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Flat ACDM cosmology is specified by two constant fitting parameters at the background level in the late Uni-
verse, the Hubble constant H, and matter density (today) Q,,. Mathematically, H, and €, are either integration
constants arising from solving ordinary differential equations or are directly related to integration constants.
Seen in this context, if fits of the ACDM model to cosmological probes at different redshifts lead to different
(Hy, Q,,) parameters, this is a mismatch between mathematics and observation. Here, in mock observational
Hubble data (OHD) (geometric probes of expansion history) we demonstrate evolution in distributions of best
fit parameters with effective redshift. As a result, considerably different (Hy, €,,) best fits from Planck-ACDM
cannot be precluded in high redshift bins. We explore if OHD, Type la supernovae and standardisable quasar
samples exhibit redshift evolution of best fit ACDM parameters. In all samples, we confirm a decreasing H,
and increasing Q,, trend with increasing bin redshift. Through comparison with mocks, we confirm that similar
behaviour can arise randomly within the flat ACDM model with probabilities as low as p = 0.0021 (3.1 0). We
present complementary profile distribution analysis confirming the shifts in cosmological parameters in high
redshift bins. In particular, we identify a redshift range where Planck (H), €,,) values are disfavoured at 99.6%
(2.90) confidence level in a combination of OHD and supernovae data.

I. INTRODUCTION

Cosmologists are currently debating tensions within the flat
ACDM cosmology; the two most serious concern the Hub-
ble constant Hy and the Sg := o3 V€,,/0.3 parameter [1, 2].!
These tensions have been framed as disagreements between
the early (high redshift) and late (low redshift) Universe [3].
In particular, local Hy values [4-8] are universally biased to
larger values than Planck-ACDM [9]. Observations at dif-
ferent redshifts have shown that H, evolves with effective
(binned) redshift in the flat ACDM model [10-18] (see also
[19]). If this trend is not due to observational selection bi-
ases, and it is intrinsic, this behaviour is indicative of model
breakdown [20, 21].

The flat ACDM model Hubble parameter H(z) is specified
by two constant fitting parameters (Hy, Q,,) or (A, B),

H(2)? = H} [1= Q0+ Q,(1 +2)°].

1
=A+B(+2°. M

The parameter A := Hg( 1 — Q,,) is attributed to dark energy
(DE), while the matter sector B := Hng scales as (1+z)% and
Q,, is bounded, 0 < Q,, < 1. One can relax this constraint by
allowing negative energy densities, but interpretation is prob-
lematic.” Observe that DE becomes irrelevant at higher red-

1S ¢ tension is less well established, see [62].

2Later we show that mock realisations can easily violate this bound at
higher redshifts. If the same trend is observed in observed data, does this
immediately falsify flat ACDM?

shifts, where A < B(1 + z)* for reasonable values of Q,,. On
the other hand, note that at higher redshifts H (2)? ~ B(1+2),
3 so the combination Q,,#%, with h := Hy/100, is the rele-
vant quantity. Exploiting these facts, it was recently argued
that increases in Q,, (decreases in Hj) with effective redshift
may be inherent to the flat ACDM model [16]. Here, we study
ACDM mocks binned by redshift to uncover the mathematical
fact that the probability of Planck values Q,, ~ 0.3 decreases
as we increase bin redshift. As a result, some evolution away
from Q,, ~ 0.3 should be expected in best fits of purely high
redshift observations.

Armed with this analytic insight, we turn to observed data
in order to ascertain whether the same trend exists through
comparison to mock simulations. We employ observational
Hubble data (OHD), essentially cosmic chronometers [23]
and baryon acoustic oscillations (BAO) [24, 25], Type Ia su-
pernovae (SNe) [26] and standardisable quasar (QSO) data
sets [27]. Throughout we compare values of (Hy, €2,,,) to mock
simulations in the same redshift range, where the base cos-
mology for the mock is fixed by the best fit parameters of the
entire data set. This allows us to confirm evolution between
low and high redshifts in the sample. We provide complemen-
tary profile distribution analysis confirming the result.

Ultimately, while the fit of the overall sample to flat ACDM
is largely dictated by the redshift range with greater density of
data points, we will see that in sparser redshift ranges, the

3Throughout the text we use the symbol ~ to highlight equivalences that
are approximate.



data prefers different cosmological parameters. In particular,
we find probabilities as low as p = 0.021 (OHD), p = 0.081
(SNe) and p = 0.019 (QSOs), respectively, that mock data
leads to similar values of (Hy, Q,,) as observed data. Combin-
ing the independent probabilities using Fisher’s method, one
arrives at the probability p = 0.0021 (3.1 o) that such an evo-
lution indeed exists within flat ACDM. In addition, we revisit
the findings with profile likelihoods/distributions finding that
Planck best fit values are disfavoured at 99.6% (2.90 for nor-
mal distributions) confidence level based on a combination of
OHD and SNe data alone. This provides a sanity check using
standard frequentist methodology. An explanation in terms of
selection biases is plausible for SNe, e. g. [13, 15], but sim-
ilar effects must impact cosmic chronometers, BAO, etc. Our
mock analysis shows that without selection biases, evolution
away from Planck values should be expected.

II. MOCK DATA

Consider a simple data fitting exercise, where one takes
Dark Energy Spectroscopic Instrument (DESI) forecasts for
H(z) errors o gy, at redshifts z; in the range 0.05 < z; < 3.55
[22]. Next, adopt Planck values [9], Hy = 67.36, Q,, = 0.315,
for an underlying model and generate H(z;) values in a nor-
mal distribution about the Planck-ACDM model using the er-
Iors O p(z,) as the standard deviation at each z;. Throughout we
fix the parameters for the underlying cosmology and do not
pick (Hy, ©,,) in a distribution. Picking (Hy, €2,,,) in a distribu-
tion adds randomness, but this randomness is expected to be
subleading to the randomness introduced in the shifts of the
data points. For each realisation of mock data, separate the
data into four bins, concretely 0 < z < 0.8, 0.8 < z < 1.5,
1.5 < z <23 and 2.3 < z < 3.6. This ensures a similar
number of data points in each bin. Finally, fit the parame-
ters (Hy, £,,,) from (1) to the data in each bin with a Gaussian
prior on Q,,h> = 0.1430 + 0.0011 [9]. Note that the prior only
provides guidance for the high redshift behaviour of H(z) and
its omission cannot change results (see appendix). Repeat the
process a few thousand times and record the distribution of
best fit values of (Hy, £,,) for each bin.

