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An Information Theoretic Approach to Prevalence
Estimation and Missing Data
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Abstract— Many data sources, including tracking social behav-
ior to election polling to testing studies for understanding disease
spread, are subject to sampling bias whose implications are
not fully yet understood. In this paper we study estimation
of a given feature (such as disease, or behavior at social
media platforms) from biased samples, treating non-respondent
individuals as missing data. Prevalence of the feature among
sampled individuals has an upward bias under the assumption
of individuals’ willingness to be sampled. This can be viewed as
a regression model with symptoms as covariates and the feature
as outcome. It is assumed that the outcome is unknown at the
time of sampling, and therefore the missingness mechanism only
depends on the covariates. We show that data, in spite of this,
is missing at random only when the sizes of symptom classes
in the population are known; otherwise data is missing not
at random. With an information theoretic viewpoint, we show
that sampling bias corresponds to external information due
to individuals in the population knowing their covariates, and
we quantify this external information by active information.
The reduction in prevalence, when sampling bias is adjusted
for, similarly translates into active information due to bias
correction, with opposite sign to active information due to testing
bias. We develop unified results that show that prevalence and
active information estimates are asymptotically normal under all
missing data mechanisms, when testing errors are absent and
present respectively. The asymptotic behavior of the estimators
is illustrated through simulations.

Index Terms— Active information, asymptotic normality,
biased estimate, missing data, testing errors.

I. INTRODUCTION

ACCORDING to the No Free Lunch Theorems, in a
search problem, on average, no search does better than

blind [1]. Therefore, when for a particular case one search
does different than a uniform search (better or worse), it is
because the programmer used her knowledge (good or bad)
either of the target or the structure of the space, or both.
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Active information was introduced to measure the amount of
information a programmer infuses in a search to reach the
target with different probability than through a blind search
[2], [3]. For a search space X and a target A ⇢ X , active
information is then naturally defined as I

+ = log(p/p0),
where p is the probability of reaching A under the algorithm
devised by the programmer, and p0 is the uniform probability
of reaching A.

Another interpretation of active information will allow to
see that a data set in X , whose distribution is consistent with
a probability p of reaching A, will have a local mode in the
region A if I

+
> 0 [4], [5]. Montañez and collaborators have

also used active information to analyze intention perception
[6]. Díaz-Pachón and Hössjer have used active information
to measure fine-tuning [7]. And Díaz-Pachón and Marks II
used it to compare non-neutral to neutral population genetics
models [8].

In this paper active information is used to unify estimation
and bias correction of the prevalence p0 of a particular feature
in a population when data is missing. This corresponds to a
setting where X is a population of individuals whereas A is the
subpopulation of p0|X | individuals that have the feature. It is
assumed that a prevalence estimate is computed from a biased
subsample of so-called “tested” individuals and that the data
analyst does not control the sampling scheme. Due to external
information among the tested individuals, the fraction of them
that have the feature of interest, p, is typically larger than p0,
corresponding to a positive active information I

+
T = log(p/p0)

due to testing bias.
For example, [9] studied the potential biases in big data

focusing on features such as social behavior patterns from
social media data platforms. They found, after analyzing
survey data from a national sample of American adults’ social
network usage, that those individuals with higher socioeco-
nomic status and greater internet skills are more likely to be
on several different platforms. Another example was the use
of social media platforms such as Twitter to share features
such as personal health information, including their COVID-19
related sentiments and comments. Official agencies have also
used these types of platforms to share policies and research
progress. While such data sources can provide new opportuni-
ties for health-related research, potential significant sampling
bias can appear whereby like-minded individuals seek each
other out thereby limiting full assessment of opinions [10].
This can distort prevalence estimates greatly. Another example
comes from online polling. Given that so many individuals
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are now online and the high cost of phone-based surveys, the
exercise of querying people about features such as their voter
preferences online has become increasingly popular. However,
sampling biases for some of the reasons mentioned above
means that these polls may not reflect views from the overall
population resulting in biased prevalence estimates of say voter
preference [11].

Finally, [12] examined the effect of sampling bias from
COVID-19 testing studies on prevalence estimation. Since
individuals with stronger symptoms are more likely to have
the disease and get tested, their knowledge of these symptoms
represents information that leads to an estimated prevalence
with an upward bias p � p0. From the point of view of
the data analyst conducting the study, individuals’ knowledge
of their symptoms represents external information, and it
quantifies the degree at which individuals’ willingness to be
tested correlates with their symptoms, which in turn correlate
with disease status. In the more general settings of biased
sampling discussed above, symptom status can indicate depth
of support for a particular political candidate, or degree of
attention that draws an individual to a social media platform.
Inspired by this approach, in what follows we sometimes use
the words “feature” or “infection/disease status” for the output,
and “symptoms” for the input or covariates.

