
Putting Flat ΛCDM In The (Redshift) Bin
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Flat ΛCDM cosmology is specified by two constant fitting parameters at the background level in the late Uni-

verse, the Hubble constant H0 and matter density (today) Ωm. Mathematically, H0 and Ωm are either integration

constants arising from solving ordinary differential equations or are directly related to integration constants.

Seen in this context, if fits of the ΛCDM model to cosmological probes at different redshifts lead to different

(H0,Ωm) parameters, this is a mismatch between mathematics and observation. Here, in mock observational

Hubble data (OHD) (geometric probes of expansion history) we demonstrate evolution in distributions of best

fit parameters with effective redshift. As a result, considerably different (H0,Ωm) best fits from Planck-ΛCDM

cannot be precluded in high redshift bins. We explore if OHD, Type Ia supernovae and standardisable quasar

samples exhibit redshift evolution of best fit ΛCDM parameters. In all samples, we confirm a decreasing H0

and increasing Ωm trend with increasing bin redshift. Through comparison with mocks, we confirm that similar

behaviour can arise randomly within the flat ΛCDM model with probabilities as low as p = 0.0021 (3.1σ). We

present complementary profile distribution analysis confirming the shifts in cosmological parameters in high

redshift bins. In particular, we identify a redshift range where Planck (H0,Ωm) values are disfavoured at 99.6%

(2.9σ) confidence level in a combination of OHD and supernovae data.

I. INTRODUCTION

Cosmologists are currently debating tensions within the flat

ΛCDM cosmology; the two most serious concern the Hub-

ble constant H0 and the S 8 := σ8

√
Ωm/0.3 parameter [1, 2].1

These tensions have been framed as disagreements between

the early (high redshift) and late (low redshift) Universe [3].

In particular, local H0 values [4–8] are universally biased to

larger values than Planck-ΛCDM [9]. Observations at dif-

ferent redshifts have shown that H0 evolves with effective

(binned) redshift in the flat ΛCDM model [10–18] (see also

[19]). If this trend is not due to observational selection bi-

ases, and it is intrinsic, this behaviour is indicative of model

breakdown [20, 21].

The flat ΛCDM model Hubble parameter H(z) is specified

by two constant fitting parameters (H0,Ωm) or (A, B),

H(z)2 = H2
0

[

1 −Ωm + Ωm(1 + z)3
]

,

= A + B(1 + z)3.
(1)

The parameter A := H2
0
(1 − Ωm) is attributed to dark energy

(DE), while the matter sector B := H2
0
Ωm scales as (1+z)3 and

Ωm is bounded, 0 f Ωm f 1. One can relax this constraint by

allowing negative energy densities, but interpretation is prob-

lematic.2 Observe that DE becomes irrelevant at higher red-

1S 8 tension is less well established, see [62].
2Later we show that mock realisations can easily violate this bound at

higher redshifts. If the same trend is observed in observed data, does this

immediately falsify flat ΛCDM?

shifts, where A j B(1 + z)3 for reasonable values of Ωm. On

the other hand, note that at higher redshifts H(z)2 ∼ B(1+ z)3,
3 so the combination Ωmh2, with h := H0/100, is the rele-

vant quantity. Exploiting these facts, it was recently argued

that increases in Ωm (decreases in H0) with effective redshift

may be inherent to the flatΛCDM model [16]. Here, we study

ΛCDM mocks binned by redshift to uncover the mathematical

fact that the probability of Planck values Ωm ∼ 0.3 decreases

as we increase bin redshift. As a result, some evolution away

from Ωm ∼ 0.3 should be expected in best fits of purely high

redshift observations.

Armed with this analytic insight, we turn to observed data

in order to ascertain whether the same trend exists through

comparison to mock simulations. We employ observational

Hubble data (OHD), essentially cosmic chronometers [23]

and baryon acoustic oscillations (BAO) [24, 25], Type Ia su-

pernovae (SNe) [26] and standardisable quasar (QSO) data

sets [27]. Throughout we compare values of (H0,Ωm) to mock

simulations in the same redshift range, where the base cos-

mology for the mock is fixed by the best fit parameters of the

entire data set. This allows us to confirm evolution between

low and high redshifts in the sample. We provide complemen-

tary profile distribution analysis confirming the result.

Ultimately, while the fit of the overall sample to flatΛCDM

is largely dictated by the redshift range with greater density of

data points, we will see that in sparser redshift ranges, the

3Throughout the text we use the symbol ∼ to highlight equivalences that

are approximate.
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data prefers different cosmological parameters. In particular,

we find probabilities as low as p = 0.021 (OHD), p = 0.081

(SNe) and p = 0.019 (QSOs), respectively, that mock data

leads to similar values of (H0,Ωm) as observed data. Combin-

ing the independent probabilities using Fisher’s method, one

arrives at the probability p = 0.0021 (3.1σ) that such an evo-

lution indeed exists within flat ΛCDM. In addition, we revisit

the findings with profile likelihoods/distributions finding that

Planck best fit values are disfavoured at 99.6% (2.9σ for nor-

mal distributions) confidence level based on a combination of

OHD and SNe data alone. This provides a sanity check using

standard frequentist methodology. An explanation in terms of

selection biases is plausible for SNe, e. g. [13, 15], but sim-

ilar effects must impact cosmic chronometers, BAO, etc. Our

mock analysis shows that without selection biases, evolution

away from Planck values should be expected.

II. MOCK DATA

Consider a simple data fitting exercise, where one takes

Dark Energy Spectroscopic Instrument (DESI) forecasts for

H(z) errors σH(zi) at redshifts zi in the range 0.05 f zi f 3.55

[22]. Next, adopt Planck values [9], H0 = 67.36, Ωm = 0.315,

for an underlying model and generate H(zi) values in a nor-

mal distribution about the Planck-ΛCDM model using the er-

rors σH(zi) as the standard deviation at each zi. Throughout we

fix the parameters for the underlying cosmology and do not

pick (H0,Ωm) in a distribution. Picking (H0,Ωm) in a distribu-

tion adds randomness, but this randomness is expected to be

subleading to the randomness introduced in the shifts of the

data points. For each realisation of mock data, separate the

data into four bins, concretely 0 < z < 0.8, 0.8 f z < 1.5,

1.5 f z < 2.3 and 2.3 f z < 3.6. This ensures a similar

number of data points in each bin. Finally, fit the parame-

ters (H0,Ωm) from (1) to the data in each bin with a Gaussian

prior on Ωmh2 = 0.1430± 0.0011 [9]. Note that the prior only

provides guidance for the high redshift behaviour of H(z) and

its omission cannot change results (see appendix). Repeat the

process a few thousand times and record the distribution of

best fit values of (H0,Ωm) for each bin.

Before turning our attention to H0,Ωm best fit distributions,

let us report on the (unnormalised) distributions for A, B. Fig.

1, produced with GetDist [28], demonstrates that both A and

B are Gaussian by inspection, except where A is impacted by

the boundary at A = 0. Note, we have imposed a Gaussian

prior on B, so B being Gaussian is expected. Observe that

the distributions in A and B spread and narrow, respectively,

with increasing bin redshift. Interestingly, the distribution in

B spreads from bin 1 to bin 2 before narrowing in bins 3 and

4. This apparently contradicts our claim that A spreads and

B narrows, but it can be traced to fractional error differences

with redshift in the DESI forecast [22]. If one ensures data

with the same fractional errors in all bins, then A spreads and

B narrows with redshift. We demonstrate this in the appendix.

