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ARTICLE INFO ABSTRACT

Keywords: Existing physics-based modeling approaches do not have a good compromise between performance and
Artificial intelligence-enhanced shear building computational efficiency in predicting the seismic response of reinforced concrete (RC) frames, where high-
model

fidelity models (e.g., fiber-based modeling method) have reasonable predictive performance but are computa-
tionally demanding, while more simplified models (e.g., shear building model) are the opposite. This paper
proposes a novel artificial intelligence (AI)-enhanced computational method for seismic response prediction of
RC frames which can remedy these problems. The proposed Al-enhanced method incorporates an Al technique
with a shear building model, where the Al technique can directly utilize the real-world experimental data of RC
columns to determine the lateral stiffness of each column in the target RC frame while the structural stiffness
matrix is efficiently formulated via the shear building model. Therefore, this scheme can enhance prediction
accuracy due to the use of real-world data while maintaining high computational efficiency due to the incor-
poration of the shear building model. Two data-driven seismic response solvers are developed to implement the
proposed approach based on a database including 272 RC column specimens. Numerical results demonstrate that
compared to the experimental data, the proposed method outperforms the fiber-based modeling approach in
both prediction capability and computational efficiency and is a promising tool for accurate and efficient seismic
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Data-driven modeling

Fiber model

Reinforced concrete frames

Nonlinear seismic response prediction

response prediction of structural systems.

1. Introduction

As a common structural system, reinforced concrete (RC) frame
buildings (composed of various RC structural components including
beams and columns) are widely distributed throughout the world. In
high seismic regions, RC frames undergoing seismic loads may behave
nonlinearly. It is necessary to accurately predict the nonlinear response
of RC frames under future earthquakes, as the seismic demand and ca-
pacity of the RC frames can be quantified from the predicted nonlinear
seismic response [15,29]. The predicted seismic demand and capacity of
the RC frames can help people take necessary precautions (e.g.,
strengthening and retrofitting) to reduce their collapse risk prior to an
earthquake [32]. One of the most common ways to predict the nonlinear
seismic response of an RC frame is to perform nonlinear time-history
analyses using existing physics-based approaches (e.g., finite element
method) [5,7,33]. The prediction accuracy of the nonlinear seismic
response of RC frame buildings is closely related to the structural

stiffness, as the structural stiffness directly relates the external forces to
the deformations of the building [44]. Structural stiffness is a matrix
form in the case of structural systems that have multi-degrees of freedom
(MDOF) for dynamic analysis. However, existing physics-based
modeling approaches do not generally have a good compromise be-
tween predictive performance and computational efficiency. High-
fidelity models (e.g., fiber-based modeling approaches) utilize the
constitutive models at the material level to compute the structural
stiffness matrix and thus have reasonable predictive performance but are
computationally demanding. Conversely, more simplified models (e.g.,
shear building model) may be computationally efficient, but employ
simple empirical constitutive relations at the structural member level to
calculate the stiffness matrix and therefore do not have performance as
good as high-fidelity models [44].

Typically, the formulation of the structural stiffness matrix for high-
fidelity models (e.g., fiber-based modeling approaches) involves in-
tegrations from section stiffness to element stiffness and finally through
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to structure stiffness based on material constitutive models. But, for
simplified models (e.g., shear building model), the formulation of the
structural stiffness matrix can be direct assembled from member to
member based on empirical constitutive models at the member level.
Furthermore, when involving nonlinear analysis, both high-fidelity and
simplified models need to update the stiffness matrix at each load step,
leading to much higher computational cost for high-fidelity models than
simplified models. However, compared to high-fidelity models, empir-
ical constitutive models utilized by simplified approaches at the member
level may not be able to fully capture the experimentally observed
behavior. This means that the analytical results predicted by simplified
models have much more evident discrepancies with the experimentally
observed behavior than those predicted by high-fidelity models.
Therefore, a novel computational methodology for efficient and accu-
rate seismic response prediction of RC frames is needed.

Recently, with more and more data available, data science has
become a newly burgeoning field and has been successfully applied in
many engineering and science disciplines including civil engineering
[1,37] [49]. In data science, physical behavior can be derived directly
from real-world big data, the rigorous physical theoretical inference is
no longer required, and relations inferred from empirical models will be
less informative than those directly reflected in the data [34]. In data
science approaches, knowledge is extracted from the data (also called
the training dataset) by using advanced artificial intelligence (AI)
techniques or statistical learning approaches (e.g., non-parametric ma-
chine learning methods) without any human assumptions or inference.
This knowledge is typically expressed in a specific mathematic form
which is then employed to directly relate the input predictors to the
output responses with high generalization performance and computa-
tional efficiency. These types of approaches have been employed more
often in recent years in structural earthquake engineering applications
to achieve good predictive performance and high computational effi-
ciency [6,21,22,28,27,36,47,49,10,11][17]. However, these studies
only focus on predicting the strength and deformation capacity of
various structural components.

Additionally, although many studies have successfully adopted Al
techniques (e.g., neural network-based methods) to accurately and
efficiently predict the seismic performance of structural systems, they
use the ground motions and corresponding seismic response data
(simulated or measured) to develop the corresponding nonlinear re-
lations [19] , [48,53]. On one hand, simulated data is less meaningful
and informative than experimentally measured data, and measured data
is very limited. On the other hand, seismic response data does not relate
the structural features to the structural response, leading to limited
predictive capability for new structures with changes in structural fea-
tures. To solve these problems, we propose a novel Al-enhanced method,
which links structural features to experimental data by formulating the
stiffness matrix directly from real-world experimental data of structural
components in the RC frames, to predict the nonlinear seismic response
of RC frames. The proposed method is more accurate and efficient than
existing widely-used traditional fiber-based modeling approaches.

The rest of this paper is organized as follows. Section 2 serves as the
literature review to discuss existing Al-based methods in predicting
structural seismic response for illustrating the computational novelty of
the proposed method. Section 3 presents the methodology of a novel AlI-
enhanced method for seismic response prediction of RC frames. Section
4 describes the column dataset used in the proposed method. Section 5
presents a comparison and discussion of the numerical results for RC
frames under both quasi-static cyclic loading and dynamic earthquake
ground motions. The conclusions are made in Section 6.