Our incomplete testing framework is regarded as a regres-
sion model with missing data [13], [14], [15], where the
missingness mechanism depends on covariates but not on out-
come variables. In the context of disease testing, for instance,
disease-like symptoms are the covariates of the regression
model, whereas disease status is the outcome. The missing
data then consists of all or some information from those
individuals that are not tested, analogously to non-respondents
of surveys. For the simplest missingness mechanism, when
data is missing completely at random (MCAR), there is no
bias of the prevalence estimate due to testing, i.e. I

+
T = 0.

More realistically, some individuals are more likely to “test”
themselves based on their “symptoms” (the covariates) not
based on their unknown feature status (the outcome). In this
context, we show that data is missing at random (MAR) only
when the sizes of all symptom classes in the population are
known, corresponding to a scenario where the data analyst
knows symptom status in the whole population. On the other
hand data is missing not a random (MNAR) when the sizes
of these symptom classes are unknown, corresponding to a
scenario where the data analyst does not know the symptom
status of untested individuals. Note that this is a different type
of MNAR scenario than typically dealt with in the missing
data literature ([16]), where the missingness mechanism not
only depends on covariates but also on outcomes, whereas the
covariates are known not only among the respondents, but also
among the non-respondents. Here we focus on the opposite
MNAR scenario, with response probabilities only depending
on covariates (not the outcomes), but on the other hand these
covariates are only known among the respondents.

For many of the applications we have in mind, the
MNAR scenario with unknown symptom classes is more real-
istic than the MAR scenario with known symptom classes.
However, we can think of at least two situations when

MAR sampling is useful: 1) When there are only two symp-
tom classes and all individuals with stronger symptoms are
required to be tested. 2) When symptoms are interpreted
more generally, for instance as characteristics that can be
retrieved from population registries. Such “symptoms” are
known, whether the individuals of the population are tested
for the feature of interest or not.

For sampling scenarios other than MCAR, the bias of
the prevalence estimate due to testing bias can typically be
corrected to some degree. This is quantified by means of a
negative active information I

+
C due to bias correction, and a

total active information I
+ = I

+
T + I

+
C after bias correction

that typically satisifes 0  I
+  I

+
T . We show that the bias

of the prevalence estimate can be removed for MAR scenarios
(I+

C = �I
+
T or I

+ = 0), whereas this is typically not the case
of MNAR scenarios (0 < I

+
< I

+
T ).

We derive asymptotic normality results for estimates p̂

and p̂0 of the prevalence before and after correction for
testing bias, as well as asymptotic normality for the estimate
Î
+
T = log(p̂/p̂0) of active information due to testing bias.

These results involve the above mentioned MCAR, MAR,
and MNAR scenarios, with and without presence of testing
errors. Whereas p̂ is an asymptotically unbiased estimate
of p for all sampling scenarios without systematic testing
errors, p̂0 is an asymptotically unbiased estimate of p0 only
for MCAR and MAR sampling schemes. This implies that
the associated confidence intervals of p0 only have cor-
rect asymptotic coverage probabilities for MCAR and MAR
scenarios.

II. ACTIVE INFORMATION DUE TO TESTING BIAS

Let X be a population of N = |X | individuals of which
those in A ⇢ X have a specific value 1 of a binary feature
(such as presence of a disease, or a specific type of behavior at
a social media platform), whereas the other subjects in A

c =
X \A have the other feature value 0 (no disease or absence of
the behavior). Let P0 refer to the uniform probability measure
on X , which assigns a probability of 1/N to each individual.
The objective is to estimate the population prevalence

p0 = P0(A) =
|A|
N

(1)

of the feature value 1 from a subgroup of individuals that are
tested. To this effect, first divide

X = [S�1
s=0 [1

i=0 Xsi, (2)

into a number of subpopulations of unknown sizes |Xsi| =
N⇢si, where Xsi consists of those individuals with symptoms
s 2 {0, . . . , S � 1} and feature status i 2 {0, 1}. The first
variable s is measured on an ordinal scale with increasingly
stronger symptoms for feature value 1, so that s = 0 represents
no symptoms whereas s = S � 1 codes for the strongest
possible symptoms. Feature status, on the other hand, is a
binary variable such that i = 0 and i = 1 correspond to
a “non-infected” and “infected” individual, respectively. For
each x 2 X we let