This outcome is expected as the ΛCDM model (1) transitions

from a two-parameter to an effective one-parameter model at

high redshift. We have checked that A and B are uncorrelated
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2.3 z<3.6
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1.5 z<2.3
2.3 z<3.6

FIG. 1. Distributions of A = H2
0
(1 − Ωm) and B = H2

0
Ωm parame-

ters reconstructed from mock simulations of the Planck-flat-ΛCDM

model in different redshift bins.

(see appendix). We also see that A grows a non-Gaussian tail

around the A = 0 (Ωm = 1) region at higher redshift bins. This

comes about as a Gaussian with a wide spread probes the A <

0 region with a growing probability in higher z bins, which

we have dubbed a ‘pile up’ feature. Moreover, the width of

the Gaussian distribution for B = H2
0
Ωm reduces as we go

to higher redshift bins and hence we know B with a better

precision in the higher redshift bins. Higher redshift spread in

A = H2
0
− B then yields spread in both H0 and Ωm values.

In Fig. 2 we show the same distribution in (H0,Ωm) pa-

rameters. It is evident that both H0 and Ωm develop long non-

Gaussian tails in the direction of smaller H0 and larger Ωm de-

spite input Planck values in the mocking procedure, confirm-

ing our analytic expectations discussed above. This is easily

explained. Since Ωmh2 is well constrained, best fit (H0,Ωm)

values inhabit a ΩmH2
0
∼ constant curve or banana. Never-

theless, as the banana stretches, configurations move from the

peak to the extremities, leading to shifts in the peak when pro-

jected onto the H0 and Ωm axes. Thus, the Ωm peak shifts

to lower values, whereas the H0 peak shifts to higher values.

This comes from a “projection effect” in the mock data. The

pile up at Ωm = 1 is an artefact of our priors, but this can be

relaxed without changing the conclusions. See [63] for a more

complete analysis. Our analysis here only concerns H(z), but

angular diameter distance DA(z) constraints, and the combina-

tion H(z) + DA(z), are studied in [63].
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FIG. 2. Distributions of the cosmological parameters in different red-

shift bins. The ‘pile up’ at Ωm ∼ 1 and H0 ∼ 37.8 km/s/Mpc is due

to Ωm > 1 best fits being restricted to the bound Ωm = 1.

Since our mocking procedure is the same in each bin, while

neither the number of data points nor the fractional errors

change greatly (see [22]), one concludes that the behaviour

is generic to the flat ΛCDM model. Note also that selection

biases do not impact mocks. Moreover, the same argument

can be run for any mock input parameters (H0,Ωm). The main

message is that even in a Universe statistically consistent with

Planck-ΛCDM by construction, unfamiliar best fit values can

easily be returned in data fitting. Furthermore, best fits in the

Ωm > 1 regime of parameter space are possible. See related

analysis with Pantheon+ SNe [64].

To avoid confusion, the analysis in this section and its re-

lation to the rest of the paper can be summarised as follows.

Best fits of Planck-ΛCDM mocks in high redshift bins gener-

ically lead to non-Gaussian H0 and Ωm distributions if one

works with either OHD or luminosity/angular diameter dis-

tance constraints. Moreover, even in mocks one can find unex-

pectedly small and large best fit values of H0 and Ωm, respec-

tively. In the next section we study best fits of observed data

and quantify the unlikeliness of the best fits against mocks in

the same redshift range with the same fractional errors for the

data. This section basically explains why the distributions in

Figs. 3, 4 and 5 are non-Gaussian. This is largely a technical

point that one does not need to process to digest later results.

Irrespective of the shape of the distributions, the p-values in

the next section are based on an ordering of best fit values

from mocks, but the shape of the distribution is a secondary

concern, since one can define percentiles without reconstruct-

ing a probability density function (PDF).

III. OBSERVED DATA

Having uncovered a general feature for H(z) constraints

confronted to the flat ΛCDM model, i. e. an increase in the

likeliness of smaller H0 and larger Ωm values in high redshift

bins, we now explore the extent to which this feature is man-

ifest in observed OHD. In [63] we show that DL(z) ∝ DA(z)

constraints confronted to flat ΛCDM exhibit similar features,

which justifies studying Type Ia SNe and QSOs.

A. Comments on Methodology

When one finds an anomaly in cosmological data, for ex-

ample CMB anomalies [65], one typically resorts to mock

simulations to assign a statistical significance to the feature.

Here our focus will be a decreasing H0/increasing Ωm trend

in best fits with increasing effective redshift. Moreover, as

we have seen, one encounters non-Gaussian distributions in

exclusively high redshift bins (see also [63]). As a result,

while best fits, i. e. the extrema of χ2, are expected to be ro-

bust within machine precision,4 estimating errors as is usually

done in cosmology is difficult. More explicitly, Fisher ma-

trix leads to unrepresentative Gaussian errors, while Markov

Chain Monte Carlo (MCMC) inferences are prone to degen-

eracies/projection effects that distort inferences. Moreover,

with broad distributions it is possible that MCMC inferences

are simply tracking the priors (e. g. see Fig. 2 of [64]) and the

peaks of distributions are not guaranteed to coincide with the

minimum of the χ2 [66]. We highlight an explicit difficulty

with MCMC analysis in the appendix.

Given the difficulties with conventional techniques, here we

resort to mocks that allow us to generate a large number of

best fits that are statistically consistent (by construction) with

no evolution of cosmological parameters. We make direct

comparison between best fits from mocks and observed data

in the same redshift range with the same data points and er-

rors. This allows us to rank mock best fits of H0 and Ωm in

descending and ascending order, respectively, and identify the

percentile where observed data best fits appear. This gives us

a probability for finding similar best fits assuming no evolu-

tion in the sample. Note, just as the shape of a PDF of heights

of children in a class is irrelevant in such an exercise, the same

logic also applies here. Bluntly put, elementary school teach-

ers can assign a percentile to the height of a student without

necessarily understanding the concept of a PDF.

In all samples, we note that the probabilities (see Tables I, II

and III) of finding observed data best fits as extreme in mock

4One can test this by initialising the χ2-minimsation algorithm from dif-

ferent points in parameter space and checking that one recovers best fit pa-

rameters that are close in value. See analysis in [64].
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data decrease as the effective redshift of subsamples becomes

less representative of the full sample. This is expected if the

trend is due to shifts in best fit cosmological parameters. How-

ever, the probabilities do not decrease indefinitely, and our re-

sults show that the probabilities increase again in the smallest

subsamples, which we attribute to noise. It is intuitive that any

signal in the data eventually disappears due to statistical fluc-

tuations in small samples. Furthermore, given the probabil-

ities decrease with increasing difference in effective redshift

between subsample and the full sample, this means that this

probability is bounded below. Thus, we do not pick redshift

ranges by hand, but they emerge from the data as the redshift

ranges where best fits in a subsample are least representative

of the full sample. In other words, one can give a lower bound

on probabilities and this lower bound is expected to be well

defined. One may worry that the p-values we record are arte-

facts of degeneracies between H0 andΩm that drive best fits in

mock simulations along unconstrained directions in parameter

space. To negate this concern in section IV we revisit the sta-

tistical significance of the best fits using profile distributions.