2. Literature review
In the structural and earthquake engineering domain, many re-

searchers have focused on using artificial intelligence (AI) techniques (e.
g., machine learning (ML)) to identify structural damage and predict the
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strength and deformation capacity of various structural components,
such as RC beams, slabs, columns, walls, and beam-column joints. For
example, computer vision-based methods were used to automatically
recognize structural damage and evaluate structural performance based
on images of post-earthquake structures [18,12,13,35,20,55]; data-
driven methods were proposed to evaluate the post-earthquake struc-
tural safety state [14,52]; support vector machines for regression
(SVMR) [45]) and its extension version, least squares SVMR (LS-SVMR)
[43] were used to predict the shear strength of RC deep beams [6,36],
the punching shear capacity of fiber-reinforced polymer (FRP) RC slabs
[47], the backbone curve and drift capacity of RC columns [21,22], and
the dynamic response of structures [56], as well as to reduce the sample
bias of small datasets [23] and predict the strength in the context of
missing data [24]. In these studies, the training sets are collected from
real-world experimental data, and the results predicted from the Al-
based methods show much better agreement with experimental data
than those obtained by traditional physics-based approaches. However,
system-level seismic response prediction using the component-level
experimental data based on Al techniques has not yet been fully
explored. This is because a given structural system consists of various
components (e.g., beams, columns, and walls), and this complex nature
makes it difficult to establish a system-level training set. Moreover,
system-level physical experimental data is also limited due to the
expensive nature of such tests [57,58].

Several researchers have used alternative ways to achieve data-
driven prediction for structural systems under earthquakes. Specif-
ically, they use simulated or measured seismic response data to develop
a nonlinear functional mapping between ground motions and corre-
sponding seismic response [19]; Perez-Ramirez et al. 2019; [48,53]
(Zhang et al., 2020a,b). Zhang et al [53] proposed a deep learning (DL)-
based approach to predict the nonlinear seismic response of a structural
system. In this method, for a target structural system, a training set
where the predictors are ground motion-related information (e.g.,
ground acceleration, velocity, and displacement) and the response var-
iables are the structural response-related information (e.g., story accel-
eration, velocity, and displacement) is used to train a DL model. The DL
model can then be used to predict the structural response for the target
system subjected to a new ground motion. The structural response data
in the training set is either measured by sensors or simulated by
nonlinear time-history analyses for the target system under multiple
ground motion records. Similar schemes were also devised by Guarize
et al. [16] for seismic response prediction of marine structures, by
Lagaros and Papadrakakis [19] for seismic response prediction of
buildings, by Wu and Jahanshahi [48] for seismic response prediction of
a 3-story steel frame, and by Zhang et al. [54] and Yu et al. [51] for
physics-guided seismic response prediction. However, this type of Al-
based method is only valid for predicting the same structural system
where the training set including ground motion records and corre-
sponding structural response is used but may produce significant errors
when predicting for another structure where structural features change
significantly. This is because the training set does not relate any struc-
tural features (e.g., structural geometry, material properties, or rein-
forcement details) to the structural response, and the structural seismic
behavior varies significantly when certain structural features change.
Therefore, once some structural features change, the training set will no
longer be valid for the new structure.

From the review of existing Al-based methods for seismic response
prediction of structural systems, it can be concluded that the main
problem for existing Al-based methods is that they do not relate the
structural features to the experimental data, and thus the trained Al
models cannot capture the variation in response for a new structure.
Different from existing methods, this paper proposes a novel Al-
enhanced computational method to solve this problem. The proposed
method can relate the structural features to the experimental data for
accurate and efficient nonlinear seismic response prediction of RC
frames by coupling the Al technique with the mechanical model. The
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Deformation under loads

Fig. 1. Schematic representation of the proposed Al-enhanced shear building model.

mathematical formulation of the proposed approach is introduced in the
following section.

3. Methodology

This section presents the novel Al-enhanced computational method
to accurately and efficiently predict the hysteretic behavior and time-
history response quantities of target RC frames subjected to both
quasi-static cyclic loading and ground motions. The computational
novelty of the proposed approach is that it can link the structural fea-
tures with the experimental data by incorporating the Al technique with
the well-established mechanical model (i.e., shear building model). To
be specific, the Al technique can directly utilize the structural features
and experimental force-displacement data of RC columns to determine
the lateral stiffness of each column in the target RC frame while the
structural stiffness matrix is efficiently formulated from the determined
lateral stiffness of each column by means of the shear building model.
Therefore, this scheme can capture the variation in structural response
for a new RC frame with changes in structural features and enhance the
prediction accuracy due to the use of real-world data while maintaining
computational efficiency due to the incorporation of the shear building
model. Additionally, two new data-driven seismic response solvers, one
for quasi-static cyclic loading and one for dynamic ground motions, are
developed to implement the proposed approach based on a database
including 272 RC column specimens. More detailed information is
introduced in the following sub-sections.

3.1. Artificial Intelligence (AI)-enhanced shear building model

The structural components in an RC frame mainly include beams and
columns that are connected to form a frame system. When the frame is
subjected to external loads, these components will deform along their
DOFs (e.g., rotation and translation). It is very important to determine
the stiffness for each component in deformation along its DOF since it
will be used to form the structural stiffness matrix which in turn is used
to calculate the force or deformation response at the system level. When
the force is known (i.e., load-controlled analysis), the structural stiffness
matrix is used to calculate the deformation caused by the applied force.
When the displacement is known (i.e., displacement-controlled anal-
ysis), the structural stiffness matrix is instead used to calculate the force
induced by the applied displacement. The method employed to formu-
late the structural stiffness matrix is an important factor to determine the
computational efficiency and prediction performance. The detailed
formulation of the proposed approach is presented in the following sub-
sections. Briefly, Section 3.1.1 introduces the development of hysteretic

modelers to define the nonlinear behavior of RC columns in an RC frame.
Section 3.1.2 presents the formulation of an MDOF model for the RC
frame based on the column hysteresis modelers presented in Section
3.1.1. Section 3.1.3 discusses tje data-driven solvers developed to obtain
seismic response solutions for the MDOF model under quasi-static cyclic
loading and dynamic ground motions.

3.1.1. Development of hysteretic modelers for RC columns

In the formulation of the proposed method, the following assump-
tions are made to maintain consistency with the traditional shear
building model: 1) axial deformations are ignored in all structural
components; 2) masses for each story are idealized as lumped at the floor
level; 3) all beams are rigid axially and in flexure such that only trans-
lational (horizontal) displacement is considered at each floor level. For
the traditional shear building method, accurate definitions of the hys-
teretic constitutive relation (i.e., lateral force-deformation relation) for
each story determine the predictive performance. However, there is still
no unified and effective method to accurately define these constitutive
relations based on the column features (e.g., column’s design informa-
tion). This poses a great shortcoming in the shear building model and
prohibits full use of such a computationally efficient method. To solve
this problem, we utilize real-world existing force-deformation data of RC
columns subjected to cyclic loading and an Al technique to define the
hysteretic constitutive relation (i.e., nonlinear behavior) of each column
in each story. The hysteresis constitutive relation at the story level can
then be defined via the hysteretic constitutive relations of all columns in
the story as equivalent parallel springs. A schematic representation of
the proposed Al-enhanced shear building model is presented in Fig. 1. As
seen in Fig. 1, all columns in each story have the same story deformation
(i.e., floor displacement) (e.g., the first story deformation §; equals the
deformation of each column in the first story) while the story shear (i.e.,
lateral force) can be obtained by summation of the lateral shear force for
each column at the story deformation. This case is equivalent to the
parallel springs since each column in each story can be regarded as a
nonlinear spring. We denote the hysteretic constitutive relation of each
column in each story by the hysteretic modeler [f;, k] = f(5;y), where
y € R™ is the optimal critical parameter vector containing n, critical
parameters that define a hysteretic model, and f(+) represents the hys-
teretic model. This modeler is employed to produce the force f; and
lateral stiffness k for columns in an RC frame at a deformation & for each
load step or time instant. The development of such a hysteretic modeler
is based on an Al technique, a hysteretic model, and a training set [25].

