16
Drop Rate

0.01 0.02 0.04 0.08 0.16
Drop Rate

Fig. 16. Robustness to missing attributes.
—e—Sample —o Restore* —e—NeuroComplete
25 (a) H1 (b) M1
. 4/’"477"”‘\, ¢ . .
10
10 = °
g g ._/
w5l e
5le—*— =
¢ *
] PO S Y Y PO G S— -
25 50 100 200 400 18 36 72 144 288
Observed data size (x103) Observed data size (x103)
Fig. 17. Query time.

relevance model), so that test query embedding is not affected
by the data bias.

Fig. 15(a) and (b) visually show that test embedding dis-
tribution is more similar to training embeddings distribution
in the low bias setting compared with the high bias setting.
Fig. 15(c) quantifies this similarity. It plots dist. NTS, defined
as the average distance to the nearest training sample from test
samples. That is, for the test set () and each test query, ¢ € Q, let
d, be the distance from ¢ to ¢’s nearest training query and define
dist. NTS= ‘5 4 dq- We use Euclidean distance in the original
embedding space (without dimensionality reduction). The lower
dist. NTS, the more similar training and test query embeddings
are. Fig. 15(c) shows that across datasets, in the low bias setting,
test queries are more similar to training queries. This justifies the
results in Figs. 7, 8,9, 10, 11, 12, 13, and 14, where the increase
in error from low bias to high bias setting can be attributed
to the increase in distance between train and test embedding
distribution. As this distance increases, generalization becomes
more difficult, thus accuracy decreases.

D. Multiple Incomplete Tables

We evaluate NeuroComplete when there is more missing
data beyond a single incomplete table. We introduce missing
attributes in tables that were assumed to be complete in previous
experiments. Here, experiments are in the HI setting, where
previously Landlord was assumed to be complete. For every
landlord attribute and for each record, we remove its value with
a probability, dr, referred to as drop rate.

In Fig. 16, we vary dr for COUNT (Fig. 16(a)) and AVG
(Fig. 16(b)) queries to study its impact on the performance of the
models. We observe that this parameter has little impact when
keep rate is 20% or 80%, showing the robustness of our approach
to missing values. At keep rate 5% for AVG, the error increases
when drop rate increases, while for COUNT query the error first
increases then decreases. This result suggests NeuroComplete is
less robust to missing attributes when observed data is too small.

E. Scalability and Efficiency Anlysis

Query Time: Fig. 17 studies query time of the various algo-
rithms across two different settings and for different observed

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

——kr:0.05
(a) Training Duration

kr:0.2 kr:0.8
(b) Training Size

0 25 50 100 75 225 675 2025
Duration (s) Training size

Fig. 18. Training size and duration.

data sizes (each observed data size corresponds to a specific keep
rate). We see that Sample is the fastest algorithm, as it performs
no processing besides answering queries on the observed data.
We see that NeuroCompletes’ query time varies between 4
and 15 seconds across settings. Row relevance model training
accounts for most of the query time, where models are trained for
a fixed number of iterations. The difference in query time across
settings is due to the difference in the dimensionality of the
embedding space, where H1, which has the highest embedding
dimensionality takes the longest. Compared with Restore™ we
see that Restore™ answers queries faster in the setting H1 but
slower in M1. This is because Restore™ synthesizes data when
it receives a query, and how much data it needs to generate
depends on the complexity of the relational schema. As a result,
it becomes slower in M1, which has a more complex schema,
compared with HI.

Training Time: Fig. 18(a) shows impact of training time on
NeuroComplete error in H1 setup with bias factor 0.8 at various
keep rates (kr). The lines show the error for different keep rates.
Fig. 18(a) shows average accuracy for 5 different runs, and the
shaded area is the standard deviation of model error across runs.
Overall, the results show that models fit within a few seconds
of training, and more epochs, especially for smaller keep rates
causes over-fitting. Furthermore, we see that standard deviation
is larger for smaller keep rates and the model performance is
more sensitive to initialization in that case.

FE. Number of Training Samples

Fig. 18(b) shows how model accuracy changes based on
number of training samples in H1 setup with bias factor 0.8
at various keep rates (kr), where error drops with more training
samples used. Interestingly, even 75 training samples with keep
rate 80% performs better than using 2025 training samples at
keep rate 5%. This shows that, even with small number of
samples, the model can adjust to the scale of required answers,
thus providing reasonable estimates.

G. Case-Study: Estimating AVG Visit Duration

We present an example where real-world contextual informa-
tion is represented in relational format and used to provide query
answers for queries where data is not complete.