In contrast to mock simulations, the later analysis only makes

use of a single realisation of (observed) data.

We impose a strong Planck Ωmh2 = 0.1430 ± 0.0011 prior,

which constrains best fits to a curve in the (H0,Ωm)-plane. In

tandem we start χ2-minimisation for each realisation of the

data, either observed or mock, from the best fits of the full

sample. As a result, if there is little or no evolution, one ex-

pects the best fits to not move far from the initial guess. In

other words, we bias the initial guess towards no evolution.

However, our strong Planck Ωmh2 prior reduces the fitting

procedure to an effective 1-dimensional fit in the (H0,Ωm)-

plane. What this means in practice is that we may find false

minima, but these minima are the closest to the input param-

eters. Nevertheless, we think false minima are unlikely, given

the effective 1-dimensional nature of the fitting. More con-

cretely, note that even in OHD, we are performing an effective

1-dimensional fit with no less than 6 data points and it is hard

to imagine that the outcome is not unique modulo machine

precision. Indeed, we will confirm later with profile distri-

butions that we recover the best fits from the MCMC chain,

which rules out false minima.

Before proceeding, we make some explicit comments on

the mocking procedure initially introduced in section II. For

each sample, we fit the full sample to identify best fit param-

eters for the ΛCDM model. The exception here is the QSO

sample where we consider a redshift range up to the point

where we find an Ωm = 1 best fit, and do not consider the full

data set. Note, the best fits should be representative values

if (H0,Ωm) do not change with effective redshift through the

samples. Then, for all the data points in the redshift ranges

of interest in Tables I, II and III, we randomly generate new

data points in a normal distribution about the best fit ΛCDM

model using the cropped covariance matrix, a process we re-

peat thousands of times to build up the histograms in the sam-

ples presented in Figs. 3, 4 and 5. For Pantheon SNe, a co-

variance matrix is available. For OHD, the covariance matrix

is diagonal, so mirroring earlier analysis in section II, we gen-

erate new data points in a normal distribution about the best

fit cosmological model where the standard deviation coincides

with the errors. For QSOs, there is a slight tweak to the mock-

ing procedure, but we discuss it later.

B. OHD

Here, we make use of cosmic chronometer [29–35] and

BAO data [36–45]. More precisely, we work with the H(z)

BAO determinations compiled in Table 2 of [46], where ob-

servations have been homogenised to be consistent with a uni-

form Planck inference of the sound horizon [47]. We added

the newer constraint from eBOSS Quasar [48, 49], which we

appropriately adjusted for the sound horizon, H(z = 1.48) =

153.59±8.27. In addition to 21 BAO data points, we make use

of 33 cosmic chronometer data points. Concretely, we utilise

the 35 data points in Table 1.1 of [50], where we omit two

of the most recent additions at z = 0.75 and z = 1.26. As

is clear from Table 1.1, there is still overlap in the remaining

data points at z = 0.75 and z = 0.8, but this does not affect

the high redshifts where we see departures from Planck be-

haviour. Our total sample has 54 OHD sources. Moreover,

we have checked that replacing earlier Lyman-α BAO [43–

45] with the latest constraints [51] does not greatly change the

results,5 so we work with the earlier determinations collated

in [46].

First, we identify the best fit values of the cosmological pa-

rameters for the full sample, (H0,Ωm) = (69.11, 0.299), where

it is worth noting that Ωmh2 = 0.1428, consistent with the

prior. Next, we repeat the mocking and binning procedure

outlined earlier with the new input parameters (H0,Ωm) =

(69.11, 0.299). Following [16] we impose a low redshift cut-

off to remove sources below a given z and isolate high red-

shift bins. In each bin we compare the best fit values from the

real data and flat ΛCDM mocks in the same bin with the same

number of data points and same errors in order to establish the

probability of recovering the same or larger Ωm and the same

or smaller H0 values. In the event of saturation of the bound

Ωm = 1, this means that our probabilities are over-estimated,

i. e. too large, since allowing Ωm > 1 permits further ordering

of the values piled up at Ωm = 1. The results are shown in

Table I, where it is clear that (H0,Ωm) best fits are evolving

in the real data. For easy comparison throughout, we include

the best fits for the full sample in tables, but do not assign

any probabilities. Understandably, the probability of recover-

ing similar values from mocks decreases with redshift up to

a point where statistical fluctuations dominate and the prob-

ability increases again. Fig. 3 provides visual confirmation

that despite the long tails, a bin exists where the real values

are unexpected at 95% confidence level (≳ 2σ for a normal

distribution 6). This points to redshift evolution in the sample.

5Replacing historical Lyman α-BAO with later constraints shifts the best

fit value of Ωm to lower values, but a > 2σ discrepancy with Planck is still

evident for OHD with z > 1.45 [66].
6As explained in section II, none these distributions are expected to be

Gaussian.
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z H0 (km/s/Mpc) Ωm Probability

0 f z f 2.36 (54) 69.11 0.299 −
0.5 f z f 2.36 (28) 69.68 0.294 0.646

0.7 f z f 2.36 (18) 65.67 0.331 0.326

1 f z f 2.36 (11) 61.27 0.380 0.258

1.2 f z f 2.36 (10) 53.91 0.491 0.120

1.4 f z f 2.36 (8) 41.55 0.828 0.037

1.45 f z f 2.36 (7) 37.80 1 0.021

1.5 f z f 2.36 (6) 37.80 1 0.069

TABLE I. Best fit cosmological parameters for different redshift

ranges of OHD. Throughout, we impose the Planck prior, Ωmh2 =

0.1430 ± 0.0011. Flat ΛCDM simulations based on best fit parame-

ters over the entire redshift range, 0 < z f 2.33, allow us to establish

the probability of higher Ωm and lower H0 values in real data. The

OHD count in each bin is denoted in brackets.

FIG. 3. Comparing 10,000 mock simulations with the best fit value

of Ωm from OHD data (black line) for the bin 1.45 f z f 2.36.

Dashed and dotted lines denote the (2.3, 15.9, 84.1, 97.7) percentiles.

FIG. 4. Comparing 3,000 mock simulations with the best fit value of

Ωm from SNe data (black line) for the bin 0.95 < z f 2.26. Dashed

and dotted lines denote the (2.3, 15.9, 84.1, 97.7) percentiles corre-

sponding to 1σ and 2σ confidence intervals for a Gaussian distribu-

tion.

z H0 (km/s/Mpc) Ωm Probability

0 < z f 2.26 (1048) 69.26 0.298 −
0.7 < z f 2.26 (124) 64.37 0.345 0.381

0.8 < z f 2.26 (82) 58.99 0.411 0.258

0.9 < z f 2.26 (49) 45.88 0.679 0.117

0.95 < z f 2.26 (34) 40.73 0.862 0.081

1 < z f 2.26 (23) 43.16 0.768 0.170

TABLE II. Same as Table I but for Pantheon SNe. We treat the

absolute magnitude MB as an additional nuisance parameter when

we fit mock realisations and real data. We quote the probability of

larger values of Ωm and lower values of H0. SNe count is denoted in

brackets.