Before turning our attention to Hy, ,, best fit distributions,
let us report on the (unnormalised) distributions for A, B. Fig.
1, produced with GetDist [28], demonstrates that both A and
B are Gaussian by inspection, except where A is impacted by
the boundary at A = 0. Note, we have imposed a Gaussian
prior on B, so B being Gaussian is expected. Observe that
the distributions in A and B spread and narrow, respectively,
with increasing bin redshift. Interestingly, the distribution in
B spreads from bin 1 to bin 2 before narrowing in bins 3 and
4. This apparently contradicts our claim that A spreads and
B narrows, but it can be traced to fractional error differences
with redshift in the DESI forecast [22]. If one ensures data
with the same fractional errors in all bins, then A spreads and
B narrows with redshift. We demonstrate this in the appendix.
This outcome is expected as the ACDM model (1) transitions
from a two-parameter to an effective one-parameter model at
high redshift. We have checked that A and B are uncorrelated
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FIG. 1. Distributions of A = H3(1 — Q,) and B = H3Q,, parame-
ters reconstructed from mock simulations of the Planck-flat-ACDM
model in different redshift bins.

(see appendix). We also see that A grows a non-Gaussian tail
around the A = 0 (Q,, = 1) region at higher redshift bins. This
comes about as a Gaussian with a wide spread probes the A <
0 region with a growing probability in higher z bins, which
we have dubbed a ‘pile up’ feature. Moreover, the width of
the Gaussian distribution for B = Hng reduces as we go
to higher redshift bins and hence we know B with a better
precision in the higher redshift bins. Higher redshift spread in
A = H} — B then yields spread in both Hy and Q,, values.

In Fig. 2 we show the same distribution in (Hy, () pa-
rameters. It is evident that both Hy and Q,, develop long non-
Gaussian tails in the direction of smaller H, and larger ,, de-
spite input Planck values in the mocking procedure, confirm-
ing our analytic expectations discussed above. This is easily
explained. Since Q,,h% is well constrained, best fit (Hy, Q)
values inhabit a QmHg ~ constant curve or banana. Never-
theless, as the banana stretches, configurations move from the
peak to the extremities, leading to shifts in the peak when pro-
jected onto the Hy and Q,, axes. Thus, the Q,, peak shifts
to lower values, whereas the H, peak shifts to higher values.
This comes from a “projection effect” in the mock data. The
pile up at Q,, = 1 is an artefact of our priors, but this can be
relaxed without changing the conclusions. See [63] for a more
complete analysis. Our analysis here only concerns H(z), but
angular diameter distance D4 (z) constraints, and the combina-
tion H(z) + D4(z), are studied in [63].
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FIG. 2. Distributions of the cosmological parameters in different red-
shift bins. The ‘pile up’ at Q,, ~ 1 and Hy ~ 37.8 km/s/Mpc is due
to Q,, > 1 best fits being restricted to the bound Q,, = 1.

Since our mocking procedure is the same in each bin, while
neither the number of data points nor the fractional errors
change greatly (see [22]), one concludes that the behaviour
is generic to the flat ACDM model. Note also that selection
biases do not impact mocks. Moreover, the same argument
can be run for any mock input parameters (Hy, 2,,). The main
message is that even in a Universe statistically consistent with
Planck-ACDM by construction, unfamiliar best fit values can
easily be returned in data fitting. Furthermore, best fits in the
Q,, > 1 regime of parameter space are possible. See related
analysis with Pantheon+ SNe [64].

To avoid confusion, the analysis in this section and its re-
lation to the rest of the paper can be summarised as follows.
Best fits of Planck-ACDM mocks in high redshift bins gener-
ically lead to non-Gaussian H, and €, distributions if one
works with either OHD or luminosity/angular diameter dis-
tance constraints. Moreover, even in mocks one can find unex-
pectedly small and large best fit values of Hy and Q,,, respec-
tively. In the next section we study best fits of observed data
and quantify the unlikeliness of the best fits against mocks in
the same redshift range with the same fractional errors for the
data. This section basically explains why the distributions in
Figs. 3, 4 and 5 are non-Gaussian. This is largely a technical
point that one does not need to process to digest later results.
Irrespective of the shape of the distributions, the p-values in
the next section are based on an ordering of best fit values
from mocks, but the shape of the distribution is a secondary

concern, since one can define percentiles without reconstruct-
ing a probability density function (PDF).

III. OBSERVED DATA

Having uncovered a general feature for H(z) constraints
confronted to the flat ACDM model, i. e. an increase in the
likeliness of smaller Hy and larger Q,, values in high redshift
bins, we now explore the extent to which this feature is man-
ifest in observed OHD. In [63] we show that D;(z) «< Ds(z)
constraints confronted to flat ACDM exhibit similar features,
which justifies studying Type Ia SNe and QSOs.

A. Comments on Methodology

When one finds an anomaly in cosmological data, for ex-
ample CMB anomalies [65], one typically resorts to mock
simulations to assign a statistical significance to the feature.
Here our focus will be a decreasing Hy/increasing €, trend
in best fits with increasing effective redshift. Moreover, as
we have seen, one encounters non-Gaussian distributions in
exclusively high redshift bins (see also [63]). As a result,
while best fits, i. e. the extrema of y2, are expected to be ro-
bust within machine precision,* estimating errors as is usually
done in cosmology is difficult. More explicitly, Fisher ma-
trix leads to unrepresentative Gaussian errors, while Markov
Chain Monte Carlo (MCMC) inferences are prone to degen-
eracies/projection effects that distort inferences. Moreover,
with broad distributions it is possible that MCMC inferences
are simply tracking the priors (e. g. see Fig. 2 of [64]) and the
peaks of distributions are not guaranteed to coincide with the
minimum of the y? [66]. We highlight an explicit difficulty
with MCMC analysis in the appendix.

Given the difficulties with conventional techniques, here we
resort to mocks that allow us to generate a large number of
best fits that are statistically consistent (by construction) with
no evolution of cosmological parameters. We make direct
comparison between best fits from mocks and observed data
in the same redshift range with the same data points and er-
rors. This allows us to rank mock best fits of Hy and Q,, in
descending and ascending order, respectively, and identify the
percentile where observed data best fits appear. This gives us
a probability for finding similar best fits assuming no evolu-
tion in the sample. Note, just as the shape of a PDF of heights
of children in a class is irrelevant in such an exercise, the same
logic also applies here. Bluntly put, elementary school teach-
ers can assign a percentile to the height of a student without
necessarily understanding the concept of a PDF.

In all samples, we note that the probabilities (see Tables I, II
and III) of finding observed data best fits as extreme in mock

4One can test this by initialising the y?-minimsation algorithm from dif-
ferent points in parameter space and checking that one recovers best fit pa-
rameters that are close in value. See analysis in [64].



data decrease as the effective redshift of subsamples becomes
less representative of the full sample. This is expected if the
trend is due to shifts in best fit cosmological parameters. How-
ever, the probabilities do not decrease indefinitely, and our re-
sults show that the probabilities increase again in the smallest
subsamples, which we attribute to noise. It is intuitive that any
signal in the data eventually disappears due to statistical fluc-
tuations in small samples. Furthermore, given the probabil-
ities decrease with increasing difference in effective redshift
between subsample and the full sample, this means that this
probability is bounded below. Thus, we do not pick redshift
ranges by hand, but they emerge from the data as the redshift
ranges where best fits in a subsample are least representative
of the full sample. In other words, one can give a lower bound
on probabilities and this lower bound is expected to be well
defined. One may worry that the p-values we record are arte-
facts of degeneracies between Hj and €2, that drive best fits in
mock simulations along unconstrained directions in parameter
space. To negate this concern in section [V we revisit the sta-
tistical significance of the best fits using profile distributions.
In contrast to mock simulations, the later analysis only makes
use of a single realisation of (observed) data.

