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A B S T R A C T   

Existing physics-based modeling approaches do not have a good compromise between performance and 
computational efficiency in predicting the seismic response of reinforced concrete (RC) frames, where high- 
fidelity models (e.g., fiber-based modeling method) have reasonable predictive performance but are computa
tionally demanding, while more simplified models (e.g., shear building model) are the opposite. This paper 
proposes a novel artificial intelligence (AI)-enhanced computational method for seismic response prediction of 
RC frames which can remedy these problems. The proposed AI-enhanced method incorporates an AI technique 
with a shear building model, where the AI technique can directly utilize the real-world experimental data of RC 
columns to determine the lateral stiffness of each column in the target RC frame while the structural stiffness 
matrix is efficiently formulated via the shear building model. Therefore, this scheme can enhance prediction 
accuracy due to the use of real-world data while maintaining high computational efficiency due to the incor
poration of the shear building model. Two data-driven seismic response solvers are developed to implement the 
proposed approach based on a database including 272 RC column specimens. Numerical results demonstrate that 
compared to the experimental data, the proposed method outperforms the fiber-based modeling approach in 
both prediction capability and computational efficiency and is a promising tool for accurate and efficient seismic 
response prediction of structural systems.   

1. Introduction 

As a common structural system, reinforced concrete (RC) frame 
buildings (composed of various RC structural components including 
beams and columns) are widely distributed throughout the world. In 
high seismic regions, RC frames undergoing seismic loads may behave 
nonlinearly. It is necessary to accurately predict the nonlinear response 
of RC frames under future earthquakes, as the seismic demand and ca
pacity of the RC frames can be quantified from the predicted nonlinear 
seismic response [15,29]. The predicted seismic demand and capacity of 
the RC frames can help people take necessary precautions (e.g., 
strengthening and retrofitting) to reduce their collapse risk prior to an 
earthquake [32]. One of the most common ways to predict the nonlinear 
seismic response of an RC frame is to perform nonlinear time-history 
analyses using existing physics-based approaches (e.g., finite element 
method) [5,7,33]. The prediction accuracy of the nonlinear seismic 
response of RC frame buildings is closely related to the structural 

stiffness, as the structural stiffness directly relates the external forces to 
the deformations of the building [44]. Structural stiffness is a matrix 
form in the case of structural systems that have multi-degrees of freedom 
(MDOF) for dynamic analysis. However, existing physics-based 
modeling approaches do not generally have a good compromise be
tween predictive performance and computational efficiency. High- 
fidelity models (e.g., fiber-based modeling approaches) utilize the 
constitutive models at the material level to compute the structural 
stiffness matrix and thus have reasonable predictive performance but are 
computationally demanding. Conversely, more simplified models (e.g., 
shear building model) may be computationally efficient, but employ 
simple empirical constitutive relations at the structural member level to 
calculate the stiffness matrix and therefore do not have performance as 
good as high-fidelity models [44]. 

Typically, the formulation of the structural stiffness matrix for high- 
fidelity models (e.g., fiber-based modeling approaches) involves in
tegrations from section stiffness to element stiffness and finally through 
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to structure stiffness based on material constitutive models. But, for 
simplified models (e.g., shear building model), the formulation of the 
structural stiffness matrix can be direct assembled from member to 
member based on empirical constitutive models at the member level. 
Furthermore, when involving nonlinear analysis, both high-fidelity and 
simplified models need to update the stiffness matrix at each load step, 
leading to much higher computational cost for high-fidelity models than 
simplified models. However, compared to high-fidelity models, empir
ical constitutive models utilized by simplified approaches at the member 
level may not be able to fully capture the experimentally observed 
behavior. This means that the analytical results predicted by simplified 
models have much more evident discrepancies with the experimentally 
observed behavior than those predicted by high-fidelity models. 
Therefore, a novel computational methodology for efficient and accu
rate seismic response prediction of RC frames is needed. 

Recently, with more and more data available, data science has 
become a newly burgeoning field and has been successfully applied in 
many engineering and science disciplines including civil engineering 
[1,37] [49]. In data science, physical behavior can be derived directly 
from real-world big data, the rigorous physical theoretical inference is 
no longer required, and relations inferred from empirical models will be 
less informative than those directly reflected in the data [34]. In data 
science approaches, knowledge is extracted from the data (also called 
the training dataset) by using advanced artificial intelligence (AI) 
techniques or statistical learning approaches (e.g., non-parametric ma
chine learning methods) without any human assumptions or inference. 
This knowledge is typically expressed in a specific mathematic form 
which is then employed to directly relate the input predictors to the 
output responses with high generalization performance and computa
tional efficiency. These types of approaches have been employed more 
often in recent years in structural earthquake engineering applications 
to achieve good predictive performance and high computational effi
ciency [6,21,22,28,27,36,47,49,10,11][17]. However, these studies 
only focus on predicting the strength and deformation capacity of 
various structural components. 

Additionally, although many studies have successfully adopted AI 
techniques (e.g., neural network-based methods) to accurately and 
efficiently predict the seismic performance of structural systems, they 
use the ground motions and corresponding seismic response data 
(simulated or measured) to develop the corresponding nonlinear re
lations [19] , [48,53]. On one hand, simulated data is less meaningful 
and informative than experimentally measured data, and measured data 
is very limited. On the other hand, seismic response data does not relate 
the structural features to the structural response, leading to limited 
predictive capability for new structures with changes in structural fea
tures. To solve these problems, we propose a novel AI-enhanced method, 
which links structural features to experimental data by formulating the 
stiffness matrix directly from real-world experimental data of structural 
components in the RC frames, to predict the nonlinear seismic response 
of RC frames. The proposed method is more accurate and efficient than 
existing widely-used traditional fiber-based modeling approaches. 

The rest of this paper is organized as follows. Section 2 serves as the 
literature review to discuss existing AI-based methods in predicting 
structural seismic response for illustrating the computational novelty of 
the proposed method. Section 3 presents the methodology of a novel AI- 
enhanced method for seismic response prediction of RC frames. Section 
4 describes the column dataset used in the proposed method. Section 5 
presents a comparison and discussion of the numerical results for RC 
frames under both quasi-static cyclic loading and dynamic earthquake 
ground motions. The conclusions are made in Section 6. 

2. Literature review 

In the structural and earthquake engineering domain, many re
searchers have focused on using artificial intelligence (AI) techniques (e. 
g., machine learning (ML)) to identify structural damage and predict the 

strength and deformation capacity of various structural components, 
such as RC beams, slabs, columns, walls, and beam-column joints. For 
example, computer vision-based methods were used to automatically 
recognize structural damage and evaluate structural performance based 
on images of post-earthquake structures [18,12,13,35,20,55]; data- 
driven methods were proposed to evaluate the post-earthquake struc
tural safety state [14,52]; support vector machines for regression 
(SVMR) [45]) and its extension version, least squares SVMR (LS-SVMR) 
[43] were used to predict the shear strength of RC deep beams [6,36], 
the punching shear capacity of fiber-reinforced polymer (FRP) RC slabs 
[47], the backbone curve and drift capacity of RC columns [21,22], and 
the dynamic response of structures [56], as well as to reduce the sample 
bias of small datasets [23] and predict the strength in the context of 
missing data [24]. In these studies, the training sets are collected from 
real-world experimental data, and the results predicted from the AI- 
based methods show much better agreement with experimental data 
than those obtained by traditional physics-based approaches. However, 
system-level seismic response prediction using the component-level 
experimental data based on AI techniques has not yet been fully 
explored. This is because a given structural system consists of various 
components (e.g., beams, columns, and walls), and this complex nature 
makes it difficult to establish a system-level training set. Moreover, 
system-level physical experimental data is also limited due to the 
expensive nature of such tests [57,58]. 