C. Type Ia SNe

We revisit the analysis of the Pantheon data set [26] with

1048 SNe conducted in [16] (see also [13, 14]) in order to in-

troduce a high redshift Planck prior on Ωmh2 [9]. Note, to do

so, we treat the absolute magnitude of Type Ia SNe MB as a

nuisance parameter. This gives SNe data the freedom to ad-

just H0 so that the high redshift behaviour is always the same

as Planck, otherwise the analysis is the same as before. Al-

ternatively put, we have an additional nuisance parameter, but

its role is simply to adopt the value that best accommodates

fits in the (H0,Ωm)-plane, where we are still confronted with

an effective 1-dimensional fit. We identify the best fit param-

eters (H0,Ωm,MB) = (69.26, 0.298,−19.37), construct mock

realisations in bins, which one compares to the real values.

Throughout we allow for statistical and systematic uncertain-

ties by cropping the Pantheon covariance matrix accordingly

to fit the redshift bin. The results are shown in Table II and

Fig. 4, where the same trend as the OHD data is evident.

D. Standardisable QSOs

Finally we turn our attention to QSOs standardised through

the Risaliti-Lusso proposal [52, 53]. We refer readers to the

original texts for methodology. Objectively, QSOs constitute

emerging cosmological probes [54, 60] and are understand-

ably less well developed than the SNe and BAO; neverthe-

less, even now SNe remain a work in progress [55]. In par-

ticular, there is considerable intrinsic scatter in the QSO data

and there is an ongoing debate about the standardisability of

the Risaliti-Lusso QSOs [57–61]. In contrast to OHD and

SNe, which have lower error-weighted (effective) redshifts of

zeff ∼ 0.5 and zeff ∼ 0.3, respectively, the QSO sample [27]

is larger (2421 sources) and has a higher effective redshift

zeff ∼ 1.4. The sample is too large to present in a table, but

can be downloaded from the original source [27]. Moreover,

it is well documented that Ωm adopts larger values than ex-

pected at higher redshifts [53, 56] and that evolution happens

within the QSO sample [16, 53]. The key point here is that

any evolution of Ωm with effective redshift may be telling us

less about QSOs and more about the flat ΛCDM model.

Our analysis here follows the earlier sections, but there is a

key difference. Risaliti-Lusso QSOs return best fits of Ωm ∼ 1
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FIG. 5. A comparison between 3,000 mock simulations and the best

fit value of Ωm from QSO data (black line) for the bin 0 < z f 0.55.

Dashed and dotted red lines denote the (2.3, 15.9) percentiles corre-

sponding to 1σ and 2σ confidence intervals for a Gaussian distribu-

tion. The dashed black line denotes the median, Ωm = 0.982, which,

as expected, is close to the mock input Ωm = 1. In contrast to Fig.

3 and Fig. 4, the PDF is flat (neglecting the impact of bounds), thus

implying that Ωm errors are large, i. e. Ωm is poorly constrained, in

the redshift range.

z H0 (km/s/Mpc) Ωm Probability

0 < z f 0.3 (56) 406.41 0.009 0.073

0 < z f 0.5 (177) 353.47 0.011 0.028

0 < z f 0.55 (233) 433.91 0.008 0.019

0 < z f 0.6 (279) 381.50 0.010 0.020

0 < z f 0.7 (398) 73.40 0.265 0.096

0 < z f 0.8 (543) 58.48 0.418 0.117

0 < z f 1 (826) 40.69 0.864 0.400

0 < z f 1.4 (1326) 37.82 1.000 −

TABLE III. Same as Table I but for Risaliti-Lusso QSOs. We treat

β, γ and δ (see [52] for definitions) as additional nuisance parameters

when we fit mock realisations and real data. We quote the probability

of lower values ofΩm and higher values of H0. QSO count is denoted

in brackets.

across the full sample [56–59], whereas at lower redshifts

0 < z ≲ 0.7, one recovers Planck values, Ωm ∼ 0.3 [16];

in accord with our earlier discussions and analyses. Thus,

we start from the redshift range 0 < z f 1.4 (1326 QSOs),

where Ωm hits the bound Ωm = 1, and identify the best fit

parameters that serve as inputs for mocks, (H0,Ωm, β, γ, δ) =

(37.82, 1, 8.64, 0.61, 0.24). As before, β is a nuisance param-

eter degenerate with H0 (the analogue of MB in SNe), so once

again the fit in the (H0,Ωm)-plane is effectively 1-dimensional.

To construct the mocks, we generate new UV fluxes FUV by

picking values in a normal distribution about the original val-

ues with a standard deviation set to the error. Next, we gen-

erate corresponding central values for the X-ray fluxes FX

through the relation [52, 53],

log10 FX = β + γ log10 FUV + (γ − 1) log10(4πD2
L), (2)

where DL(z) is the luminosity distance, before displacing the

values with the standard deviation

√

δ2 + σ2
i
, where σi is the

error on log10 FX,i at redshift zi.

In Table III we show the increasing (decreasing) trend of

Ωm (H0) with effective redshift. Unexpectedly large values of

H0 and small values of Ωm are driven partially by large intrin-

sic scatter in the QSO data and the Planck prior onΩmh2. Nev-

ertheless, the trend in central values is the same and one notes

that the probability of recovering the best fit values for real

data decreases as the effective redshift of the bin decreases,

confirming that the best fit values of the entire data set are less

representative. In Fig. 5 we provide visual confirmation of

this result in a given range, where it is notable that the Ωm

distribution is uniform between the bounds, thus underscor-

ing how poorly QSO data constrains Ωm in the corresponding

redshift range. This is presumably due to the large scatter and

fewer QSOs at lower redshifts.

IV. PROFILE DISTRIBUTIONS

In this section we revisit earlier analysis from the perspec-

tive of profile distributions. The objective is to provide an

alternative view on our mock simulation analysis where one

may be worried that the low p-values are driven by noise in the

mocks and the degeneracy or anti-correlation between H0 and

Ωm. Our methodology follows [66, 67]. The analysis is stan-

dard frequentist analysis (see section 4 of [68]), but there is a

small tweak. Instead of optimising, we bin the MCMC chain

to construct the profiles, thereby ensuring as close a compar-

ison as possible between Bayesian and frequentist methods;

the MCMC chain is the input in both analyses (see [67] for

further discussion). The basic idea is to study the probability

distribution

P(H0,Ωm, θi) = exp

(

−1

2
χ2(H0,Ωm, θi)

)

(3)

where χ2(H0,Ωm, θi) is the χ2 likelihood, which may depend

on additional nuisance parameters, θi, i = 1, 2, . . . , e.g the ab-

solute magnitude MB from Type Ia SNe, or β, γ, δ from stan-

dardisable QSOs. The maximum value of P occurs at the χ2

minimum, Pmax = e−
1
2
χ2

min . In contrast to the previous sec-

tions where χ2
min

is determined through gradient descent (op-

timisation), here we directly evaluate the χ2 likelihood on the

MCMC chain to identify the minimum. We stress that this

involves no optimisation, but if all analysis is consistent, we

expect to recover profile distribution peaks that agree with best

fits from Tables I-III.

