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Modern, high-density neuronal recordings reveal at ever higher precision how information is represented by neural populations.
Still, we lack the tools to understand these processes bottom-up, emerging from the biophysical properties of neurons, synapses,
and network structure. The concept of the dynamic gain function, a spectrally resolved approximation of a population’s coding capa-
bility, has the potential to link cell-level properties to network-level performance. However, the concept is not only useful but also
very complex because the dynamic gain’s shape is co-determined by axonal and somato-dendritic parameters and the population’s
operating regime. Previously, this complexity precluded an understanding of any individual parameter’s impact. Here, we decom-
posed the dynamic gain function into three components corresponding to separate signal transformations. This allowed attribution
of network-level encoding features to specific cell-level parameters. Applying the method to data from real neurons and biophysically
plausible models, we found: (1) The encoding bandwidth of real neurons, approximately 400 Hz, is constrained by the voltage depen-
dence of axonal currents during early action potential initiation. (2) State-of-the-art models only achieve encoding bandwidths
around 100 Hz and are limited mainly by subthreshold processes instead. (3) Large dendrites and low-threshold potassium currents
modulate the bandwidth by shaping the subthreshold stimulus-to-voltage transformation. Our decomposition provides physiological
interpretations when the dynamic gain curve changes, for instance during spectrinopathies and neurodegeneration. By pinpointing
shortcomings of current models, it also guides inference of neuron models best suited for large-scale network simulations.

\

The dynamic gain function quantifies how neurons can engage in collective, network-level activity, shape brain rhythms, and
information encoding. Its shape results from a complex interaction between properties of different molecules (ion channels)
and cell compartments (morphology and resistance), and is so far only understood for the simplest neuron models. Here we
provide an interpretable analysis, decomposing the dynamic gain based on the stimulus transformation steps in individual
neurons. We apply the decomposition to data from real neurons and complex models, and attribute changes of the dynamic
gain to specific sub- and suprathreshold processes. Using this decomposition method, we reveal the relevance of subthreshold
potassium channels for ultrafast information encoding and expose the shortcomings of even the state-of-the-art neuron
models.
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Introduction

The brain’s computational abilities are realized by local networks
of thousands of neurons, jointly encoding and processing infor-
mation in their population activity. Understanding how this col-
lective activity emerges from the individual cells’ properties is key
to link cortical computation to molecular and cell biology. It is
clear that the dynamics of action potential (AP) initiation is shap-
ing information encoding on the network level (Wolf et al.,
2014), and the organelle supporting AP initiation, the axon initial
segment (AIS) is a hub of plasticity with an intriguing, highly spe-
cialized molecular composition and nanostructure (Huang and
Rasband, 2018). But a concept that connects AIS molecular struc-
ture to cellular function to network performance is lacking.
Similarly, neuron gross morphology impacts encoding perfor-
mance and possibly even cognitive abilities (Goriounova et al.,
2018), because large dendrites accelerate AP initiation and
thereby enhance information encoding capacity (Eyal et al,
2014; Testa-Silva et al., 2014). Theoretical neuroscience devel-
oped an abstract concept, the dynamic gain function, which con-
nects neuronal function to population dynamics. If we can
disentangle how ion channels, subcellular morphology and
synaptic time scales interact to shape this dynamic gain function,
it becomes a potent tool connecting molecular and cell biology to
network neuroscience.

In the language of theory, the dynamic gain function is the lin-
ear response function of a population of neurons receiving a
common feed-forward input (Fig. 1A; and A, Methods)
(Knight, 1972). In practical terms, it captures the frequency pref-
erence of neurons, their ability to tune-in to rhythmic activity in
recurrent networks (Brunel and Wang, 2003). Dynamic gain
measurements characterize neurons in a working regime resem-
bling in vivo activity, which revealed unexpected neuronal prop-
erties, such as a very wide encoding bandwidth (Kéndgen et al.,
2008; Boucsein et al., 2009; Higgs and Spain, 2009;
Tchumatchenko and Wolf, 2011; Broicher et al., 2012; Ilin
et al, 2013; Testa-Silva et al., 2014; Ostojic et al., 2015;
Goriounova et al,, 2018; Lazarov et al., 2018; Linaro et al,
2018) (but see Borda Bossana et al., 2020), and surprisingly rapid
and strong flexibility (Merino et al, 2021). Ultrafast, high-
bandwidth encoding is likely an important determinant of the
brain’s exquisite temporal performance (Thorpe et al., 1996)
and is suggested to underlie evolutionary pressure (Lazarov
et al., 2018). The rapid retuning of the frequency preference of
a common interneuron class in the prefrontal cortex (Merino
et al., 2021) could shape theta-gamma cross-frequency coupling.
Dynamic gain measurements facilitate a mechanistic under-
standing of this phenomenon, long suspected to contribute to
information routing.

Despite these clear advantages over conventional electrophys-
iological characterizations, dynamic gain measurements have not
been widely adopted. We attribute this reluctance to two issues.
First, dynamic gain measurements follow a statistical concept
and require the analysis of thousands of spike times in relation
to a stochastically fluctuating input. Second, there is no trivial
relation between dynamic gain features and cellular properties,
which are the focus of those electrophysiologists who could exe-
cute the measurements. Our study provides the tools to address
these issues, to achieve the desired connection between cell- and
network-level function.

Three features have already been shown to influence dynamic
gain. First, the cells’ morphology (Brunel et al., 2001; Eyal et al.,
2014; Aspart et al,, 2016; Linaro et al., 2018; Verbist et al., 2020;
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Zhang et al., 2022). Second, the active dynamics of AP initiation
(Brunel et al., 2001; Fourcaud-Trocmé et al., 2003; Naundorf
et al., 2006; Wei and Wolf, 2011; Huang et al., 2012; Oz et al,,
2015), and third, the statistics of the neurons’ input (Brunel
et al.,, 2001; Tchumatchenko et al., 2011; Merino et al., 2021),
influenced by synaptic receptor kinetics and activity correlations
set by the brain state. Although the relevance of those three fea-
tures for dynamic gain is established, there is no unifying theoret-
ical approach to quantify their impact and disentangle their
interactions. Here we introduce an analysis framework that
guides not only the choice of working points but also allows
for a detailed attribution of dynamic gain features in experimen-
tal and simulation data. Our dynamic gain decomposition fol-
lows the physical signal transformation from input currents
into spike times and largely separates subthreshold processes
from threshold dynamics. This enables us to interpret dynamic
gain features and relate them to the underlying biophysical
mechanisms, not only for simulated data, but also for recordings
from cortical pyramidal neurons. We study a biophysically plau-
sible, multi-compartment model with Hodgkin-Huxley type
potassium and sodium channels, and find that the high encoding
bandwidth is due to its type II excitability. A type I model coun-
terpart fails to reproduce ultrafast population encoding. The
addition of a dendrite impacts the dynamic gain primarily by
shaping the impedance and only modulates the bandwidth that
is determined by the excitability type. Interestingly, we find
that the AP initiation dynamics limits the bandwidth in the
experimental data, but not the model.

Materials and Methods

Integrate-and-fire models. To illustrate fundamental properties of
the decomposition, we use very simple models, consisting of a single
dynamical variable, the membrane voltage. In the leaky integrate-and-
fire (LIF) model, the voltage changes due to an external current I, and
an ohmic resistance of the membrane with a reversal potential V"*".

dv
Tmem E =—(V- er) ~+ Rieml. (1)

We used a reversal potential of V"* = —=75mV, and a spike threshold of
—50 mV. After each spike, the voltage was reset to V'*". The membrane
time constant 7,,, was set to 20 ms and R,,,.,,, to 1.

In the exponential integrate-and-fire (EIF) model voltage is addition-
ally modified by an exponentially voltage-dependent term, representing
an idealized sodium current:

7-memciiixtl = 7(V - VYEV) + AT ° eXP<V - ﬁ) + RmemL (2)
T

The following parameter values were used: membrane time constant and
resistance T,e,, =10 ms and R, =116.417 MOhm, spike slope factor
Ar=5mV, threshold voltage ¥ = —45mV, and reversal potential
V®'=—-67.760304 mV. After a detection threshold of 0mV is reached,
the voltage is set to the reversal potential for 2 ms. The concrete simula-
tions are obtained with a fifth-order Runge-Kutta-Fehlberg algorithm in
Igor Pro 9 with a time step of 20 ps.

Neuron morphology and biophysical properties. We used the multi-
compartment model studied in Eyal et al. (2014). The neuron model is
composed of one dendrite, soma and axon (Fig. 3A4), and studied at
25 ps time resolution. All three compartments are cylinders. Diameter
and length are 20 and 30 um for soma, 1 and 50 pm for the AIS, and 1
and 1,000 um for the myelinated axon. To examine the impact of the
dendrite on population response, we studied three model variants as
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used in Eyal et al. (2014). The first model is without the dendrite, the sec-
ond model has a dendrite with 3 um diameter and 2,324 um length. The
third model has a dendrite with 5 um diameter and 3,000 um length of
(these models are identified in Eyal et al., 2014 by axonal loads p,y,, of
12, 95, and 190).

The axial resistance R, is 100 {dcm, the reversal potential for the leak
current V is —70 mV, the specific membrane capacitance c,, is 0.75 pF/
cm? and the specific leak conductance g; is 3.3 x 107> S/cm?, except for
the myelinated axon, where the last two parameters are reduced to
0.02 pF/cm2 and 6.6 x 10~7 S/cm?. The dendrite, soma, and AIS, contain
voltage-dependent sodium and potassium channels. The sodium current
is described by Ina = gy, m*h(V — Ey,) with Ey, set to 50 mV. The slope
factor g, of the stationary gating variable m,, is 9 mV. gy is 20 pS/um” in
the dendrite, 800 pS/um? in the soma, and 8,000 pS/um* in the AIS. The
potassium current is described by Ix = g, n(V — Ex) with Eg set to —85
mV. gy is 10 pS/pm” in the dendrite, 320 pS/um” in the soma, and 1,500
pS/um” in the AIS. The dynamics of gating variables are adapted from
Mainen and Sejnowski (1996) with the model temperature set to 37°C.
All simulations were performed with NEURON 7.6 and 8.0 (Carnevale
and Hines, 2006) compiled with Python 3.7 and 3.9. The code for
simulations is available on github repository https:/github.com/
chenfeizhang/Code_Eyal_gwdg.

Neuron model stimulation and dynamic gain function. The neuron
model was driven by a current stimulus injected to the middle of the
soma. To create the AP phase plots and measure the AP initiation speed,
the stimulus was a constant current just above rheobase. We recorded
the voltage in the AIS, 47 um away from the soma, during the first AP.
For graphical comparison of the AP initiation speed of different model var-
iants, the local minima of the phase plots were shifted to 0 mV in the x axis.