Specifically, given the collected physical experimental data (i.e.,
structural features and force-deformation data) of n column specimens, a

training set {(x;,y;) }_, consisting of the necessary structural features
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(e.g., specimen geometry and material properties) denoted as x; € RP
that serve as predictors and an optimal critical parameter vectory; € R™
that serves as the response variables can be developed. More detailed
information regarding the development of the training set will be
introduced in Section 4. Given the training set, a well-trained model for
column performance prediction can be formed by learning the nonlinear
relations exhibited by this data using the Al technique. The well-trained
Al model is denoted as y = M(x;¥), where y is the predicted critical
parameter vector that defines a hysteretic model, ¥ € R™ is the optimal
AI model parameter vector containing n, parameters and M(-) repre-
sents the Al technique. Since the response variable is continuous, only Al
techniques related to regression can be used. Then, given an RC frame,
each column in each story needs to be expressed as a query point
denoted as x,., € RP that has the same structural features as x; € RP in
the training set. These query points for all columns in the RC frame are
input to the well-trained Al model to obtain the predicted critical
parameter vector y,., = M(xnew; ¥). The predicted critical parameter
vector y,,,, is then applied to the hysteretic model to form the hysteretic
modeler [f;,k] = f(8;¥qy)- Luo and Paal [25] developed a method to
form the component-level hysteretic modeler, and the performance of
this method has been successfully validated for nonlinear seismic
response prediction of circular RC columns subjected to quasi-static
cyclic loading and dynamic earthquake ground motions. In this paper,
the method presented in Luo and Paal [25] is utilized to develop the
component-level hysteretic modelers for all RC columns in an RC frame.
It should be noted that the difference between the work presented in this
paper and the one in Luo and Paal [25] is significant. First, the work in
Luo and Paal [25] mainly introduces the integration of an Al technique
and hysteretic model for nonlinear seismic response prediction of
structural components, while the study in this paper presents the inte-
gration of an AI technique, hysteretic model, and system-level me-
chanical model (i.e., shear building model) for nonlinear seismic
response prediction of structural systems. Therefore, the method and
corresponding data-driven solver in Luo and Paal [25] are only appli-
cable for the single-degree-of-freedom (SDOF) case and cannot be used
for the MDOF case. Second, the database for the two approaches is
different. The database utilized to develop the component-level hyster-
etic modeler for Luo and Paal [25] includes 154 circular sectional col-
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the columns in the i-th story have the same lateral translational DOF.
Thus, the total mass for the i-th story is Z]l:imu (note: beam and slab

masses have been considered in the column’s self-weight), and the mass
matrix for this structure is diagonal in the lateral DOF direction, which is
written as follows:

I+1
ot 0 0

M= 0 0 (€)]
0 0 I+1 oy

j=1

The mass matrix will remain constant throughout the response his-
tory. As shown in Fig. 1, the hysteretic parameters (e.g., lateral stiffness
or lateral force) for each column in each story is obtained by the hys-
teretic modeler developed in this work and presented in Section 3.1.1,

which is denoted as {f&ij, kij} =f (56?17) where f;; and k; are the lateral
force and lateral stiffness of column j located at story i and obtained by
the modeler f (5i;§ij) given the i"-story relative displacement (or story

drift) &;, respectively (note: lateral force is a general term that represents
the force f;; induced by a lateral deformation &; applied to a structure
system, and it could be peak force or yield force, depending on the
magnitude of the lateral deformation §;). The calculation of §; is §; =
u; —u;_1,i>2,and wheni =1, §; = u;, which means that the relative
story displacement §; is equal to the lateral displacement u; at the first
floor, where u; is the lateral displacement relative to the ground at floor
i. Note that the hysteretic parameters for each column in each story
could be the same or they could vary from one another, depending on
the obtained optimal critical parameter vector y;. Since the columns in
each story can be considered equivalent to springs in parallel, each story
stiffness can be obtained by summation of the obtained lateral stiffness
for each column in the story (e.g., the ith-story stiffness is E}i}kg). Due to
the assumptions made in Section 3.1.1, the structural stiffness matrix
can be formulated and is a symmetric tridiagonal matrix, which is
written as follows:

Z,l: (ki + ko) _Z,l:sz 0 0
DINIED DTS RS i
K= 0 - j]:ksj Z,l: (ksj + kay) 0 @
>k
, o Y

umn specimens, while this study includes 272 rectangular sectional
column specimens.

3.1.2. Formulation of an MDOF model

Assume a planar RC frame structure that has n-stories, with each
story having [-bays, as shown in Fig. 1 in the case of n = 3 and I = 2.
Based on the aforementioned assumptions, each column in the i-th story
has a self-weight, denoted as my, wherei = 1,---,n, represents the story,
andj=1,---,1+1 represents the column along the bay direction, and all

The structural stiffness matrix K will be updated when the column
lateral stiffness k; changes due to nonlinear behavior throughout the
response history. For the damping component, Rayleigh damping is
used, which is a combination of mass-proportional and stiffness-
proportional damping. The Rayleigh damping matrix is written as fol-

lows:
C =aM +a, K 3

The coefficients ay and a; can be determined from specified damping
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fs,3 (53 ) = Zj;]f;'ﬁj (52)

— _—
3-story shear
2-story shear
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Ji23 (6,) f2(8,)= ijlfx,zf' (6,)

Static equilibrium: £, (8,)+ /., (u,) = f.,(5,)

Fig. 2. Determination of the resisting force from story shear by static equilibrium.

ratios ¢; and ¢ for the iy, % and Jm h modes, respectively. The detailed
information regarding the calculation of ap and a; can be found in
Chopra [5]. Given the mass, stiffness, and damping components, an
MDOF model for an RC frame structure subjected to ground motions can
be formulated.

Mii + Cit +f(u) = — M1ii, (t) 4

where u = (uy,ug, -, un)T is a displacement vector along the structure’s
height, and each element represents the lateral floor displacement
relative to the ground; fs(u) is a lateral resisting force vector along the
structure’s height determined by the structural stiffness matrix K and
corresponding displacement vector u, or directly assembled by the story
shear force Z]li%fsu’ i=1,--,n1=(1,-,1) € R"is an influence vector
that represents the fact that the proposed MDOF model has all dynamic
DOFs in the direction of the ground motion [5]; and, tig(t) is the ground
motion.