Several researchers have used alternative ways to achieve data- 
driven prediction for structural systems under earthquakes. Specif
ically, they use simulated or measured seismic response data to develop 
a nonlinear functional mapping between ground motions and corre
sponding seismic response [19]; Perez-Ramirez et al. 2019; [48,53] 
(Zhang et al., 2020a,b). Zhang et al [53] proposed a deep learning (DL)- 
based approach to predict the nonlinear seismic response of a structural 
system. In this method, for a target structural system, a training set 
where the predictors are ground motion-related information (e.g., 
ground acceleration, velocity, and displacement) and the response var
iables are the structural response-related information (e.g., story accel
eration, velocity, and displacement) is used to train a DL model. The DL 
model can then be used to predict the structural response for the target 
system subjected to a new ground motion. The structural response data 
in the training set is either measured by sensors or simulated by 
nonlinear time-history analyses for the target system under multiple 
ground motion records. Similar schemes were also devised by Guarize 
et al. [16] for seismic response prediction of marine structures, by 
Lagaros and Papadrakakis [19] for seismic response prediction of 
buildings, by Wu and Jahanshahi [48] for seismic response prediction of 
a 3-story steel frame, and by Zhang et al. [54] and Yu et al. [51] for 
physics-guided seismic response prediction. However, this type of AI- 
based method is only valid for predicting the same structural system 
where the training set including ground motion records and corre
sponding structural response is used but may produce significant errors 
when predicting for another structure where structural features change 
significantly. This is because the training set does not relate any struc
tural features (e.g., structural geometry, material properties, or rein
forcement details) to the structural response, and the structural seismic 
behavior varies significantly when certain structural features change. 
Therefore, once some structural features change, the training set will no 
longer be valid for the new structure. 

From the review of existing AI-based methods for seismic response 
prediction of structural systems, it can be concluded that the main 
problem for existing AI-based methods is that they do not relate the 
structural features to the experimental data, and thus the trained AI 
models cannot capture the variation in response for a new structure. 
Different from existing methods, this paper proposes a novel AI- 
enhanced computational method to solve this problem. The proposed 
method can relate the structural features to the experimental data for 
accurate and efficient nonlinear seismic response prediction of RC 
frames by coupling the AI technique with the mechanical model. The 
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mathematical formulation of the proposed approach is introduced in the 
following section. 

3. Methodology 

This section presents the novel AI-enhanced computational method 
to accurately and efficiently predict the hysteretic behavior and time- 
history response quantities of target RC frames subjected to both 
quasi-static cyclic loading and ground motions. The computational 
novelty of the proposed approach is that it can link the structural fea
tures with the experimental data by incorporating the AI technique with 
the well-established mechanical model (i.e., shear building model). To 
be specific, the AI technique can directly utilize the structural features 
and experimental force-displacement data of RC columns to determine 
the lateral stiffness of each column in the target RC frame while the 
structural stiffness matrix is efficiently formulated from the determined 
lateral stiffness of each column by means of the shear building model. 
Therefore, this scheme can capture the variation in structural response 
for a new RC frame with changes in structural features and enhance the 
prediction accuracy due to the use of real-world data while maintaining 
computational efficiency due to the incorporation of the shear building 
model. Additionally, two new data-driven seismic response solvers, one 
for quasi-static cyclic loading and one for dynamic ground motions, are 
developed to implement the proposed approach based on a database 
including 272 RC column specimens. More detailed information is 
introduced in the following sub-sections. 

3.1. Artificial Intelligence (AI)-enhanced shear building model 

The structural components in an RC frame mainly include beams and 
columns that are connected to form a frame system. When the frame is 
subjected to external loads, these components will deform along their 
DOFs (e.g., rotation and translation). It is very important to determine 
the stiffness for each component in deformation along its DOF since it 
will be used to form the structural stiffness matrix which in turn is used 
to calculate the force or deformation response at the system level. When 
the force is known (i.e., load-controlled analysis), the structural stiffness 
matrix is used to calculate the deformation caused by the applied force. 
When the displacement is known (i.e., displacement-controlled anal
ysis), the structural stiffness matrix is instead used to calculate the force 
induced by the applied displacement. The method employed to formu
late the structural stiffness matrix is an important factor to determine the 
computational efficiency and prediction performance. The detailed 
formulation of the proposed approach is presented in the following sub- 
sections. Briefly, Section 3.1.1 introduces the development of hysteretic 

modelers to define the nonlinear behavior of RC columns in an RC frame. 
Section 3.1.2 presents the formulation of an MDOF model for the RC 
frame based on the column hysteresis modelers presented in Section 
3.1.1. Section 3.1.3 discusses tje data-driven solvers developed to obtain 
seismic response solutions for the MDOF model under quasi-static cyclic 
loading and dynamic ground motions. 

3.1.1. Development of hysteretic modelers for RC columns 
In the formulation of the proposed method, the following assump

tions are made to maintain consistency with the traditional shear 
building model: 1) axial deformations are ignored in all structural 
components; 2) masses for each story are idealized as lumped at the floor 
level; 3) all beams are rigid axially and in flexure such that only trans
lational (horizontal) displacement is considered at each floor level. For 
the traditional shear building method, accurate definitions of the hys
teretic constitutive relation (i.e., lateral force-deformation relation) for 
each story determine the predictive performance. However, there is still 
no unified and effective method to accurately define these constitutive 
relations based on the column features (e.g., column’s design informa
tion). This poses a great shortcoming in the shear building model and 
prohibits full use of such a computationally efficient method. To solve 
this problem, we utilize real-world existing force-deformation data of RC 
columns subjected to cyclic loading and an AI technique to define the 
hysteretic constitutive relation (i.e., nonlinear behavior) of each column 
in each story. The hysteresis constitutive relation at the story level can 
then be defined via the hysteretic constitutive relations of all columns in 
the story as equivalent parallel springs. A schematic representation of 
the proposed AI-enhanced shear building model is presented in Fig. 1. As 
seen in Fig. 1, all columns in each story have the same story deformation 
(i.e., floor displacement) (e.g., the first story deformation δ1 equals the 
deformation of each column in the first story) while the story shear (i.e., 
lateral force) can be obtained by summation of the lateral shear force for 
each column at the story deformation. This case is equivalent to the 
parallel springs since each column in each story can be regarded as a 
nonlinear spring. We denote the hysteretic constitutive relation of each 
column in each story by the hysteretic modeler 

[
fs, k

]
= f(δ; y), where 

y ∈ Rnθ is the optimal critical parameter vector containing nθ critical 
parameters that define a hysteretic model, and f(∙) represents the hys
teretic model. This modeler is employed to produce the force fs and 
lateral stiffness k for columns in an RC frame at a deformation δ for each 
load step or time instant. The development of such a hysteretic modeler 
is based on an AI technique, a hysteretic model, and a training set [25]. 