I(x) = (I1(x), I2(x))
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2 {(0, 0), . . . , (S � 1, 0), (0, 1), . . . , (S � 1, 1)} (3)

signify the subpopulation Xsi to which x belongs.
Let also Tx be a variable that equals 1 or 0 depending on

whether x is “tested” for the feature or not. If the individual
is tested, this could mean that he either enters a medical lab
for getting to know his disease status, or enters a social media
platform. In any case, prior to testing the individual knows
his symptoms but not his feature. The collection {Tx; x 2 X}
is assumed to be formed by independent Bernoulli variables,
with P (Tx = 1) = ⇡I(x). This corresponds to an assumption
whereby individuals in different groups are tested with dif-
ferent sampling probabilities ⇡si. Consequently, the weighted
probability measure

P (x) =
⇡I(x)P

y2X ⇡I(y)
, x 2 X (4)

represents a prediction of the tested population, before testing
has occurred. In particular, the testing prevalence

p = P (A) =
X

x2A

P (x) (5)

is the expected prevalence of feature value 1 in the tested
subpopulation. The active information due to testing bias is
defined as

I
+
T = log

p

p0
= log

P (A)
P0(A)

. (6)

To estimate p and I
+
T , the subpopulation

XT = {x 2 X ; Tx = 1} (7)

of NT = |XT | tested individuals is introduced. Since NT is
known, this gives rise to an estimator

p̂ = p̂(A) =
|A \ XT |

NT
(8)

of p. The expected fraction of sampled individuals is also
introduced as

⇡ =
1X

i=0

S�1X

s=0

⇢si⇡si, (9)

which is estimated by

⇡̂ =
NT

N
. (10)

From the data analyst’s point of view, symptom and feature
status I(x) = (I1(x), I2(x)) is known for those individuals
x that are tested (x 2 XT ), whereas feature status I2(x) is
unknown for those individuals x that are not tested (x 2 X \
XT ). This can be summarized by letting �(x) = (�1(x), �2(x))
be a binary vector of length two that indicates whether
symptoms and feature status of x 2 X is known (1) or not
(0). Thus we have that

�1(x) = �2(x) = 1, 8x 2 XT ,

�2(x) = 0, 8x 2 X \ XT . (11)

We further assume that symptom status is either known (for
instance from public registers) for all individuals that are not

tested, or unknown for all such individuals. This corresponds
to

�1(x) has the same value (0 or 1) 8x 2 X \ XT . (12)

The missingness mechanism is defined as

⇡si = P (�(x) = (1, 1)|I(x) = (s, i)) (13)

In the next section we will show that the value of �1(x) in
(12) and the form of ⇡si in (13) influences whether data is
missing at random (MAR) or not (MNAR). In the first case
(MAR) feature status from X \ XT is regarded as missing
data, whereas in the second case (MNAR) symptom and feature
status from X \ XT is missing. Note in particular that if no
data is missing, i.e. XT = X , then p̂ = p0. In the next section
we will regard p̂ as an estimator of p0 that is biased whenever
data is missing.

III. ACTIVE INFORMATION AFTER BIAS CORRECTION

The relation between p and p0 depends crucially on the
sampling probabilities ⇡si. This can be seen by noting that
the population and testing prevalences are different functions

p0 =
S�1X

s=0

⇢s1, p =
S�1X

s=0

⇢s1⇡s1/

X

s,i

⇢si⇡si (14)

of ⇢01, . . . , ⇢S�1,1. Regarding non-tested individuals as miss-
ing data, concepts from the missing data literature [14] are
helpful to explain the way in which data is missing. Random
sampling, or data missing completely at random (MCAR),
occurs when

⇡si = ⇡. (15)

From (14), p = p0 and I
+
T = 0 whenever (15) holds. Condition

(15) is usually very unrealistic, since people with stronger
symptoms (larger s) are more likely to be tested (have larger
⇡s0 and ⇡s1) than those with weaker symptoms. A weaker
assumption of data missing at random (MAR) occurs when
the sampling probabilities only depend on variables that are
known. In an example of a MAR sampling scheme

⇢s = ⇢s0 + ⇢s1 is known (16)

and

⇡si = ⇡s (17)

for s = 0, . . . , S � 1. The first MAR condition (16) follows if
(12) holds with �1(x) = 1, that is, if symptom status is known
among all non-tested individuals. The second MAR condition
(17) implies that the sampling probability (13) only depends
on symptom status, not the feature. The most challenging
missingness mechanism (neither MCAR or MAR) is referred
to as data missing not at random (MNAR). Note that data are
MNAR when at least one of (16) and (17) fails.