Note that Eq. (4) can be applied to both linear and nonlinear systems.
This is because when solving Eq. (4), the structural stiffness matrix K is
not constant and will be updated to determine the resisting force vector
fs(u) from the column lateral stiffness corresponding to the deformation
and state of each column. The data-driven solvers developed to obtain
the hysteretic behavior and time-history response quantities will be
introduced in the following sub-section.

3.1.3. Development of data-driven solvers for seismic response prediction
For the linear analysis, the initial structure stiffness matrix is used
throughout the entire time history. Therefore, the f¢(u) term in Eq. (4)
can be changed to Ku where K represents the initial structure stiffness
matrix and will remain constant. For the nonlinear analysis, the struc-
tural stiffness matrix K is not constant and will be updated to determine
fs(u) from the column lateral stiffness corresponding to the deformation
and state of each column in each story. Specifically, given the relative
story displacement §; and state (e.g., loading or unloading) of each
column in each story, the column hysteretic modelers can adaptively

produce the lateral force and lateral stiffness [fs_ij,kij] =f <5i;§ij) and

record the current state. The recorded current state determines if the
deformation is in the loading branch, unloading branch, or at the
reversal point where a transition happens between loading and
unloading and thus can inform the hysteretic modelers to determine the
lateral force and lateral stiffness for the next load step or time instant.
The produced lateral force f;; and lateral stiffness k; for each column
can be respectively assembled to a resisting force vector fg(u) and
structural stiffness matrix K for further calculation. Eq. (2) can be used
to assemble a structural stiffness matrix K from the column lateral
stiffness k; produced by the column hysteretic modelers. Since the force-
displacement relation is nonlinear, the direct calculation of the resisting
force vector by fg(u) = Ku is no longer valid. The static equilibrium

constraint is used to directly assemble the resisting force vector fg(u)
from the column shear force f;;(;) obtained by the column hysteretic
modelers, i = 1,---,n;j =1, .-, 1+ 1, . Fig. 2 displays an example to
illustrate how the resisting force f; »(uz) at the 2nd floor is formed using
the static equilibrium constraint.

Specifically, given the shear force f; ;(6;) for each column at story i,
1 fsi(8). The
resisting force vector fs(u) consists of the resisting force f;;(u;) at each

floor, which is denoted as fq(u) = (fs,l(ul), fia(uz)--, fm(un)>T. The

resisting force f; ;(u;) at floor i is made up of two components: f; ;(5;) from
the story of floor i below, and f;;;1(5i+1) from the story of floor i above,
as shown in Fig. 2. To maintain static equilibrium, the following equa-
tion can be established:

Soirt Bis1) Hfii(w) = fi(6:),1 <i<n—1 5)

When i = n, the resisting force f; ,(u,) equals f;,(6,). This is because
there is no story above floor n. So, the resisting force vector f¢(u) can be
re-written as follows:

the i"-story shear force can be calculated as fsi(8) =

Fs@) = (£.0(80) = £i2(82), = font (But) = Frn(82):fon(82)) 6)

Thus, Eq. (6) can be used to assemble a resisting force vector fs(u)
from each column shear force in each story, which will be updated for
each time instant. For the displacement-controlled quasi-static cyclic
loading, the floor displacement information u is known, and the quantity
of interest is regarding the hysteretic relationship between base shear
and roof displacement or story shear and story drift (i.e., relative story
displacement). The prediction of these quantities using the proposed Al-
enhanced shear building model is straightforward. Given an RC column
training set {(x;,y;) }i_;, the following procedure, serving as a data-
driven solver, is developed to implement the proposed approach for
predicting the hysteretic response of an RC frame subjected to quasi-
static cyclic loading.

Algorithm 1: Implementation of proposed Al-enhanced MDOF model under quasi-
static cyclic loading

1. Development of hysteretic modelers:
Given an RC column training set { (x;,y;) }
bays
(a) translate the columns in each story in the target RC frame into predictors, denoted
. nx(l+1)
as query points { (Xnew.j) }Uil ;
(b) train an Al model M(x;¥) based on the RC column training set { (x;,y;) }1;;
(c) predict the response for each column in the target RC frame, denoted as y; =

M (Xnew i P);

n

., and a target RC frame with n stories and [

(d) form a hysteretic modeler for each column, denoted as [fsx)klj} :f(()‘i;iij) ,i=1,

Lamj=10,0+1;
2. Predict hysteretic response using proposed Al-enhanced MDOF model:

(continued on next page)
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(continued)
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(continued)

Algorithm 1: Implementation of proposed Al-enhanced MDOF model under quasi-
static cyclic loading

Algorithm 2: Implementation of proposed Al-enhanced MDOF model under dynamic
ground motions

Given the displacement history U = (u!, ---, uD)T, hysteretic modeler [fsy, kij] =

f(éi;i,-j), i=1,.,mj=1,.,l+1
ford=1toD do
fori=1tondo
(a) when i = 1, calculate the relative story displacement or story drift 5‘1’ =u
(b) when i # 1, calculate the relative story displacement or story drift 5 =
wl_yd
i Ui
forj=1tol+ 1do
(a) calculate the shear and lateral stiffness [fsu (88, ky (o) } =f (5? ;},-j) for

each column;

end for j

(a) calculate and record the story shear f;;(5!) = }i} i (69);

(b) calculate and record the story stiffness k; (ﬁf) = Z}:iku (5;1),
end for i

n

(a) assemble the structure stiffness matrix K¢ according to {(k; (ﬁf )) }ica

(2);
(b) assemble the resisting force vector f (u?) according to { (fs.i (5?) ) }:ﬁ] using Eq.
(6)
(c) output {(f;l (5{-1) ) }::1,f5 (u4), and K4,
End for d

using Eq.

By implementing Algorithm 1 presented above, one can obtain the

hysteretic response of both roof displacement ({ (ud) }Id):l) versus base
shear ({ (fm (89 ) }Z:l) and story drift ({(5%) }3:1) versus story shear
({ (fs_i(é‘ii) ) }Z—l) for a target RC frame structure. Further, Algorithm 1

. . D i
can also output the structural stiffness matrix {(Kd) } 41 and resisting
force vector {(fs(ud)) }3:1 given the entire displacement history U =

(u, -~-,uD)T, which are important components for the nonlinear time-
history analysis. Thus, Algorithm 1 will be used in Algorithm 2 below
to calculate the structural stiffness matrix K and resisting force vector
fs(u) given the displacement information u, which is denoted as [f;(u),
K| = Algorithm1(u). The nonlinear dynamic analysis involves solving
the equations of motion presented in Eq. (4), which requires a numerical
method to solve the nonlinear system. In this paper, a hybrid algorithm
coupling the Newmark average acceleration (NAA) method, modified
Newton-Raphson (MNR) iteration, and Algorithm 1 is developed to
solve Eq. (4). The detailed procedure is presented below.