Specifically, given the collected physical experimental data (i.e., 
structural features and force-deformation data) of n column specimens, a 
training set 

{ʀ
xi, yi

) }n
i=1 consisting of the necessary structural features 

Fig. 1. Schematic representation of the proposed AI-enhanced shear building model.  
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(e.g., specimen geometry and material properties) denoted as xi ∈ Rp 

that serve as predictors and an optimal critical parameter vector yi ∈ Rnθ 

that serves as the response variables can be developed. More detailed 
information regarding the development of the training set will be 
introduced in Section 4. Given the training set, a well-trained model for 
column performance prediction can be formed by learning the nonlinear 
relations exhibited by this data using the AI technique. The well-trained 
AI model is denoted as ŷ = M(x; Ψ), where ŷ is the predicted critical 
parameter vector that defines a hysteretic model, Ψ ∈ Rnψ is the optimal 
AI model parameter vector containing nψ parameters and M(∙) repre
sents the AI technique. Since the response variable is continuous, only AI 
techniques related to regression can be used. Then, given an RC frame, 
each column in each story needs to be expressed as a query point 
denoted as xnew ∈ Rp that has the same structural features as xi ∈ Rp in 
the training set. These query points for all columns in the RC frame are 
input to the well-trained AI model to obtain the predicted critical 
parameter vector ŷnew = M(xnew; Ψ). The predicted critical parameter 
vector ̂ynew is then applied to the hysteretic model to form the hysteretic 
modeler 

[
fs, k

]
= f

ʀ
δ; ŷnew

)
. Luo and Paal [25] developed a method to 

form the component-level hysteretic modeler, and the performance of 
this method has been successfully validated for nonlinear seismic 
response prediction of circular RC columns subjected to quasi-static 
cyclic loading and dynamic earthquake ground motions. In this paper, 
the method presented in Luo and Paal [25] is utilized to develop the 
component-level hysteretic modelers for all RC columns in an RC frame. 
It should be noted that the difference between the work presented in this 
paper and the one in Luo and Paal [25] is significant. First, the work in 
Luo and Paal [25] mainly introduces the integration of an AI technique 
and hysteretic model for nonlinear seismic response prediction of 
structural components, while the study in this paper presents the inte
gration of an AI technique, hysteretic model, and system-level me
chanical model (i.e., shear building model) for nonlinear seismic 
response prediction of structural systems. Therefore, the method and 
corresponding data-driven solver in Luo and Paal [25] are only appli
cable for the single-degree-of-freedom (SDOF) case and cannot be used 
for the MDOF case. Second, the database for the two approaches is 
different. The database utilized to develop the component-level hyster
etic modeler for Luo and Paal [25] includes 154 circular sectional col

umn specimens, while this study includes 272 rectangular sectional 
column specimens. 

3.1.2. Formulation of an MDOF model 
Assume a planar RC frame structure that has n-stories, with each 

story having l-bays, as shown in Fig. 1 in the case of n = 3 and l = 2. 
Based on the aforementioned assumptions, each column in the i-th story 
has a self-weight, denoted as mij, where i = 1,⋯,n, represents the story, 
and j = 1, ⋯, l +1 represents the column along the bay direction, and all 

the columns in the i-th story have the same lateral translational DOF. 
Thus, the total mass for the i-th story is 

∑l+1
j=1mij (note: beam and slab 

masses have been considered in the column’s self-weight), and the mass 
matrix for this structure is diagonal in the lateral DOF direction, which is 
written as follows: 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑l+1

j=1
m1j 0 0

0 ⋱ 0

0 0
∑l+1

j=1
mnj

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(1) 

The mass matrix will remain constant throughout the response his
tory. As shown in Fig. 1, the hysteretic parameters (e.g., lateral stiffness 
or lateral force) for each column in each story is obtained by the hys
teretic modeler developed in this work and presented in Section 3.1.1, 

which is denoted as 
[
fs,ij, kij

]
= f

(
δi; ŷ ij

)
where fs,ij and kij are the lateral 

force and lateral stiffness of column j located at story i and obtained by 

the modeler f
(

δi; ŷij

)
given the ith-story relative displacement (or story 

drift) δi, respectively (note: lateral force is a general term that represents 
the force fs,ij induced by a lateral deformation δi applied to a structure 
system, and it could be peak force or yield force, depending on the 
magnitude of the lateral deformation δi). The calculation of δi is δi =

ui −ui−1, i ≥ 2, and when i = 1, δ1 = u1, which means that the relative 
story displacement δ1 is equal to the lateral displacement u1 at the first 
floor, where ui is the lateral displacement relative to the ground at floor 
i. Note that the hysteretic parameters for each column in each story 
could be the same or they could vary from one another, depending on 
the obtained optimal critical parameter vector ŷij. Since the columns in 
each story can be considered equivalent to springs in parallel, each story 
stiffness can be obtained by summation of the obtained lateral stiffness 
for each column in the story (e.g., the ith-story stiffness is 

∑l+1
j=1kij). Due to 

the assumptions made in Section 3.1.1, the structural stiffness matrix 
can be formulated and is a symmetric tridiagonal matrix, which is 
written as follows:   

The structural stiffness matrix K will be updated when the column 
lateral stiffness kij changes due to nonlinear behavior throughout the 
response history. For the damping component, Rayleigh damping is 
used, which is a combination of mass-proportional and stiffness- 
proportional damping. The Rayleigh damping matrix is written as fol
lows: 

C = a0M + a1K (3) 

The coefficients a0 and a1 can be determined from specified damping 

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑l+1

j=1

ʀ
k1j + k2j

)
−

∑l+1

j=1
k2j 0 ⋯ 0

−
∑l+1

j=1
k2j

∑l+1

j=1

ʀ
k2j + k3j

)
−

∑l+1

j=1
k3j ⋱ ⋮

0 −
∑l+1

j=1
k3j

∑l+1

j=1

ʀ
k3j + k4j

)
⋱ 0

⋮ ⋱ ⋱ ⋱ −
∑l+1

j=1
knj

0 ⋯ 0 −
∑l+1

j=1
knj

∑l+1

j=1
knj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)   
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ratios ζim and ζjm for the im 
th and jm 

th modes, respectively. The detailed 
information regarding the calculation of a0 and a1 can be found in 
Chopra [5]. Given the mass, stiffness, and damping components, an 
MDOF model for an RC frame structure subjected to ground motions can 
be formulated. 

Mü + Cu̇ + f S(u) = − M1üg(t) (4)  

where u = (u1, u2, ⋯, un)
T is a displacement vector along the structure’s 

height, and each element represents the lateral floor displacement 
relative to the ground; f S(u) is a lateral resisting force vector along the 
structure’s height determined by the structural stiffness matrix K and 
corresponding displacement vector u, or directly assembled by the story 
shear force 

∑l+1
j=1fs,ij, i = 1, ⋯, n; 1 = (1, ⋯, 1) ∈ Rn is an influence vector 

that represents the fact that the proposed MDOF model has all dynamic 
DOFs in the direction of the ground motion [5]; and, üg(t) is the ground 
motion. 

Note that Eq. (4) can be applied to both linear and nonlinear systems. 
This is because when solving Eq. (4), the structural stiffness matrix K is 
not constant and will be updated to determine the resisting force vector 
f S(u) from the column lateral stiffness corresponding to the deformation 
and state of each column. The data-driven solvers developed to obtain 
the hysteretic behavior and time-history response quantities will be 
introduced in the following sub-section. 