The encoding ability of the neuron population can be evaluated by
injecting each neuron with an independent realization of the background
noise combined with a small sinusoidal signal:

I(t) = I() + Asin (277ft) + Inoise(t)~ (3)

Here I, is the mean input, A is the amplitude of the sinusoidal signal, and
Ioise is @ zero-mean stochastic stimulus generated by the Ornstein-
Uhlenbeck (OU) process:

TdIgise(t) = —Inoise(t) dt + “/;07 dw(p), (4)

where 7 is the correlation time, o7 is the standard deviation (std), and
W(t) is a Wiener process with zero mean and unit variance. The popu-
lation firing rate can be expanded as

v(t) = vo + G(f) - Asin 27t + $(f)) + O(A?), (5)

where v is the mean firing rate, G(f) is the tuning ratio between the out-
put population firing rate and the sinusoidal signal at frequency f, ¢(f) is
the phase shift dependent on the frequency, and O(A?) is the higher
order term of the output. We name the linear response part of the pop-
ulation firing G( - ) as the dynamic gain function. The dynamic gain could
be theoretically calculated in a straight forward way as the ratio of the
Fourier transform of the spike output, and the Fourier transform of
the current input.

_|Fe@)
= ‘fa(t)) '

(6)

The firing rate can be understood as a sum of delta functions, located at
the AP times ¢;:

v(t) = Z 8t —t;). (7)
i=1
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Here, we used a variant of this method, where the fraction in Equation 6 is
expanded by the Fourier transform of the input and the convolution theo-
rem is applied. This method was proposed by Higgs and Spain (2009):

_ |G| _ v) - IFGSTA)
|~7:(CH)| 2707 ’
14+ (27717()2

G(f) 8)

F(Cy) is the Fourier transform of the input auto-correlation function and
F(Cpy) is the Fourier transform of input-output cross-correlation. The lat-
ter is the product of mean firing rate (v) and complex conjugate of the
spike-triggered average current’s Fourier transform F(STAy). To calculate
the STA input, AP times were defined as the time points at which the
detection voltage was crossed from below. The default detection voltage
was chosen as the voltage at which the AP waveform reaches its maximal
slope. For models without such a maximum, e.g., the EIF model, the default
detection threshold is chosen as a voltage, where the voltage slope is much
larger than the current-induced voltage fluctuation rate.

Because the method in Equation 8 does not require a sinusoidal sti-
mulus component, we use as stimulus only the OU process defined
above. Its power spectral density is known to be 270%/(1 + 271f)?),
and due to the Wiener-Khinchin theorem, it equals F(Cyy).

For each dynamic gain function, we generated 400 trials of 1,000 s, each
resulting in a 1s long STA; input based on approximately 5,000 APs. These
400 trial STA;s are averaged, yielding the final STA; for calculating the
dynamic gain function. To de-noise the dynamic gain in the high-
frequency region, we applied a collection of Gaussian filters with
frequency-dependent width to F(STA;), following Higgs and Spain
(2009). The dynamic gain’s confidence interval was obtained as the central
95% of bootstrap dynamic gains from re-sampling the 400 STA;s 1,000
times. In our graphs, it is often more narrow than the line widths. To deter-
mine the significance threshold of the gain curves, a noise floor was calcu-
lated as the 95th percentile of dynamic gain functions obtained from AP
times for which the temporal relation to the stimulus is destroyed by shift-
ing the original times by an interval, larger than 1 second. We only show
results above that noise floor. For a simple characterization of the shape
of dynamic gain functions, we define a cutoff frequency as the point where
the dynamic gain drops below 70% of the dynamic gain value at 1 Hz.

Dynamic gain decomposition. The effective impedance Z.s(f)
describes, in a spectrally resolved manner, the transformation between
the fluctuating current injected into the soma and the fluctuating voltage
measured at the AP initiation site. Just like the dynamic gain, the effective
impedance can be calculated for all frequencies at once as

Zeg(f) = F(V)/F (D) ©)

or for individual frequencies by adding a sinusoidal signal to the stochas-
tic stimulus. The two methods yield virtually indistinguishable results.
Here, we used the sine method for all multi-compartment simulations.
The amplitude of the sinusoidal signal was one-fifth of the std of the sti-
mulus. For each sinusoidal frequency, we generated 20,000 seconds of
axonal voltage traces.

Whichever method is used, the challenge is to reduce the impact of
spike-triggered currents on the effective impedance. Two strategies can
be employed, the current can be modified before the applying
Equation 9, or the voltage can be modified. In the case of simple models
with reset to the reversal potential, it is very effective to add a negative
current exactly at the reset time, so that the reset jump is fully explained
by the modified current. If a dead-time is implemented in the model, the
current after the reset is set to zero for the duration of the dead-time.
In the case of more complex models with intrinsic reset mechanisms,
we instead modified the voltage before applying Equation 9. To remove
the obviously non-linear AP waveforms, voltages above —50 mV were set
to —50 mV. When oy is relatively small, i.e., when the neuron is operating
close to mean-driven, it can happen that the spike-induced voltage
excursions of after-hyperpolarization and after-depolarization exceed
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the input-driven voltage fluctuations. In this case, voltage excursions
toward the negative values, e.g., voltages below —70mV were also
replaced by a threshold value. We averaged 20,000 pieces of 1 s of axonal
voltage traces, to obtain the sinusoidally modulated average voltage. The
effective impedance at the sine frequency is the ratio of the sinusoidal
voltage modulation amplitude to the sinusoidal current modulation
amplitude. We denote the effective impedance as Z.g(f). To analyze
experimental data, voltage excursions above a data-specific threshold
are clipped before applying Equation 9.

We can use the effective impedance Z.4(f) to isolate the part of the
dynamic gain function, which is not explained by the current-to-voltage
transformation. To this end, the dynamic gain is divided by the effective
impedance. The result describes the encoding of axonal voltage fluctuations
into spiking in a spectrally resolved manner, denoted as spike gain G,(f).

Gsp(f) = G(f)/Zeff(f) (10)

The dynamics of AP generation can vary considerably from instance to
instance (Fig. 1C). To explore how this variability contributes to the
dynamic gain function, we change the detection threshold of APs, Vet
Importantly, we consider only the last positive crossings of Vet before
the full AP depolarization, therefore, the number of APs does not change
as we study the impact of threshold. Typically, we detect APs at a voltage,
where the rate of voltage rise is maximal. For Eyal’s model without the den-
drite, this corresponds to —3 mV. For the experimental data, it is typically
between —5mV and +5 mV and here we chose 0 mV for the analysis of all
experimental data. When we lower this Viee, We obtain modified, earlier
AP times. When we calculate G(f) with AP times obtained with a detection
voltage around AP initiation threshold, we obtain what we call the zero-
delay dynamic gain G%(f). For Eyal’s model, we obtained the phase plot
of an AP fired just above rheobase input and used the voltage of the local
minimum V), as an approximation of the AP initiation threshold. For
experimental data, the corresponding V), can only be estimated. The ratio
G(f)IG(f) is the dynamic gain decay caused by the variable initiation
dynamics. A more extensive description with a step-by-step computation
algorithm can be found at github.com/Anneef/AnTools/tree/master/
Dynamic_Gain_Code.

Analysis of experimental data. We obtained the experimental data
from Revah et al. (2019) and used the dynamic gain decomposition to
interpret encoding differences between individual neurons, and between
the treatment group and the control group. The dynamic gain functions
were calculated with the Fourier transformation method, using the spike-
triggered average current. The confidence interval was obtained as
described above except that re-sampling occurred over all AP times
and not trial STA;s. Noise floor calculation were performed as described
above. Decomposing the dynamic gain function into effective imped-
ance, zero-delay spike gain, and gain decay, we provided an interpreta-
tion of the encoding variability of two neurons. On the group level,
G(f), Zess and Ggp(f) were calculated for all 15 neurons of the treatment
group and all 9 neurons of the control group. The grand average within
groups was obtained for the frequency range in which all individual
traces were significant, i.e., above the noise floor. For the statistical anal-
ysis of G(200 Hz), and G,(200 Hz), we tested for normality using
Jarque-Bera tests and then tested for equal mean using ¢-tests. The phase
plots for experimental data were obtained from the voltage traces by bin-
ning voltage data and then averaging the corresponding voltage deriva-
tive of each voltage point across all entries of each bin. The resulting
average voltage derivative is plotted against the center of the voltage
bin. The code for the analysis of experimental data is available on
GitHub repository https:/github.com/Anneef/AnTools.

Results

Decomposing dynamic gain provides subcellular resolution
for the analysis of dynamic population coding

Neurons that receive a common feed-forward input constitute a
population that encodes this input into changes of their
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population firing rate Figure 1A;. Their encoding capability
can be quantified with a linear filter, i.e., the dynamic gain func-
tion G(f). The dynamic gain’s magnitude and phase capture, in a
spectrally resolved manner, how modulations of the input cur-
rent cause scaled (magnitude) and delayed (phase) modulations
of the population’s firing rate. Because dynamic gain reflects
population-level function but is also sensitive to cellular proper-
ties, it can serve as a central link between cell-level and network-
level function (Brunel and Wang, 2003). With the following
decomposition of the dynamic gain, we make this link more
accessible.

The decomposition is motivated by the simplifications that
underlie the lineage of widely used simple neuron models
(Fig. 1B;). The simplest of these models, the LIF neuron 1,
abstracts all suprathreshold dynamics as infinitely fast, and all
subthreshold dynamics as a low-pass filter, i.e., an impedance
Z(f) = Ryem/(1 + iwTmem). We can reformulate the LIF model’s
dynamic gain function G(f) as a multiplication of a current-to-
voltage transformation, captured by the impedance Z(f), and a
voltage-to-firing rate transformation, the spike gain G,(f). To
this end, we expand 6, the definition of the dynamic gain, with
the Fourier transformation of the voltage F(V):

_|FW)

" =7 (1)

= Z(f) - Gy (f).

_ 'f(V) | F)
~[Fol 7w

This first decomposition step is exact in LIF neurons, but how
does it generalize to models with instrinsic AP initiation
dynamics?

The EIF model adds an exponentially increasing current term
(Eq. 2). In the subthreshold region, the voltage to current trans-
formation becomes voltage dependent. The negative slope of the
phase plot flattens, until the local minimum at Vi, (Fig. 24).
Following the analysis as described in the methods, we derived
the average current-to-voltage transformation of the EIF model.
We found that, in the limit of low firing rates, this effective
impedance converges to the impedance of a LIF model.
Specifically, under stimulation conditions for which the EIF
model’s voltage attains an average value of (V), the EIF model’s
effective impedance converges to the impedance of a LIF model
with an effective resistance R’ = R /(exp((d— (V))/Ar) — 1)
in the limit of low firing rates (Fig. 2C, dark blue).