Also from (14), typically p 6= p0 and I
+
T 6= 0 when data is

MAR or MNAR. To construct a bias-corrected estimator p̂0 of
p0, notice first that the biased prevalence estimator (8) can be
rewritten as

p̂ =
PS�1

s=0 ⇢s1⇡̃s1P
s,i ⇢si⇡̃si

=
S�1X

s=0

⇢Ts1, (18)
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where the sampling fractions

⇡̃si =
|XT \ Xsi|

|Xsi|
=

|XTsi|
|Xsi|

=
NTsi

Nsi
=

NTsi

N⇢si
(19)

for different subpopulations approximate ⇡si, whereas

⇢Tsi =
⇢si⇡̃siP

r,k ⇢rk⇡̃rk
=

NTsi

NT
(20)

are the known fractions at which the subpopulations appear in
the sample. A comparison between (14) and (20) suggests an
estimate

p̂0 =
PS�1

s=0 ⇢Ts1⇡̂
�1
s1P

s,i ⇢Tsi⇡̂
�1
si

=
PS�1

s=0 NTs1⇡̂
�1
s1P

s,i NTsi⇡̂
�1
si

(21)

of the population prevalence p0, where ⇡̂si is an estimate of
⇡̃si (and thereby also an estimate of ⇡si). From the context
of survey sampling [17] and survey methodology [18], it is
possible to rewrite (21) as a Horvitz-Thompson type weighted
average

p̂0 =
P

x2X wxI2(x)P
x2X wx

(22)

of the outcome variables I2(x) 2 {0, 1} of all individuals in
the population, with “inverse inclusion probability” weights

wx = �1(x)�2(x)⇡̂�1
I(x) =

(
⇡̂
�1
I(x), x 2 XT \ XI(x),

0, x /2 XT .
(23)

These weights are nonzero for all tested individuals (the
respondents), with values depending on which strata Xsi they
belong to.

With estimates (8) and (21) of p and p0 defined, we plug
these estimates into (6), in order to obtain an estimator

Î
+
T = log

p̂

p̂0
(24)

of the active information I
+
T due to testing bias. Introduce the

notation p̄0 for E(p̂0), or an asymptotic (large N ) approxima-
tion of this expected value. We will refer to

I
+ = log

p̄0

p0
= log

p

p0
+ log

p̄0

p
= I

+
T + I

+
C (25)

as the active information of the bias-adjusted prevalence esti-
mate (21), which is a sum of two terms: the active information
(6) due to testing bias and the active information I

+
C due to

bias correction. If the bias correction is completely successful
(I+ = 0), then I

+
C = �I

+
T . This suggests an estimate

Î
+
C = �Î

+
T = � log

p̂

p̂0
(26)

of I
+
C .

IV. EXAMPLES

In this section we will illustrate how to construct the
bias-adjusted estimator p̂0 in (21), of the prevalence p0 of
feature value 1, for a number of sampling schemes.

Example 1 (MCAR): Whenever (15) holds, I
+
T = I

+
C =

0 follows from (6) and (14). In this context, to assume that
the estimated sampling fractions ⇡̂

MCAR
si = ⇡̂

MCAR are the same

for all subpopulations Xsi is natural. Since ⇡̂
MCAR cancels out

in the prevalence estimator (21), it simplifies to

p̂
MCAR
0 =

PS�1
s=0 ⇢Ts1P
s,i ⇢Tsi

=
S�1X

s=0

⇢Ts1

=
1

NT

S�1X

s=0

NTs1 =
NT ·1
NT

= p̂. (27)

Note that the survey sampling estimator (22) of p0 simplifies to
(27) when ⇡̂I(x) = ⇡̂

MCAR, independently of x, in the definition
of the sampling weight wx of x in (23). It also follows from
(27) that Î

+
T = Î

+
C = 0 under MCAR sampling. From Fisher’s

exact test, NT ·1 has a hypergeometric distribution

NT ·1 | NT ⇠ Hyp(N,NT , p0) (28)

conditionally on NT . Taking expectations in both sides of (27),
by (20) and (18), E