Algorithm 2: Implementation of proposed Al-enhanced MDOF model under dynamic
ground motions

1. Initialization:

Given the ground motion { (ﬁg(tt)) }
=1,..,mj=1,.,l+1;

(a) calculate the nodal mass m;; in each story for the target RC frame;

(b) calculate the initial lateral stiffness for each column from the hysteretic modeler:
[f;uku} :f(éf;fij);

(c) calculate the mass, initial stiffness, and damping matrix M, K°, and C using Egs.
(1-3), respectively;

(d) select an appropriate time interval At and calculate the earthquake forces: p* =
Mg (1);

(e) calculate the Newmark coefficients: A = 4M /At + 2C; B = 2M;

2. Solving Eq. (4) by the hybrid algorithm:

Given the initial condition of the target RC frame, i.e., p°, u°, and @°, f (u°), and
known information from step 1;

(a) calculate the #® = M! (po —Cit® —f5(u®) );

fort=1to T do
@ Ap" ! =pt—ptt + At + Bit
R = KL 420/t + 4M/(AY?
(c) calculate the Aut"1, K', f,(u') using modified Newton-Raphson and algorithm 1

! , hysteretic modeler [fsukq] = f(&i;ii]-),i

t=1

(continued on next column)

t

~t-1 pt-1 . . .
Given f, (ut 1), ut1; Ap* 1 K, k™!, the maximum number of iteration N, and

tolerance tol
() initial assignment: f, (u}) = f,(ut™"), ul = ut™', ARy = Ap* ", K = e
K=K"1;
for j, ’: 1toNdo
(a) Ay, = k! AR;,;
(b) u;n = u;rl + Auj,;
(c) calculate the K} and f; (u}n) using the algorithm 1: [fs (uj) K } =
Algorithm1 (uj?n );

@ af;, = f(u) ~f(u 1) + (R —K)auy;
(e) ARj,.1 = AR;, —Afj";
(f) calculate the displacement convergence criterion: Au = Z’,::zlAui", eps =
l|Awj, || /1] Aue]|
() Aut' = Au, K = K, and £, () =f,(u );
if eps < tol do
(a) break the loop;
end if
end for j,
(d) Aa"! =280 AL —2a"
(&) Ai' = 4Aut1/(A0)? —4at /At —2it Y
Ou =u' + A @t =0t + AetY and @t =@ttt + ARt
end for t

By implementing Algorithm 2, the time-history response quantities of
interest, such as time versus roof displacement and the distribution of
peak story drift ratio along the floors can be obtained. It should be noted
that the displacement convergence criterion in Algorithm 2 for the
proposed Al-enhanced shear building model is satisfactory since the
numerical values in the displacement vector have the same units (i.e.,
lateral displacement) and do not suffer the complications associated
with different units that bring in significant errors [5]. For algorithms 1
and 2, the locally weighted least-squares support vector machines for
regression (LWLS-SVMR) [22] is selected as the Al technique. LWLS-
SVMR is a local machine learning (ML) model which was recently
developed for the generalized prediction of the drift capacity of RC
columns [22]. LWLS-SVMR integrates LS-SVMR [43] with a locally
weighted learning algorithm to locally adjust the capacity of LS-SVMR to
the properties of the training set in each area of the input space, thus
enhancing the generalization performance of the LS-SVMR. One main
advantage of LWLS-SVMR is that it only requires the fitting of a subset of
training data nearby (relevant to) the query point while existing global
ML methods require fitting the entire set of training data. In this sense,
the LWLS-SVMR can avoid the potential negative influence of irrelevant
points, achieving a suitable trade-off between the capacity of the
learning system and the number of training data points.

4. Rectangular column database

For this study, a database of rectangular RC column experimental
tests is used to evaluate the performance of the novel Al-enhanced shear
building model in predicting the seismic response of RC frames under
both displacement-controlled quasi-static cyclic loading and dynamic
ground motions. The database is taken from the authors’ previous work
[21]. The original number of column specimens in the dataset is 262,
which is primarily based on the database compiled by Berry et al. [2].
However, there are ten columns for which the force-displacement data
are not available. These ten columns are from Verderame et al. [46] and
Eom et al. [9] and thus, are not included in this work. Additionally, as
the shake table tests for large-scale RC frames with several stories and
bays (e.g., RC frame with more than 6 stories and 2 bays) are not
available, the shake table tests for small-scale RC frames will be used.
Since small-scale RC frames have column features outside the range of
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the dataset, the dataset is supplemented with 20 small-scale RC column
specimens to reduce potential sample bias. These column specimens are
taken from Cecen [4]. Thus, the final number of column specimens in the

dataset is 272.

272 .
i1, the predictor

variables x; and response variables y; are required to be extracted from
the collected column data. For each column specimen in the database,
the predictor variables x; are extracted from the structural features (i.e.,
design information) including the gross column cross-sectional area Ay,
concrete compressive strength f., longitudinal reinforcement yield stress
fy, longitudinal reinforcement area Ay, column effective depth d, con-
crete cover c, transverse reinforcement yield stress fy;, transverse rein-
forcement area Ay, stirrup spacing s, shear span a, and applied axial load
P. The response variables y; are extracted from experimentally recorded
force-deformation data including the monotonic backbone curve and
hysteretic parameters via the hysteretic model and optimization algo-
rithm. In this paper, the modified three-parameter hysteretic model and
the hybrid optimization algorithm proposed in Luo and Paal [25] are
utilized to extract the three hysteretic parameters (i.e., stiffness deteri-
oration parameter «, strength deterioration parameter $, and pinching
parameter y) from each column’s force-deformation data. Since the
monotonic backbone curve parameters cannot be directly extracted
from cyclic force-deformation data, they are approximated via cyclic
backbone curve parameters that are extracted using the methods pre-
sented in Sezen and Moehle [40] and Elwood and Moehle [8]. As the
forces and displacements in the positive and negative directions in the
experimental hysteretic curve are near-identical, the cyclic backbone
curve parameters in the positive and negative directions are designated
as equivalent in this work, as shown in Fig. 3.

Finally, nine optimal critical parameters, including six cyclic back-
bone curve parameters and three hysteretic parameters, for each of the
272 columns in the database are obtained according to the method
proposed in Luo and Paal [25]. Note that the cyclic backbone curve
parameters need to be transformed to the monotonic backbone curve
parameters when developing the hysteretic modeler. The transformation
from the cyclic backbone curve to the monotonic backbone curve can be
found in Luo and Paal [25]. The statistical properties of the optimal
cyclic backbone curve and three hysteretic parameters for the 272 col-
umn specimens are summarized in Table 1.

For the development of the training set { (x;,y;) }
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Table 1
Statistical properties of the optimal cyclic backbone curve and hysteretic
parameters.

