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ABSTRACT

Long Short-Term Memory (LSTM) deep neural networks are diverse
in the tasks they can accomplish, such as image captioning and
speech recognition. However, they remain susceptible to transient
faults when deployed in environments with high-energy particles
or radiation. It remains unknown how the potential transient faults
will impact LSTM models. Therefore, we investigate the resilience
of the weights and biases of these networks through four implemen-
tations of the original LSTM network. Based on the observations
made through the fault injection of these networks, we propose an
effective method of fault mitigation through Hamming encoding of
selected weights and biases in a given network.

CCS CONCEPTS

« Hardware — System-level fault tolerance.
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1 INTRODUCTION

The recent revolution in Deep Neural Networks (DNNs) has signif-
icantly changed many areas, including finance, manufacturing, im-
age processing, natural language processing, etc. Typical DNNs in-
clude Convolutional Neural Networks (CNNs), LSTMs, and recently-
developed Transformers. Like most DNNs, LSTMs are often de-
ployed on CPUs, GPUs, and FPGAs. This computational hardware
allows DNNs to perform the needed computations and allows vari-
ous DNN architectures to be deployed. However, given that DNNs
require this hardware to function, environmental factors can affect
the hardware, affecting the neural network. Since LSTMs can be

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

GLSVLSI 24, June 12-14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0605-9/24/06
https://doi.org/10.1145/3649476.3658776

328

Travis LeCompte
tdleco95@gmail.com
Louisiana State University
Baton Rouge, LA, USA

Xu Yuan
xyuan@udel.edu
University of Delaware
Newark, DE, USA

Lu Peng
lpeng3@tulane.edu
Tulane University
New Orleans, LA, USA

deployed in applications that can be used in a wide variety of en-
vironments, these networks can encounter various environmental
susceptibilities. In particular, environments with the presence of
cosmic particles or radiation can cause transient faults in DNNs [2].
This type of fault occurs when a bit in a storage element becomes
flipped to another state, leading to temporary soft errors, known as
Single Event Upsets (SEUs) [11]. Many studies have been conducted
to research and improve the resilience of hardware and software
due to these anomalies [1, 3, 5].

One of the most common ways to model SEUs and other tran-
sient faults is through fault injection of these DNNs. Specifically,
this process involves randomly selecting elements within a neu-
ral network to perform bit flips upon. For this study, we utilize
TensorFI2 [2] for fault injection, as this injector allows for flexible
parameters for customizing injections for TensorFlow-based mod-
els. Due to limitations of the current version of TensorFI2, it has
difficulty working with newly-developed Transformer models with
much larger model sizes than LSTM models. On the other hand,
both LSTM and Transformer work for sequence-to-sequence tasks
and can handle long-range dependencies with non-linear transfor-
mations. Therefore, we investigate LSTM in this paper while soft
error resilience of CNNs has been well studied [4, 7, 10].

In this work, we developed four different binary sentiment analy-
sis models with various architectures and performed fault injections
on each to measure their resilience. By introducing multiple num-
bers of errors under other conditions, we were able to determine
areas of susceptibility that lead to decreases in each model’s accu-
racy concerning the weights and biases. Based on these findings,
we developed a means of mitigating the errors by encoding the
most susceptible bits of the weights and biases through the Ham-
ming Code, as this method only requires additional computation.
To reduce computation costs, we only selected specific sets of these
weights and biases to encode based on their susceptibility. Imple-
menting our method into each network, we compared and proved
the effectiveness of the Hamming Code as a method of fault mitiga-
tion, significantly improving the resilience of LSTM networks.

In summary, the contributions of this paper can be listed as
follows:

- We employed a recent fault injector to analyze the vulnerabilities
of LSTM models.

- We developed a method to improve the resilience of LSTMs via
Hamming code.

- Based on the experiments, the proposed error mitigation method
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can significantly improve the resilience of LSTMs even when 20
faults were injected.

2 LSTMS FOR FAULT INJECTION &
MITIGATION

To perform the work in this study, we constructed four different
LSTM networks with different architectures for binary sentiment
analysis. Given the purpose of these neural networks, they all use
an embedding layer as the input layer, allowing for the text passed
to the network to be interpretable. This layer only consists of a
single matrix of weights. For all remaining layers, save for the last
layer, the architecture of each network varies. In order to cover dif-
ferent variations, we decided to use a single LSTM, stacked LSTMs,
a bidirectional LSTM, and stacked bidirectional LSTMs for each
network, respectively.