Unlike the instantaneous AP “firing” of the LIF model, the
more realistic AP initiation of the EIF model adds a suprathres-
hold component to the dynamic gain, which we can also extract.
Beyond the local minimum, the phase plot’s slope dV/dt
increases approximately exponentially with voltage (Fig. 2A).
APs are now registered when the voltage reaches an AP detection
threshold, with is much more depolarized than Vj,.. Close to
detection at Vyerecr, the dynamics is dominated by the intrinsic
currents, whose magnitude far exceeds that of the extrinsic sti-
mulus. As a consequence, the dynamics varies very little, leading
to a very stereotypical AP shape in this voltage region. In con-
trast, early after passing Vi, the dynamics is co-determined by
intrinsic AP initiation current and the extrinsic stochastic stimu-
lus of similar magnitude. This causes variable initiation delays
preceding the rapid, stereotypical AP rise (see example in
Fig. 1C;). The addition of the intrinsic dynamics thus causes a
variable AP onset, which drastically changes the high-frequency
limit of G(f) from a constant value for LIF (Fig. 5F) to a power
law decay for EIF (Fig. 2B; Brunel et al., 2001; Fourcaud-Trocmé
et al., 2003). The addition of the intrinsic dynamics causes this
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Figure 1.

Physical signal processing steps guide dynamic gain decomposition. 4;, A population encoding scheme. Feed-forward input (green) diverges onto a recurrently connected neuronal

population. The dominating, asynchronous, recurrent input causes weakly correlated AP patterns. Nevertheless, the population rate can faithfully reflect changes in the common input. A down-

stream neuron can detect this signal, filtered through the population’s transfer function, the dynami

ic gain G(f). A,, Experimentally determined dynamic gain function of a layer 5 pyramidal cell,

obtained from 2,330 APs (data from Revah et al., 2019). Note the wide bandwidth, and the maxima and minima. Confidence interval (gray band) and noise floor (dashed) are obtained by
bootstrapping (see Materials and Methods). B;, Evolution of neuron models’ phase plots from point neurons without initiation dynamics to Eyal’s multi-compartment model. Locations of local

minima during AP initiation are marked with dots and denoted as V/,.. Normalized dynamic gain
representation of neuronal signal transformation. Distributed synaptic inputs drive current into the

functions of the first three model variants are shown next to the phase plots. B,, Schematic
soma and axon; the axonal voltage (V/,) changes. For real neurons and biophysically plausible

multi-compartment models, various parameters shape these transformations, attribution of dynamic gain changes to specific parameters is a challenge. C;, Globally, Eyal’s model displays
irreqular firing patterns in response to stochastic stimuli. Locally, at AP onset, the initiation dynamics varies, signified by the large spread in the delay between the last positive crossing
of ,c and the AP detection voltage (0 mV). C,, Decomposition of AP initiation process. Somatic input is first transformed into voltage fluctuations at the AP initiation site (V). V,(t) contains
the subthreshold dynamics related to the firing pattern (time intervals of neighboring spikes when their voltages reach V., and the suprathreshold dynamics related to the precise, sub-
millisecond AP timing (determined by the spike initiation dynamics after V). This decomposition can disentangle the functional effects of neuronal properties on population encoding.

variable AP onset, which drastically changes the high-frequency
limit of G(f) from a constant value for LIF (Fig. 5F) to a power
law decay for EIF (Fig. 2B; Brunel et al., 2001; Fourcaud-Trocmé
et al., 2003).

The simple structure of the EIF model allowed Fourcaud-
Trocmé and colleagues (Fourcaud-Trocmé et al., 2003) to relate

the voltage dependence of the initiation current to the bandwidth
of G(f). Here we propose to study this relation with a simple,
phenomenological approach that is readily generalized to models
of arbitrary complexity. Specifically, we will lower V. toward
Vioe- At first, as long as we stay in a voltage region, where intrinsic
currents dominate, the change of detection voltage will lead to
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Figure 2.  Dynamic gain decomposition of an EIF model retrieves basic building blocks corresponding to simpler LIF model variants. 4, Five phaseplots that describe the dynamics of Equation 2

of the EIF model for four different current levels (I in pA: 139.3 (dark blue), 143.4, 146.3, 147.7, and 151.5 (red)). The inset magnifies the region around the local minimum. The arrows indicate
the AP detection voltage used for the dynamic gain (0 mV) and the zero-delay dynamic gain (—45 mV). B, When driven with fluctuating currents with averages as in 4, a standard deviation of
0;=15 pA, and a correlation time 7., = 25 ms, the EIF model yields the dynamic gain displayed here in continuous lines. The corresponding zero-delay dynamic gain curves (see Materials and
Methods) are shown with dashed lines. The number of APs varies between the simulations (720,000 APs for 5 Hz (red), 120,000 APs for 1 Hz (dark blue), and 50,000 APs for the others, shown in
fainter shades). Note how the steep decay of the dynamic gain curves turns to a flat high-frequency behavior for the zero-delay dynamic gain. €, The effective impedances for the simulations
from B are displayed with continuous lines (calculated as described in Materials and Methods). The average voltage during these simulations were, in mV, —49.45, —48.86, —48.54, —48.41, and
—48.17. The linear approximation of Equation 2, shown by the phaseplots in A, at these voltages are the first-order approximation of the current / to voltage V/ transformation. As described in the
first section of the results, these linear approximations correspond to LIF models with modified values for membrane time constant and resistance. The impedances of these LIF models are shown
with dashed lines in the color corresponding to the simulation that is approximated. Toward smaller and smaller firing rates, the numerically determined effective impedances tend toward the
corresponding analytical impedances of the linear approximations around the average voltage.

small shifts in AP detection times that affect all APs to a very
similar degree. However, when the lowered Ve reaches the
peri-threshold region, where the stochastic extrinsic stimulus
dominates the dynamics, the different APs are shifted differently
and we approach the behavior of a LIF-like model with a hard
threshold. Figure 2B shows the “zero-delay” dynamic curves,
resulting for Veteet = Vioe- Just as for LIF models, they are cons-
tant in the high-frequency limit. Therefore, the gain decay of the
EIF model is closely associated with the suprathreshold dynamics
after Vj,.. In the general case, we obtain this gain decay as the
ratio of two dynamic gain curves, G°(f)/G(f), where the “zero-
delay” dynamic gain G°(f) is obtained with “zero-delay” APs
detected already at V), while G(f) is obtained with the conven-
tional, much more depolarized AP detection threshold (Fig. 2B).
In other words, we relate the encoding capability of a LIF-like
model version to that of the full model and capture the result
in the spectrally resolved gain decay.

The introduction of other ion channel types marks the next
level of model complexity relating to impedance and spike
gain, represented by conductance-based models, such as the
Wang-Buszaki model (Xiao-Jing and Gyorgy, 1996). These
additional dynamical variables enable AP repolarization and
richer neuronal dynamics, introducing different dynamical
bifurcations at the AP threshold. This allows for a variety of
firing patterns and consequently for different spike gain
shapes. In spatially extended multi-compartment models
(e.g., Eyal's model Eyal et al., 2014), currents and voltage
gradients between compartments increase the complexity even
further. The presence of various ion channels together with the

extended morphology results in a more complex current-
to-voltage transformation that we describe with an effective
impedance Z.g(f), which also includes the stimulus filtering
along the path from the somatic stimulus source to the axonal
AP initiation site.

In summary, our decomposition approach establishes three
G(f) components: (1) effective impedance Z.g(f), (2) zero-delay
spike gain G‘S)p(f) and (3) dynamic gain decay GY( f)G(f). The
first component captures the subthreshold transformation of
current fluctuations into voltage fluctuations. The third compo-
nent captures the impact of variable AP initiation on the precise
AP timing, reflecting the variability in the suprathreshold AP
shape (Fig. 1C;). The remaining zero-delay spike gain describes
how voltage fluctuations are transformed into fluctuations of
the firing rate, reflecting intrinsic frequency preferences of the
neuronal dynamics, detailed in the following sections. Dynamic
gain is the product of these transformations:

G(f)
G(f)’

G(f) = Zet(f) - G (f) - (12)

For such a decomposition, we only require the waveforms of sti-
mulus and membrane voltage (Materials and Methods). The
decomposition can therefore be performed on neuron models
of arbitrary complexity and even on recordings from real neu-
rons (Fig. 1B,). In the next sections, we will analyze the func-
tional effects of biophysical and morphological parameters
using experimental data and different variants of Eyal’s model,
which feature a relatively wide encoding bandwidth (Eyal et al.,
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Figure 3.  Eyal's model can realize high-bandwidth encoding only with a type II, but not a type | excitability. B, F~/ curves with the rheobase thresholds aligned to 0 pA. C, To switch the

excitability of Eyal’s model from type Il to type I, the voltage dependence of sodium channel activation and inactivation is shifted 10 mV toward more hyperpolarized potentials. V, denotes the
voltage at the AP initiation site. D, 2D firing rate surface of Eyal’s type Il model as a function of mean and std of stochastic stimulus (r=>5 ms). The 5 Hz iso-firing rate line is labeled black. E, o~
pyand F (Vg relation of the type Il model at 5 Hz firing rate. Colored dots indicate three example working points, ranging from nearly mean-driven (orange) to fluctuation-driven (blue), and
to very fluctuation-driven (green). Corresponding ISI distributions are shown in the inset panel. G, Dynamic gain functions of the three example working points. High-bandwidth encoding is
realized only when the neuron model is fluctuation-driven (blue). H, through J as E through G, but for the type | model. J, The type | model does not realize high-bandwidth encoding. Note that
an increased g; enhances the dynamic gain in the high-frequency region. Nevertheless, the cutoff frequency always remains below 16 Hz. The zero-delay gains of the type | model are shown in

the Extended Data Figure 3-1 in Zhang et al. (2023).

2014). But first, Eyal’s model will be characterized and studied at
different working points.

Population encoding performance depends on the neuron’s
excitability and working point

We first examined the dynamical properties of the multi-
compartment model characterized by Eyal and colleagues
(Eyal et al., 2014), specifically the neuron model consisting of
only a soma and an axon but no dendrite. In response to vari-
ous constant currents injected into the soma, the firing rate v of
the original model displays a large discontinuity of about 32 Hz
upon reaching the rheobase, indicating that it is a type II
model. For comparison, we devised a model variant that shares
its morphology and is equipped with the same ion channel
types at the same densities and with the same voltage sensitiv-
ities. However, in the new model variant, sodium channels acti-
vate and inactivate with a 10mV shift toward more
hyperpolarized potentials (Fig. 3C). This model variant has a

continuous F-I curve, indicating it is a type I model (Fig. 3B,
rheobase currents aligned at 0 pA).