Critical Parameters Minimum  Maximum  Median  Sample Std.
Mean Dev

Yield shear force, V, 1.60 1071.01 130.50 163.72 149.05
(kN)

Drift ratio at yield 0.20 1.73 0.79 0.85 0.37
shear, &, (%)

Maximum shear 1.84 1338.80 155.09 194.63 178.50
force, V,,, (kN)

Drift ratio at 0.31 7.94 1.69 1.99 1.33
maximum shear,
Om (%)

Ultimate shear 1.64 1217.01 126.89 163.03 155.51
force, V,, (kN)

Drift ratio at 0.72 9.39 3.15 3.60 1.88
ultimate shear, &,
(%)

Stiffness 0.30 119.42 9.37 21.09 21.98
deterioration
parameter,a

Strength 0.00 0.93 0.06 0.14 0.20
deterioration
parameter,/

Pinching 0.31 1.00 0.98 0.87 0.19

parameter,y

5. Numerical experiments and discussion of results

This section presents the numerical experiments carried out to vali-
date the proposed Al-enhanced method in accurate and efficient seismic
response prediction of RC frame structures under quasi-static cyclic
loading and dynamic earthquake ground motions. For the quasi-static
cyclic loading case, a large-scale (1:2) physical experimental model of
a 3-bay, 3-story RC frame structure is selected from Xie et al. [50] to
serve as the test specimen. For the dynamic earthquake ground motion
case, two small-scale (1:15) physical experimental models of 3-bay, 9-
story RC frame structures, one subjected to four earthquake (EQ) ground
motions and another subjected to six EQ ground motions are selected
from Schultz [39] to serve as the test specimens. For both cases, the
whole rectangular column dataset presented in Section 4 is used to train
the proposed method, and the proposed approach is compared with the
widely used fiber-based modeling method with experimental data
serving as the ground truth. All the numerical experiments are per-
formed using a Desktop PC with the Processor: Intel® Xeon® CPU E3-

Monotonic backbone curve is approximated by cyclic backbone curve

Monotonic backbone curve

Fig. 3. Schematic for approximating the monotonic backbone curve via the cyclic backbone curve.
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Fig. 4. Comparison of results between the traditional fiber-based modeling approach (i.e., fiber model) and the proposed Al-enhanced shear building model (i.e., Al
model), with the experimental data serving as the ground truth.



H. Luo and S.G. Paal

Table 2

Performance comparison between the proposed approach and fiber-based
method in terms of error rate (%) that is computed by \Qp —Qe\ x 100/Qe,
where Q, is the predicted quantity and Q. is the experimentally observed
quantity. Bold values represent the best performance.

Model Structure Yield Peak Drift Energy
Force Force Capacity Dissipation
Proposed Story 1 4.44 4.41 1.42 12.95
Approach
Story 2 8.56 2.28 3.34 3.03
Story 3 6.17 9.06 31.17 11.61
Integrated 1.82 4.41 0.36 1.67
frame
Fiber-based Story 1 10.56 7.29 68.10 18.44
approach
Story 2 23.17 9.71 1.59 16.48
Story 3 11.62 3.39 43.01 64.01
Integrated 14.11 7.29 15.55 4.37
frame

1270 v6 @ 3.80 GHz and the max memory size that is 64 GB. No parallel
computing is employed for any of the numerical experiments.

5.1. Displacement-controlled quasi-static cyclic loading test

This section presents a comparison between the proposed Al-
enhanced method and the widely used fiber model to demonstrate the
real-world application and full potential of the proposed approach. A
large-scale (1:2) physical experiment of a 3-bay, 3-story RC frame sub-
jected to displacement-controlled quasi-static cyclic loading is selected
from Xie et al. [50] for this comparison. The lateral load distribution for
this experimental test is an inverse triangle, and the entire loading
process is controlled by the displacement of the top floor (i.e., roof
displacement) [50]. The detailed information regarding the structural
geometry, material properties, reinforcement details, and load pattern
can be found in Xie et al. [50]. For the widely used fiber model, a single
force-based fiber beam-column element [41,42] with five Gauss-Lobatto
integration points (i.e., monitoring sections) is employed to model each
of the columns and beams in the selected RC frame. In each monitoring
section, the cover concrete fiber is simulated using the modified Kent
and Park model [38], and the core concrete fiber is simulated by the
confined concrete model proposed by Mander et al. [26] to represent the
confinement effect of the stirrups. The reinforcement fiber is modeled by
the Menegotto-Pinto model [31]. All the values that need to input these
material constitutive models are selected based on the material prop-
erties from experimental information. OpenSees [30] is used to imple-
ment the RC frame numerical model established by the widely-used

EQ1

Acceleration (g)

0 3 6 9 12 15
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fiber-based method to obtain the nonlinear response of the RC frame.
Algorithm 1 presented in Section 3.1.3 is used to implement the pro-
posed approach using Matlab 2018a to obtain the hysteretic responses of
roof displacement versus base shear and story drift ratio versus story
shear. It should be noted that the story drift ratio depends on the floor
displacement, which depends on the roof displacement and mode shape.
This is because an MDOF system’s deformation shape depends on its
modes of vibration [5]. Typically, each mode is normalized so that its
largest element is unity (e.g., the top floor of a multistory building is
unity). Therefore, if the roof displacement and mode shape are known,
then all floor displacements can be obtained. As introduced above, the
roof displacement is pre-defined by the experimental test, and thus the
roof displacements for both proposed and fiber-based methods are the
same. However, the mode shapes obtained by the proposed and fiber-
based methods may vary due to the difference in stiffness. This will
lead to the difference in story drift ratios obtained by the two methods.

Fig. 4 presents a comparison of the results between the proposed
method (i.e., AI model (red dashed line)) and fiber-based modeling
approach (i.e., fiber model (blue dashed line)) where ground truth is
defined as the experimental test (solid black line). Fig. 4(a-b) demon-
strates that both methods reasonably capture the global nonlinear
response of the RC frame in terms of the hysteretic relation of roof
displacement versus base shear. The proposed approach effectively re-
flects the cyclic strength deteriorations and softening behavior observed
experimentally, while the fiber model fails to reasonably capture these
types of hysteretic behavior. Thus, although both methods reasonably
predict the overall hysteretic response, the proposed approach achieves
better prediction capability than the fiber model, where the hysteretic
curve predicted by the proposed approach has better agreement with the
experimental results than that simulated by the fiber model. The hys-
teretic response of story drift ratio versus story shear is extracted and
presented in Fig. 4(c-h). Both methods reasonably predict the lateral
capacity of the RC frame, where the lateral strengths (i.e., maximum
shear force) predicted by both methods are close to those observed
experimentally. However, the fiber model still does not reasonably
capture the softening behavior induced by cyclic strength deterioration,
while the proposed approach can effectively reflect these types of
behavior characteristics observed experimentally. In total, the proposed
approach can reasonably reflect the hysteretic behavior of the RC frame,
where the hysteretic curves for each story predicted by the proposed
approach have reasonable agreement with experimental results as
shown in Fig. 4(c,e,g). The story behaviors predicted by the fiber model
show some discrepancy with the experimental results, as shown in Fig. 4
(d,£,h).