�
p̂

MCAR
0

�
= p0 and I

+ = 0.
Example 2 (MAR): The MAR sampling scheme (16)-(17)

can be viewed as an instance of stratified sampling [18], where
the relative sizes ⇢s of the strata (symptom classes) are known.
Although the sampling fractions ⇡̃si in (19) are unknown when
(17) holds, they may be estimated consistently by means of

⇡̂
MAR
si = ⇡̂

MAR
s =

NTs0 + NTs1

N⇢s0 + N⇢s1
=

NTs

N⇢s
, (29)

where in the last step NTs = NTs0 + NTs1 was introduced.
Plugging (29) into (21), the estimator

p̂
MAR
0 =

PS�1
s=0 ⇢Ts1(N⇢s/NTs)P
s,i ⇢Tsi(N⇢s/NTs)

=
PS�1

s=0 ⇢s(NTs1/NTs)PS�1
s=0 ⇢s

=
S�1X

s=0

⇢sp̂0s (30)

of p0 is obtained. It is a weighted average of estimates

p̂0s =
NTs1

NTs
=
P

x2X I2(x)1{x2XT s}P
x2X 1{x2XT s

} (31)

of the prevalences

p0s =
⇢s1

⇢s
(32)

in symptom classes Xs = Xs0 [Xs1, using data from cohorts
XTs = XTs0 [ XTs1. In the last step of (31) we also
made use of notation 1{x2XT s

}, a term that equals 1 when
x 2 XTs and 0 otherwise. The estimator (30) is well known
from stratified sampling. It is also an instance of the survey
sampling estimator (22), in the special case when the testing
probabilities satisfy the second MAR condition ⇡s0 = ⇡s1 = ⇡s

in (17). Indeed, putting I1(x) = s, this MAR condition (17)
implies that (31) is equivalent to (22), when the inverse of
⇡̂I(x) = ⇡̂I1(x) = NTs/Ns is used in the definition of
the inverse probability sampling weights wx of (23). Since
⇡s0 = ⇡s1 = ⇡s, from Fisher’s exact test,

NTs1 | NTs ⇠ Hyp(Ns, NTs, p0s) (33)
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for s = 0, . . . , S � 1. In view of (14), this implies

E (p̂MAR
0 ) =

S�1X

s=0

⇢sE(p̂0s) =
S�1X

s=0

⇢sp0s = p0. (34)

Consequently, I
+ = 0 under MAR sampling, although in

general I
+
T = �I

+
C differs from zero. Thus I

+ = 0 is a
consequence of the fact that p̂

MAR
0 is an unbiased method-of-

moments estimator of p0. In principle it is also possible to
use an asymptotically unbiased maximum likelihood estimator
of p0. We prefer however to use (30), since it guarantees an
unbiased estimate of p0, so that I

+ = 0 under MAR conditions.
The next two examples treat sampling MNAR schemes,

where one of the two MAR conditions (16)-(17) fail.
Example 3 (MNAR with known strata sizes.): Suppose the

first MAR condition (16) of known strata sizes holds, which
corresponds to covariates (symptoms) being known in the
whole population X . On the other hand we assume that the
second MAR condition (17) fails. This corresponds to a MNAR
scenario where the response probability ⇡si not only depends
on covariate information (symptoms s) but also on the outcome
variable (feature status i). Under this setting it is not possible
to estimate prevalences within symptom classes as in (31).
It is possible though to use a maximum likelihood approach
that accounts for the missingness mechanism (in our case the
response probabilities ⇡si). Either a joint likelihood is defined
from a two-step procedure, where first a model for the joint
distribution of the outcomes before non-response is defined,
and second a model of non-response is imposed [19], [20],
[21], [22]. A second option is to merge these two steps into a
likelihood for one single model [16], [23], [24], [25]. A third
likelihood-based approach [26] is to first estimate parameters
of the regression model for the respondents (in our setting the
prevalence within each symptom class, among those that are
tested), then estimate response probabilities (in our case ⇡si)
and finally estimate the parameter of interest (in our model
the prevalence p0).