We impose a strong Planck Q,.h* = 0.1430 = 0.0011 prior,
which constrains best fits to a curve in the (Hy, £,,)-plane. In
tandem we start y>-minimisation for each realisation of the
data, either observed or mock, from the best fits of the full
sample. As a result, if there is little or no evolution, one ex-
pects the best fits to not move far from the initial guess. In
other words, we bias the initial guess towards no evolution.
However, our strong Planck Q,,h? prior reduces the fitting
procedure to an effective 1-dimensional fit in the (Hy, ,,)-
plane. What this means in practice is that we may find false
minima, but these minima are the closest to the input param-
eters. Nevertheless, we think false minima are unlikely, given
the effective 1-dimensional nature of the fitting. More con-
cretely, note that even in OHD, we are performing an effective
1-dimensional fit with no less than 6 data points and it is hard
to imagine that the outcome is not unique modulo machine
precision. Indeed, we will confirm later with profile distri-
butions that we recover the best fits from the MCMC chain,
which rules out false minima.

Before proceeding, we make some explicit comments on
the mocking procedure initially introduced in section II. For
each sample, we fit the full sample to identify best fit param-
eters for the ACDM model. The exception here is the QSO
sample where we consider a redshift range up to the point
where we find an €, = 1 best fit, and do not consider the full
data set. Note, the best fits should be representative values
if (Hy, Q,,) do not change with effective redshift through the
samples. Then, for all the data points in the redshift ranges
of interest in Tables I, II and III, we randomly generate new
data points in a normal distribution about the best fit ACDM
model using the cropped covariance matrix, a process we re-
peat thousands of times to build up the histograms in the sam-
ples presented in Figs. 3, 4 and 5. For Pantheon SNe, a co-
variance matrix is available. For OHD, the covariance matrix
is diagonal, so mirroring earlier analysis in section II, we gen-
erate new data points in a normal distribution about the best

fit cosmological model where the standard deviation coincides
with the errors. For QSOs, there is a slight tweak to the mock-
ing procedure, but we discuss it later.

B. OHD

Here, we make use of cosmic chronometer [29-35] and
BAO data [36-45]. More precisely, we work with the H(z)
BAO determinations compiled in Table 2 of [46], where ob-
servations have been homogenised to be consistent with a uni-
form Planck inference of the sound horizon [47]. We added
the newer constraint from eBOSS Quasar [48, 49], which we
appropriately adjusted for the sound horizon, H(z = 1.48) =
153.59+8.27. In addition to 21 BAO data points, we make use
of 33 cosmic chronometer data points. Concretely, we utilise
the 35 data points in Table 1.1 of [50], where we omit two
of the most recent additions at z = 0.75 and z = 1.26. As
is clear from Table 1.1, there is still overlap in the remaining
data points at z = 0.75 and z = 0.8, but this does not affect
the high redshifts where we see departures from Planck be-
haviour. Our total sample has 54 OHD sources. Moreover,
we have checked that replacing earlier Lyman-a BAO [43—
45] with the latest constraints [51] does not greatly change the
results,” so we work with the earlier determinations collated
in [46].

First, we identify the best fit values of the cosmological pa-
rameters for the full sample, (Hyp, 2,,) = (69.11,0.299), where
it is worth noting that Q. h* = 0.1428, consistent with the
prior. Next, we repeat the mocking and binning procedure
outlined earlier with the new input parameters (Hy, Q,,) =
(69.11,0.299). Following [16] we impose a low redshift cut-
off to remove sources below a given z and isolate high red-
shift bins. In each bin we compare the best fit values from the
real data and flat ACDM mocks in the same bin with the same
number of data points and same errors in order to establish the
probability of recovering the same or larger Q,, and the same
or smaller Hy values. In the event of saturation of the bound
Q,, = 1, this means that our probabilities are over-estimated,
1. e. too large, since allowing Q,, > 1 permits further ordering
of the values piled up at Q,, = 1. The results are shown in
Table I, where it is clear that (Hp, €2,,) best fits are evolving
in the real data. For easy comparison throughout, we include
the best fits for the full sample in tables, but do not assign
any probabilities. Understandably, the probability of recover-
ing similar values from mocks decreases with redshift up to
a point where statistical fluctuations dominate and the prob-
ability increases again. Fig. 3 provides visual confirmation
that despite the long tails, a bin exists where the real values
are unexpected at 95% confidence level (> 20 for a normal
distribution ©). This points to redshift evolution in the sample.

SReplacing historical Lyman a-BAO with later constraints shifts the best
fit value of Q,, to lower values, but a > 20 discrepancy with Planck is still
evident for OHD with z > 1.45 [66].

©As explained in section II, none these distributions are expected to be
Gaussian.



z Hy (km/s/Mpc) €,, Probability

0<7<2.36(54) 69.11 0.299 -
0.5 <7<2.36(28) 69.68 0.294  0.646
0.7 <7<2.36(18) 65.67 0.331 0.326
1<z<236(11) 61.27 0.380  0.258
1.2 <7<2.36(10) 53.91 0491 0.120
14 <7<236(8) 41.55 0.828 0.037
1.45<7<236(7) 37.80 1 0.021
1.5 <7<2.36(6) 37.80 1 0.069

TABLE 1. Best fit cosmological parameters for different redshift
ranges of OHD. Throughout, we impose the Planck prior, Q,,h> =
0.1430 + 0.0011. Flat ACDM simulations based on best fit parame-
ters over the entire redshift range, 0 < z < 2.33, allow us to establish
the probability of higher Q,, and lower H, values in real data. The
OHD count in each bin is denoted in brackets.
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O

FIG. 3. Comparing 10,000 mock simulations with the best fit value
of Q,, from OHD data (black line) for the bin 1.45 < z < 2.36.

Dashed and dotted lines denote the (2.3, 15.9, 84.1,97.7) percentiles.

200 A

FIG. 4. Comparing 3,000 mock simulations with the best fit value of
Q,, from SNe data (black line) for the bin 0.95 < z < 2.26. Dashed
and dotted lines denote the (2.3,15.9,84.1,97.7) percentiles corre-
sponding to 1o~ and 20 confidence intervals for a Gaussian distribu-
tion.

z H, (km/s/Mpc) Q,, Probability
0<z<226(1048) 69.26 0.298 -
0.7 <2<2.26(124) 64.37 0.345  0.381
0.8 <7<2.26(82) 58.99 0.411  0.258
0.9 <7<2.26(49) 45.88 0.679  0.117
0.95 <7<226(34) 40.73 0.862  0.081
1 <7<2.26(23) 43.16 0.768 0.170

TABLE II. Same as Table I but for Pantheon SNe. We treat the
absolute magnitude Mg as an additional nuisance parameter when
we fit mock realisations and real data. We quote the probability of
larger values of Q,, and lower values of H,. SNe count is denoted in
brackets.