We next examined the models’ response to stochastic input
with a correlation time 7 = 5 ms. Given that the firing rate has a
strong impact on the population encoding bandwidth
(Fourcaud-Trocmé et al., 2003), the firing rate is often fixed
when different models or stimulus conditions are compared
(Lindner and Schimansky-Geier, 2001). Here, probing the two-
dimensional firing rate surface spanned by stimulus mean y;
and standard deviation o;, we identified the iso-firing rate
line at 5 Hz (Fig. 3D). Along this line, the neuron’s firing regime
changes from nearly mean-driven to strongly fluctuation-
driven. The curvature of the iso-5Hz curve in the o;-y; plane
differs between the two excitability types. It is slightly concave
for type I, and slightly convex for type II excitability (Fig. 3E
and H). The firing irregularity, quantified by the coefficient
of variation of inter-spike intervals CVigy, differs more notice-
ably between the model variants. While the type I model’s
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firing irregularity increases monotonously with oy (Fig. 3I), the
type II model displays a minimum CVig; for intermediate o;
values. Toward more mean-driven conditions, CVg increases
strongly (Fig. 3F), because the intrinsic firing rate of 32 Hz is
much higher than the 5 Hz target rate. In the presence of small
input fluctuations around a near-rheobase average input, this
low target rate is realized by bursts of near-regular rapid
firing separated by long intervals. This is qualitatively very
different from the irregular firing produced at working points
further away from the mean-driven regime. For both model
variants, we chose three working points, i.e., y;-0; combina-
tions, covering the range from mean-driven to strongly
fluctuation-driven (colored dots in Fig. 3E and H ). The inter-
spike interval (ISI) distributions at those working points (insets
in Fig. 3F and I) further illustrate the very regular firing pattern
of the type II model close to the mean-driven condition. As the
input fluctuations increase, the ISI distributions become
more similar.

When we calculated the dynamic gain functions for the two
models at the respective working points, the results were again
comparable for the strongly fluctuation-driven cases, but strik-
ingly different for other working points. When the original
type II model is mean-driven (o7 = 5.13 pA), the dynamic gain
function appears to have a low bandwidth, dropping to 70% mag-
nitude already at 10 Hz (orange in Fig. 3G). At intermediate and
high frequencies, the shape of the dynamic gain function is dom-
inated by a strong resonance around 40 Hz, which mirrors the
peak in the ISI distribution around 25ms. Increasing o7 to
21.13 pA significantly broadens the resonance peak and increases
the cutoff frequency of the dynamic gain function, which now
resembles the gain curve shown in Eyal et al. (2014) (blue line).
The corresponding ISI distribution is also substantially flattened,
indicating the transition from mean-driven to fluctuation-
driven. Interestingly, a further increase to o; = 80.26 pA, does
not enhance the population encoding ability further (green
line). Instead, at this strongly fluctuation-driven working point,
the dynamic gain function is dominated by a low-pass filter in
the low-frequency region with an apparent cutoff frequency of
around 12 Hz. Toward higher frequencies, a shoulder appears
and results in a local maximum around 60 Hz. The dynamic
gain in the high-frequency region exceeds the other two gain
curves. In parallel, the ISI distribution narrows again and moves
closer to zero. The most probable ISI now is approximately 70
Hz, corresponding to the shoulder in the dynamic gain function.
These results demonstrate that the encoding ability critically
depends on the working point; the high encoding bandwidth
reported for this type II model, is realized only in a fluctuation-
driven regime with intermediate o;.

The dynamic gain curves of the type I model behave strik-
ingly different. None of the three working points lead to high-
bandwidth encoding (Fig. 3J). When mean-driven (o;=
4.54 pA), the dynamic gain function has a cutoff frequency
below 30 Hz, and decays with a slope of —1 in the log-log scale
(orange dashed line), similar to the EIF model with standard
AP initiation dynamics (Fourcaud-Trocmé et al., 2003).
Increasing o7y to 22.90pA to reach the fluctuation-driven
regime, the dynamic gain is enhanced in the high-frequency
region, while the cutoff frequency becomes smaller (blue
dashed line). Further increasing o7 to 109.31 pA leads to a pla-
teau in the low-frequency region with an even lower cutoff fre-
quency (green dash line). The dynamic gain function is larger
in the high frequency with a shoulder around 100 Hz, similar
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to the type Il model’s gain curve at the very fluctuation-driven
working point (compare two green curves in F and I). Again,
the ISI distribution features a peak around the time interval
that corresponds to the shoulder’s frequency range. These
results demonstrate that the type I model cannot reproduce
high-frequency encoding throughout the biophysically plausi-
ble range of working points. In summary, we found that the
encoding bandwidth can be increased 10-fold, not by manipu-
lating morphology or ion channel voltage sensitivity, but sim-
ply by increasing the potassium current around threshold to
achieve a type II excitability. We next use the dynamic gain
decomposition to investigate how this occurs.

AP initiation dynamics is not the main bandwidth limitation
in Eyal’s model

To decompose the models’ dynamic gains curves according to
Equation 12, we begin with the dynamic gain decay. This compo-
nent elucidates the contribution of AP initiation dynamics on
dynamic gain. To prepare this analysis, we first take a closer
look at the AP initiation dynamics. We previously demonstrated
that high-bandwidth encoding is closely associated with the volt-
age sensitivity of intrinsic AP initiation dynamics, especially in
the voltage region close to the local minimum of the phase plot
(Zhang et al., 2022). Using the voltage V,, recorded at the AP ini-
tiation site, we compared the phase plots of type I and type II
models with their local minima (V),.) aligned at 0mV
(Fig. 4A). Although the voltage sensitivity of the sodium channel
dynamics is identical for the two model variants, the voltage
derivative of the type II model rises substantially more quickly
out of Vj,.. The slower initiation of the type I model is caused
by its 16 mV more hyperpolarized V... The sodium channels’
voltage dependence was shifted by only 10 mV, meaning that
AP initiation proceeds at a voltage range with fewer activated
sodium channels and of course even less potassium channels.
As a consequence, the type I model’s AP initiation current dis-
plays a weaker voltage sensitivity.

When we gradually lowered the AP detection voltage Vietect
down to V.., we obtained new, earlier AP times, but the number
of APs stayed constant because we considered only those last
positive crossings of Ve that lead to fully developed APs.
The resulting neuron model is similar to a LIF model with a
hard threshold at Vi, and indeed the redefined AP times lead
to a zero-delay dynamic gain function that is almost flat in the
high-frequency region as expected for a LIF model (continuous
light blue curve in Fig. 4B). As we detect the APs earlier, we limit
the voltage range, across which the initiation dynamics and
extrinsic stimulus can impact the precise AP time. Comparing
the dynamic gain functions for two detection thresholds, we
reveal how the interplay between intrinsic and extrinsic currents
in that interval (V},..> Vi) Shape the dynamic gain. We find
that lowering Vietec all the way from —3 mV down to —48 mV
has very limited impact on the dynamic gain function. It only
slightly enhances the encoding at large frequencies (above
500 Hz). However, a further decrease of Vetect by 5-10 mV dras-
tically improves high-frequency encoding and has sizeable effects
at frequencies down to 50 Hz, but not below. These results
demonstrate that the AP initiation dynamics impacts the decay
of the dynamic gain function mostly in the limit of high frequen-
cies. It does not, however, dominate itsdecay between 40 and
200 Hz, the region where it falls from its peak to its cutoff fre-
quency. In summary, for Eyal’s model the encoding bandwidth
is governed by subthreshold factors, while dynamic gain at
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Dynamic gain decomposition based on the decomposition of the AP initiation process. 4, Insets show the AP phase plots in response to constant inputs just above rheobase. Arrows

indicate the positions of the local minima V. of type Il (—58.05 mV) and type | (—74.23 mV). The region at the beginning of AP initiation is magnified with voltages shifted to align the V,
values to 0 mV. B, Reducing the AP detection voltage Vyerec toward ¥}, enhances the dynamic gain in the high-frequency region, exemplified here for the type Il model. The zero-delay dynamic
gain function (light blue continuous line) behaves similar to that of a LIF-like model. Further reducing the detection threshold reduces the dynamic gain in the low-frequency region (light blue
dash line). Note that we only include threshold crossings that continue to a full AP. C, D, and E, The dynamic gain functions from Figure 3F and / are decomposed into effective impedance ((),
zero-delay spike gain (D), and dynamic gain decay (E). Inset panels in £ are the AP initiation delay distributions at corresponding working points, color code as in Figure 3. Effective impedance
captures the transformation from somatic current to axonal voltage V,. Zero-delay spike gain is the ratio between zero-delay dynamic gain and effective impedance. Dynamic gain decay is the
ratio between original dynamic gain and zero-delay dynamic gain (see Materials and Methods). AP initiation delay is the time interval between voltage crossing Vgetect (Original AP time) and the

last previous positive crossing of V..

very high frequencies is determined by the AP initiation dynam-
ics. Consequently, the AP initiation dynamics is not the main
determinant of the encoding bandwidth.

Further decreasing the detection threshold cuts into the sub-
threshold dynamics. The resulting changes in AP times can be
substantial and affect the firing pattern and thereby also the
dynamic gain in lower frequency regions (light blue dashed
line in B). We can conclude that the type II model’s near constant
encoding capability between 5 and 50 Hz, does not originate from
its fast AP initiation after V},. Instead, it is determined by the sub-
threshold dynamics before V..

Even the type I model’s slower AP initiation dynamics does
not limit encoding between 5 and 50Hz frequency for the
fluctuation-driven regimes (blue and green). This is evident
from the results of the gain decay analysis applied to the type I
model (Extended Data Fig. 3-1 in Zhang et al., 2023). It is also
reflected in Figure 4E, indicating that only in the nearly mean-
driven regime (orange), does the bandwidth of the gain decay
limit the overall dynamic gain bandwidth.