The dataset used for training and testing with the LSTM neural
networks is Stanford’s Large Movie Review dataset [8]. This dataset
provides 50,000 highly polar movie reviews, with 25000 for training
and 25000 for testing. Given that this dataset is intended for binary
sentiment classification of movie reviews, it consists of two different
classes: “positive" and “negative.” This dataset can be freely obtained
online and is commonly used due to its large volume of data when
compared to other benchmark datasets. The LSTM models were
trained with the Adam optimizer and had a learning rate of 0.001
and a batch size of 128.

3 FAULT INJECTION AND PROTECTION
3.1 Fault Model & Injection

Before implementing any type of mitigation into LSTM networks,
we needed to identify areas of susceptibility within the four dif-
ferent networks, as seen in phase 0 of Figure 1. Therefore, for our
fault model, we assume that the training process is fault-free. We
make this assumption as most neural networks will be trained in a
stable environment before being deployed in a potentially suscepti-
ble area. The lack of such an assumption would require additional
analysis and testing of potential bit flips during the training phase.
For randomly selected weights and biases from each layer, we per-
form random bit-flips and observe the network’s final output. This
process is based on other fault injection methods used in prior work
within this area [2, 6, 9].

An important aspect to note is that we consider only SEUs that
would not lead to obvious failures, such as a system crash. Therefore,
we will only consider faults that result in silent data corruption
(SDC), which is not easy to detect by the users. Furthermore, this
fault model simulates the SEUs or bit-flip faults, which can occur
in data stored within the memory of a system.

As previously mentioned, the data to be flipped consists of the
weights’ and biases’ bits in the networks. An example of this process
can be seen in Figure 2, where the fourth most significant bit of a
given weight is flipped. An important aspect of these weights is that
they are in FP32 format. Specifically, the figure depicts the original
value increasing by a factor of approximately 4 billion, showing the
drastic changes that can result from a single bit-flip.

With this fault model in mind, we individually inject each set of
weights and biases in each layer for each of the 4 LSTM networks.
Furthermore, the weights and biases from each set are randomly
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chosen. For our study, we chose to perform 100 fault injections for
each set of weights and biases in each layer. We repeated this process
for 1, 10, and 20 fault injections. Once the injections were performed,
we measured the accuracy of the injected model based on the 25000
sample test set. Given our weight-set approach for injection, we
are able to identify both sets of weights/biases and layers of the
network that are most susceptible to SEUs. Furthermore, variation
in the number of faults allows us to stress-test the resilience of
the network, further highlighting susceptible weight/bias sets and
layers.

To continue this investigation, we also looked into the effects of
injecting specific sections of the FP32 format. We chose to limit the
bit-field to be injected into (i.e., the sign, exponent, and mantissa) for
individual experiments while maintaining the previous parameters.
This analysis will allow us to have more insight into the bits that
need to be hardened within specific weight sets and layers.

3.2 Protection with Hamming Code

Based on the observations of our fault injection of the four networks,
we developed a method to improve the resilience of LSTMs via
Hamming code. Therefore, we first created Hamming encoding
and decoding functions specifically designed for the 8-bit exponent
of FP32 numbers to implement (7,4) Hamming code on the two
4-bit halves of the exponent of the LSTM models. We chose only
to encode this section of bits, as it is the most susceptible to SEUs.
Additionally, our decision to split the exponent bits into two 4-bit
halves allows us to detect two errors (assuming these errors do not
occur within the same half).

Since the addition of these functions to the model invokes extra
computation, it is important to harden only the exponent bit field
of weights and biases that are susceptible to SEUs. For instance,
we noticed that the embedding layer, in our case, was inherently
resilient, even with exponent bit field SEUs. Therefore, implement-
ing Hamming code on these weights would introduce unnecessary
computation, emphasizing the importance of conducting phase 0 as
opposed to hardening the entire model. In our case, since the initial
accuracy of every model was approximately 86.5%, we selected sets
of weights and biases that produced an average accuracy of less
than 80% when injected with 20 SEUs in the exponent bit field (See
Figure 2). We selected this specific testing case as it represented the
worst-case scenario.