C. Type Ia SNe

We revisit the analysis of the Pantheon data set [26] with
1048 SNe conducted in [16] (see also [13, 14]) in order to in-
troduce a high redshift Planck prior on Q,.h? [9]. Note, to do
so, we treat the absolute magnitude of Type Ia SNe Mp as a
nuisance parameter. This gives SNe data the freedom to ad-
just Hy so that the high redshift behaviour is always the same
as Planck, otherwise the analysis is the same as before. Al-
ternatively put, we have an additional nuisance parameter, but
its role is simply to adopt the value that best accommodates
fits in the (Hp, {,,)-plane, where we are still confronted with
an effective 1-dimensional fit. We identify the best fit param-
eters (Ho, Q,,, Mp) = (69.26,0.298, —19.37), construct mock
realisations in bins, which one compares to the real values.
Throughout we allow for statistical and systematic uncertain-
ties by cropping the Pantheon covariance matrix accordingly
to fit the redshift bin. The results are shown in Table I and
Fig. 4, where the same trend as the OHD data is evident.

D. Standardisable QSOs

Finally we turn our attention to QSOs standardised through
the Risaliti-Lusso proposal [52, 53]. We refer readers to the
original texts for methodology. Objectively, QSOs constitute
emerging cosmological probes [54, 60] and are understand-
ably less well developed than the SNe and BAO; neverthe-
less, even now SNe remain a work in progress [55]. In par-
ticular, there is considerable intrinsic scatter in the QSO data
and there is an ongoing debate about the standardisability of
the Risaliti-Lusso QSOs [57-61]. In contrast to OHD and
SNe, which have lower error-weighted (effective) redshifts of
Zer ~ 0.5 and z.g ~ 0.3, respectively, the QSO sample [27]
is larger (2421 sources) and has a higher effective redshift
Zef ~ 1.4. The sample is too large to present in a table, but
can be downloaded from the original source [27]. Moreover,
it is well documented that €,, adopts larger values than ex-
pected at higher redshifts [53, 56] and that evolution happens
within the QSO sample [16, 53]. The key point here is that
any evolution of Q,, with effective redshift may be telling us
less about QSOs and more about the flat ACDM model.

Our analysis here follows the earlier sections, but there is a
key difference. Risaliti-Lusso QSOs return best fits of Q,,, ~ 1
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FIG. 5. A comparison between 3,000 mock simulations and the best
fit value of Q,, from QSO data (black line) for the bin 0 < z < 0.55.
Dashed and dotted red lines denote the (2.3, 15.9) percentiles corre-
sponding to 1 o and 2 o confidence intervals for a Gaussian distribu-
tion. The dashed black line denotes the median, Q,, = 0.982, which,
as expected, is close to the mock input 2,, = 1. In contrast to Fig.
3 and Fig. 4, the PDF is flat (neglecting the impact of bounds), thus
implying that Q,, errors are large, i. e. €, is poorly constrained, in
the redshift range.

z H, (km/s/Mpc) Q,, Probability

0<z<0.3(56) 406.41 0.009  0.073
0<z<05(177) 353.47 0.011  0.028
0 <z<0.55(233) 433.91 0.008 0.019
0<7<0.6(279) 381.50 0.010  0.020
0<2z<0.7(398) 73.40 0.265  0.096
0<z7<0.8(543) 58.48 0418 0.117

0<z<1(826) 40.69 0.864  0.400
0<z<1.4(13206) 37.82 1.000 -

TABLE III. Same as Table I but for Risaliti-Lusso QSOs. We treat
B,y and ¢ (see [52] for definitions) as additional nuisance parameters
when we fit mock realisations and real data. We quote the probability
of lower values of Q,, and higher values of Hy. QSO count is denoted
in brackets.

across the full sample [56-59], whereas at lower redshifts
0 < z < 0.7, one recovers Planck values, Q,, ~ 0.3 [16];
in accord with our earlier discussions and analyses. Thus,
we start from the redshift range 0 < z < 1.4 (1326 QSOs),
where Q,, hits the bound Q,, = 1, and identify the best fit
parameters that serve as inputs for mocks, (Hy, Q,,,5,v,6) =
(37.82,1,8.64,0.61,0.24). As before, 8 is a nuisance param-
eter degenerate with Hy (the analogue of My in SNe), so once
again the fit in the (Hp, {,,)-plane is effectively 1-dimensional.
To construct the mocks, we generate new UV fluxes Fyy by
picking values in a normal distribution about the original val-
ues with a standard deviation set to the error. Next, we gen-
erate corresponding central values for the X-ray fluxes Fy
through the relation [52, 53],

log,, Fx =8+ ylog,y Fyy + (y — Dlog,o(4nD?),  (2)

where Dy(z) is the luminosity distance, before displacing the

6

values with the standard deviation /6% + o-iz, where o7; is the

error on log,, Fx; at redshift z;.

In Table III we show the increasing (decreasing) trend of
Q,, (Hp) with effective redshift. Unexpectedly large values of
Hj and small values of Q,, are driven partially by large intrin-
sic scatter in the QSO data and the Planck prior on Q,,4>. Nev-
ertheless, the trend in central values is the same and one notes
that the probability of recovering the best fit values for real
data decreases as the effective redshift of the bin decreases,
confirming that the best fit values of the entire data set are less
representative. In Fig. 5 we provide visual confirmation of
this result in a given range, where it is notable that the €,
distribution is uniform between the bounds, thus underscor-
ing how poorly QSO data constrains €2, in the corresponding
redshift range. This is presumably due to the large scatter and
fewer QSOs at lower redshifts.

IV. PROFILE DISTRIBUTIONS

In this section we revisit earlier analysis from the perspec-
tive of profile distributions. The objective is to provide an
alternative view on our mock simulation analysis where one
may be worried that the low p-values are driven by noise in the
mocks and the degeneracy or anti-correlation between H and
Q,,. Our methodology follows [66, 67]. The analysis is stan-
dard frequentist analysis (see section 4 of [68]), but there is a
small tweak. Instead of optimising, we bin the MCMC chain
to construct the profiles, thereby ensuring as close a compar-
ison as possible between Bayesian and frequentist methods;
the MCMC chain is the input in both analyses (see [67] for
further discussion). The basic idea is to study the probability
distribution

1
P(Ho, Q. 0;) = exp (—§X2(H0,Qm, ei)) 3)

where Xz(Ho, Q,,,0;) is the )(2 likelihood, which may depend
on additional nuisance parameters, 6;,i = 1,2,..., e.g the ab-
solute magnitude Mg from Type Ia SNe, or 3,7, § from stan-
dardisable QSOs. The maximum value of # occurs at the x>
minimum, Pp.x = e *¥nn. In contrast to the previous sec-
tions where /\{ﬁ]m is determined through gradient descent (op-
timisation), here we directly evaluate the ,\52 likelihood on the
MCMC chain to identify the minimum. We stress that this
involves no optimisation, but if all analysis is consistent, we
expect to recover profile distribution peaks that agree with best
fits from Tables I-I1I.