3.1.3. Development of data-driven solvers for seismic response prediction 
For the linear analysis, the initial structure stiffness matrix is used 

throughout the entire time history. Therefore, the fS(u) term in Eq. (4) 
can be changed to Ku where K represents the initial structure stiffness 
matrix and will remain constant. For the nonlinear analysis, the struc
tural stiffness matrix K is not constant and will be updated to determine 
f S(u) from the column lateral stiffness corresponding to the deformation 
and state of each column in each story. Specifically, given the relative 
story displacement δi and state (e.g., loading or unloading) of each 
column in each story, the column hysteretic modelers can adaptively 

produce the lateral force and lateral stiffness 
[
fs,ij, kij

]
= f

(
δi; ŷij

)
and 

record the current state. The recorded current state determines if the 
deformation is in the loading branch, unloading branch, or at the 
reversal point where a transition happens between loading and 
unloading and thus can inform the hysteretic modelers to determine the 
lateral force and lateral stiffness for the next load step or time instant. 
The produced lateral force fs,ij and lateral stiffness kij for each column 
can be respectively assembled to a resisting force vector f S(u) and 
structural stiffness matrix K for further calculation. Eq. (2) can be used 
to assemble a structural stiffness matrix K from the column lateral 
stiffness kij produced by the column hysteretic modelers. Since the force- 
displacement relation is nonlinear, the direct calculation of the resisting 
force vector by f S(u) = Ku is no longer valid. The static equilibrium 

constraint is used to directly assemble the resisting force vector fS(u)

from the column shear force fs,ij(δi) obtained by the column hysteretic 
modelers, i = 1, ⋯, n; j = 1, ⋯, l + 1, . Fig. 2 displays an example to 
illustrate how the resisting force fs,2(u2) at the 2nd floor is formed using 
the static equilibrium constraint. 

Specifically, given the shear force fs,ij(δi) for each column at story i, 
the ith-story shear force can be calculated as fs,i(δi) =

∑l+1
j=1fs,ij(δi). The 

resisting force vector fS(u) consists of the resisting force fs,i(ui) at each 

floor, which is denoted as f S(u) =
(

fs,1(u1), fs,2(u2)⋯, fs,n(un)
)T

. The 

resisting force fs,i(ui) at floor i is made up of two components: fs,i(δi) from 
the story of floor i below, and fs,i+1(δi+1) from the story of floor i above, 
as shown in Fig. 2. To maintain static equilibrium, the following equa
tion can be established: 

fs,i+1(δi+1) + fs,i(ui) = fs,i(δi), 1 ≤ i ≤ n − 1 (5) 

When i = n, the resisting force fs,n(un) equals fs,n(δn). This is because 
there is no story above floor n. So, the resisting force vector f S(u) can be 
re-written as follows: 

f S(u) =
ʀ
fs,1(δ1) − fs,2(δ2), ⋯, fs,n−1(δn−1) − fs,n(δn), fs,n(δn)

)T (6) 

Thus, Eq. (6) can be used to assemble a resisting force vector f S(u)

from each column shear force in each story, which will be updated for 
each time instant. For the displacement-controlled quasi-static cyclic 
loading, the floor displacement information u is known, and the quantity 
of interest is regarding the hysteretic relationship between base shear 
and roof displacement or story shear and story drift (i.e., relative story 
displacement). The prediction of these quantities using the proposed AI- 
enhanced shear building model is straightforward. Given an RC column 
training set {(xi, yi) }

n
i=1, the following procedure, serving as a data- 

driven solver, is developed to implement the proposed approach for 
predicting the hysteretic response of an RC frame subjected to quasi- 
static cyclic loading.  

Algorithm 1: Implementation of proposed AI-enhanced MDOF model under quasi- 
static cyclic loading 

1. Development of hysteretic modelers: 
Given an RC column training set 

{ʀ
xi, yi

) }n
i=1 and a target RC frame with n stories and l 

bays 
(a) translate the columns in each story in the target RC frame into predictors, denoted 

as query points 
{ʀ

xnew,ij
) }n×(l+1)

i,j=1 ; 

(b) train an AI model M(x; Ψ) based on the RC column training set 
{ʀ

xi, yi
) }n

i=1; 
(c) predict the response for each column in the target RC frame, denoted as ŷij =

M
ʀ
xnew,ij; Ψ

)
; 

(d) form a hysteretic modeler for each column, denoted as 
[
fs,ij , kij

]
= f

(
δi; ŷij

)
, i = 1, 

…,n; j = 1,…,l + 1; 
2. Predict hysteretic response using proposed AI-enhanced MDOF model: 

(continued on next page) 

Fig. 2. Determination of the resisting force from story shear by static equilibrium.  
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(continued ) 

Algorithm 1: Implementation of proposed AI-enhanced MDOF model under quasi- 
static cyclic loading 

Given the displacement history U =
ʀ
u1, ⋯, uD)T, hysteretic modeler 

[
fs,ij, kij

]
=

f
(

δi; ŷij

)
, i = 1,…,n; j = 1,…,l + 1 

for d = 1 to D do 
for i = 1 to n do 

(a) when i = 1, calculate the relative story displacement or story drift δd
1 = ud

1 

(b) when i ∕= 1, calculate the relative story displacement or story drift δd
i =

ud
i −ud

i−1 
for j = 1 to l + 1 do 

(a) calculate the shear and lateral stiffness 
[
fs,ij

ʀ
δd

i
)
, kij

ʀ
δd

i
) ]

= f
(

δd
i ; ŷij

)
for 

each column; 
end for j 
(a) calculate and record the story shear fs,i

ʀ
δd

i
)

=
∑l+1

j=1fs,ij
ʀ
δd

i
)
; 

(b) calculate and record the story stiffness ki
ʀ
δd

i
)

=
∑l+1

j=1kij
ʀ
δd

i
)
; 

end for i 
(a) assemble the structure stiffness matrix Kd according to 

{ʀ
ki

ʀ
δd

i
) ) }n

i=1 using Eq. 
(2); 

(b) assemble the resisting force vector fS
ʀ
ud)

according to 
{(

fs,i
ʀ
δd

i
) ) }n

i=1 
using Eq. 

(6) 

(c) output 
{(

fs,i
ʀ
δd

i
) ) }n

i=1
, fS

ʀ
ud)

, and Kd. 

End for d  

By implementing Algorithm 1 presented above, one can obtain the 
hysteretic response of both roof displacement (

{ʀ
ud

n
) }D

d=1) versus base 

shear (
{(

fs,1
ʀ
δt

1
) ) }D

d=1
) and story drift (

{ʀ
δd

i
) }D

d=1) versus story shear 

(
{(

fs,i
ʀ
δd

i
) ) }D

d=1
) for a target RC frame structure. Further, Algorithm 1 

can also output the structural stiffness matrix 
{ʀ

Kd) }D
d=1 and resisting 

force vector 
{ʀ

f S
ʀ
ud) ) }D

d=1 given the entire displacement history U =
ʀ
u1, ⋯, uD)T, which are important components for the nonlinear time- 

history analysis. Thus, Algorithm 1 will be used in Algorithm 2 below 
to calculate the structural stiffness matrix K and resisting force vector 
f s(u) given the displacement information u, which is denoted as 

[
f s(u),

K
]

= Algorithm1(u). The nonlinear dynamic analysis involves solving 
the equations of motion presented in Eq. (4), which requires a numerical 
method to solve the nonlinear system. In this paper, a hybrid algorithm 
coupling the Newmark average acceleration (NAA) method, modified 
Newton-Raphson (MNR) iteration, and Algorithm 1 is developed to 
solve Eq. (4). The detailed procedure is presented below.  