To quantify the voltage trajectories’ variability during AP ini-
tiation, we determined the time required for each AP, to progress
from the last positive crossing of Vio. t0 Vyetec =—3 mV (see
Materials and Methods). This AP initiation delay is a random
variable. Its statistics are determined by the interplay between
intrinsic AP initiation dynamics and extrinsic stimulus fluctua-
tions. The initiation delay’s variance originates mainly from
very variable dynamics very close to V},., where the intrinsic cur-
rents are lowest and initiation proceeds slowest. For the type II
model, 90 % of the total initiation delay are spent on crossing
the first 10 mV after Vi, even though they represent only 18%
of the voltage interval. These 10mV also contribute 99 % of
the delay’s standard deviation. Figure 4B illustrates that these
first 10mV, from —58 to —48 mV, also account for the bulk of
the dynamic gain decay associated with the AP initiation delay.
We can use the dynamic gain decay G(f)/G°(f) (Fig. 4E),
together with the distributions of AP initiation delay, to quantify
the impact of AP initiation dynamics on high-frequency encod-
ing at the three working points in Figure 3G and J. For the type I
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model, when the activity is mean-driven (orange), the AP initia-
tion delay distribution is relatively flat with a most probable delay
as large as 4 ms. Increasing oy reduces the mean of the distribu-
tion toward 0 ms (blue and green), indicating that the AP initia-
tion delay is no longer limited by the intrinsic AP initiation
dynamics. Instead, larger depolarizing inputs increase dV/dt,
and accelerate the escape from the slow AP initiation region
near V... This faster initiation is paralleled by a rightward shift
in the dynamic gain decay. The bandwidth related to the initia-
tion dynamics increases more than three-fold. For the type I
model, similar transitions of the dynamic gain decays and AP ini-
tiation delay distributions can be observed when increasing o;.
While the two model types behave similarly when driven with
very large o5, toward the mean-driven working points the
type I model’s AP initiation delay distribution is substantially
more flattened, and consequently, the dynamic gain decay has
a much lower bandwidth. We attribute this to the different
firing patterns close to the mean-driven condition. The type I
model produces near-regular firing without the high-frequency
bursts of its type II relative. Therefore, the average AP initiation
delay would approach 200 ms when o7 decreases to zero and the
firing rate is kept at 5 Hz. For such initiation delays exceeding the
input correlation time, the input fluctuations can cause particu-
larly large variability and consequentially deteriorate encoding
precision.

Low-frequency encoding is controlled by effective impedance
and firing pattern preferences

The subthreshold part of the encoding process, which is
described by the zero-delay dynamic gain G°(f), can be further
decomposed into effective impedance Z.(f) and zero-delay
spike gain Ggp(f ) (Fig. 4C and D). The effective impedance is cal-
culated as the Fourier transform of output voltage divided by the
Fourier transform of input current (see Materials and Methods).
The zero-delay spike gain is the ratio of zero-delay dynamic gain
and effective impedance: Ggp(f) = G°(f)/ Zest (f).

For the type II model, the effective impedance at low frequen-
cies varies substantially with the working point, increasing more
than 10-fold at 1 Hz (Fig. 4C, top panel). In a completely passive
model without voltage-dependent conductance, the impedance
does not depend on the input statistics. The observed changes
in effective impedance, therefore, result from varying degrees
of ion channel activity. At the mean-driven working point, the
subthreshold voltage fluctuates just below Vj,, where some
potassium channels are already activated. Depolarization-
activated potassium current opposes further depolarization, low-
ering the impedance. This effect is strong for low frequencies,
where the potassium channel activation can follow the input
changes, which explains the large drop in the orange impedance
curve. At higher frequencies, the potassium channels do not
actively oppose depolarization. In the limit of frequencies
much higher than their activation time constant, the channels
present merely a passive leak and their influence on impedance
is much smaller, such that the effective impedance decays with
the slope of the passive model. The impedance peak around
the frequency of the intrinsic firing rate probably results from
subthreshold resonance.

Increasing o7 and lowering y; shifts the average voltage to
regions where fewer potassium channels are activated. This
increases the effective impedance at low frequency (Fig. 4C,
blue continuous line) and reduces the resonance around 40 Hz.
Together, these changes contribute to the 100Hz wide

Zhang et al. ® Dynamic Gain Decomposition in Population Coding

bandwidth of Z g at the intermediate, fluctuation-driven working
point. At the very fluctuation-driven working point, the sub-
threshold fluctuations are even less shaped by potassium current.
The effective impedance in this condition becomes a low-pass
filter, determined by the passive neuronal properties (Fig. 4C,
green continuous line). The type I model, in comparison, has
less active ion conductances in the subthreshold range.
Therefore, Z.4(f) is far less sensitive to input conditions. At
both fluctuation-driven working points, Z.(f) behaves similarly
to a passive filter with a 10Hz cutoff (Fig. 4C, blue and green
dashed lines).

At first glance, the second subthreshold component, the zero-
delay spike gain varies similarly for both models as the working
points are changed. It attains larger values close to mean-driven
conditions and drops with increasing o7 (Fig. 4D). This overall
behavior is dictated by the condition of constant firing rates.
As py decreases and oy increases, larger and larger voltage fluctua-
tions generate the same firing rate, leading to a decrease in zero-
delay spike gain. Another general feature of all zero-delay spike
gain curves is their monotonic, power law increase in the high-
frequency limit. It compensates the decay in the effective imped-
ance to reproduce the rather flat zero-delay dynamic gain
(Fig. 4D).

Besides these general trends, the shape of the zero-delay spike
gain changes between working points, in particular in the low-
frequency region. For the type II model, a high plateau forms
toward the mean-driven condition (orange). Conversely, a sag
forms at the extremely fluctuation-driven working point (green).
We will see below, that the zero-delay spike gain is the one com-
ponent, that is most sensitive to the firing pattern. It represents
the neuron’s propensity to turn voltage fluctuations into firing
rate fluctuations based on the intrinsic dynamics. It could there-
fore be considered surprising, that the zero-delay spike gains of
these two working points show opposite shapes. After all, both
working points are characterized by bursty firing patterns, evi-
dent from the high CVig values and the ISI distributions
(Fig. 3F). The difference lies in the source of the bursts. At
the mean-driven working point, relatively small amplitude
low-frequency components drive bursts fired at the intrinsic
frequency. At the very fluctuation-driven working point, large
fluctuations of the extrinsic stimulus cause bursts with an
intra-burst firing rate that is almost twice as high. The
increased stimulus fluctuation size, together with a lower num-
ber of APs within bursts causes the zero-delay spike gain to
drop at low input frequencies. This will be explored further
when we analyze how repetitively fired, intra-burst APs con-
tribute to the dynamic gain.

The decomposition of G(f) curves across a large range of
firing regimes has shown that under most conditions the initi-
ation dynamics does not limit the overall encoding bandwidth,
not even in the type I model with slower suprathreshold
dynamics. The variable G(f) curves of the type II model and
its ability for high-bandwidth encoding are explained by a
strong stimulus dependence of Z.q(f) and GSP (f). Toward large
fluctuations, both model types behave very similarly, because
the extrinsic stimulus fluctuations dominate the entire signal
transformation process, leading to similar Z.g(f), Ggp(f ) and
G(f)/G°(f). Decomposing the subthreshold and suprathres-
hold impact on dynamic gain, we can also aid the attribution
of G(f) changes to a particular parameter change, as we next
study the influence of input correlations and neuron
morphology.
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Fixing the suprathreshold impact reveals the influence of
input correlations on dynamic gain

In the previous section, we studied the encoding abilities of Eyal’s
type I and I models at working points ranging from mean-driven
to strongly fluctuation-driven and found that only the type II
model could support high-bandwidth encoding. Here we con-
tinue to examine this type II model, specifically how its encoding
depends on stimulus correlation times (). When 7 is increased,
cortical neurons, but also LIF models, show enhanced G(f) at
high frequencies, as compared to low frequencies (Brunel et al.,
2001; Tchumatchenko et al., 2011; Lazarov et al., 2018; Merino
et al., 2021). We have called this type of input dependence the
“Brunel effect” and considered it an important feature of real
neurons. For our study, we use the dynamic gain function in
Figure 3G (blue curve, 7=5 ms) as a reference, and compare it
to results obtained with more slowly fluctuating input with
7=50 ms.

When we set out to define the exact working points for this
juxtaposition, we concluded that CVig; is of limited practicality,
because its non-monotonic CVig-p; relation in the type II
model (Fig. 3F) does not allow a unique definition of working
points. The dynamic gain decomposition motivates two other
criteria for working point selection. While a constant CVig;
aims to obtain a comparable output statistics, i.e., a comparable
firing pattern, we propose to also study iso-fluctuation and iso-
delay working points. They aim at a comparable subthreshold
and suprathreshold dynamics, respectively. The iso-fluctuation
working point is found by choosing o7 and y; to fix oy, the stan-
dard deviation of subthreshold voltage fluctuations. This is
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closely related to criteria used in several experimental studies,
where oy and the target firing rate have been used to define
the input parameters (Kondgen et al., 2008; Tchumatchenko
and Wolf, 2011; Ilin et al., 2013). The iso-delay criterion con-
trols the suprathreshold impact by fixing the average AP initi-
ation delay. Because the intrinsic AP initiation dynamics
changes not much between different working points, fixing
the average initiation delay for inputs with different 7 values,
effectively fixes the impact of the extrinsic currents on AP ini-
tiation delay. Figure 5, A and B, shows the AP initiation delay
distributions, ISI distributions and, as an inset, the oy, of the
working point with 7=>5 ms, and its iso-fluctuation and iso-
delay counterparts with 7=>50 ms.

Comparing the dynamic gain functions at the iso-fluctuation
working points (Fig. 5C, thin and wide blue lines), we find that
increasing 7 merely introduces a resonance around 50Hz,
consistent with the ISI distribution peak around 20 milliseconds
(Fig. 5B). In the low-frequency region, the two gain curves basi-
cally coincide, suggesting that the iso-fluctuation criterion indeed
equalizes the subthreshold dynamics across the two input
conditions. Because the dynamic gain curves in the high-
frequency region are also nearly identical, one could conclude
that the Brunel effect is absent under iso-fluctuation conditions.
However, a comparison of the zero-delay dynamic gain
functions (Fig. 5C, wide and thin light blue curves), does show
improved high-frequency encoding, for 7=50 ms as compared
to 7=5ms. This means that the dynamic gain decay for
7 =50 ms is larger, which is consistent with the more variable
AP initiation delay (Fig. 5A).
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Figure 5.  Brunel effect evaluated with two criteria fixing the sub- and suprathreshold impact on dynamic gain. A, AP initiation delay distributions of three working points of Eyal’s type Il