Our next step is to pick a parameter, identify its range, i.
e. minimum and maximum value from the MCMC chain, and
then divide the range of the parameter into approximately 200
bins centered on the parameter value at the centre of the bin.
By increasing the length of the MCMC chain one can easily
increase the number of bins. Focusing on Hj, we define the
profile distribution for Hj as

- 1
P(Ho) = exp (—Exfnm(Ho)) “)



where x2. (Ho) denotes the minimum value of y* along other
directions in parameter space for the H, values in a given bin.
If the bin is empty, as can happen frequently in the tails of dis-
tributions, we simply omit the bin. This accounts for missing
dots in the later plots. At this stage, we can define the ratio

R(Hyp) =

P(H, 1
P _ exp ——<x3mn<Ho)—xﬁm)). )

max 2
We emphasise again that sznin is the absolute minimum from
the MCMC chain, whereas sznin(HO) is the minimum in a bin
centered on Hy. The distribution R(Hy) is peaked at R(Hp) = 1
by construction, since the absolute minimum of the y? must
appear in one of the Hy bins. What remains is to normalise
R(Hy) and turn it into a PDF:

R(Hy)

H)= — 9%
w(Ho) fR(Ho)dHo’

(6)

where in the denominator the integral is over the full range
of Hy values from the MCMC chain. Bearing in mind that
we have discretised the Hy range in bins, this integral is most
easily evaluated using Simpson’s rule for numerical integra-
tion. One could worry about this approximation, but we will
now integrate over w(Hy), so that integrals in the numerators
and denominator are performed to the same accuracy. Finally,
to identify 68%, 95% and 99.7% confidence intervals (1o, 20
and 30 for Gaussian distributions) for Hy, we identify H(()l)

and H(()z) so that

H
0 _ Dy _ @
f w(Ho)dHy =1, w(H\") = w(H"),
H ()

I € {0.68,0.95,0.997}.

Expressions for Q,, are defined in an analogous fashion.

Our treatment in this section will not be exhaustive and we
focus largely on OHD and SNe data, since these data sets are
most familiar to cosmologists. In short, our objective is to
recover the high redshift best fits from Table I and II and es-
timate the significance of the discrepancies directly from the
profile distribution. It should be stressed that this exercise has
been repeated with later and better quality data sets, where
it was shown that mock simulations and profile distributions
show good agreement [64, 66]. In addition, we revisit Tables
I, IT and III to determine the 68% confidence intervals, which
were omitted in the earlier tables. This provides confirmation
that the best fits are discrepant with Planck outside of the er-
rors at higher redshifts in OHD, SNe and QSOs. Given the
different systematics across these observables, this cannot be
a coincidence.

Before highlighting the tables confirming evolution outside
of the errors, we begin with warmup exercises. In particu-
lar, for OHD we focus on the 7" row of Table I. While the
table only focuses on a high redshift bin of varying redshift
range, here we split the OHD sample of 54 data points into a
low (z < 1.45) and high redshift (z > 1.45) subsample of 47
and 7 data points, respectively. In Fig. 6 we show R(Hj) and
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FIG. 6. R(H,) and R(L,,) distributions for OHD data with z < 1.45.
Dashed and dotted red lines denote 68% (10°) and 95% (20) confi-
dence intervals. Black lines denote Planck best fit values.

R(Q,,) for the low redshift subsample. Evidently, the distribu-
tions are Gaussian, the Planck values (black lines) are within
20 (more accurately 1.50) and the distributions are peaked on
values close to the best fits for the full sample. The latter is
expected, as we have removed 7 high redshift data points from
the full sample and the statistical weighting of these points is
low. What our analysis in section I shows is that low redshift
data breaks a degeneracy in the (Hp,(),) parameters better
than high redshift data, which means one expects larger errors
from high redshift data, thus the lower statistical weighting. In
contrast, in Fig. 7 we confirm without using optimisation that
the best fit parameters have shifted in the high redshift bin. In
particular, the R(€2,,) distribution is one-sided, implying the
peak is beyond Q,, = 1, while the two points to the left of the
peak in R(Hy) tell us that lower values of Hj are disfavoured.
In general we take the lower bound on Hj to be Hy > 0, so
there is no reason for the R(H,) distribution to terminate un-
less there is a sharp fall-off. The Planck values for Hy and €,
are now excluded at 96% (2.10°) and 99% (2.60°) confidence
level, respectively.

This can be compared with p = 0.021 (2.30") from our
OHD mock simulation in the same redshift range, and one
recognises that the statistical significance is approximately the
same. There is a slight difference in that our mock simula-
tions are based on best fits for the full sample, and not the
Planck values, but this is not expected to make a huge dif-
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FIG. 7. R(Hy) and R(£,,) distributions for OHD data with z > 1.45.
Dashed and dotted red lines denote 68% (10°) and 95% (20) confi-
dence intervals. Black lines denote Planck best fit values. The two
dots to the left of the R(H,) peak confirm that the distrbution goes
to zero sharply below Hy = 40 km/s/Mpc. In contrast, the R(€2,)
distribution is one-sided and the peak is beyond Q,, = 1.

ference, especially since mock simulations assume a Planck
prior on Q,,h2. It is also compelling that the statistical signif-
icance from mock simulations, which treats the (Hy, Q,,) pa-
rameters on par, is in the middle of the statistical significance
inferred from Hj, and Q,, profile distributions separately. It
should be stressed that in the profile distribution analysis there
is only one realisation of the data. Recovering the same sta-
tistical significance confirms that our mock simulations have
not been impacted by anti-correlations (or degeneracies) be-
tween Hy and €, that may cause best fits from (noisy) mock
simulations to move along the curves of constant Q,,4” in the
(Ho, Q,)-plane.

We next turn our attention to Type Ia SNe, where we focus
on the redshift range corresponding to the 5™ entry in Table
II. As with OHD, we expect the low redshift R(Hy) and R(Q,,)
distributions to be Gaussian, and consistent with Planck, so
we focus exclusively on the high redshift segment (z > 0.95).
The MCMC chain now has an additional nuisance parameter
M3, which is relatively well constrained, so we do not discuss
it further. In Fig. 8 we show R(H)) and R(€2,,) for high redshift
SNe (z > 0.95). One can compare the peaks of the distribution
to the best fits in Table IT (5" row) and confirm that H, and
Q,, distributions are peaked at Hy ~ 41 km/s/Mpc and Q,, ~
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FIG. 8. R(Hy) and R(€,,) distributions for Type Ia SNe data with
z > 0.95. Dashed and dotted red lines denote 68% (10) and 95%
(207) confidence intervals. Black lines denote Planck best fit values.
The dot to the left of the R(H,) peak confirms it goes to zero below
Hy = 40 km/s/Mpc. A peak is evident in both R(H,) and R(2,)
distributions. Scatter is evident in the R(H,) distribution at higher H,
values, but this can be removed by running a longer MCMC chain.