Algorithm 2: Implementation of proposed AI-enhanced MDOF model under dynamic 
ground motions 

1. Initialization: 

Given the ground motion 
{(

üg(tt)
) }T

t=1
, hysteretic modeler 

[
fs,ij , kij

]
= f

(
δi; ŷij

)
, i 

= 1,…,n; j = 1,…,l + 1; 
(a) calculate the nodal mass mij in each story for the target RC frame; 
(b) calculate the initial lateral stiffness for each column from the hysteretic modeler: 

[
fs,ij , kij

]
= f

(
δi; ŷij

)
; 

(c) calculate the mass, initial stiffness, and damping matrix M, K0, and C using Eqs. 
(1–3), respectively; 

(d) select an appropriate time interval Δt and calculate the earthquake forces: pt =

−M1üg(tt); 
(e) calculate the Newmark coefficients: A = 4M/Δt + 2C; B = 2M; 
2. Solving Eq. (4) by the hybrid algorithm: 
Given the initial condition of the target RC frame, i.e., p0, u0, and u̇0, fS

ʀ
u0)

, and 
known information from step 1; 

(a) calculate the ü0 = M−1
(

p0 −Cu̇0 −fS
ʀ
u0) )

; 

for t = 1 to T do 
(a) Δp̂t−1

= pt −pt−1 + Au̇t−1 + Büt−1; 

(b) K̂
t−1

= Kt−1 + 2C/Δt + 4M/(Δt)2; 
(c) calculate the Δut−1, Kt , f s(ut) using modified Newton-Raphson and algorithm 1 

(continued on next column)  

(continued ) 

Algorithm 2: Implementation of proposed AI-enhanced MDOF model under dynamic 
ground motions 

Given f s
ʀ
ut−1)

, ut−1; Δp̂t−1, K̂
t−1

, Kt−1, the maximum number of iteration N, and 
tolerance tol 

(a) initial assignment: f s
ʀ
ut

0
)

= f s
ʀ
ut−1)

, ut
0 = ut−1, ΔR1 = Δp̂t−1, K̂ = K̂

t−1
, 

K = Kt−1; 
for jn = 1 to N do 

(a) Δujn = K̂
−1

ΔRjn ; 
(b) ut

jn = ut
jn−1 + Δujn ; 

(c) calculate the Kt
jn 

and f s

(
ut

jn

)
using the algorithm 1: 

[
f s

(
ut

jn

)
, Kt

jn

]
=

Algorithm1
(

ut
jn

)
; 

(d) Δf jn = f s

(
ut

jn

)
−f s

(
ut

jn−1

)
+ (K̂ −K)Δujn ; 

(e) ΔRjn +1 = ΔRjn −Δf jn ; 

(f) calculate the displacement convergence criterion: Δu =
∑jn

in=1Δuin , eps =

‖Δujn ‖/‖Δu‖

(h) Δut−1 = Δu, Kt = Kt
jn , and f s(ut) = f s

(
ut

jn

)
; 

if eps ≤ tol do 
(a) break the loop; 

end if 
end for jn 

(d) Δu̇t−1 = 2Δut−1/Δt −2u̇t−1; 
(e) Δüt−1 = 4Δut−1/(Δt)2

−4u̇t−1/Δt −2üt−1; 
(f) ut = ut−1 + Δut−1, u̇t = u̇t−1 + Δu̇t−1, and üt = üt−1 + Δüt−1; 

end for t  

By implementing Algorithm 2, the time-history response quantities of 
interest, such as time versus roof displacement and the distribution of 
peak story drift ratio along the floors can be obtained. It should be noted 
that the displacement convergence criterion in Algorithm 2 for the 
proposed AI-enhanced shear building model is satisfactory since the 
numerical values in the displacement vector have the same units (i.e., 
lateral displacement) and do not suffer the complications associated 
with different units that bring in significant errors [5]. For algorithms 1 
and 2, the locally weighted least-squares support vector machines for 
regression (LWLS-SVMR) [22] is selected as the AI technique. LWLS- 
SVMR is a local machine learning (ML) model which was recently 
developed for the generalized prediction of the drift capacity of RC 
columns [22]. LWLS-SVMR integrates LS-SVMR [43] with a locally 
weighted learning algorithm to locally adjust the capacity of LS-SVMR to 
the properties of the training set in each area of the input space, thus 
enhancing the generalization performance of the LS-SVMR. One main 
advantage of LWLS-SVMR is that it only requires the fitting of a subset of 
training data nearby (relevant to) the query point while existing global 
ML methods require fitting the entire set of training data. In this sense, 
the LWLS-SVMR can avoid the potential negative influence of irrelevant 
points, achieving a suitable trade-off between the capacity of the 
learning system and the number of training data points. 

4. Rectangular column database 

For this study, a database of rectangular RC column experimental 
tests is used to evaluate the performance of the novel AI-enhanced shear 
building model in predicting the seismic response of RC frames under 
both displacement-controlled quasi-static cyclic loading and dynamic 
ground motions. The database is taken from the authors’ previous work 
[21]. The original number of column specimens in the dataset is 262, 
which is primarily based on the database compiled by Berry et al. [2]. 
However, there are ten columns for which the force-displacement data 
are not available. These ten columns are from Verderame et al. [46] and 
Eom et al. [9] and thus, are not included in this work. Additionally, as 
the shake table tests for large-scale RC frames with several stories and 
bays (e.g., RC frame with more than 6 stories and 2 bays) are not 
available, the shake table tests for small-scale RC frames will be used. 
Since small-scale RC frames have column features outside the range of 
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the dataset, the dataset is supplemented with 20 small-scale RC column 
specimens to reduce potential sample bias. These column specimens are 
taken from Cecen [4]. Thus, the final number of column specimens in the 
dataset is 272. 

For the development of the training set 
{ʀ

xi, yi
) }272

i=1 , the predictor 
variables xi and response variables yi are required to be extracted from 
the collected column data. For each column specimen in the database, 
the predictor variables xi are extracted from the structural features (i.e., 
design information) including the gross column cross-sectional area Ag, 
concrete compressive strength f ’

c , longitudinal reinforcement yield stress 
fyl, longitudinal reinforcement area Asl, column effective depth d, con
crete cover c, transverse reinforcement yield stress fyt, transverse rein
forcement area Ast , stirrup spacing s, shear span a, and applied axial load 
P. The response variables yi are extracted from experimentally recorded 
force-deformation data including the monotonic backbone curve and 
hysteretic parameters via the hysteretic model and optimization algo
rithm. In this paper, the modified three-parameter hysteretic model and 
the hybrid optimization algorithm proposed in Luo and Paal [25] are 
utilized to extract the three hysteretic parameters (i.e., stiffness deteri
oration parameter α, strength deterioration parameter β, and pinching 
parameter γ) from each column’s force–deformation data. Since the 
monotonic backbone curve parameters cannot be directly extracted 
from cyclic force–deformation data, they are approximated via cyclic 
backbone curve parameters that are extracted using the methods pre
sented in Sezen and Moehle [40] and Elwood and Moehle [8]. As the 
forces and displacements in the positive and negative directions in the 
experimental hysteretic curve are near-identical, the cyclic backbone 
curve parameters in the positive and negative directions are designated 
as equivalent in this work, as shown in Fig. 3. 