model. Two share the same mean delay, denoted as the iso-delay working points (the thin blue curve with T =5 ms and the wide black curve with 7= 50 ms). In contrast, the thin and wide blue
curves share the same gy, denoted as the iso-fluctuation working points. This relation is indicated in the inset in B, showing the g,~g; relation for 7= 5 and 50 ms. The filled circles represent the
three working points used from A to £. B—E, ISI distributions, dynamic gain and in lighter colors the corresponding zero-delay dynamic gain functions (C), effective impedances (D), and
zero-delay spike gain functions (E) of the three working points above. Brunel effect, and the constituting sub- and suprathreshold contribution are different when evaluated at the iso-delay
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threshold, because the two coincide. However, this panel demonstrates, that an equivalent condition can be defined by matching the rate of change of the membrane voltage at the threshold
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behavior of the zero-delay dynamic gains of the iso-delay conditions in C.
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Next, we examined the Brunel effect at the iso-delay working
points. With the same average AP initiation delay, the overall
shapes of the AP initiation distributions are also similar
(Fig. 5A thin blue line and gray line). Achieving similar initiation
delays with much longer input correlations requires a larger o;. oy,
is even more than quadrupled from 6 to 26 mV (inset in Fig. 5B).
But even the drastic increase in voltage fluctuations shifts the ISI
distribution only slightly to smaller values (Fig. 5B wide lines).
The large increase in o for 7 = 50 ms results in a strong reduction
of the dynamic gain function in the low-frequency region
(Fig. 5C). It now lies below the dynamic gain function for 7 =
5 ms. The high-frequency limits of the two G(f) curves are close
to each other, and even the zero-delay gain functions G°(f), now
attain similar values in the high-frequency limit. We conclude
that the type II model reproduces the Brunel effect at the iso-
delay working points, which fix the impact of suprathreshold
dynamics on population encoding. In this condition, the relative
improvement of high-frequency encoding observed in the nor-
malized dynamic gain functions is realized by reducing the
unnormalized dynamic gain in the low-frequency region when
7 is larger. At iso-fluctuation working points, on the other
hand, the low-frequency encoding is nearly constant and no
Brunel effect manifests in the dynamic gain curves because the
stronger dynamic gain decay cancels increased zero-delay
dynamic gains at 7=50 ms.

We can now use the dynamic gain decomposition to check
whether iso-fluctuation and iso-delay criteria indeed standardize
sub- and suprathreshold contributions, and to further under-
stand the source of the Brunel effect (Fig. 5D and E). We find
that the effective impedances and zero-delay spike gains are
very similar at the iso-fluctuation working points, in accordance
with its purpose of fixing subthreshold dynamics. Within the
identical subthreshold voltage fluctuation range, the active ion
conductances recruited for stimulus filtering are close to each
other. The remaining difference probably stems from the slightly
more depolarized average voltage for 7=50 ms, leading to
slightly higher potassium current activation. Two zero-delay
spike gain curves are almost paralleled with each other, indicat-
ing that the voltage frequency components are transformed into
firing frequency components in similar ways for both correlation
times. However, at the iso-delay working points, the effective
impedance and spike gain in the low-frequency region show large
but opposite changes in response to increasing 7. While the effec-
tive impedance at 1 Hz is more than 3 times larger for 7=50 ms,
the spike gain at 1 Hz is more than 5 times larger for =5 ms. The
difference in effective impedance is readily explained by the
difference in average potassium channel conductance. oy is about
6mV for 7=5 ms, and increases to about 26 mV for 7=>50 ms.
The substantially larger fluctuations into the hyperpolarized
range cause ion channel deactivation, a lower membrane conduc-
tance and thereby a larger effective impedance. This is reflected in
the much lower cutoft frequency of 8.3 Hz for =50 ms as com-
pared to the 56 Hz for 7=5 ms. Low-pass effective impedance
keeps more low-frequency components of stimulus in the voltage
fluctuations. As a result, the zero-delay spike gain at the iso-delay
working point is drastically reduced in the low-frequency region
(Fig. 5E, black curve). The decomposition of zero-delay dynamic
gain functions implies two different ways to realize high-
bandwidth encoding for two correlation times of input, by
influencing the firing patterns emitted by the neuron. How that
impacts the dynamic gain will become clear, when we next study
the differential encoding capacity of fluctuation-driven APs and
repetitively firing APs.

Zhang et al. ® Dynamic Gain Decomposition in Population Coding

Decomposing dynamic gain functions into repetitive firing
and individual AP components

Our previous arguments suggest that the firing pattern, in
itself, is an important contributor to the shape of the dynamic
gain function. It could even be thought that the type II model is
capable of high-bandwidth encoding in part due to its ability to
fire high-frequency repetitive APs. We next attempt to analyze
this more stringently, by decomposing the dynamic gain
function into two parts, contributed by two AP populations
(Fig. 6A).

One population is fluctuation-driven APs, defined as those
fired after at least 50 ms of silence. These APs are likely to be
the first one, or the only one, fired in a voltage upstroke, while
the rest of APs are likely part of a burst later in an upstroke,
denoted as repetitive firing APs. Figure 6A is an illustration of
the AP classification, the relative fraction of the two components
is stated in Figure 6B and C between correlation times. When 7=
50 ms, the ISI distribution is significantly more peaked around 25
ms (Fig. 5B), and more than half of the APs are classified as repet-
itively firing APs. This fraction drops to 20% for 7= 5 ms, because
bursts are terminated by the rapid V, fluctuations.

We now calculated dynamic gain functions based on APs
from only fluctuation-driven or only repetitive firing APs.
When their phases are taken into account, these two dynamic
gains can be summed to yield the curves in Figure 5C (black
and thin blue). The fluctuation-driven APs alone encode the
input with a higher bandwidth, as compared to all APs together
(thin blue line in Fig. 6B vs iso-delay working points in Fig. 5C).
The corresponding cutoff frequencies are 133 Hz vs 105 Hz for
7=5ms, 234 Hz vs 166 Hz for 7=50 ms. The shapes of these
gain curves reflect the broad 20-50 Hz frequency encoding pref-
erence of the fluctuation-driven APs. When the intrinsic prefer-
ence is overridden by very strong external fluctuations, this
preference is suppressed (Extended Data Fig. 6-1A and 1C in
Zhang et al., 2023).

The repetitive firing APs alone lead to dynamic gain curves
with very pronounced resonance around the preferred firing
rate and a pronounced dip around half of that frequency
(Fig. 6C). The dip is a direct consequence of the resonance
because APs locked to an input component at the resonance
frequency and fired in a short burst will be locked worse than
random to half of that frequency. The dynamic gain functions
derived from repetitive APs alone have a comparatively narrow
bandwidth, especially for 7=5 ms, where the cutoff frequency
is below 8 Hz. In conclusion, the two dynamic gain functions
for T=>5 and 50 ms at the iso-delay working points realize high-
bandwidth encoding in different ways. One reduces the fraction
of repetitive firing APs, while the other forms longer bursts of
repetitive firing APs to weaken its low-pass filter effect. In
either case, our results clearly show that the high encoding
bandwidth of Eyal’s model with type II excitability is not a
direct result of the burst firing. APs fired within bursts only
contribute the pronounced peaks at the preferred firing rate.
We can also use this AP classification strategy to further inves-
tigate the variation of spike gain shape across working points.
Low frequencies of only a few Hertz were particularly well
represented in the zero-delay dynamic gain curve, when the
neuron was nearly mean-driven (Fig. 4D, orange). This is
caused by a relatively large fraction of repetitive firing APs
(Extended Data Fig. 6-1B in Zhang et al., 2023). They occur
in long bursts and thereby limit the encoding of intermediate
frequencies. This can be understood when considering the
example of a 100 ms long burst, for which first and last APs
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Intrinsic high-frequency firing undermines high-bandwidth encoding. 4, A short sequence of APs from the simulations in Figure 5 (= 50 ms, iso-delay), shown in a raster plot. The

APs are classified into two groups according to the preceding ISI (ISI >50 ms long, black dashes, ISI <50 ms shorter, gray dashes). Separate dynamic gain functions of the iso-delay and
iso-fluctuation dynamic gain functions in Figure 5C are calculated for both spike classes and shown here. B, The dynamic gain curves derived from fluctuation-driven APs. For the slower
fluctuations, high-frequency input components are encoded better than low-frequency components as a consequence of resonant firing. C, The dynamic gain curves derived from APs fired
in close succession, e.g., repetitively fired APs. Resonance effects cause the dips and peaks (see main text). D and E, The AP initiation delay distributions of the two spike classes are very
similar in the case of iso-delay, and hence very similar to the joint distribution in Figure 5A. The delay distributions in the iso-fluctuation case show a much longer tail. Because the
type | model produces much less bursting, the detrimental effects on encoding are weaker. The corresponding data are shown in Extended Data Figure 6-1 in Zhang et al. (2023).

fall on diametrical phases of a 5Hz stimulus component and
thereby limit encoding of this frequency. In contrast, the
fluctuation-driven APs, do not show such a preference for
very low frequencies, but they make up only a small fraction
of all APs at the nearly mean-driven working point.

Dendrites enhance high-bandwidth encoding by suppressing
low-frequency effective impedance

As an application of the dynamic gain decomposition, we disen-
tangled the complicated effects of dendritic morphology on each
stage of information processing. This analysis elucidates the
impact of dendrites on population encoding. We took the two
model variants with a median and a large dendrite from Eyal
et al. (2014) for comparison (see Materials and Methods), both
display type II excitability (see inset Fig. 7A). We first examined

the impact of dendrite size on intrinsic AP initiation dynamics.
Increasing the dendrite size increases the lateral current from
the initiation site toward the soma, due to the larger somato-
dendritic current sink. V), is shifted to slightly more depolarized
values from —58.05 to —54.72 and —53.61 mV. As a result, the AP
onset is shifted toward voltages at which the sodium channels
have steeper voltage dependence. Consequently, at later stages,
e.g., 10 mV/ms, the slope of the phase plot is actually larger for
models with larger dendrites, as has been previously reported
in Eyal et al. (2014) (Fig. 7A). However, when aligning V), to
(0 mV, 0 mV/ms), we found that a larger dendrite does not accel-
erate AP initiation close to Vj,, instead, the local slope of the
phase plot is reduced. A first evaluation of the subthreshold
effects of the dendrites can be gained from the oy—oy relation
(Fig. 7B, inset panel). The large current sink of the dendrite
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Figure 7. A larger dendrite shunts low-frequency inputs, but improves low-frequency spike gain. A, Phase plots of three model variants with different dendrite sizes, V. aligned at (0 mV, 0

mV/ms). The inset shows the F—/ curves of Eyal's type Il models with different dendrite sizes. Larger dendrites increase the minimal firing rate. B, AP initiation delay distributions at the iso-delay
working points (v = 5 Hz). Inset panel shows corresponding g, on a,—g; relations. C, ISI distributions at the iso-delay working points. D, E, and F, Dynamic gain functions and in lighter colors the
corresponding zero-delay dynamic gain functions (D), effective impedances (E) and zero-delay spike gain (F) of the three model variants calculated at iso-delay working points (upper panels),
together with their normalized gain curves (lower panels). See the Extended Data Figure 7-1 in Zhang et al. (2023) for the results with 7= 50 ms.

drastically decreases the impedance of the neuron, reflected by the
reduced slopes. Compared to this drastic impedance effect, the den-
drite’s impact on the suprathreshold dynamics appears to be subtle.
Therefore, to compare the population encoding capabilities of the
three models, we chose iso-delay working points to harmonize
the suprathreshold contribution and focus on different subthres-
hold contributions of the dendrite.