Our next step is to pick a parameter, identify its range, i.

e. minimum and maximum value from the MCMC chain, and

then divide the range of the parameter into approximately 200

bins centered on the parameter value at the centre of the bin.

By increasing the length of the MCMC chain one can easily

increase the number of bins. Focusing on H0, we define the

profile distribution for H0 as

P̃(H0) = exp

(

−1

2
χ2

min(H0)

)

(4)
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where χ2
min

(H0) denotes the minimum value of χ2 along other

directions in parameter space for the H0 values in a given bin.

If the bin is empty, as can happen frequently in the tails of dis-

tributions, we simply omit the bin. This accounts for missing

dots in the later plots. At this stage, we can define the ratio

R(H0) =
P̃(H0)

Pmax

= exp

(

−1

2
(χ2

min(H0) − χ2
min)

)

. (5)

We emphasise again that χ2
min

is the absolute minimum from

the MCMC chain, whereas χ2
min

(H0) is the minimum in a bin

centered on H0. The distribution R(H0) is peaked at R(H0) = 1

by construction, since the absolute minimum of the χ2 must

appear in one of the H0 bins. What remains is to normalise

R(H0) and turn it into a PDF:

w(H0) =
R(H0)

∫

R(H0) dH0

, (6)

where in the denominator the integral is over the full range

of H0 values from the MCMC chain. Bearing in mind that

we have discretised the H0 range in bins, this integral is most

easily evaluated using Simpson’s rule for numerical integra-

tion. One could worry about this approximation, but we will

now integrate over w(H0), so that integrals in the numerators

and denominator are performed to the same accuracy. Finally,

to identify 68%, 95% and 99.7% confidence intervals (1σ, 2σ

and 3σ for Gaussian distributions) for H0, we identify H
(1)

0

and H
(2)

0
so that

∫ H
(2)

0

H
(1)

0

w(H0) dH0 = I, w(H
(1)

0
) = w(H

(2)

0
),

I ∈ {0.68, 0.95, 0.997}.
(7)

Expressions for Ωm are defined in an analogous fashion.

Our treatment in this section will not be exhaustive and we

focus largely on OHD and SNe data, since these data sets are

most familiar to cosmologists. In short, our objective is to

recover the high redshift best fits from Table I and II and es-

timate the significance of the discrepancies directly from the

profile distribution. It should be stressed that this exercise has

been repeated with later and better quality data sets, where

it was shown that mock simulations and profile distributions

show good agreement [64, 66]. In addition, we revisit Tables

I, II and III to determine the 68% confidence intervals, which

were omitted in the earlier tables. This provides confirmation

that the best fits are discrepant with Planck outside of the er-

rors at higher redshifts in OHD, SNe and QSOs. Given the

different systematics across these observables, this cannot be

a coincidence.

Before highlighting the tables confirming evolution outside

of the errors, we begin with warmup exercises. In particu-

lar, for OHD we focus on the 7th row of Table I. While the

table only focuses on a high redshift bin of varying redshift

range, here we split the OHD sample of 54 data points into a

low (z < 1.45) and high redshift (z g 1.45) subsample of 47

and 7 data points, respectively. In Fig. 6 we show R(H0) and

FIG. 6. R(H0) and R(Ωm) distributions for OHD data with z f 1.45.

Dashed and dotted red lines denote 68% (1σ) and 95% (2σ) confi-

dence intervals. Black lines denote Planck best fit values.

R(Ωm) for the low redshift subsample. Evidently, the distribu-

tions are Gaussian, the Planck values (black lines) are within

2σ (more accurately 1.5σ) and the distributions are peaked on

values close to the best fits for the full sample. The latter is

expected, as we have removed 7 high redshift data points from

the full sample and the statistical weighting of these points is

low. What our analysis in section II shows is that low redshift

data breaks a degeneracy in the (H0,Ωm) parameters better

than high redshift data, which means one expects larger errors

from high redshift data, thus the lower statistical weighting. In

contrast, in Fig. 7 we confirm without using optimisation that

the best fit parameters have shifted in the high redshift bin. In

particular, the R(Ωm) distribution is one-sided, implying the

peak is beyond Ωm = 1, while the two points to the left of the

peak in R(H0) tell us that lower values of H0 are disfavoured.

In general we take the lower bound on H0 to be H0 g 0, so

there is no reason for the R(H0) distribution to terminate un-

less there is a sharp fall-off. The Planck values for H0 and Ωm

are now excluded at 96% (2.1σ) and 99% (2.6σ) confidence

level, respectively.

This can be compared with p = 0.021 (2.3σ) from our

OHD mock simulation in the same redshift range, and one

recognises that the statistical significance is approximately the

same. There is a slight difference in that our mock simula-

tions are based on best fits for the full sample, and not the

Planck values, but this is not expected to make a huge dif-
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FIG. 7. R(H0) and R(Ωm) distributions for OHD data with z > 1.45.

Dashed and dotted red lines denote 68% (1σ) and 95% (2σ) confi-

dence intervals. Black lines denote Planck best fit values. The two

dots to the left of the R(H0) peak confirm that the distrbution goes

to zero sharply below H0 = 40 km/s/Mpc. In contrast, the R(Ωm)

distribution is one-sided and the peak is beyond Ωm = 1.

ference, especially since mock simulations assume a Planck

prior on Ωmh2. It is also compelling that the statistical signif-

icance from mock simulations, which treats the (H0,Ωm) pa-

rameters on par, is in the middle of the statistical significance

inferred from H0 and Ωm profile distributions separately. It

should be stressed that in the profile distribution analysis there

is only one realisation of the data. Recovering the same sta-

tistical significance confirms that our mock simulations have

not been impacted by anti-correlations (or degeneracies) be-

tween H0 and Ωm that may cause best fits from (noisy) mock

simulations to move along the curves of constant Ωmh2 in the

(H0,Ωm)-plane.

We next turn our attention to Type Ia SNe, where we focus

on the redshift range corresponding to the 5th entry in Table

II. As with OHD, we expect the low redshift R(H0) and R(Ωm)

distributions to be Gaussian, and consistent with Planck, so

we focus exclusively on the high redshift segment (z > 0.95).

The MCMC chain now has an additional nuisance parameter

MB, which is relatively well constrained, so we do not discuss

it further. In Fig. 8 we show R(H0) and R(Ωm) for high redshift

SNe (z > 0.95). One can compare the peaks of the distribution

to the best fits in Table II (5th row) and confirm that H0 and

Ωm distributions are peaked at H0 ∼ 41 km/s/Mpc and Ωm ∼

FIG. 8. R(H0) and R(Ωm) distributions for Type Ia SNe data with

z > 0.95. Dashed and dotted red lines denote 68% (1σ) and 95%

(2σ) confidence intervals. Black lines denote Planck best fit values.

The dot to the left of the R(H0) peak confirms it goes to zero below

H0 = 40 km/s/Mpc. A peak is evident in both R(H0) and R(Ωm)

distributions. Scatter is evident in the R(H0) distribution at higher H0

values, but this can be removed by running a longer MCMC chain.