Example 4 (MNAR With Unknown Strata Sizes): Even
though the MNAR estimation techniques of Example 3 are
well developed, their underlying assumptions are somewhat
less suitable in the context of estimating the prevalence of a
disease from medical labs or social behaviour from internet
platforms. Indeed, it is usually the case that while each
individuals knows his symptoms, these are usually not known
by the data analyst in the whole population, so that (16) fails.
In addition, it seems realistic to retain (17). That is, it seems
plausible to assume that response probabilities only depend
on symptoms, not on the feature itself, when each individual’s
feature is unknown to him at the time of sampling. Such a
MNAR scenario is the topic of this example.

When symptom class sizes N⇢s are unknown, it is possible
to employ a double sampling approach [27], where the first
sample is used to find estimates of ⇢s, whereas the second
sample is used to estimate prevalences p0s of all symptom
classes s. A second option is to apply the data integration inte-
gration method [28], whereby estimates of all ⇢s are obtained
from another independent probability sampling. A third way
of handling missing covariate information for non-respondents

is to define a respondents’ likelihood for the tested individuals
[29].

Here we will rather use a Bayesian approach when symptom
classes ⇢s are not known. We will illustrate this in the context
of COVID-19 testing. As in [12] and [30], we consider a model
of sampling with S = 2 symptoms, with strata fractions ⇢0 and
⇢1 being unknown, so that the first MAR condition (16) fails.
On the other hand, it is assumed in these two articles that the
second MAR condition (17) holds, with

⇡00 = ⇡01 = ⇡0, ⇡10 = ⇡11 = ⇡1, ⇡1 > ⇡0. (35)

The inequality of (35) adds another assumption to (17); that
symptomatic individuals are more likely to get tested than
asymptomatic ones. This implies that with high probability
⇢1 < NT1/NT . On the other hand, the presence of NT1

symptomatic individuals in the sample implies that NT1/N 
⇢1.

From a Bayesian point of view, it is natural to interpret our
incomplete knowledge about the proportion of symptomatic
individuals, as a random variable ⇢1 whose distribution is
supported on the interval (NT1/N, NT1/NT ). If we are max-
imally ignorant about this distribution, the maximum entropy
principle [31], [32] tells that ⇢1 should have a uniform
distribution on (NT1/N, NT1/NT ). Therefore, ⇢̂1 = E(⇢1)
is taken as the estimator of the proportion of symptomatic
individuals in the population, and ⇢̂0 = 1 � ⇢̂1 = E(⇢0)
estimates the proportion of the asymptomatic group. From this
viewpoint, a modification of (29) produces

⇡̂
MaxEnt
si = ⇡̂

MaxEnt
s =

NTs

NE(⇢s)
, (36)

and plugging (36) into (21), the estimator of prevalence is

p̂0 =
NT01(⇡̂MaxEnt

0 )�1 + NT11(⇡̂MaxEnt
1 )�1

NT0(⇡̂MaxEnt
0 )�1 + NT1(⇡̂MaxEnt

1 )�1

=
NT01

NT0
(1� ⇢̂1) +

NT11

NT1
⇢̂1, (37)

where (37) is obtained using the first two assumptions of (35),
which imply that inside each group of symptoms the sampling
of infected and non-infected is random.

V. ASYMPTOTICS

This section is focused on the asymptotic properties of the
estimates p̂ and p̂0 of the test-biased and population-based
prevalences p and p0 of feature value 1, as the population size
N gets large. The second MAR condition (17) is assumed,
so that sampling probabilities only depend on covariates, not
on outcomes (features). On the other hand, the first MAR con-
dition (16) (that symptom class sizes are known) may fail. The
asymptotic theory will therefore cover Examples 1, 2, and 4,
but not Example 3.

Equation (17) allows for a number of simplifications. It first
of all implies that the expected fraction of tested individuals
in (9) takes the form

⇡ =
S�1X

s=0

⇢s⇡s. (38)
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Secondly, (17) makes it possible, in conjunction with (14)
and (32), to rewrite the expected prevalence among the tested
individuals as

p =
S�1X

s=0

⇢⇡sp0s, (39)

where p0s is the prevalence (32) among individuals with
symptoms s, and

⇢⇡s =
⇢s⇡sPS�1

r=0 ⇢r⇡r

=
⇢s⇡s

⇡
(40)

is the expected proportion of tested individuals with symptoms
s. The estimator of p in (8) and (18) can equivalently be
expressed as

p̂ =
S�1X

s=0

⇢̂⇡sp̂0s (41)

whenever (17) holds, with

⇢̂⇡s = ⇢Ts =
NTs

NT
= ⇢Ts0 + ⇢Ts1 (42)

an estimate of ⇢⇡s. In view of (17), the requirement is made
that ⇡̂si = ⇡̂s. Introducing