Dataset: We use a dataset of location report of individuals
(i.e., latitude and longitude of user locations) which contains the
time duration users spent at different locations in a city. Each
record is a tuple of the format (lat., lon., duration). Furthermore,
each city is divided into various neighbourhoods. The goal is to
answer the query of AVG time spent in a neighbourhood by users
(i.e., range predicate on lat. and lon, and duration is the measure

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

ZEIGHAMI et al.: NEURAL DATABASE FOR ANSWERING AGGREGATE QUERIES ON INCOMPLETE RELATIONAL DATA

—o—x=1-0x=30—-x=280

(b) Marginal benefit

—e—NeuroComplete —®—Sampling

(a) Alternative est. methods
' 4000

100

200

2000
100

Sample size

Marginal Gain (mins.)

0
50 100 150 200
MAE (mins.)

100 5001000
Sample Size

4000

Fig. 19. Comparison of sampling and learning.

attribute). We also have a dataset of Point-of-Interests (POIs),
where each record consists of lat, lon and POI information. This
information can be placed in arelation database with three tables:
Visits, Neighbourhoods and POI. Visit table has schema (lat, lon,
duration, neighbourhood id), POI table has schema (lat, lon, POI
information, neighbourhood id) and neighbourhood table has
schema (id, neighbourhood information).

For the visit table, we use Veraset (VS) dataset, a proprietary
dataset that contains anonymized location reports of cell-phones
across the US collected by Veraset [3], a data-as-a-service com-
pany. Each location report contains an anonymized id, timestamp
and the latitude and longitude of the location. We performed
stay point detection [31] on this dataset (to, e.g., remove location
signals when a person is driving), extracted location visits where
a user spent at least 15 minutes, and recorded the duration of
each visit. 527,932 location visits in downtown Houston were
thus extracted to form the dataset used in our experiments, which
contains three columns: latitude, longitude and visit duration.

For POI table, we use Safegraph Places [4], a publicly avail-
able dataset containing POI information in the US. For Neigh-
bourhood table, we partition city of Houston with a 20x20 grid,
yielding 400 neighbourhoods. We use grid location for each
neighbourhood, without other neighbourhood specific informa-
tion. 352 neighbourhoods had at least one visit in VS dataset
and we only kept those neighbourhoods.

Incomplete Dataset Generation: We let Visit table be the
incomplete table. We assume we have visits data for some
neighbourhoods and no data for others. For a parameter x, we
randomly sample a set of, neighborhoods, keep all visits that
fall in those neighbourhoods, and remove the visits for all other
neighbourhoods to generate our observed database. We expect to
see such a geographical bias in data collection in practice. Many
datasets are only available for a single area (e.g., Foursquare [30]
covers New York and Tokyo and CABS dataset is only available
for San Francisco [21]). Furthermore, for data collected from
mobile apps, there is a bias based on who uses the app which
translates into location (e.g., older people may not use the app,
and there will be less data for areas with older population).

Results: Given x neighbourhoods with data, we apply Neuro-
Complete to find AVG visit duration for neighbourhoods without
data. We compare this with the alternative of collecting data for
the neighbourhoods without data to answer queries. Fig. 19(a)
depicts these two alternatives. The two lines in Fig. 19(a) are not
directly comparable and they are plotted with different y-axes
(NeuroComplete: left axis, Sampling: right axis). Sample size
refers to number of new points sampled for neighbourhoods
without data, to obtain an estimate for the query in those neigh-
bourhoods.

2801

Fig. 19(a) shows that given an error tolerance level, one has
two alternatives in answering the query. For instance, for error
of 75 mins, one can either sample around 2,000 points from the
neighbourhood in question, or use 130 other neighbourhood’s
information and train NeuroComplete to obtain an estimate.
Fig. 19(b) shows this trade-off, but from the perspective of
accuracy improvement per point sampled. If one has information
of 30 neighbourhoods, one needs to sample at least 2,000 points
for a new neighbourhood to be able to obtain an estimate
better than what NeuroComplete provides using the known 30
neighbourhoods.

VII. RELATED WORK

There has been recent effort in answering queries on incom-
plete datasets [10], [15], [20], [22], [29], [32]. Data imputation
approaches [10], [15], [22],[29], [32] use the observed data to es-
timate the missing values. Except ReStore [15], other work only
consider attribute values missing and aren’t applicable to our
setting where entire records are missing. ReStore [15] utilizes
foreign key relationships to synthesize new data records, and
the synthetically generated data is added to the database. After
data generation, the query is answered as in a typical relational
database. NeuroComplete learns to directly predict query an-
swers and is fundamentally different from such a data generation
approach. Specifically, NeuroComplete learns a model that takes
queries as input and outputs query answers; in contrast, Restore
learns the probability distribution of the data in order to synthe-
size new data. To do so, NeuroComplete designs novel query em-
bedding and training data generation steps to allow the models’
query answers to generalize to the complete dataset. Our experi-
ments show up to an order of magnitude accuracy gain in Neuro-
Complete over ReStore, showing the benefits of this approach.