0.86 respectively. In contrast to the OHD data, the R(Ωm)

peak is noticeably not cut off by the Ωm = 1 bound. In the

R(H0), there is some scatter in the R(H0) distribution beyond

H0 = 80 km/s/Mpc, but this can be removed by running a

longer MCMC chain. The Planck values for H0 and Ωm are

at 81% (1.3σ) and 94% (1.9σ) confidence level, respectively.

This compares favourably with p = 0.081 (1.7σ) from our

mock simulation analysis. Once again, our profile distribution

analysis appears to average the statistical significances we see

from R(H0) and R(Ωm).

A. Frequentist confidence intervals

Having warmed up sufficiently, we will now use profile dis-

tributions to determine the missing errors in Tables I, II and

III. The results of this exercise are presented in Tables IV,

V and VI. What the tables confirm is the following. Subject

to the Planck prior on Ωmh2, all data sets exhibit a decreas-

ing H0/increasing Ωm trend with effective redshift, whereby

best fits evolve outside of the errors. In particular, OHD data

with z g 1.2 in Table IV, SNe data with z g 0.9 in Table V
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z H0 (km/s/Mpc) Ωm

0 f z f 2.36 (54) 69.11+1.29
−1.29

0.299+0.012
−0.012

0.5 f z f 2.36 (28) 69.68+2.03
−2.11

0.294+0.019
−0.017

0.7 f z f 2.36 (18) 65.67+6.66
−7.49

0.331+0.105
−0.066

1 f z f 2.36 (11) 61.27+10.56
−12.31

0.380+0.282
−0.116

1.2 f z f 2.36 (10) 53.91+10.07
−12.03

0.491+0.310
−0.140

1.4 f z f 2.36 (8) 41.55+13.62
−3.75

0.828+0.169
−0.241

1.45 f z f 2.36 (7) 37.80+14.04
−0.05

> 0.641

1.5 f z f 2.36 (6) 37.80+13.18
−0.23

> 0.663

TABLE IV. Same as Table I but with 68% confidence intervals deter-

mined through profile distributions. Note, at higher redshits the Ωm

confidence interval terminates at the bound Ωm = 1.

z H0 (km/s/Mpc) Ωm

0 < z f 2.26 (1048) 69.26+2.34
−2.32

0.298+0.022
−0.019

0.7 < z f 2.26 (124) 64.37+13.92
−12.64

0.345+0.170
−0.106

0.8 < z f 2.26 (82) 58.99+15.97
−12.63

0.411+0.276
−0.162

0.9 < z f 2.26 (49) 45.88+13.91
−7.92

0.679+0.271
−0.190

0.95 < z f 2.26 (34) 40.73+18.04
−3.14

> 0.557

1 < z f 2.26 (23) 43.16+22.66
−5.57

> 0.503

TABLE V. Same as Table II but with 68% confidence intervals de-

termined through profile distributions.

and QSO data with z f 1 in Table VI are already discrepant

with Planck beyond the 68% confidence level. Moreover, for

OHD and SNe, high redshift subsamples disfavour the best

fits of the full sample by in excess of 68% confidence inter-

val, whereas low redshift QSO subsamples disfavour the best

fits of the full sample by in excess of 68% confidence level.

This establishes evolution outside of the errors in these three

independent samples.

z H0 (km/s/Mpc) Ωm

0 < z f 0.3 (56) 406.41+299.57
−138.48

0.009+0.080
−0.007

0 < z f 0.5 (177) 353.47+61.03
−156.83

0.011+0.070
−0.003

0 < z f 0.55 (233) 433.91+281.31
−200.47

0.008+0.021
−0.005

0 < z f 0.6 (279) 381.50+283.99
−63.95

0.010+0.011
−0.007

0 < z f 0.7 (398) 73.40+27.89
−22.41

0.265+0.278
−0.180

0 < z f 0.8 (543) 58.48+21.81
−13.31

0.418+0.274
−0.194

0 < z f 1 (826) 40.69+10.23
−2.75

> 0.625

0 < z f 1.4 (1326) 37.82+9.35
−0.13

> 0.725

TABLE VI. Same as Table III but with 68% confidence intervals

determined through profile distributions.

FIG. 9. R(H0) and R(Ωm) distributions for a combination of OHD

and Type Ia SNe data with z > 0.95. Dashed and dotted red lines

denote 68% (1σ) and 95% (2σ) confidence intervals. Black lines

denote Planck best fit values.

B. Combining OHD and Type Ia SNe

Lastly, since we see smaller values of H0 and larger values

of Ωm in high redshift bins in three independent data sets, it is

interesting to combine the likelihoods and repeat the exercise.

Here, we opt not to fold QSOs into the analysis, as they re-

main the most questionable observable. Nevertheless, if QSOs

are standardisable, our results here are more significant than

quoted. We focus on two high redshift intervals z > 0.95

and z > 1.45, because these correspond to the redshift ranges

where we see the most significant shifts in (H0,Ωm) in our

mock simulations for Type Ia SNe and OHD, respectively. By

comparing Tables I and II, one sees that different data sets pre-

fer different values of H0 and Ωm for data with z ≳ 0.95. As

a result, one expects an average value, and this is indeed what

we find in our profile distribution analysis. In Fig. 9 we show

the result. We note a shift in the peak to smaller H0 and larger

Ωm values, but the significance is not so great, in the sense

that the Planck values are now excluded at 81% (1.3σ) con-

fidence level. This is more significant than p = 0.258 (0.7σ)

one sees in mock simulations of OHD in a comparable red-

shift range (4th row of Table I). Evidently, the addition of SNe

data to OHD pulls H0 lower, pulls Ωm higher and increases

the statistical significance.

Our final exercise is to combine OHD and SNe with z >
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FIG. 10. R(H0) and R(Ωm) distributions for a combination of OHD

and Type Ia SNe data with z > 1.45. Dashed, dotted and dashed-

dotted red lines denote 68% (1σ), 95% (2σ) and 99.7% (3σ) confi-

dence intervals. Black lines denote Planck best fit values. We have

relaxed the traditional Ωm f 1 prior to Ωm f 3 in order to include

the peak at Ωm ∼ 2.8. Although no points are evident to the left of

the R(H0) peak, the distribution falls off to zero as we imposed an

H0 g 0 prior.

1.45. It should be stressed that SNe are extremely sparse at

these redshifts with only 6 Pantheon SNe in the range. As a

result, we can expect OHD to have greater bearing on the out-

come. As is clear from Table I and Fig. 7, the Ωm f 1 prior

precludes the data from finding the point in ΛCDM parameter

space that best fits the data (minimum of χ2). Thus, here we

relax the Ωm prior enough to Ωm f 3 to find the best fit Ωm

value at Ωm ∼ 2.8. The resulting R(H0) and R(Ωm) distribu-

tions are shown in Fig. 10. The key take away from these plots

is that the R(H0) and R(Ωm) distributions preclude the Planck

value at 99.6% (2.9σ) and 99.97% (3.6σ) confidence level,

respectively. As our mock analysis in section II has shown

(see also [63]), there is nothing to preclude Ωm > 1 best fits in

high redshift bins assuming the ΛCDM model, since this can

happen in mock data based on Planck values. The physical

regime corresponding to Ωm f 1 is excluded at 83% (1.4σ)

confidence level.