Taking the dynamic gain function of 7=5 ms in Figure 5 for
reference, we fixed the average AP initiation delay for the three
model variants, leading to very similar distribution shapes
(Fig. 7B). Under this criterion, oy is smaller for the neuron model
with a dendrite (scattered dots in inset panel), and the three ISI
distributions are similar to each other (Fig. 7C). Compared to
the dynamic gain function without the dendrite (blue), the other
two gain curves (red and green) have smaller dynamic gain below
200 Hz. In the high-frequency region, gain curves decay with
similar trends, and corresponding zero-delay dynamic gain func-
tions are also close to each other (Fig. 7D, top panel).
Normalizing the dynamic gain functions, we observed an
enhancement of high-frequency encoding with a larger dendrite
(lower panel in D).

Decomposing the zero-delay dynamic gain functions into
effective impedances and zero-delay spike gains, we found that

adding a dendrite reduces the effective impedance mostly for
low frequencies, but not in the high-frequency limit. (Fig. 7E,
top panel). Low-frequency components are suppressed more
strongly, because they charge a larger portion of the dendrite,
while high frequencies experience much stronger spatial filtering
and charge only the proximal dendrite. When the effective
impedances are normalized (lower panel in E), the dendrites’
suppression of low frequencies appears as a boost of high-
frequency representation in the voltage. Interestingly, a further
substantial increase in the dendrite size hardly affects the shape
of the effective impedance. The zero-delay spike gain curves
are relatively flat in the low-frequency region, and they increase
in similar trends in the high-frequency region (Fig. 7F, top
panel). The curves for the two dendrite-bearing models are
almost identical (red and green), while the zero-delay gain curve
of the original model has lower values (blue) because it produces
very similar firing patterns (Fig. 7C) with approximately three
times larger subthreshold voltage fluctuations (inset in Fig. 7B).
The normalized curves in the lower panel show that, the dynamic
gain enhancement caused by the effective impedance is slightly
undermined at the stage of zero-delay spike gain (from blue to
red, and green). Taken together, the improved high-frequency
encoding in the presence of a dendrite is primarily due to a
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suppression of low frequencies in the effective impedance, with a
minor effect of the accelerated AP initiation, leading to weaker
dynamic gain decay. Studying the effect of the dendrite under
slower input correlations, led to the same conclusion. In partic-
ular, the dendrite did not change the Brunel effect (Extended
Data Fig. 7-1F in Zhang et al., 2023).

Dynamic gain decomposition provides subcellular dissection
of a pathophysiological insult on population coding

The dynamic gain decomposition is designed to be applicable to
any neuron, independent of its complexity. It should be applica-
ble even to recordings from real neurons, provided that the
recorded somatic voltage contains sufficient information. For
the subthreshold analysis, this is very likely, but the utility of
somatic recordings for initiation-related analysis is not clear a
priori. We therefore set out to apply the dynamic gain decompo-
sition to experimental data and chose a specific data set from a
previous study for two reasons. First, the two groups in the
data set had been reported to have different input resistances,
prompting us to expect different effective impedances. Second,
the treatment group, but not the control group, contained neu-
rons with very different dynamic gain curves, which we would
like to understand better by decomposition.

The data in question were recorded from layer 5 pyramidal
neurons in coronal slices of mouse somatosensory cortex and
originally published in Revah et al. (2019). Only slices in the
treatment group underwent two brief hypoxic episodes that
induced spreading depolarization (SD). Unlike simulations,
experiments record voltage at the soma and not the initiation
site. We showed earlier, that the transfer impedance from soma
to initiation site does pose an additional filter for higher input
frequencies. However, for distances up to 50 um, this effect was
very small (Zhang et al., 2022), and hence we speculate that using
the somatic voltage will still allow decomposition.

We decomposed the dynamic gain functions of each pyrami-
dal neuron into effective impedance and spike gain. For two, very
differently affected neurons from the treatment group of Revah
et al. (2019), the results are shown in Figure 8. Neuron 1 appears
very similar to control neurons, it displays encoding with a band-
width of approximately 350 Hz (Fig. 8A). Its dynamic gain’s
confidence interval widens substantially, as the gain curve drops
below the noise floor. In comparison, the dynamic gain of neuron
2 (Fig. 8B) is substantially larger in the low-frequency region,
decays more steeply at intermediate frequencies, and displays a
lower cutoft frequency of around 200 Hz. But surprisingly, above
400 Hz, its dynamic gain reemerges above the noise floor and
increases with a smaller bootstrapping confidence interval as
compared to neuron 1. Also note that the absolute magnitude
of the dynamic gain, for instance at 200 Hz, is higher in neuron
2, although its cutoff frequency is lower. The underlying proper-
ties that cause these differences became clear, when we decom-
posed the dynamic gain into the sub- and suprathreshold
components.

As a first step, we estimated the phase plot from the record-
ings (see Materials and Methods) by averaging voltage deriva-
tives at different voltages (inset panels in A and B). This
reveals a difference in threshold voltage, but most importantly,
a large difference in the amount of voltage-sensitive depolarizing
currents between the two neurons. For neuron 1, the voltage
derivative changed little for voltages below —40 mV, then sud-
denly increased to 30 mV/ms within 8 mV, reflecting large AP
initiation currents. Neuron 2, in contrast, had smaller depolariz-
ing currents and a higher threshold. The position of the local
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minimum V), was around —30 mV for neuron 2 and, although
it could not be discerned precisely, it was likely just below —40
mV for neuron 1.

In the second step, we reduced the AP initiation delay by low-
ering the AP detection threshold V.. analogous to the analysis
of Eyal’s model in Figure 4B. The recalculated dynamic gain
functions for the various Vyetec values are given in the lower pan-
els of Figure 8A and B. For neuron 1, the gain curves changed
abruptly, once Vigereer reached —40 mV and already at —45mV
a saturation was reached. Apparently, only this narrow supra-
threshold voltage range contributed to the uncertainty in AP tim-
ing. This corresponds to the steep change in the phase plot
(inset). The initiation-related decay of the dynamic gain affected
only frequency components above 300-350 Hz. When the AP
was detected around V), the dynamic gain curve resembled
that of a LIF neuron model without voltage-dependent initiation
and with a hard threshold Brunel et al. (2001). This result repli-
cates the simulations shown in Figure 4B, albeit with an almost
four times higher bandwidth of the dynamic gain decay, as com-
pared to Eyal’s type I model.

In neuron 2, the recalculated dynamic gain curves behaved
differently. The transition to LIF-like behavior was much more
gradual (Fig. 8B, colored traces). The uncertainty in AP timing
accumulated during the transition through a much larger voltage
range from above —25 mV down to —40 mV, mirroring the more
gradual change in phase plot slope (inset). Another important
difference is the affected frequency range. In neuron 2, supra-
threshold delay variability already reduced the encoding for fre-
quencies above 90-100 Hz, similar to what we observed for Eyal’s
model.

Our insights into the different suprathreshold dynamics are
complemented by an analysis of the subthreshold contribution
to dynamic gain. We calculated the effective impedance as the
ratio of Fourier transform of voltage and Fourier transform of
current (see Materials and Methods). The two neurons’ effective
impedances and zero-delay spike gains are juxtaposed in
Figure 8C and D. This reveals the considerably larger effective
impedance of neuron 2 as the origin of this neuron’s large abso-
lute dynamic gain value. The fact that this effective impedance
rises for frequencies above 30 Hz is puzzling and we can only
speculate about a contribution of sodium channels, possibly
due to the increased threshold in neuron 2. For neuron 1, the
effective impedance approximates the shape one would expect
from a passive soma with dendrites. It is dominated by a cutoff
of 12.8 Hz, i.e., a membrane time constant of 12.5 ms. Beyond
the cutoff, the slope is less negative than —1, most likely due to
the presence of dendrites. The zero-delay spike gains of the
two neurons are rather similar at low frequencies, but above
20Hz, they deviate increasingly. Because these curves are
obtained by dividing zero-delay dynamic gain curves by the effec-
tive impedance, this deviation originates in the unusual imped-
ance increase in neuron 2.

In summary, the differences between the two neurons’
dynamic gain curves can be attributed to subthreshold and supra-
threshold contributions as follows: the difference in absolute
values is caused by the higher effective impedance of neuron 2.
The different locations of the dynamic gain drop, and conse-
quently the different bandwidths are explained by the substan-
tially slower AP initiation in neuron 2. It causes an earlier drop
in dynamic gain due to larger initiation delay variability. The
remaining difference is the striking rise in the high-frequency
region of the second neuron’s dynamic gain. We suspect that
at the high frequencies the extrinsic, stimulation-induced
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Figure 8.  Ischemic insult slows AP initiation. A, Dynamic gain function G(f) (upper panel) of one pyramidal neuron from the treatment group in Revah et al. (2019), and the associated gain

curves recalculated with lower AP detection thresholds ranging from 0 mV to —50 mV (lower panel). Inset panels are the phase plots estimated by averaging voltage derivatives at each voltage
value. Note the wide bandwidth of the original gain function. Gray areas are the 95th percentile bootstrapping confidence intervals. Thin line represents the 95th percentile noise floor (see
Materials and Methods). B, as A, but for another neuron from the treatment group with drastically different gain. Firing rates are 4.10 and 4.68 Hz in A and B respectively. C and D, Effective
impedances and zero-delay spike gains of the dynamic gain functions in A and B. GEP is the ratio between zero-delay dynamic gain (Vyete =—50 mV in C and D) and effective impedance.
E, Grand average of G(f), Ze, and Gg,(f) for control neurons (CT, n = 9) and neurons undergoing brief hypoxia and SD (n = 15). Lines and shades represent means and their standard error. G(f)
and G,(f) are displayed for the frequency region in which all individual traces are significant, i.e., above the respective noise floor. F, G(f) at 200 Hz does not differ between groups. Due to the
large Z differences between the groups, the spike gains at 200 Hz are significantly different (t-test, *p = 0.048).

currents dominate the second neuron’s weaker intrinsic currents.
Consequently, the exact time of threshold crossing is influenced
by high-frequency input fluctuations, similar to the situation in a
LIF neuron model. This is the reason for the rising dynamic gain
and the relatively narrow confidence interval. In the context of
the original study (Revah et al,, 2019), it is interesting to note,
that cells with such a weak intrinsic AP initiation appeared
only after hypoxia and SD, which also compromised the molec-
ular integrity of the AIS.