Since the models’ weights and biases will become encoded, we
must ensure that hamming decoders are in the layers that contain
susceptible weights and biases to correct any faults. These decoders
allow the weights and biases to be corrected if bit one error is
present. Furthermore, these modules restore the original values of
the weights and biases, allowing them to be utilized by the models.
As seen in phase 1 of Figure 1, we modified the selected layers for
hardening and wrapped instances of memory accesses to weights
and biases with the “K.in_train_phase()" function. This specific
function allows layers to behave differently during training and
inferencing. This behavior is important to ensure that our method
works for both untrained and trained models. Its functionality is
similar to an if-else statement where the condition is determined
by the model’s deployment state. For the training state, we had the
model utilize unencoded weights, allowing it to develop trained
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Hamming Code for Fault Mitigation
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Figure 1: System Overview of Implementing Hamming Code for Fault Mitigation of LSTM Networks
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Figure 2: Bit-Flip on Weight in Single-Precision Floating
Point Format
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Figure 3: Arrangement of Data and Parity Bits for Hamming
Encoding

values for prediction. Assuming that we encode the weights after
this training, the weights passed to the network will not be set to
their trained values. Therefore, for the inference state, we have the
model call our decoding function (hamming_decode_weights) on
the passed encoded weights to correct any errors.

Once the decoders are in place, we can encode the weights of the
networks. If the model is pre-trained, we simply load the original
weights from a saved weights file into the model and encode them
with the previously mentioned encoder function-which applies a
(7,4) Hamming encoding. If the model has not been trained yet, we
can simply train the model to obtain the necessary trained weights
and perform the encoding immediately after. Regardless of the
situation, we will be able to save the encoded weights to a weights
file that can be loaded at any time by the LSTM model. This process
can be seen more clearly in phase 2 of Figure 1.
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Table 1: Accuracies of the Original and Modified LSTM Net-
works

Model Original Accuracy (%) | New Accuracy (%)

LSTM 87.09999918937683 87.09999918937683

Stacked LSTM 86.72800064086914 86.72800064086914
Bidirectional LSTM 86.88799738883972 86.88799738883972
Stacked Bidirectional LSTM 87.81599998474121 87.81200051307678

As previously mentioned, we chose to encode the exponent bit
field of susceptible weights and biases, as SEUs in this section of
bits lead to SDC consistently. Since we are encoding two separate
sets of 4-bit data with (7, 4) Hamming code, we will have a total
of 6 parity bits. In other words, we will have an additional 6 bits
for every encoded exponent bit field of a weight. Given that we are
using FP32 numbers, we cannot expand the number of bits of these
data types. Doing so would require us to use FP64, which would
potentially lead to even more issues, as a wider range of values and
bits would be available for SDC. Since we already proved that the
mantissa was the least affected by changes in the bits, we chose to
store each set of 3 parity bits in the least significant bits of each
FP32 number, as seen in Figure 3. This systematic arrangement of
bits for encoding is handled by the encoder function. Additionally,
as shown in Table 1, this change in the least significant bits of
weights and biases of the selected sets had little to no change in
each model’s accuracy.

With both the encoded weights/biases and the decoders, our
network can simply load the weights from the previously created
encoded weights file and deploy the model with increased resilience,
as seen in phase 3 of Figure 1. All matrix operations for this imple-
mentation were done through Keras and Tensorflow APIs to ensure
that any Keras/Tensorflow-based model could utilize our mitigation
methods without potential dependency issues. Additionally, this
implementation does not require any retraining of the models.

4 RESULTS & ANALYSIS

We performed the experiments on a workstation consisting of an
AMD Ryzen 5950X 16-core CPU, 64GBs of 3600MHz RAM, NVIDIA
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Table 2: Matrix of the Average Accuracies of Stacked Bidirectional LSTM’s Susceptible Weight/Bias Sets After 1, 10, and 20 SEUs
Over 100 Iterations Without Protections (Red cells have accuracies below the 80% threshold and yellow cells are closing to the
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RTX 3090 GPU, and the Windows 10 operating system. Additionally,
Tensorflow 2.11.0 was utilized in conjunction with Keras 2.11.0 for
developing the LSTM models. Although we performed tests on four
different architectures, for this work, we will mainly focus on the
most complex model-i.e., the stacked bidirectional LSTM model-as
all models consist of very similar results.

4.1 LSTM Models’ Resilience

Table 2 depicts the average accuracies for all the sets of weights and
biases of the stacked bidirectional LSTM which underwent fault
injection without protections. Based on the observations made
from the SEU injection experiments, we have noticed that the large
number of weights within the embedding layer makes it inherently
resilient to our SEU tests. However, the subsequent layer of the
embedding layer tends to be most susceptible to faults within all
models. Furthermore, biases generally undergo SDC when SEUs are
introduced in the exponent bit field, especially when multiple are
introduced. Lastly, since the dense layer contains a small number
of weights and acts as the output layer, this layer is extremely
sensitive to SEUs and is almost always susceptible to SEUs. More
specifically, the dense layer seems only to be majorly affected when
multiple faults are introduced in the exponent bit field or when
multiple weights or biases experience SEUs in their sign bits, as
seen in Table 2. Given that we are performing binary classification,
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the sensitivity of the sign bits is to be expected, as the sign of the
output determines the prediction outcome.