V. CONCLUSIONS

We explained through analytic arguments and simulations

why the Planck value Ωm ∼ 0.3 is less likely when one fits

higher redshift binned H(z) observations to the flat ΛCDM

model. Our arguments are independent of mock input param-

eters and simply follow from the irrelevance of the A term in

(1) at higher redshifts, and A g 0, which yield an initial ‘pile

up’ of best fits on Ωm = 1, before piling up at Ωm ∼ 0 at even

higher redshifts. This reduces the probability of recovering

the Planck value at high redshift, thus providing an avenue to

test the model. Note, it is not enough to find unexpected best

fits, but one must prove that those best fits are statistically

unlikely assuming no evolution of ΛCDM parameters across

data sets. Alternatively put, one must first establish evolution

in best fit cosmological parameters before addressing errors

and statistical significance, since if there is no evolution in

best fit parameters, the size of the errors makes little differ-

ence. Our warm-up DESI mock analysis here solely pertains

to H(z) constraints, but the same conclusions hold for angular

diamater distance DA(z) ∝
∫ z

0
dz′/H(z′) constraints [63]. The

reader will note that DL(z) ∝ DA(z), so all our observed data

is in the H(z) or DL(z)/DA(z) class. We emphasise again that

the role of the first section is simply to explain why the mocks

in Figs. 3, 4 and 5 are non-Gaussian, but this has no bearing

on the p-values.

In the second part of our work, we confirmed a decreasing

H0/increasing Ωm behaviour in OHD and Type Ia SNe with

p-values as low as p = 0.021 (2.3σ) and p = 0.081 (1.7σ),

respectively. We resorted to comparison to mock analysis in

the same redshift range with the same number of data points

and same errors because i) mock simulations are tradition-

ally how one approaches anomalies in data, e. g. [65], and

ii) one can circumvent the difficulty estimating errors with

non-Gaussian distributions. Using Fisher’s method, the com-

bined (lowest) probability for these established cosmologi-

cal probes is p = 0.013 (2.5σ). In QSOs, an intrinsically

high redshift emerging observable, we see the opposite trend

where discrepant best fit (H0,Ωm) values relative to the entire

sample appear at lower redshifts with probabilities as low as

p = 0.019 (2.3σ). Once again combining the probabilities,

one finds a (lowest) probability p = 0.0021 (3.1σ). One may

also benchmark with respect to the bin 0 < z f 0.7, where

Ωm ∼ 0.3, in which case the combined (lowest) probability be-

comes p = 0.0078 (2.7σ). As argued in the text, the probabil-

ities we quote are lower bounds, especially since we preclude

Ωm > 1 in observed and mock data fitting. One can of course

find redshift ranges with less evolution, but if there is a bona

fide decreasing H0/increasingΩm best fit trend with increasing

effective redshift, then one expects decreasing p-values in Ta-

bles I-II. Moreover, by working with the full sample and not

binning it, one can return to the working assumption that there

is no evolution in the samples. Our analysis here challenges

the working assumption.

Since mock simulations may be unfamiliar to some read-

ers, we revisited the redshift ranges where we see the great-

est shift away from canonical Planck cosmological parameters

with profile distributions. Our analysis focused on the better
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understood observables, namely OHD and SNe, but we pre-

sented 68% confidence intervals for all observables across dif-

ferent redshift ranges, allowing us to confirm that the best fit

parameters evolve outside of the errors. Profile distributions

allow us to recycle the information in the MCMC chain di-

rectly, find the most probable values for cosmological parame-

ters and establish the confidence intervals at which the Planck

(H0,Ωm) values are excluded in high redshift bins. Through-

out we find good agreement between mock simulations and

profile distributions analysis. In particular, we find that the

statistical significance from mock simulations averages the

statistical significance we see in H0 and Ωm profile distribu-

tions. The main take away is that high redshift OHD and Type

Ia SNe samples prefer larger values of Ωm and smaller values

of H0 and this preference is statistically significant at ∼ 3σ

when we relax the Ωm f 1 prior. The conclusion here is sep-

arately confirmed in re-analysis with later and better quality

data [64, 66]. Throughout it should be stressed that we are

looking at small subsamples of OHD and Type Ia SNe data

sets at high redshifts, but the discrepancies we see are statis-

tically significant. Given the small size of the samples, it is

imperative to revisit results as data quality improves further.

Note, QSOs have no problems with statistics, but systematics

may be an issue. There is a statistically significant discrepancy

with Planck at higher redshifts z ≳ 1.5 reported elsewhere in

the literature [53].

Objectively, all observables show signatures of evolution

to lower H0 values and higher Ωm values between low and

high redshifts, in line with mock expectations that they can

be easily displaced from Planck values. Neglecting selection

effects and more general systematics across multiple observ-

ables (SNe, cosmic chronometers, BAO, QSOs), this supports

the idea that the flat ΛCDM model is a dynamical model

where fitting parameters, which should be constants, evolve

in (cosmic) time. This cautions that cosmological tensions

may be an outcome of the flawed assumption that (H0,Ωm)

are unique within flat ΛCDM. In short, the ΛCDM model

appears to have broken down; no model of physical interest

should make different predictions at different epochs. If sub-

stantiated, this settles the systematics versus missing physics

debate on ΛCDM tensions. The outcome may not be so sur-

prising. What is being tested is, given the current quality of

high redshift z ≳ 1 data, whether exclusively high redshift

data can recover the Planck values. Our findings are appar-

ently no, but this conclusion may be reversed as high redshift

data improves, thereby throwing a lifeline to a ΛCDM model

besmirched by persistent tensions.

Finally we note that one could attempt to interpret these

findings in terms of an underdensity in the Universe at the

scale of a few Gpc, e. g. [69, 70].7 However, before doing

so, it is imperative to check if matter is observationally pres-

sureless 8. Note, the (flat) ΛCDM model is so simple that DE

7See also [71–75] for claims and counterclaims regarding the ability of

smaller voids to resolve H0 tension.
8Theoretically, it is pressureless, but observation and theory need not

agree.

and matter sectors are coupled through a single parameterΩm,

and it is prudent to confirm that Ωmh2 is not evolving in high

redshift bins before making further deductions. More con-

cretely, one needs to check that the Hubble parameter scales

as H(z) ∼ 100
√

Ωmh2(1+z)b with constantΩmh2 and b = 3
2

in

high redshift bins. If either constant evolves, this contradicts

the assumption that matter is pressureless.
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Appendix A: Removing Ωmh2 prior

Removing the Planck Ωmh2 prior from Fig. 2 leads to a

spreading in all distributions, but qualitatively the features are

the same, as expected from the analytic discussions. This can

be confirmed in Fig. 11.

Appendix B: Confirmation of P(Ωm ∼ 0.3)→ 0

In this section we consider the same mocking procedure

but focus exclusively on the fourth DESI bin with redshift

range 2.3 f z < 3.6. We now displace the redshifts in in-

tervals of +1 without changing the data and document the ef-

fect on the distribution of Ωm best fits over a few thousand

mocks. Noting that very high redshift H(z) data only con-

strains Ωmh2 ∝ B well, we expect H0 and Ωm to be largely

unconstrained, corresponding to flat/uniform distributions in

H0 and Ωm at high redshift. In particular, we expect Ωm distri-

butions to flatten as the effective redshift increases. Here we

confirm that this flattening happens through a shift in the peak

of the (non-Gaussian) Ωm distribution to smaller values away

from Ωm = 0.3, so that the probability of encountering an Ωm

best fit close to canonical values P(Ωm ∼ 0.3) decreases.