⇢̂s =
NTs⇡̂

�1
sPS�1

r=0 NTr⇡̂
�1
r

, (43)

the bias-corrected prevalence estimator in (21) simplifies to

p̂0 =
S�1X

s=0

⇢̂sp̂0s. (44)

The quality of p̂0 as an estimator of p0 in (34), depends on how
well ⇢̂s estimates ⇢s. In order to quantify this we introduce
⇢̄s as an asymptotic limit of ⇢̂s, and

p̄0 =
S�1X

s=0

⇢̄sp0s (45)

as the corresponding asymptotic limit of p̂0. It will further be
helpful to introduce the S-dimensional vectors

p0 = (p00, . . . , p0,S�1),
p̂0 = (p̂00, . . . , p̂0,S�1),
⇢⇡ = (⇢⇡0, . . . , ⇢⇡,S�1),
⇢̂⇡ = (⇢̂⇡0, . . . , ⇢̂⇡,S�1),
⇢̄ = (⇢̄1, . . . , ⇢̄S�1),
⇢̂ = (⇢̂1, . . . , ⇢̂S�1) (46)

of (estimated) prevalences and expected relative sizes (before
and after bias correction) of all symptom classes.

We will first establish a lemma on the joint asymptotic
normality of the two vectors p̂0 and ⇢̂⇡ in (46).

Lemma 1: Suppose N ! 1 in such a way that all ⇢si =
Nsi/N are kept fixed, and that the second MAR condition
(17) holds for fixed ⇡0, . . . ,⇡S�1. The vectors of estimated
prevalences p̂0 and estimated relative symptom classes ⇢̂⇡ ,

among the tested individuals, are then asymptotically normally
distributed in the sense that

N
1/2(p̂0 � p0, ⇢̂⇡ � ⇢⇡) �!L N

✓
0,

✓
A 0
0 B

◆◆
(47)

as N ! 1, with �!L referring to weak convergence,
whereas A = (Ars)S�1

r,s=0 and B = (Brs)S�1
r,s=0 are square

matrices of order S with elements

Ars =

(
(1� ⇡s)p0s(1� p0s)/(⇢s⇡s), r = s,

0, r 6= s,
(48)

and

⇡
4
Brs = ⇡

2
⇢s⇡s(1� ⇡s)1{r=s}

� ⇡⇢r⇡r(1� ⇡r)⇢s⇡s

� ⇡⇢r⇡r⇢s⇡s(1� ⇡s)
+ ⇢r⇡r⇢s⇡s⌃⇡ (49)

respectively, where 1A is the indicator function over the set
A and

⌃⇡ = NVar(⇡̂) =
S�1X

s=0

⇢s⇡s(1� ⇡s). (50)

Remark 1: a) Lemma 1 states that the vector of estimated
prevalences p̂0 = (NTs1/NTs)S�1

s=0 is asymptotically inde-
pendent of the vector of estimated relative symptom classes
⇢̂⇡ = (NTs/NT )S�1

s=0 . This is a consequence of the second
MAR condition (17). Indeed, when the willingness to be tested
only depends on symptoms, the number of tested individuals
with different types of symptoms carry no information about
the prevalences p0s within the symptom classes Xs. b) In order
to simplify the proof of Lemma 1 we assumed that symptom
sizes Ns = N⇢s are non-random. However, Lemma 1 also
holds when (Ns)S�1

s=0 ⇠ Mult
�
N ; (⇢s)S�1

s=0

�
has a multinomial

distribution. This result is obtained by first repeating the proof
of Lemma 1 conditionally on (Ns)S�1

s=0 , and then averaging
over (Ns)S�1

s=0 .
The following theorem provides asymptotic properties of

p̂0, p̂, and Î
+
T :

Theorem 1: Suppose that the conditions of Lemma 1 hold.
Assume additionally that the vector ⇢̂ of estimated symptom
class sizes is such that (47) extends to

N
1/2(p̂0 � p0, ⇢̂⇡ � ⇢⇡, ⇢̂� ⇢̄)

�!L N

0

@0,

0

@
A 0 0
0 B D

0 D
T

C

1

A

1

A (51)

as N ! 1, for some square matrices C = (Crs)S�1
r,s=0,

and D = (Drs)S�1
r,s=0 of dimension S. Then p̂, p̂0, Î

+
T

are asymptotically normal estimators of p, p̄0 and Ī
+
T =

log(p/p̄0) = I
+
T � log(p̄0/p0) as N !1, in the sense that

N
1/2(p̂� p) �!L N(0, V1 + V2), (52)