Table 2 presents the detailed performance comparison between the
proposed approach and fiber-based method in terms of response

EQ3
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0
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0 0.5 1 1.5 2 25 3

Time (s)

Fig. 5. Four time versus ground acceleration records for frame SS1.
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Fig. 6. Six time versus ground acceleration records for frame SS2.

quantities including yield force, peak force, drift capacity, and energy
dissipation. The performance is quantified by error rate (%), which is
computed by |Q, —Q.| x 100/Q., where Q, is the predicted response
quantity and Q. is the experimentally observed response quantity. As
shown in Table 2, the proposed approach can more accurately predict all
response quantities when compared to the fiber-based method across all
stories. Furthermore, perhaps most importantly, predicting the hyster-
etic curve of the selected RC frame using the proposed method only takes
10 s, while using the traditional fiber model takes 1,672 s (or roughly 30
min). Therefore, the proposed approach significantly reduces the
computational cost. Based on these comparisons, the proposed approach
presented in this paper performs better than the traditional fiber-based
modeling method. Thus, it is deemed that the proposed approach could
be an appropriate and promising means for accurate and efficient
seismic response prediction of RC frames subjected to reversed cyclic
loading, especially for application in near-real-time scenarios.

5.2. Dynamic shake table tests

To validate the performance of the proposed approach in predicting
the seismic response of RC frames subjected to ground motions, two
small-scale (1:15), 3-bay, 9-story RC frame specimens are used as
illustrative examples. Structure SS1 is subjected to four consecutive
unidirectional ground motions (Fig. 5), and structure SS2 is subjected to
six consecutive unidirectional ground motions (Fig. 6). These shake
table tests were organized by Schultz [39], and the difference between
these two test specimens is that the columns in frame SS2 have a higher
longitudinal reinforcement ratio than those in frame SS1. Therefore, the
columns in frame SS2 are stiffer than those in frame SS1. Detailed in-
formation regarding the physical experimental set-up, structural
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features, ground motions, and shake table test results can be found in
Schultz [39].

For the traditional fiber-based modeling approach, the fiber beam-
column element is also used to model the seismic response of the two
small-scale RC frames. The element type, integration method, number of
integration points, material constitutive models described in Section
5.1 for the large-scale RC frame are also used here to establish the nu-
merical models of the two RC frames. For the proposed approach, Al-
gorithm 2 presented in Section 3.1.3 is used. For both approaches, a
damping ratio of 2% is assigned to the first two modes of both frames,
and the time step is set to the one recorded in the ground motions (i.e.,
0.005 s). Since these two RC frames are not repaired after each ground
motion [39], the four ground motions for frame SS1 and the six ground
motions for frame SS2 are grouped to be a sequential ground motion that
serves as the input ground motion. Note that frame SS1 collapsed under
EQ4, and thus, only the first 2.75 s of the experimental results are
recorded [39]. The time-history results regarding the time versus roof
displacement and the floor versus peak story drift ratio are presented in
Figs. 7-10.

Fig. 7 presents the comparison of the predicted time-roof displace-
ment results for frame SS1 between the fiber model and the proposed
method, with the experimental data serving as the ground truth. By
observation, the proposed method achieves better agreement with the
experimental data for all four EQs over the full-time histories. Further,
the proposed approach nearly captures the peak roof displacement for
all four EQs, while the fiber model underestimates those peak roof dis-
placements. Peak story drift ratio is an important engineering demand
parameter (EDP) that is typically used to quantify the seismic perfor-
mance of an RC structure [3,5,32]. Fig. 8 shows the results of floor
versus peak story drift ratio for frame SS1. It can be seen that the pro-
posed approach performs better than the fiber model, where the peak
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Fig. 7. Time vs. roof displacement results of frame SS1 for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed Al-enhanced shear
building model (i.e., Al model), with the experimental data serving as the ground truth.
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Fig. 8. Distribution of peak story drift ratio along the floors for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed Al-enhanced shear
building model (i.e., AI model), with the experimental data serving as the ground truth.

story drift ratios predicted by the proposed approach at each floor for all captures the peak roof displacements for all six EQs, while the fiber

four EQs have a closer agreement with the experimental results than model over-underestimates these values. Additionally, for the compar-
those predicted by the fiber model. A similar trend is observed by the ison of the predicted peak drift ratios at the second through ninth floors,
comparison of the results of the predicted time-roof displacement for the proposed method shows better agreement with the experimental
frame SS2, as shown in Fig. 9. The proposed approach also accurately data for all six ground motions than the fiber model (Fig. 10). However,
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Fig. 9. Time vs. roof displacement results of frame SS2 for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed Al-enhanced shear
building model (i.e., Al model), with the experimental data serving as the ground truth.

for the predicted peak drift ratios at the first floor, compared to the
proposed method, the fiber model achieves a closer agreement with the
experimental results for EQ3 through EQ5 and has comparable perfor-
mance for EQ1, EQ2, and EQ6. Further, both the fiber model and the
proposed approach show discrepancy with the experimental results for
the predicted peak drift ratios at the first and seventh through ninth
floors for EQ5 and EQ6, where the PGA for EQ5 is 1.06 g and for EQ6 is
1.30 g. Besides, both methods underestimate the story drift for all stories
except for the first story. This could be due to the fact that the numerical
models established by both methods have higher stiffness for all stories
except for the first story, leading to smaller displacement amplitudes and
story drifts for these stories in comparison to the experimental data.
Statistical indicators including root mean square error (RMSE) and
mean absolute error (MAE) are used to comprehensively quantify the
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performance of the proposed approach. A method performs very well
when the RMSE and MAE values are very small and close to 0. Table 3
presents the detailed performance comparison between the proposed
method and fiber-based modeling approach in terms of RMSE and MAE
metrics, where they are computed based on all nine floors’ peak drift
ratio results. As seen in Table 3, the proposed approach achieves the best
performance for all four runs in the case of frame SS1, since the RMSE
and MAE values for the proposed approach are much lower than those
for the fiber-based method. Notably, for Run 1 in frame SS1, in com-
parison to the fiber-based method, the proposed approach significantly
improves the predictive performance by reducing RMSE and MAE values
by almost 58% and 66%, respectively. For frame SS2 subjected to the
first three earthquakes (i.e., Runs 1-3), the proposed approach performs
much better than the fiber-based modeling method by significantly
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Fig. 10. Distribution of peak story drift ratio along the floors for the traditional fiber-based modeling approach (i.e., fiber model) and the proposed Al-enhanced
shear building model (i.e., Al model), with the experimental data serving as the ground truth.