0.86 respectively. In contrast to the OHD data, the R(Q,,)
peak is noticeably not cut off by the Q,, = 1 bound. In the
R(H,), there is some scatter in the R(Hj) distribution beyond
Hy = 80 km/s/Mpc, but this can be removed by running a
longer MCMC chain. The Planck values for Hj and Q,, are
at 81% (1.30) and 94% (1.90) confidence level, respectively.
This compares favourably with p = 0.081 (1.707) from our
mock simulation analysis. Once again, our profile distribution
analysis appears to average the statistical significances we see
from R(Hy) and R(L,,,).

A. Frequentist confidence intervals

Having warmed up sufficiently, we will now use profile dis-
tributions to determine the missing errors in Tables I, II and
III. The results of this exercise are presented in Tables IV,
V and VI. What the tables confirm is the following. Subject
to the Planck prior on Q,.h2, all data sets exhibit a decreas-
ing Hy/increasing €, trend with effective redshift, whereby
best fits evolve outside of the errors. In particular, OHD data
with z > 1.2 in Table IV, SNe data with z > 0.9 in Table V



z Hy (km/s/Mpc) Q,,

0<2z<2.36(54) 69.11%129  0.299+0012
05<2<236(28)| 69.682%  0.294*0019
07<z<236(18)| 65.675%  0.331*94%
1<z<236(11) 61.27+193%  0.380*07%2
12<2<236(10)| 53.9171997  0.491*)39
14<2<236(8) | 41.5571382  0.828+07%
145 <z2<236(7)| 37.807 4% > 0.641
1.5<2<236(6) | 37.8073%:¢ > 0.663

TABLE IV. Same as Table I but with 68% confidence intervals deter-
mined through profile distributions. Note, at higher redshits the €,
confidence interval terminates at the bound ,, = 1.

z Hy (km/s/Mpc) Q,
0<z<226(1048)| 69.262%  (.298002
0.7 <2<226(124)| 6437132 034510170
0.8<2<226(82)| 589971597 04110278

09<z<226(49) | 4588139  0.6797927)
0.95 <z<226(34)| 40.7318% 50557
1<2<226(23) | 43.16:2%  >0503

-5.57

TABLE V. Same as Table II but with 68% confidence intervals de-
termined through profile distributions.

and QSO data with z < 1 in Table VI are already discrepant
with Planck beyond the 68% confidence level. Moreover, for
OHD and SNe, high redshift subsamples disfavour the best
fits of the full sample by in excess of 68% confidence inter-
val, whereas low redshift QSO subsamples disfavour the best
fits of the full sample by in excess of 68% confidence level.
This establishes evolution outside of the errors in these three
independent samples.

z H, (km/s/Mpc) Q,
0<z<0.3(56) | 406.4172%>7  0.009*5:050
0<z<05177) | 3534712 0.0117057

0 <z<0.55(233)| 433.91*2831 0.008+0:92L
0<z<0.6(279) | 381.50*2532° 0.010705:}
0<z<07@398) | 73.402% 026570278
0<z<0.8(543) | 584848 0418704
0<z<1(826) 40.69)%2 > 0.625
0<z<14(1326) 37.82%)3 > 0.725

TABLE VI. Same as Table III but with 68% confidence intervals
determined through profile distributions.
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FIG. 9. R(Hy) and R(Q,,) distributions for a combination of OHD
and Type Ia SNe data with z > 0.95. Dashed and dotted red lines
denote 68% (10) and 95% (207) confidence intervals. Black lines
denote Planck best fit values.

B. Combining OHD and Type Ia SNe

Lastly, since we see smaller values of Hj and larger values
of Q,, in high redshift bins in three independent data sets, it is
interesting to combine the likelihoods and repeat the exercise.
Here, we opt not to fold QSOs into the analysis, as they re-
main the most questionable observable. Nevertheless, if QSOs
are standardisable, our results here are more significant than
quoted. We focus on two high redshift intervals z > 0.95
and z > 1.45, because these correspond to the redshift ranges
where we see the most significant shifts in (Hy, Q,,) in our
mock simulations for Type Ia SNe and OHD, respectively. By
comparing Tables I and II, one sees that different data sets pre-
fer different values of Hj and Q,, for data with z > 0.95. As
a result, one expects an average value, and this is indeed what
we find in our profile distribution analysis. In Fig. 9 we show
the result. We note a shift in the peak to smaller Hy and larger
Q,, values, but the significance is not so great, in the sense
that the Planck values are now excluded at 81% (1.30°) con-
fidence level. This is more significant than p = 0.258 (0.70)
one sees in mock simulations of OHD in a comparable red-
shift range (4" row of Table I). Evidently, the addition of SNe
data to OHD pulls Hy lower, pulls Q,, higher and increases
the statistical significance.

Our final exercise is to combine OHD and SNe with z >
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FIG. 10. R(H,) and R(Q,,) distributions for a combination of OHD
and Type Ia SNe data with z > 1.45. Dashed, dotted and dashed-
dotted red lines denote 68% (107), 95% (207) and 99.7% (30°) confi-
dence intervals. Black lines denote Planck best fit values. We have
relaxed the traditional Q,, < 1 prior to Q,, < 3 in order to include
the peak at Q,, ~ 2.8. Although no points are evident to the left of
the R(Hy) peak, the distribution falls off to zero as we imposed an
H, > 0 prior.

1.45. It should be stressed that SNe are extremely sparse at
these redshifts with only 6 Pantheon SNe in the range. As a
result, we can expect OHD to have greater bearing on the out-
come. As is clear from Table I and Fig. 7, the Q,, < 1 prior
precludes the data from finding the point in ACDM parameter
space that best fits the data (minimum of y?). Thus, here we
relax the €, prior enough to Q,, < 3 to find the best fit Q,,
value at Q,, ~ 2.8. The resulting R(Hy) and R(L,,) distribu-
tions are shown in Fig. 10. The key take away from these plots
is that the R(Hp) and R(L2,,) distributions preclude the Planck
value at 99.6% (2.90°) and 99.97% (3.60°) confidence level,
respectively. As our mock analysis in section II has shown
(see also [63]), there is nothing to preclude €, > 1 best fits in
high redshift bins assuming the ACDM model, since this can
happen in mock data based on Planck values. The physical
regime corresponding to €, < 1 is excluded at 83% (1.40)
confidence level.