Once again, we assume Planck input parameters, H0 =

67.36,Ωm = 0.315 and the Gaussian prior, Ωmh2 = 0.1430 ±
0.0011 [9]. In Fig. 12 we present (normalised) probabilities

for Ωm for Planck-ΛCDM mocks, where the blue curve corre-

sponds to the red curve in Fig. 2. The remaining curves cor-
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FIG. 11. Same as Fig. 2 but without the Ωmh2 prior.

0.0 0.2 0.4 0.6 0.8 1.0

m

P

zi+0
zi+1
zi+2
zi+3

FIG. 12. Probabilities of a given Ωm best fit value for forecast DESI

H(z) data in the range 2.3 f z < 3.6 (blue curve) with Planck input

values. Green, yellow and red denote the probabilities if the same

data are displaced to higher redshifts.

respond to Ωm probabilities as we displace the original binned

data in redshift. Since we are at high redshift, the probability

of Ωm = 1, P(Ωm = 1) > 0 and it clearly increases with red-

shift of the sample. This is evident from the greater number

of best fits piled up at Ωm = 1. The shift in the peak of Ωm

best fits is a result of the best fits stretching along a constant

Ωmh2 curve in the (H0,Ωm)-plane. This leads to a larger num-

ber of configurations at smaller Ωm values and a shift in the

2000 5000 8000

A

1425

1430

1435

B

1426 1430 1434

B

0.05 z<0.8
0.8< z<1.5
1.5< z<2.3
2.3< z 3.55

FIG. 13. A corner plot with DESI forecast data demonstrating that

(A, B) are uncorrelated across the bins.

peak in the Ωm distribution to smaller values when projected

onto the Ωm axis. Fig. 12 shows that this trend is more pro-

nounced at higher redshifts and it is an obvious implication

that at a given high redshift, any knowledge of the input pa-

rameters is lost and the probability of recovering the Planck

value, P(Ωm ∼ 0.3) is close to zero. Potentially other Ωm val-

ues favoured, as can be seen from our mocks.

Appendix C: Further comments on (A, B)

In this section we show in Fig. 13 that the derived (sec-

ondary) parameters (A, B) are uncorrelated. As explained in

the main text, we imposed a (strong) Planck Gaussian prior on

B, so unsurprisingly B conforms to a Gaussian and A is also

Gaussian where it is not impacted by the bound Ωm f 1. Not-

ing that (A, B) are uncorrelated, whereas the transformation

from the fitting parameters (H0,Ωm) to (A, B) is non-linear, it

would be surprising if one encountered Gaussian distributions

in all parameters.

There is another loose end to close. The astute reader will

notice that the B distribution does not narrow uniformly in Fig.

13. To explain this feature we note that the percentage H(z)

errors vary with redshift in the DESI forecast [22] and the er-

rors are smallest at the boundary of bin 1 and bin 2 (z ∼ 0.8).

As a result, bin 1 better constrains B, the relevant high redshift

parameter, whereas bin 2 better constrains A, the relevant low

redshift parameter. From Fig. 13 one notes that any spread

in A is marginal between bins 1 and 2, while the B distribu-

tion actually spreads between bins 1 and 2, thus contradicting

statements in the text. However, in Fig. 14 we produce four

bins with exactly the same data in each bin by simply displac-

ing the percentage errors in bin 1 in redshift and using them

as the basis for mocks in bins 2, 3 and 4. As a result, one
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FIG. 14. A corner plot with the same data in all bins. The A distri-

bution spreads whereas the B distribution narrows once one has the

same data in all bins.

has the same percentage errors in each bin, and one notices

that A spreads whereas B narrows with effective redshift. In

summary, one generically expects a spreading A distribution

and narrowing B distribution with effective redshift in the flat

ΛCDM model as the model transitions from a two-parameter

model to an effective one-parameter model, but this trend may

be impacted by the number of data points and the errors.

Appendix D: MCMC analysis

As explained in the text, great care is required with MCMC

inferences in non-Gaussian regimes. For this reason we opted

to compare our best fits in observed data directly with best

fits in mock data in the same redshift range with the same

number of data points and errors. Here we take a look at the

inferences one would make with MCMC, where we focus on

OHD data, since it is the simplest to analyse because there are

no nuisance parameters. Once again, we impose the bounds

0 f Ωm f 1. We then split the OHD sample at z = 1.45, which

is of interest since it corresponds to the 7th entry in Table I,

where we have recorded the lowest probability of recovering

best fits from observed data in mock data. It should be noted

that our best fit Ωm value saturates the bound Ωm = 1, so we

expect that our MCMC distribution has no Ωm peak because

it is precluded by the priors.

In Fig. 15 we show the outcome of the MCMC analysis

with GetDist [28]. As expected, the low redshift (z < 1.45)

sample of 47 OHD data points leads to an Ωm distribution that

is perfectly Gaussian, but the high redshift (1.45 g z) sample

of 7 OHD data points does not. The Ωm distribution contin-

ues to increase towards the Ωm = 1 bound implying either

a peak at the bound or beyond the bound. Priors are clearly

40 50 60 70

H0

0.4

0.6

0.8

1.0

m

0.4 0.6 0.8 1.0

m

z<1.45
1.45 z

FIG. 15. Inferences of cosmological parameters from MCMC chains

in the OHD sample of 54 data points. Evolution of cosmological

parameters is evident when comparing low and high redshift sub-

samples.

impacting the result. In the (H0,Ωm)-plane the contours fol-

low a curve of constant Ωmh2 due to the Planck prior. This

curve is elongated in the high redshift sample and the dis-

crepancy between the low and high redshift subsamples of the

full OHD sample is evident in the (H0,Ωm)-plane. From the

MCMC chains, we infer the constraints on (H0,Ωm) from the

low redshift sample to be (H0,Ωm) = (69.32+0.90
−0.90
, 0.298+0.008

−0.008
),

whereas the constraints from the high redshift sample are

(H0,Ωm) = (42.82+6.56
−3.69
, 0.779+0.154

−0.194
). Here, we quote 16th, 50th

and 84th percentiles in line with standard practice, of course

assuming a Gaussian distribution. It is clearly wrong to do this

as our distributions are non-Gaussian and have been impacted

by the Ωm f 1 bound, but the results are merely indicative of

smaller H0 values/larger Ωm values at higher redshifts. To be

clear, it should be evident that relaxing the Ωm f 1 prior will

allow the 2D posterior to stretch further into the top left corner

of the (H0,Ωm)-plane. This will shift the peak of the H0 pos-

terior to smaller values, thereby exacerbating tensions in pro-

jected 1D H0 posteriors (see Fig. 2 of [64]). Once the MCMC

posteriors stretch to the extent that they become prior depen-

dent, there are very few robust conclusions one can draw.
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