NeuroComplete is also related to [20], [34], but [20] only con-
siders a single table setting and requires aggregate information
to answer queries, and [34] considers answering spread queries
on incomplete spatiotemporal datasets. Furthermore, [11], [17]
study the impact of incompleteness on the query results which
is orthogonal to our work.

Moreover, our work is related to uncertain and probabilis-
tic databases, where attribute values or their presence in the
database is uncertain [7], [12], [14], [25]. However, unlike
NeuroComplete, such approaches cannot handle missing records
directly and require manual insertion and annotation of records
with probabilities, which is challenging since such information
is often not available.

VIII. CONCLUSION

We proposed NeuroComplete, the first query modeling ap-
proach for answering queries on incomplete data. By restricting
queries to the observed database, NeuroComplete generates
training queries whose correct query answers can be computed
from the incomplete database. It uses row relevance to create
query embeddings based on summary of relevant information
to the query within the database. Experiments show Neuro-
Complete answers queries more accurately than state-of-the-art.
Future work includes using our query embedding for complete

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

2802

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

databases and considering more robust training approaches (e.g.,
drop out).

ACKNOWLEDGMENT

This work was funded by the Intelligence Advanced Re-
search Projects Activity (JARPA) via the Department of
Interior/Interior Business Center (DOI/IBC), under Grant
140D0423C0033, in part by the NSF under Grants CNS-
2125530 and 1IS-2128661, and NIH RO1LMO014026. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes, notwithstanding any copyright an-
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of IARPA, DOI/IBC, NSF, NIH or the
U.S. Government.

(1]
(2]
(3]
(4]
[3]
(6]
(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

“Housing dataset,” Accessed: Jul. 2022. [Online]. Available: https:/
tinyurl.com/3dbvtc6k

“Movies dataset,” Accessed: Jul. 2022. [Online]. Available: https://tinyurl.
com/5n6eh577

Veraset, Accessed: May 10,2021. [Online]. Available: https://tinyurl.com/
ypj5e9z2

“Safegraph places,” 2021. Accessed: Jul. 2022. [Online]. Available: https:
//rb.gy/3jefg

“Quick summary of president’s FY 2023 census bureau budget re-
quest,” 2022, Accessed: Jul. 2023. [Online]. Available: https://rb.gy/ssk02
“Restore implementation,” 2022, Accessed: Jul. 2022. [Online]. Available:
https://github.com/DataManagementLab/restore

S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation and
querying of sets of possible worlds,” ACM SIGMOD Rec., vol. 16,
pp. 34-48, 1987.

M. N. Cantor and L. Thorpe, “Integrating data on social determinants
of health into electronic health records,” Health Affairs, vol. 37, no. 4,
pp. 585-590, 2018.

R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embed-
dings of heterogeneous relational datasets for data integration tasks,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 1335-1349.

X. Chu, L. F. Ilyas, S. Krishnan, and J. Wang, “Data cleaning: Overview
and emerging challenges,” in Proc. Int. Conf. Manage. Data, 2016,
pp. 2201-2206.

Y. Chung, M. L. Mortensen, C. Binnig, and T. Kraska, “Estimating the
impact of unknown unknowns on aggregate query results,” ACM Trans.
Database Syst., vol. 43, no. 1, pp. 1-37, 2018.

N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” VLDB J., vol. 16, no. 4, pp. 523-544, 2007.

B. Farooq, M. Bierlaire, R. Hurtubia, and G. Flotterod, “Simulation
based population synthesis,” Transp. Res. Part B: MethodoLog., vol. 58,
pp. 243-263, 2013.

S. Feng, A. Huber, B. Glavic, and O. Kennedy, “Uncertainty annotated
databases-a lightweight approach for approximating certain answers,” in
Proc. Int. Conf. Manage. Data, 2019, pp. 1313-1330.

B. Hilprecht and C. Binnig, “ReStore-neural data completion for relational
databases,” in Proc. Int. Conf. Manage. Data, 2021, pp. 710-722.

W. Kent, “Solving domain mismatch and schema mismatch problems with
an object-oriented database programming language,” VLDB J., vol. 91,
pp. 147-160, 1991.