Finally, nine optimal critical parameters, including six cyclic back
bone curve parameters and three hysteretic parameters, for each of the 
272 columns in the database are obtained according to the method 
proposed in Luo and Paal [25]. Note that the cyclic backbone curve 
parameters need to be transformed to the monotonic backbone curve 
parameters when developing the hysteretic modeler. The transformation 
from the cyclic backbone curve to the monotonic backbone curve can be 
found in Luo and Paal [25]. The statistical properties of the optimal 
cyclic backbone curve and three hysteretic parameters for the 272 col
umn specimens are summarized in Table 1. 

5. Numerical experiments and discussion of results 

This section presents the numerical experiments carried out to vali
date the proposed AI-enhanced method in accurate and efficient seismic 
response prediction of RC frame structures under quasi-static cyclic 
loading and dynamic earthquake ground motions. For the quasi-static 
cyclic loading case, a large-scale (1:2) physical experimental model of 
a 3-bay, 3-story RC frame structure is selected from Xie et al. [50] to 
serve as the test specimen. For the dynamic earthquake ground motion 
case, two small-scale (1:15) physical experimental models of 3-bay, 9- 
story RC frame structures, one subjected to four earthquake (EQ) ground 
motions and another subjected to six EQ ground motions are selected 
from Schultz [39] to serve as the test specimens. For both cases, the 
whole rectangular column dataset presented in Section 4 is used to train 
the proposed method, and the proposed approach is compared with the 
widely used fiber-based modeling method with experimental data 
serving as the ground truth. All the numerical experiments are per
formed using a Desktop PC with the Processor: Intel® Xeon® CPU E3- 

y m u

mV

yV

Monotonic backbone curve

Cyclic backbone curve

Monotonic backbone curve is approximated by cyclic backbone curve

u

uV

Fig. 3. Schematic for approximating the monotonic backbone curve via the cyclic backbone curve.  

Table 1 
Statistical properties of the optimal cyclic backbone curve and hysteretic 
parameters.  

Critical Parameters Minimum Maximum Median Sample 
Mean 

Std. 
Dev 

Yield shear force, Vy 

(kN)  
1.60  1071.01  130.50  163.72  149.05 

Drift ratio at yield 
shear, δy (%)  

0.20  1.73  0.79  0.85  0.37 

Maximum shear 
force, Vm (kN)  

1.84  1338.80  155.09  194.63  178.50 

Drift ratio at 
maximum shear, 
δm (%)  

0.31  7.94  1.69  1.99  1.33 

Ultimate shear 
force, Vu (kN)  

1.64  1217.01  126.89  163.03  155.51 

Drift ratio at 
ultimate shear, δu 

(%)  

0.72  9.39  3.15  3.60  1.88 

Stiffness 
deterioration 
parameter,α  

0.30  119.42  9.37  21.09  21.98 

Strength 
deterioration 
parameter,β  

0.00  0.93  0.06  0.14  0.20 

Pinching 
parameter,γ  

0.31  1.00  0.98  0.87  0.19  
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Fig. 4. Comparison of results between the traditional fiber-based modeling approach (i.e., fiber model) and the proposed AI-enhanced shear building model (i.e., AI 
model), with the experimental data serving as the ground truth. 
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1270 v6 @ 3.80 GHz and the max memory size that is 64 GB. No parallel 
computing is employed for any of the numerical experiments. 

5.1. Displacement-controlled quasi-static cyclic loading test 

This section presents a comparison between the proposed AI- 
enhanced method and the widely used fiber model to demonstrate the 
real-world application and full potential of the proposed approach. A 
large-scale (1:2) physical experiment of a 3-bay, 3-story RC frame sub
jected to displacement-controlled quasi-static cyclic loading is selected 
from Xie et al. [50] for this comparison. The lateral load distribution for 
this experimental test is an inverse triangle, and the entire loading 
process is controlled by the displacement of the top floor (i.e., roof 
displacement) [50]. The detailed information regarding the structural 
geometry, material properties, reinforcement details, and load pattern 
can be found in Xie et al. [50]. For the widely used fiber model, a single 
force-based fiber beam-column element [41,42] with five Gauss-Lobatto 
integration points (i.e., monitoring sections) is employed to model each 
of the columns and beams in the selected RC frame. In each monitoring 
section, the cover concrete fiber is simulated using the modified Kent 
and Park model [38], and the core concrete fiber is simulated by the 
confined concrete model proposed by Mander et al. [26] to represent the 
confinement effect of the stirrups. The reinforcement fiber is modeled by 
the Menegotto-Pinto model [31]. All the values that need to input these 
material constitutive models are selected based on the material prop
erties from experimental information. OpenSees [30] is used to imple
ment the RC frame numerical model established by the widely-used 

fiber-based method to obtain the nonlinear response of the RC frame. 
Algorithm 1 presented in Section 3.1.3 is used to implement the pro
posed approach using Matlab 2018a to obtain the hysteretic responses of 
roof displacement versus base shear and story drift ratio versus story 
shear. It should be noted that the story drift ratio depends on the floor 
displacement, which depends on the roof displacement and mode shape. 
This is because an MDOF system’s deformation shape depends on its 
modes of vibration [5]. Typically, each mode is normalized so that its 
largest element is unity (e.g., the top floor of a multistory building is 
unity). Therefore, if the roof displacement and mode shape are known, 
then all floor displacements can be obtained. As introduced above, the 
roof displacement is pre-defined by the experimental test, and thus the 
roof displacements for both proposed and fiber-based methods are the 
same. However, the mode shapes obtained by the proposed and fiber- 
based methods may vary due to the difference in stiffness. This will 
lead to the difference in story drift ratios obtained by the two methods. 

Fig. 4 presents a comparison of the results between the proposed 
method (i.e., AI model (red dashed line)) and fiber-based modeling 
approach (i.e., fiber model (blue dashed line)) where ground truth is 
defined as the experimental test (solid black line). Fig. 4(a-b) demon
strates that both methods reasonably capture the global nonlinear 
response of the RC frame in terms of the hysteretic relation of roof 
displacement versus base shear. The proposed approach effectively re
flects the cyclic strength deteriorations and softening behavior observed 
experimentally, while the fiber model fails to reasonably capture these 
types of hysteretic behavior. Thus, although both methods reasonably 
predict the overall hysteretic response, the proposed approach achieves 
better prediction capability than the fiber model, where the hysteretic 
curve predicted by the proposed approach has better agreement with the 
experimental results than that simulated by the fiber model. The hys
teretic response of story drift ratio versus story shear is extracted and 
presented in Fig. 4(c-h). Both methods reasonably predict the lateral 
capacity of the RC frame, where the lateral strengths (i.e., maximum 
shear force) predicted by both methods are close to those observed 
experimentally. However, the fiber model still does not reasonably 
capture the softening behavior induced by cyclic strength deterioration, 
while the proposed approach can effectively reflect these types of 
behavior characteristics observed experimentally. In total, the proposed 
approach can reasonably reflect the hysteretic behavior of the RC frame, 
where the hysteretic curves for each story predicted by the proposed 
approach have reasonable agreement with experimental results as 
shown in Fig. 4(c,e,g). The story behaviors predicted by the fiber model 
show some discrepancy with the experimental results, as shown in Fig. 4 
(d,f,h). 