10
V. CONCLUSIONS

We explained through analytic arguments and simulations
why the Planck value Q,, ~ 0.3 is less likely when one fits
higher redshift binned H(z) observations to the flat ACDM
model. Our arguments are independent of mock input param-
eters and simply follow from the irrelevance of the A term in
(1) at higher redshifts, and A > 0, which yield an initial ‘pile
up’ of best fits on Q,, = 1, before piling up at Q,, ~ 0 at even
higher redshifts. This reduces the probability of recovering
the Planck value at high redshift, thus providing an avenue to
test the model. Note, it is not enough to find unexpected best
fits, but one must prove that those best fits are statistically
unlikely assuming no evolution of ACDM parameters across
data sets. Alternatively put, one must first establish evolution
in best fit cosmological parameters before addressing errors
and statistical significance, since if there is no evolution in
best fit parameters, the size of the errors makes little differ-
ence. Our warm-up DESI mock analysis here solely pertains
to H(z) constraints, but the same conclusions hold for angular
diamater distance D4(z) o« foz dz’/H(Z') constraints [63]. The
reader will note that D;(z) o< D4(z), so all our observed data
is in the H(z) or Dy (z)/Da(z) class. We emphasise again that
the role of the first section is simply to explain why the mocks
in Figs. 3, 4 and 5 are non-Gaussian, but this has no bearing
on the p-values.

In the second part of our work, we confirmed a decreasing
Hy/increasing €, behaviour in OHD and Type Ia SNe with
p-values as low as p = 0.021 (2.30) and p = 0.081 (1.7 0),
respectively. We resorted to comparison to mock analysis in
the same redshift range with the same number of data points
and same errors because i) mock simulations are tradition-
ally how one approaches anomalies in data, e. g. [65], and
ii) one can circumvent the difficulty estimating errors with
non-Gaussian distributions. Using Fisher’s method, the com-
bined (lowest) probability for these established cosmologi-
cal probes is p = 0.013 (2.50). In QSOs, an intrinsically
high redshift emerging observable, we see the opposite trend
where discrepant best fit (Hy, 2,,,) values relative to the entire
sample appear at lower redshifts with probabilities as low as
p = 0.019 (2.30). Once again combining the probabilities,
one finds a (lowest) probability p = 0.0021 (3.1 ). One may
also benchmark with respect to the bin 0 < z < 0.7, where
Q,, ~ 0.3, in which case the combined (lowest) probability be-
comes p = 0.0078 (2.7 o). As argued in the text, the probabil-
ities we quote are lower bounds, especially since we preclude
Q,, > 1 in observed and mock data fitting. One can of course
find redshift ranges with less evolution, but if there is a bona
fide decreasing Hy/increasing €2, best fit trend with increasing
effective redshift, then one expects decreasing p-values in Ta-
bles I-II. Moreover, by working with the full sample and not
binning it, one can return to the working assumption that there
is no evolution in the samples. Our analysis here challenges
the working assumption.

Since mock simulations may be unfamiliar to some read-
ers, we revisited the redshift ranges where we see the great-
est shift away from canonical Planck cosmological parameters
with profile distributions. Our analysis focused on the better



understood observables, namely OHD and SNe, but we pre-
sented 68% confidence intervals for all observables across dif-
ferent redshift ranges, allowing us to confirm that the best fit
parameters evolve outside of the errors. Profile distributions
allow us to recycle the information in the MCMC chain di-
rectly, find the most probable values for cosmological parame-
ters and establish the confidence intervals at which the Planck
(Hy, Q) values are excluded in high redshift bins. Through-
out we find good agreement between mock simulations and
profile distributions analysis. In particular, we find that the
statistical significance from mock simulations averages the
statistical significance we see in Hy and Q,, profile distribu-
tions. The main take away is that high redshift OHD and Type
Ia SNe samples prefer larger values of €, and smaller values
of Hy and this preference is statistically significant at ~ 30
when we relax the Q,, < 1 prior. The conclusion here is sep-
arately confirmed in re-analysis with later and better quality
data [64, 66]. Throughout it should be stressed that we are
looking at small subsamples of OHD and Type Ia SNe data
sets at high redshifts, but the discrepancies we see are statis-
tically significant. Given the small size of the samples, it is
imperative to revisit results as data quality improves further.
Note, QSOs have no problems with statistics, but systematics
may be an issue. There is a statistically significant discrepancy
with Planck at higher redshifts z > 1.5 reported elsewhere in
the literature [53].

Objectively, all observables show signatures of evolution
to lower Hy values and higher Q,, values between low and
high redshifts, in line with mock expectations that they can
be easily displaced from Planck values. Neglecting selection
effects and more general systematics across multiple observ-
ables (SNe, cosmic chronometers, BAO, QSOs), this supports
the idea that the flat ACDM model is a dynamical model
where fitting parameters, which should be constants, evolve
in (cosmic) time. This cautions that cosmological tensions
may be an outcome of the flawed assumption that (Hy, Q,,)
are unique within flat ACDM. In short, the ACDM model
appears to have broken down; no model of physical interest
should make different predictions at different epochs. If sub-
stantiated, this settles the systematics versus missing physics
debate on ACDM tensions. The outcome may not be so sur-
prising. What is being tested is, given the current quality of
high redshift z > 1 data, whether exclusively high redshift
data can recover the Planck values. Our findings are appar-
ently no, but this conclusion may be reversed as high redshift
data improves, thereby throwing a lifeline to a ACDM model
besmirched by persistent tensions.

Finally we note that one could attempt to interpret these
findings in terms of an underdensity in the Universe at the
scale of a few Gpc, e. g. [69, 70].” However, before doing
S0, it is imperative to check if matter is observationally pres-
sureless ®. Note, the (flaty ACDM model is so simple that DE

7See also [71-75] for claims and counterclaims regarding the ability of
smaller voids to resolve Hy tension.

8Theoretically, it is pressureless, but observation and theory need not
agree.
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and matter sectors are coupled through a single parameter Q,,,
and it is prudent to confirm that Q,,4? is not evolving in high
redshift bins before making further deductions. More con-
cretely, one needs to check that the Hubble parameter scales
as H(z) ~ 100 /Q,,h%(1+z)? with constant Q,,h*> and b = % in
high redshift bins. If either constant evolves, this contradicts
the assumption that matter is pressureless.
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Appendix A: Removing Q,,i* prior

Removing the Planck Q4 prior from Fig. 2 leads to a
spreading in all distributions, but qualitatively the features are
the same, as expected from the analytic discussions. This can
be confirmed in Fig. 11.

Appendix B: Confirmation of P(Q2,, ~ 0.3) —» 0

In this section we consider the same mocking procedure
but focus exclusively on the fourth DESI bin with redshift
range 2.3 < z < 3.6. We now displace the redshifts in in-
tervals of +1 without changing the data and document the ef-
fect on the distribution of Q,, best fits over a few thousand
mocks. Noting that very high redshift H(z) data only con-
strains Q,,h> o« B well, we expect Hy and Q,, to be largely
unconstrained, corresponding to flat/uniform distributions in
Hj and Q,, at high redshift. In particular, we expect €, distri-
butions to flatten as the effective redshift increases. Here we
confirm that this flattening happens through a shift in the peak
of the (non-Gaussian) €, distribution to smaller values away
from Q,, = 0.3, so that the probability of encountering an Q,,
best fit close to canonical values P(Q,, ~ 0.3) decreases.