4.2

To maintain consistency with testing, we continued to inject SEUs in
sets of 1, 10, and 20 for 100 iterations for each layer. However, since
we hardened specific sets of weights and biases within the network,
we performed injection tests only on the sets with our mitigation
method implemented. Furthermore, given that we only hardened
the exponent bit field of the weights and biases, we performed
injection into only the exponent for our bit field tests. In addition
to this set of injections, we also continued to inject all the bits to
verify that layers that have our decoding method do not affect the
overall performance of the model even when they are not the ones
experiencing errors.

Table 3 depicts the average accuracies for the susceptible sets of
weights and biases that we applied our mitigation method on for the
stacked bidirectional LSTM (Please note that red signifies accuracies
below the 80% threshold while blue signifies an accuracy below the
threshold but showed significant improvement in accuracy). We
only show the susceptible weights and biases we chose to inject,
as the hardening of other layers did not show significant signs of
each model’s performance against bitflips.

In Table 3, the dense layer’s bias continues to be a weak point
due to the minimum number of biases present in the layer. Given

Mitigation Performance
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Table 3: Matrix of the Average Accuracies of Stacked Bidirec-
tional LSTM’s Susceptible Weight/Bias Sets After 1, 10, and
20 SEUs Over 100 Iterations with Protections
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the low number of biases—i.e., one bias—multiple injections within
the same values lead to this detrimental decrease in accuracy. This
same behavior can be seen in the kernel weights of the network,
as 20 SEUs in the exponent bit field lead to the most significant
decrease in accuracy. However, when compared to the original
network’s results, our modified model maintains a better accuracy.
The remaining layers of the network all showed significant signs of
improvement, all being around the maximum attainable accuracy.
The one exception to this behavior is when 20 SEUs were introduced
into the first forward LSTM layer. Although this accuracy of 77.34%
is below our threshold, we still regard it as an improvement, as the
accuracy for this test case with the original model was significantly
worse at 59.22% as shown in Table 2. Note that there is a slight
accuracy drop in the case of all bits and dense bias with 20 SEUs.
This happened due to the large number and the randomness of the
injections. Based on these observations, the overall results of this
model show the improved resilience of LSTM networks with our
mitigation method.

4.3 Execution Time

Table 4: Average Execution Times Over 10 Iterations of Orig-
inal and Modified LSTM Models on Large Movie Dataset’s
Test Set

Original Execution New Execution Time
Model "
Time (sec) (sec)
LSTM 4.902 15.824
Stacked LSTM 8.278 21.666
Bidirectional LSTM 8.304 26.292
Stacked Bidirectional LSTM 15.142 35.840

As a final analysis of our model, we measured the execution time
of the original model against our modified model. This experiment
was conducted by having each model compute prediction for the
Large Movie Dataset’s test set (25000 samples) for ten iterations.
The times for each iteration were then averaged to give us the
values shown in Table 4.

Given that we introduced additional computation into the model
for decoding the encoded exponent bits, we expected to see an
increase in the average execution time of the model. Based on the
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obtained results, we can observe a clear tradeoff between execution
time and model resilience. Specifically, our modified models ran
anywhere from 2 to 3 times the original execution time. Therefore,
when deciding to harden specific weight sets or layers, it is im-
portant to consider the use case of the model and the number of
elements being hardened, as each incurs a cost.

5 CONCLUSION

By exploring the resilience of LSTM networks, we discovered that,
like many other neural networks, LSTMs share similar susceptibili-
ties to other neural networks due to the usage of FP32. Usage of this
data type with neural network models leaves an excessive range for
the weights and biases, leading to SEUs having major impacts on
the performance of models. Additionally, we also saw that different
layers and sets of weights and biases of LSTM networks can have
varying susceptibilities. However, a common area of susceptibil-
ity was the exponent bit-field of FP32 numbers. Through these
discoveries, we were able to use Hamming code with the weights
and biases to reduce the rate of SDC within the neural networks,
leading to increased accuracies under various testing conditions.
We hope that future research can build upon our methodology and
combine it with others to improve the overall resilience of other
neural networks.
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