Table 3

Performance comparison between the proposed method and fiber-based modeling approach for peak story drift prediction of RC frames SS1 subjected to four
earthquakes and SS2 under six earthquakes. Bold values represent the best performance.

Model Performance Frame SS1 Frame SS2
Runl Run2 Run3 Run4 Runl Run2 Run3 Run4 Run5 Run6
Proposed Method RMSE (%) 0.22 0.26 0.30 0.87 0.21 0.43 0.28 1.09 3.16 6.32
MAE (%) 0.16 0.24 0.27 0.74 0.18 0.42 0.24 0.76 2.13 4.60
Fiber-based Method RMSE (%) 0.52 0.41 0.77 1.65 0.53 0.78 0.57 1.10 3.05 6.51
MAE (%) 0.46 0.39 0.73 1.42 0.47 0.75 0.53 0.99 2.46 5.03
enhancing the predictive accuracy, where the proposed approach Table 3.

roughly results in 60% and 62% reductions for RMSE and MAE values,
respectively in comparison with fiber-based modeling method in the
case of Run 1. However, for frame SS2 subjected to the last three
earthquakes (i.e., Runs 4-6), the performance improvement is not sig-
nificant. This is because under extreme seismic intensities, the behavior
of frame SS2 becomes more irregular, and higher modes other than the
first are seen to have a greater effect on displacement response, as dis-
cussed in Schultz [39]. Both the fiber model and the proposed method
consider the first two modes more heavily than others, finally leading to
significant errors. Additionally, the sample size of the training set may
not be sufficient to train an AI model that can precisely capture the high
nonlinearity of frame SS2 under large earthquakes. Nevertheless, in
most cases, the proposed approach still achieves better agreement with
the experimental data than the traditional fiber model, as validated in

Additionally, the computational time for all ground motions using
the proposed approach only requires 133 (frame SS1) and 289 (frame
SS2) seconds. This time is substantially diminished when compared to
the fiber models which took 972 (frame SS1) and 1,942 (frame SS2)
seconds. Thus, the proposed approach significantly enhances computa-
tional efficiency while still maintaining good prediction performance.
Further, the fiber model is implemented using OpenSees, which is
developed using compiled language (i.e., C++), while the proposed
approach is implemented using Matlab, which is an interpreted lan-
guage. Thus, OpenSees is inherently faster than Matlab. However, the
proposed approach is still much more efficient than the fiber model. In
the future, a compiled language (e.g., C++) will be used to implement
the proposed approach, and it is expected to have a faster computational
procedure. Based on these comparisons, the proposed approach

13



H. Luo and S.G. Paal

presented in this paper performs significantly better than the traditional
fiber-based modeling method for all seismic response quantities and
agrees better with the experimental data.

5.3. Discussion of results

The results obtained for both displacement-controlled quasi-static
cyclic loading and shake table tests suggest that the proposed Al-
enhanced shear building model outperforms the classical fiber-based
modeling approach in predicting the seismic response history of RC
frames in terms of both prediction capability and computational effi-
ciency. For the displacement-controlled quasi-static cyclic loading test,
the results validate that the proposed approach can reasonably and
efficiently predict the hysteretic behaviors of all stories of the RC frame
subjected to cyclic loading reversals, including pinching behavior,
stiffness and strength deterioration. This is because physical experi-
mental data of RC columns is used in developing the hysteretic modeler
for each column in the target RC frame. Therefore, it is expected that the
hysteretic modeler can accurately and reasonably estimate the lateral
stiffness of each column in the target RC frame, which is then utilized to
formulate the structural stiffness matrix for seismic response calculation
of the target RC frame under cyclic loading reversals.

For the shake table tests, the results demonstrate that the proposed
approach can reasonably and efficiently predict the seismic response
history and estimate the peak story drift of RC frames under moderate
and large earthquakes. The results predicted by the proposed approach
for frame SS1 have a closer agreement with the experimental data than
those for frame SS2. This is because the columns in frame SS2 have a
higher longitudinal reinforcement ratio than those in frame SS1, which
means that the columns in frame SS2 are stiffer than those in frame SS1.
In this way, frame SS1 is more suitable for the proposed method than
frame SS2 as the ratio of column stiffness to beam stiffness for frame SS2
is higher than that for frame SS1. Additionally, the comparison of the
above results also verified that the proposed approach achieves a good
compromise between predictive performance and computational effi-
ciency. This characteristic demonstrates that the proposed approach is a
promising computational tool for accurate and efficient seismic response
prediction and for other near-real-time scenarios.

5.4. Discussion of limitations

Although the proposed Al-enhanced computational method has
shown good performance for nonlinear seismic response prediction of
RC frames, it does have some limitations. First, the proposed model
cannot accurately predict the nonlinear seismic response of frame
buildings that have smoother hysteresis curves (e.g., steel frames). This
is because the hysteretic model utilized in the proposed method is
polygonal where every branch of the hysteretic curve follows a linear
relationship. Second, the proposed approach is not appropriate for frame
buildings that have a high ratio of column stiffness to beam stiffness.
This is because when the ratio of column stiffness to beam stiffness is
high, the beam cannot be regarded as rigid in flexure, leading to floor
rotation. This is incompatible with the assumption made in the proposed
method that only translational displacement is considered at the floor
level. Finally, because the proposed Al-enhanced model contains an Al
technique, some properties that AI methods have are also applicable to
the proposed method. Like all Al methods, the proposed approach can
accurately predict the hysteretic parameters of RC columns within the
input ranges of the training set (the 272 rectangular RC column speci-
mens). Outside of these ranges, it cannot necessarily reliably be used for
hysteretic parameter prediction of RC columns.

6. Conclusions

A novel Al-enhanced computational method is proposed to predict
nonlinear seismic response of RC frames under displacement-controlled
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quasi-static cyclic loading and dynamic earthquake ground motions. The
proposed approach incorporates an Al technique with the shear building
model, which leverages the advantages of both the Al technique and the
shear building model to achieve accurate and efficient predictions. To
validate the performance of the proposed approach and demonstrate the
novel contributions of the method, two illustrative examples, one for
quasi-static cyclic loading and another for dynamic earthquake ground
motions, are presented based on a database of 272 rectangular RC col-
umn specimens. The numerical results of the first example validate that
the proposed approach can accurately and efficiently predict the
nonlinear seismic behavior including yield force, peak force, drift ca-
pacity, and hysteretic energy dissipation for each story of RC frame
under quasi-static cyclic loading. For the second example, the numerical
results demonstrate that the proposed approach is able to accurately and
efficiently predict the nonlinear seismic response of RC frames under
moderate and large earthquakes and reasonably capture their peak story
drift. Further, for both examples, the proposed approach outperforms
the classical fiber-based modeling method in both predictive capability
and computational efficiency, yielding the great potential for near-real-
time needs.
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