Once again, we assume Planck input parameters, Hy =
67.36,Q,, = 0.315 and the Gaussian prior, Q.0 =0.1430 +
0.0011 [9]. In Fig. 12 we present (normalised) probabilities
for Q,, for Planck-ACDM mocks, where the blue curve corre-
sponds to the red curve in Fig. 2. The remaining curves cor-
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FIG. 12. Probabilities of a given Q,, best fit value for forecast DESI
H(z) data in the range 2.3 < z < 3.6 (blue curve) with Planck input
values. Green, yellow and red denote the probabilities if the same
data are displaced to higher redshifts.

respond to 2, probabilities as we displace the original binned
data in redshift. Since we are at high redshift, the probability
of Q, =1, P(Q, = 1) > 0 and it clearly increases with red-
shift of the sample. This is evident from the greater number
of best fits piled up at Q,, = 1. The shift in the peak of Q,,
best fits is a result of the best fits stretching along a constant
Q,,h* curve in the (Ho, Q,,)-plane. This leads to a larger num-
ber of configurations at smaller Q,, values and a shift in the
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FIG. 13. A corner plot with DESI forecast data demonstrating that
(A, B) are uncorrelated across the bins.

peak in the Q,, distribution to smaller values when projected
onto the Q,, axis. Fig. 12 shows that this trend is more pro-
nounced at higher redshifts and it is an obvious implication
that at a given high redshift, any knowledge of the input pa-
rameters is lost and the probability of recovering the Planck
value, P(Q,, ~ 0.3) is close to zero. Potentially other Q,, val-
ues favoured, as can be seen from our mocks.

Appendix C: Further comments on (A, B)

In this section we show in Fig. 13 that the derived (sec-
ondary) parameters (A, B) are uncorrelated. As explained in
the main text, we imposed a (strong) Planck Gaussian prior on
B, so unsurprisingly B conforms to a Gaussian and A is also
Gaussian where it is not impacted by the bound Q,, < 1. Not-
ing that (A, B) are uncorrelated, whereas the transformation
from the fitting parameters (Hp, {,,) to (A, B) is non-linear, it
would be surprising if one encountered Gaussian distributions
in all parameters.

There is another loose end to close. The astute reader will
notice that the B distribution does not narrow uniformly in Fig.
13. To explain this feature we note that the percentage H(z)
errors vary with redshift in the DESI forecast [22] and the er-
rors are smallest at the boundary of bin 1 and bin 2 (z ~ 0.8).
As aresult, bin 1 better constrains B, the relevant high redshift
parameter, whereas bin 2 better constrains A, the relevant low
redshift parameter. From Fig. 13 one notes that any spread
in A is marginal between bins 1 and 2, while the B distribu-
tion actually spreads between bins 1 and 2, thus contradicting
statements in the text. However, in Fig. 14 we produce four
bins with exactly the same data in each bin by simply displac-
ing the percentage errors in bin 1 in redshift and using them
as the basis for mocks in bins 2, 3 and 4. As a result, one



Il 0.05=z<0.8
Il 085<z<1.6

1.65<z<2.4
Il 245<z<3.2

1434

1432

m 1430

1428

1426 1

1 1 1
2000 4000 6000 8000 1427 1430 1433
A B

FIG. 14. A corner plot with the same data in all bins. The A distri-
bution spreads whereas the B distribution narrows once one has the
same data in all bins.

has the same percentage errors in each bin, and one notices
that A spreads whereas B narrows with effective redshift. In
summary, one generically expects a spreading A distribution
and narrowing B distribution with effective redshift in the flat
ACDM model as the model transitions from a two-parameter
model to an effective one-parameter model, but this trend may
be impacted by the number of data points and the errors.

Appendix D: MCMC analysis

As explained in the text, great care is required with MCMC
inferences in non-Gaussian regimes. For this reason we opted
to compare our best fits in observed data directly with best
fits in mock data in the same redshift range with the same
number of data points and errors. Here we take a look at the
inferences one would make with MCMC, where we focus on
OHD data, since it is the simplest to analyse because there are
no nuisance parameters. Once again, we impose the bounds
0 < Q, < 1. We then split the OHD sample at z = 1.45, which
is of interest since it corresponds to the 7" entry in Table I,
where we have recorded the lowest probability of recovering
best fits from observed data in mock data. It should be noted
that our best fit €2, value saturates the bound Q,, = 1, so we
expect that our MCMC distribution has no €, peak because
it is precluded by the priors.

In Fig. 15 we show the outcome of the MCMC analysis
with GetDist [28]. As expected, the low redshift (z < 1.45)
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sample of 47 OHD data points leads to an €, distribution that
is perfectly Gaussian, but the high redshift (1.45 > z) sample
of 7 OHD data points does not. The €, distribution contin-
ues to increase towards the ,, = 1 bound implying either
a peak at the bound or beyond the bound. Priors are clearly

E z<1.45
Bl 145<z
| b
1.0F i
0.8} g
S
G o6l g
0.4} i
~-
1 1 1 1 1 1 1
40 50 60 70 04 06 0.8 1.0
Hg Qm

FIG. 15. Inferences of cosmological parameters from MCMC chains
in the OHD sample of 54 data points. Evolution of cosmological
parameters is evident when comparing low and high redshift sub-
samples.

impacting the result. In the (Hy, Q,,)-plane the contours fol-
low a curve of constant Q,,4*> due to the Planck prior. This
curve is elongated in the high redshift sample and the dis-
crepancy between the low and high redshift subsamples of the
full OHD sample is evident in the (Hy, 2,,)-plane. From the
MCMC chains, we infer the constraints on (Hy, ©,,,) from the
low redshift sample to be (Ho, Q,,) = (69.32*090,0.298*0.008),
whereas the constraints from the high redshift sample are

(Ho, Q) = (42.82+535,0.779* 0151 Here, we quote 16, 50"

and 84 percentiles in line with standard practice, of course
assuming a Gaussian distribution. It is clearly wrong to do this
as our distributions are non-Gaussian and have been impacted
by the Q,, < 1 bound, but the results are merely indicative of
smaller H, values/larger Q,, values at higher redshifts. To be
clear, it should be evident that relaxing the Q,, < 1 prior will
allow the 2D posterior to stretch further into the top left corner
of the (Hy, Q,,)-plane. This will shift the peak of the Hj pos-
terior to smaller values, thereby exacerbating tensions in pro-
jected 1D Hj posteriors (see Fig. 2 of [64]). Once the MCMC
posteriors stretch to the extent that they become prior depen-
dent, there are very few robust conclusions one can draw.
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