Applying dynamic gain decomposition to all the cells in the
original data set, we could further investigate the previously
described effect of hypoxia-induced SD on the dynamic gain.
The grand averages for dynamic gain (G(f)), effective imped-
ance (Zeq(f)) and spike gain (G,(f)) were calculated over the
frequency range, where data were available from all cells. For
(G(f)) and (Ggp(f)) that only includes the range up to 300 Hz,

at which point at least one cell’s G(f) touched the noise floor.
The grand averages, together with their standard errors are
shown in Figure 8E. They show clearly that the average effective
impedance is increased in the treated cells, and that this
difference dominates the unnormalized dynamic gain curves.
While the dynamic gain of the treated cells appears to drop
earlier, between 100 and 200 Hz as compared to the control
cells >300Hz, this difference does not manifest in a
statistically significant difference. The dynamic gain values at
200Hz are spread out over similar ranges for both groups
(Fig. 8F). In contrast, the impedance-corrected spike gain values
are significantly different (Student’s ¢-test, p=0.048). These
examples show that all aspects of dynamic gain decomposition
can be applied to experimental data and serve to suggest
biophysical parameters as the basis of individual dynamic
gain features.
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Discussion

Here, we developed a straightforward method to decompose the
contribution of subthreshold and suprathreshold dynamics on
population encoding. It allows for a unified and comprehensive
approach of dynamic gain analysis because it can be applied to
simulated data from models of any complexity and even mea-
surements from real neurons. When we applied the dynamic
gain decomposition to a complex multi-compartment model
equipped with a biophysically plausible AP initiation mecha-
nism, we found that the model’s high encoding bandwidth is
mainly enabled by a high potassium conductance around thresh-
old. This also causes a type II excitability, but the tendency to
high-frequency bursting is not in itself beneficial for a high band-
width. The decomposition also guides the definition and choice
of working points at which model variants or cell types can be
compared without bias. Iso-(voltage-)fluctuation and
iso-(initiation-)delay working points control for sub- or supra-
threshold contributions, respectively. We found the iso-delay cri-
terion particularly useful for understanding how changes in input
correlation and dendrite size affect encoding bandwidth. We also
applied the decomposition to recordings from two layer 5 pyra-
midal neurons, which were differently affected by hypoxia. Their
different dynamic gain shapes and bandwidths resulted from
striking differences in effective impedance and intrinsic initiation
currents. This demonstrates that dynamic gain decomposition
can connect cellular physiology to network function.

Dynamic gain function components

Two of the three components we introduced (effective imped-
ance and dynamic gain decay) capture well-defined subthres-
hold and suprathreshold processing steps and are
independently calculated. The third component (zero-delay
spike gain) represents dynamic gain features not captured by
the other two. Effective impedance and zero-delay spike gain
jointly capture the impact of subthreshold dynamics on popula-
tion encoding. Their product represents a LIF-like dynamic gain
function. The dynamic gain decay in the high-frequency region,
reflects how the AP initiation dynamics limits the stochastic
input’s control over the precise AP time. The identification of
separate components underlies the idea to align working points
across model variants before dynamic gain decomposition. A
related approach, a dynamic gain decomposition into separate
components, lies behind the approach to classify APs into few
groups, and calculate the group-based dynamic gain compo-
nents. Here, this approach elucidated the individual contribu-
tions of APs leading to a burst, earlier we applied it to isolate
the effect of AP timing relative to slow input oscillations
(Merino et al., 2021).

Fixing working points isolates parameter effects

The dynamic gain function is not a fixed curve but depends on
the working point of the neuron model. It can change substan-
tially when the operating regime is changed from mean-driven
to fluctuation-driven (Fig. 3G). Thus, it is essential to properly
align the working points of model variants, such that the
differences detected in the dynamic gain functions originate
mainly from the targeted parameter change, rather than unre-
lated working point factors. One criterion we adopted here is
fixing the firing rate at 5Hz. A second criterion can be chosen
to fully determine the working point on the two-dimensional
manifold of firing rate, defined by y; and o7 (Fig. 3D). Previous
studies have focused on fixing the subthreshold dynamics, either
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by fixing the voltage fluctuations oy (Kondgen et al.,, 2008;
Tchumatchenko et al., 2011; Ilin et al., 2013), or the firing pattern
(CVisp) (Vilela and Lindner, 2009; Lazarov et al., 2018; Zhang
et al., 2022). Both criteria, at least in part, relate to the subthres-
hold voltage fluctuation. Keeping them constant is suitable if the
major differences between the compared models manifest mostly
in the suprathreshold regime. Here, we introduced a complemen-
tary criterion, the initiation delay. By fixing the mean of this ran-
dom variable, we managed to control the impact of the
suprathreshold AP dynamics across models, which corresponds
to the dynamic gain decay in the high-frequency region. We
found this criterion particularly useful for studying the Brunel
effect and the dendritic effect on Eyal’s model, since both mainly
affect the subthreshold dynamics. What is more, we generalized
the approach to LIF-like models, by fixing the average voltage
derivative at threshold (Fig. 5F).

Uncovering the role of AP initiation dynamics for
high-frequency dynamic gain

Lowering the AP detection voltage to the voltage range where
intrinsic currents and external input jointly govern the voltage
dynamics, results in changes to the dynamic gain in the high-
frequency region until it resembles that of a LIF-like neuron.
Obviously, this AP detection at low voltages does not represent
a physiological mechanism; an AP is special precisely because
its strong depolarization does gate other ion channels.
However, the virtual AP times resulting from the low detection
threshold still reveal a physiologically meaningful property.
Because dynamic gain measures the susceptibility of AP times
to extrinsic perturbation, the difference between dynamic gain
curves obtained with high and low detection thresholds uncovers
how this susceptibility is built up or eroded during the AP initi-
ation interval. This simple, phenomenological approach reveals
how the AP initiation dynamics within different voltage regions
contributes to the physiologically meaningful dynamic gain. Such
information is otherwise inaccessible, except for the most simple
intrinsic dynamics, when it can be analytically calculated
(Fourcaud-Trocmé et al., 2003; Wei and Wolf, 2011). In models
and experimental data, we observed the same, expected relation
between the initiation-related dynamic gain modulation and
the voltage dependence of initiation currents. The steeper dV/
dt rises, the larger is the bandwidth and the smaller is the range
of detection thresholds for which the dynamic gain shape
changes (Figs. 4A and E, and 8A and B). Our analysis of Eyal’s
model revealed that the working point strongly influences this
initiation-related dynamic gain modulation. However, the mod-
el’s encoding bandwidth is never chiefly limited by the initiation
dynamics, because the subthreshold signal transformations, the
effective impedance Z.g and zero-delay spike gain GSP, impose
a cutoff at lower frequencies. This is in contrast to the findings
in cortical pyramidal cells, where the initiation dynamics seems
to pose the ultimate limitation for the encoding bandwidth
(Fig. 84).

This analysis approach holds great promise for future studies
for two reasons. First, it provides a common basis to disentangle
the role of initiation dynamics in all models and experimental
data. Second, it is sensitive to the input statistics. It changes
when the neuron is studied at a different working point and
thereby the relation between extrinsic and intrinsic currents
shifts. In that respect, the dynamic gain decay analysis is much
more informative than the conventional metrics of initiation
dynamics, the AP phase plot.
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Implications for neuronal network modeling

The shape and bandwidth of the dynamic gain play important
roles for studies of information processing in large, recurrent
neuronal networks. In large network simulations, the neuron
models should therefore feature realistic dynamic gain functions
with realistic dependencies on the input statistics. However, on
the scale of tens of thousands of neurons, the computational costs
of multi-compartment models are almost prohibitive. Our
dynamic gain decomposition suggests routes to create simpler
models with realistic dynamic gain curves that depend on input
statistics just as the full multi-compartment models do. Point
neuron models can be combined with analytical input transfor-
mations, similar to the work of Aspart and colleagues (Aspart
et al., 2016). The realistic, limited bandwidth could be obtained
by adding a random AP initiation delay distribution. The sub-
threshold influence on the dynamic gain curve could be created
by a few voltage-gated or AP time-dependent conductances that
create adaptation and resonances. The electrotonic separation
between soma and AIS, which shapes the signal arriving at the
AP initiation zone (Brette, 2013; Zhang et al., 2022), could be rep-
resented in three-compartment models, representing AIS, soma,
and dendrite, similar to the two-compartment model utilized by
Ostojic and colleagues (Ostojic et al., 2015). Those approaches
could provide realistic dynamic gain curves at lower computa-
tional cost.

Cellular physiology of dynamic population coding

Because dynamic gain decomposition works along the biophy-
sical signal transformation cascade, its results can be inter-
preted in physiological terms and corroborated with
conventional electrophysiological methods, such as potassium
channel pharmacology (Higgs and Spain, 2011). This is partic-
ularly helpful in the emerging fields of AIS plasticity and spec-
trinopaties, where structural changes at the site of AP initiation
are observed as consequences of altered input (Grubb and
Burrone, 2010; Kuba et al., 2010; Grubb et al., 2011; Jamann
et al.,, 2021) or mutated structural molecules (Parkinson et al.,
2001; Lazarov et al,, 2018; Wang et al., 2018), and the conse-
quences for excitability and encoding capacity need to be quan-
tified in order to understand the functional impact on the
population level. We propose that future studies of AIS plastic-
ity can use dynamic gain measurements at carefully maintained
working points to quantify potential circuit-level consequences.
Dynamic gain decomposition can then be used to inform mech-
anistic models of how the observed molecular and structural
rearrangements affect functional differences or, alternatively,
maintain encoding precision while changing excitability.
Foundations for such a connection between physiology and
encoding precision have already been laid by studies that tie
structural changes at the AIS (Lazarov et al, 2018; Revah
et al.,, 2019) or dendrite size (Testa-Silva et al., 2014; Ostojic
et al,, 2015; Goriounova et al., 2018) to changes in the dynamic
gain. It will be possible to apply the decomposition method to
these recently obtained data, to attribute the observed changes
to sub- and suprathreshold signal transformations, and thereby
critically test the concepts formulated in those studies. The
decomposition examples in this study reveal that unlike Eyal’s
model, the real neuron’s encoding bandwidth is limited by
the initiation dynamics. These preliminary results opens up
new questions for future research, because the biophysical ori-
gin of the effective impedance’s peculiar shape is unclear, as is
the wide bandwidth of the initiation-related dynamic gain
decay (Fig. 8A-C). Ultimately, to understand population
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encoding in the brain, we need a better understanding of the
physiological working points, experienced by neurons in vivo.
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