Table 2 presents the detailed performance comparison between the 
proposed approach and fiber-based method in terms of response 

Table 2 
Performance comparison between the proposed approach and fiber-based 
method in terms of error rate (%) that is computed by 

⃒
⃒Qp −Qe

⃒
⃒ × 100/Qe, 

where Qp is the predicted quantity and Qe is the experimentally observed 
quantity. Bold values represent the best performance.  

Model Structure Yield 
Force 

Peak 
Force 

Drift 
Capacity 

Energy 
Dissipation 

Proposed 
Approach 

Story 1  4.44  4.41  1.42  12.95  

Story 2  8.56  2.28  3.34  3.03  
Story 3  6.17  9.06  31.17  11.61  
Integrated 
frame  

1.82  4.41  0.36  1.67 

Fiber-based 
approach 

Story 1  10.56  7.29  68.10  18.44  

Story 2  23.17  9.71  1.59  16.48  
Story 3  11.62  3.39  43.01  64.01  
Integrated 
frame  

14.11  7.29  15.55  4.37  

Fig. 5. Four time versus ground acceleration records for frame SS1.  
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quantities including yield force, peak force, drift capacity, and energy 
dissipation. The performance is quantified by error rate (%), which is 
computed by 

⃒
⃒Qp −Qe

⃒
⃒ × 100/Qe, where Qp is the predicted response 

quantity and Qe is the experimentally observed response quantity. As 
shown in Table 2, the proposed approach can more accurately predict all 
response quantities when compared to the fiber-based method across all 
stories. Furthermore, perhaps most importantly, predicting the hyster
etic curve of the selected RC frame using the proposed method only takes 
10 s, while using the traditional fiber model takes 1,672 s (or roughly 30 
min). Therefore, the proposed approach significantly reduces the 
computational cost. Based on these comparisons, the proposed approach 
presented in this paper performs better than the traditional fiber-based 
modeling method. Thus, it is deemed that the proposed approach could 
be an appropriate and promising means for accurate and efficient 
seismic response prediction of RC frames subjected to reversed cyclic 
loading, especially for application in near-real-time scenarios. 

5.2. Dynamic shake table tests 

To validate the performance of the proposed approach in predicting 
the seismic response of RC frames subjected to ground motions, two 
small-scale (1:15), 3-bay, 9-story RC frame specimens are used as 
illustrative examples. Structure SS1 is subjected to four consecutive 
unidirectional ground motions (Fig. 5), and structure SS2 is subjected to 
six consecutive unidirectional ground motions (Fig. 6). These shake 
table tests were organized by Schultz [39], and the difference between 
these two test specimens is that the columns in frame SS2 have a higher 
longitudinal reinforcement ratio than those in frame SS1. Therefore, the 
columns in frame SS2 are stiffer than those in frame SS1. Detailed in
formation regarding the physical experimental set-up, structural 

features, ground motions, and shake table test results can be found in 
Schultz [39]. 

For the traditional fiber-based modeling approach, the fiber beam- 
column element is also used to model the seismic response of the two 
small-scale RC frames. The element type, integration method, number of 
integration points, material constitutive models described in Section 
5.1 for the large-scale RC frame are also used here to establish the nu
merical models of the two RC frames. For the proposed approach, Al
gorithm 2 presented in Section 3.1.3 is used. For both approaches, a 
damping ratio of 2% is assigned to the first two modes of both frames, 
and the time step is set to the one recorded in the ground motions (i.e., 
0.005 s). Since these two RC frames are not repaired after each ground 
motion [39], the four ground motions for frame SS1 and the six ground 
motions for frame SS2 are grouped to be a sequential ground motion that 
serves as the input ground motion. Note that frame SS1 collapsed under 
EQ4, and thus, only the first 2.75 s of the experimental results are 
recorded [39]. The time-history results regarding the time versus roof 
displacement and the floor versus peak story drift ratio are presented in 
Figs. 7–10. 

Fig. 7 presents the comparison of the predicted time-roof displace
ment results for frame SS1 between the fiber model and the proposed 
method, with the experimental data serving as the ground truth. By 
observation, the proposed method achieves better agreement with the 
experimental data for all four EQs over the full-time histories. Further, 
the proposed approach nearly captures the peak roof displacement for 
all four EQs, while the fiber model underestimates those peak roof dis
placements. Peak story drift ratio is an important engineering demand 
parameter (EDP) that is typically used to quantify the seismic perfor
mance of an RC structure [3,5,32]. Fig. 8 shows the results of floor 
versus peak story drift ratio for frame SS1. It can be seen that the pro
posed approach performs better than the fiber model, where the peak 

Fig. 6. Six time versus ground acceleration records for frame SS2.  
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story drift ratios predicted by the proposed approach at each floor for all 
four EQs have a closer agreement with the experimental results than 
those predicted by the fiber model. A similar trend is observed by the 
comparison of the results of the predicted time-roof displacement for 
frame SS2, as shown in Fig. 9. The proposed approach also accurately 

captures the peak roof displacements for all six EQs, while the fiber 
model over-underestimates these values. Additionally, for the compar
ison of the predicted peak drift ratios at the second through ninth floors, 
the proposed method shows better agreement with the experimental 
data for all six ground motions than the fiber model (Fig. 10). However, 

Fig. 7. Time vs. roof displacement results of frame SS1 for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed AI-enhanced shear 
building model (i.e., AI model), with the experimental data serving as the ground truth. 

Fig. 8. Distribution of peak story drift ratio along the floors for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed AI-enhanced shear 
building model (i.e., AI model), with the experimental data serving as the ground truth. 
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for the predicted peak drift ratios at the first floor, compared to the 
proposed method, the fiber model achieves a closer agreement with the 
experimental results for EQ3 through EQ5 and has comparable perfor
mance for EQ1, EQ2, and EQ6. Further, both the fiber model and the 
proposed approach show discrepancy with the experimental results for 
the predicted peak drift ratios at the first and seventh through ninth 
floors for EQ5 and EQ6, where the PGA for EQ5 is 1.06 g and for EQ6 is 
1.30 g. Besides, both methods underestimate the story drift for all stories 
except for the first story. This could be due to the fact that the numerical 
models established by both methods have higher stiffness for all stories 
except for the first story, leading to smaller displacement amplitudes and 
story drifts for these stories in comparison to the experimental data. 