W. Lang, R. V. Nehme, E. Robinson, and J. F. Naughton, “Partial results in
database systems,” in Proc. Int. Conf. Manage. Data, 2014, pp. 1275-1286.
R. Lovelace, M. Birkin, D. Ballas, and E. Van Leeuwen, “Evaluating the
performance of iterative proportional fitting for spatial microsimulation:
New tests for an established technique,” J. Artif. Societies Social Simul.,
vol. 18, no. 2, pp. 1-21, 2015.

L. Orr, S. Ainsworth, W. Cai, K. Jamieson, M. Balazinska, and D. Suciu,
“Mosaic: A sample-based database system for open world query process-
ing,” in Proc. Annu. Conf. Innov. Data Syst. Res., 2020.

L. Orr, M. Balazinska, and D. Suciu, “Sample debiasing in the themis
open world database system,” in Proc. Int. Conf. Manage. Data, 2020,
pp. 257-268.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD data set epfl/mobility (v. 2009-02-24),” 2009. Accessed:
Jul. 2022. [Online]. Available: https://ieee-dataport.org/open-access/
crawdad-epflmobility

T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, “HoloClean: Holistic data
repairs with probabilistic inference,” VLDB J., vol. 10, pp. 1190-1201,
2017.

R. T. Riphahn and O. Serfling, “Item non-response on income and wealth
questions,” Empirical Econ., vol. 30, pp. 521-538, 2005.

L. Schwartz and G. Paulin, “Improving response rates to income ques-
tions,” in Amer. Stat. Assoc. Sect. Surv. Res. Methods, Proc., pp. 965-970,
2000.

B. Sundarmurthy, P. Koutris, W. Lang, J. Naughton, and V. Tannen, “m-
tables: Representing missing data,” in Proc. Int. Conf. Database Theory,
2017, pp. 21:1-21:20.

B. Thompson et al., “Breast cancer disparities among women in under-
served communities in the USA,” Curr. Breast Cancer Rep., vol. 10,
pp. 131-141, 2018.

L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. 11, pp. 2579-2605, 2008.

V. Voillet, P. Besse, L. Liaubet, M. San Cristobal, and 1. Gonzélez, “Han-
dling missing rows in multi-omics data integration: Multiple imputation in
multiple factor analysis framework,” BMC Bioinf., vol. 17, no. 1, pp. 1-16,
2016.

R. Wu, A. Zhang, I. Ilyas, and T. Rekatsinas, “Attention-based learning
for missing data imputation in holoclean,” in Proc. Conf. Mach. Learn.
Syst., 2020, pp. 307-325.

D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux, “Revisiting user mobility
and social relationships in LBSNs: A hypergraph embedding approach,”
in Proc. World Wide Web Conf., 2019, pp. 2147-2157.

Y. Ye, Y. Zheng, Y. Chen, J. Feng, and X. Xie, “Mining individual life
pattern based on location history,” in Proc. IEEE 10th Int. Conf. Mobile
Data Manage.: Syst. Serv. Middleware, 2009, pp. 1-10.

J. Yoon, J. Jordon, and M. Schaar, “GAIN: Missing data imputation
using generative adversarial nets,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 5689-5698.

S. Zeighami, R. Seshadri, and C. Shahabi, “Neurocomplete imple-
mentation,” 2023. [Online]. Available: https://github.com/szeighami/
NeuroComplete

S. Zeighami, C. Shahabi, and J. Krumm, “Estimating spread of contact-
based contagions in a population through sub-sampling,” Proc. VLDB
Endowment, vol. 14, no. 9, pp. 1557-1569, 2021.

L. Zhang, C. Chai, X. Zhou, and G. Li, “LearnedSQLGen: Constraint-
aware SQL generation using reinforcement learning,” in Proc. Int. Conf.
Manage. Data, 2022, pp. 945-958.

Sepanta Zeighami is currently working toward the
PhD degree with the University of Southern Califor-
nia working on improving data management accuracy
and efficiency using machine learning.

Raghav Seshadri received the MS degree in com-
puter science from the University of Southern Cali-
fornia. He is presently working with KLLA Incorpo-
ration on high-performance computing and machine
learning systems.

Cyrus Shahabi (Fellow, IEEE) is a professor of
computer science, electrical & computer engineer-
ing and spatial sciences; Helen N. and Emmett H.
Jones professor of Engineering; the director of the
Integrated Media Systems Center (IMSC) with USC’s
Viterbi School of Engineering; and fellow of National
Academy of Inventors.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on July 11,2024 at 05:12:17 UTC from IEEE Xplore. Restrictions apply.