Statistical indicators including root mean square error (RMSE) and 
mean absolute error (MAE) are used to comprehensively quantify the 

performance of the proposed approach. A method performs very well 
when the RMSE and MAE values are very small and close to 0. Table 3 
presents the detailed performance comparison between the proposed 
method and fiber-based modeling approach in terms of RMSE and MAE 
metrics, where they are computed based on all nine floors’ peak drift 
ratio results. As seen in Table 3, the proposed approach achieves the best 
performance for all four runs in the case of frame SS1, since the RMSE 
and MAE values for the proposed approach are much lower than those 
for the fiber-based method. Notably, for Run 1 in frame SS1, in com
parison to the fiber-based method, the proposed approach significantly 
improves the predictive performance by reducing RMSE and MAE values 
by almost 58% and 66%, respectively. For frame SS2 subjected to the 
first three earthquakes (i.e., Runs 1–3), the proposed approach performs 
much better than the fiber-based modeling method by significantly 

Fig. 9. Time vs. roof displacement results of frame SS2 for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed AI-enhanced shear 
building model (i.e., AI model), with the experimental data serving as the ground truth. 
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enhancing the predictive accuracy, where the proposed approach 
roughly results in 60% and 62% reductions for RMSE and MAE values, 
respectively in comparison with fiber-based modeling method in the 
case of Run 1. However, for frame SS2 subjected to the last three 
earthquakes (i.e., Runs 4–6), the performance improvement is not sig
nificant. This is because under extreme seismic intensities, the behavior 
of frame SS2 becomes more irregular, and higher modes other than the 
first are seen to have a greater effect on displacement response, as dis
cussed in Schultz [39]. Both the fiber model and the proposed method 
consider the first two modes more heavily than others, finally leading to 
significant errors. Additionally, the sample size of the training set may 
not be sufficient to train an AI model that can precisely capture the high 
nonlinearity of frame SS2 under large earthquakes. Nevertheless, in 
most cases, the proposed approach still achieves better agreement with 
the experimental data than the traditional fiber model, as validated in 

Table 3. 
Additionally, the computational time for all ground motions using 

the proposed approach only requires 133 (frame SS1) and 289 (frame 
SS2) seconds. This time is substantially diminished when compared to 
the fiber models which took 972 (frame SS1) and 1,942 (frame SS2) 
seconds. Thus, the proposed approach significantly enhances computa
tional efficiency while still maintaining good prediction performance. 
Further, the fiber model is implemented using OpenSees, which is 
developed using compiled language (i.e., C++), while the proposed 
approach is implemented using Matlab, which is an interpreted lan
guage. Thus, OpenSees is inherently faster than Matlab. However, the 
proposed approach is still much more efficient than the fiber model. In 
the future, a compiled language (e.g., C++) will be used to implement 
the proposed approach, and it is expected to have a faster computational 
procedure. Based on these comparisons, the proposed approach 

Fig. 10. Distribution of peak story drift ratio along the floors for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed AI-enhanced 
shear building model (i.e., AI model), with the experimental data serving as the ground truth. 

Table 3 
Performance comparison between the proposed method and fiber-based modeling approach for peak story drift prediction of RC frames SS1 subjected to four 
earthquakes and SS2 under six earthquakes. Bold values represent the best performance.  

Model Performance Frame SS1 Frame SS2   

Run1 Run2 Run3 Run4 Run1 Run2 Run3 Run4 Run5 Run6 

Proposed Method RMSE (%)  0.22  0.26  0.30  0.87  0.21  0.43  0.28  1.09  3.16  6.32  
MAE (%)  0.16  0.24  0.27  0.74  0.18  0.42  0.24  0.76  2.13  4.60 

Fiber-based Method RMSE (%)  0.52  0.41  0.77  1.65  0.53  0.78  0.57  1.10  3.05  6.51  
MAE (%)  0.46  0.39  0.73  1.42  0.47  0.75  0.53  0.99  2.46  5.03  
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presented in this paper performs significantly better than the traditional 
fiber-based modeling method for all seismic response quantities and 
agrees better with the experimental data. 

5.3. Discussion of results 

The results obtained for both displacement-controlled quasi-static 
cyclic loading and shake table tests suggest that the proposed AI- 
enhanced shear building model outperforms the classical fiber-based 
modeling approach in predicting the seismic response history of RC 
frames in terms of both prediction capability and computational effi
ciency. For the displacement-controlled quasi-static cyclic loading test, 
the results validate that the proposed approach can reasonably and 
efficiently predict the hysteretic behaviors of all stories of the RC frame 
subjected to cyclic loading reversals, including pinching behavior, 
stiffness and strength deterioration. This is because physical experi
mental data of RC columns is used in developing the hysteretic modeler 
for each column in the target RC frame. Therefore, it is expected that the 
hysteretic modeler can accurately and reasonably estimate the lateral 
stiffness of each column in the target RC frame, which is then utilized to 
formulate the structural stiffness matrix for seismic response calculation 
of the target RC frame under cyclic loading reversals. 

For the shake table tests, the results demonstrate that the proposed 
approach can reasonably and efficiently predict the seismic response 
history and estimate the peak story drift of RC frames under moderate 
and large earthquakes. The results predicted by the proposed approach 
for frame SS1 have a closer agreement with the experimental data than 
those for frame SS2. This is because the columns in frame SS2 have a 
higher longitudinal reinforcement ratio than those in frame SS1, which 
means that the columns in frame SS2 are stiffer than those in frame SS1. 
In this way, frame SS1 is more suitable for the proposed method than 
frame SS2 as the ratio of column stiffness to beam stiffness for frame SS2 
is higher than that for frame SS1. Additionally, the comparison of the 
above results also verified that the proposed approach achieves a good 
compromise between predictive performance and computational effi
ciency. This characteristic demonstrates that the proposed approach is a 
promising computational tool for accurate and efficient seismic response 
prediction and for other near-real-time scenarios. 

5.4. Discussion of limitations 

Although the proposed AI-enhanced computational method has 
shown good performance for nonlinear seismic response prediction of 
RC frames, it does have some limitations. First, the proposed model 
cannot accurately predict the nonlinear seismic response of frame 
buildings that have smoother hysteresis curves (e.g., steel frames). This 
is because the hysteretic model utilized in the proposed method is 
polygonal where every branch of the hysteretic curve follows a linear 
relationship. Second, the proposed approach is not appropriate for frame 
buildings that have a high ratio of column stiffness to beam stiffness. 
This is because when the ratio of column stiffness to beam stiffness is 
high, the beam cannot be regarded as rigid in flexure, leading to floor 
rotation. This is incompatible with the assumption made in the proposed 
method that only translational displacement is considered at the floor 
level. Finally, because the proposed AI-enhanced model contains an AI 
technique, some properties that AI methods have are also applicable to 
the proposed method. Like all AI methods, the proposed approach can 
accurately predict the hysteretic parameters of RC columns within the 
input ranges of the training set (the 272 rectangular RC column speci
mens). Outside of these ranges, it cannot necessarily reliably be used for 
hysteretic parameter prediction of RC columns. 

6. Conclusions 

A novel AI-enhanced computational method is proposed to predict 
nonlinear seismic response of RC frames under displacement-controlled 

quasi-static cyclic loading and dynamic earthquake ground motions. The 
proposed approach incorporates an AI technique with the shear building 
model, which leverages the advantages of both the AI technique and the 
shear building model to achieve accurate and efficient predictions. To 
validate the performance of the proposed approach and demonstrate the 
novel contributions of the method, two illustrative examples, one for 
quasi-static cyclic loading and another for dynamic earthquake ground 
motions, are presented based on a database of 272 rectangular RC col
umn specimens. The numerical results of the first example validate that 
the proposed approach can accurately and efficiently predict the 
nonlinear seismic behavior including yield force, peak force, drift ca
pacity, and hysteretic energy dissipation for each story of RC frame 
under quasi-static cyclic loading. For the second example, the numerical 
results demonstrate that the proposed approach is able to accurately and 
efficiently predict the nonlinear seismic response of RC frames under 
moderate and large earthquakes and reasonably capture their peak story 
drift. Further, for both examples, the proposed approach outperforms 
the classical fiber-based modeling method in both predictive capability 
and computational efficiency, yielding the great potential for near-real- 
time needs. 
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