N
1/2(p̂0 � p̄0) �!L N(0, V3 + V4), (53)

and

N
1/2
⇣
Î
+
T � Ī

+
T

⌘
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�!L N

✓
0,

V1 + V2

p2
+

V3 + V4

p̄2
0

� 2(V5 + V6)
pp̄0

◆
, (54)

with

V1 =
X

s

⇢
2
⇡sAss

=
X

s

⇢
2
⇡s(1� ⇡s)p0s(1� p0s)/(⇢s⇡s)

=
X

s

⇢s⇡s(1� ⇡s)p0s(1� p0s)/⇡
2
,

V2 =
X

r,s

p0rp0sBrs

=
X

s

⇢s⇡s(1� ⇡s)(p0s � p)2/⇡
2
,

V3 =
X

s

⇢̄
2
sAss

=
X

s

⇢̄
2
s(1� ⇡s)p0s(1� p0s)/(⇢s⇡s),

V4 =
X

r,s

p0rp0sCrs,

V5 =
X

s

⇢⇡s⇢̄sAss

=
X

s

⇢⇡s⇢̄s(1� ⇡s)p0s(1� p0s)/(⇢s⇡s),

V6 =
X

r,s

p0rp0sDrs. (55)

Remark 2: It is assumed in Theorem 1 that the vector ⇢̂
of bias corrected estimates of symptom class sizes is asymp-
totically independent of the vector p̂0 of prevalence estimates
within the symptom classes. This relies on the second MAR
condition (17) and a tacit assumption that ⇢̂ is a known
function of {NTs}S�1

s=0 (cf. Remark 1).
Corollary 1 (Standard Errors and Confidence Intervals):

The asymptotic variances �
2
p = (V1 + V2)/N ,

�
2
p0

= (V3 + V4)/N , and �
2
I+

T

in formulas (52)-(54) are
functions of p0s, p̄0, p, ⇡s, ⇢s, and ⇢̄s. If estimates p̂0s,
p̂0, p̂, ⇡̂s, ⇢̂s, and ⇢̂s of these quantities are plugged into
the asymptotic variances in (52)-(54), it is possible to
obtain standard errors �̂p, �̂p0 , and �̂I+

T
of p̂, p̂0, and Î

+
T ,

respectively. The corresponding confidence interval of I
+
T ,

with asymptotic coverage probability 1 � ↵ when Ī
+
T = I

+
T ,

is

CII+
T

=
⇣
Î
+
T � �↵/2�̂I+

T
, Î

+
T + �↵/2�̂I+

T

⌘
,

where �↵/2 is the (1 � ↵/2)-quantile of a standard normal
distribution. As for prevalences, the delta method is first
used to determine confidence intervals for logit transformed
versions g(p) = logit(p) = log[p/(1 � p)] and g(p0) =
logit(p0) of the prevalence parameters [33], [34]. Denoting

L
↵
p̂ = �↵/2�̂p/[p̂(1� p̂)],

L
↵
p̂0

= �↵/2�̂p0/[p̂0(1� p̂0)],

a logistic back-transformation g
�1(z) = logit�1(z) =

exp(z)/(1 + exp(z)) yields confidence intervals

CIp =
�
g
�1
�
g(p̂)� L

↵
p̂

�
, g
�1
�
g(p̂) + L

↵
p̂

��
, (56)

and

CIp0 =
�
g
�1
�
g(p̂0)� L

↵
p̂0

�
, g
�1
�
g(p̂0) + L

↵
p̂0

��
, (57)

of p and p0, respectively. The asymptotic coverage probability
is 1� ↵ for CIp, and for CIp0 as well whenever p̄0 = p0.

Corollary 2 (MAR): Since ⇢s is known under MAR sam-
pling, it follows that ⇢̂s = ⇢̄s = ⇢s and p̄0 = p0. Then
Crs = Drs = 0 for all 0  r, s  S � 1, so that the
two variance components V4 = V6 = 0 vanish. In particular,
Î
+
T is an asymptotically unbiased estimator of I

+
T , and (54)

simplifies to

N
1/2(Î+

T � IT ) �!L N

✓
0,

V1 + V2

p2
+

V3

p2
0

� 2V5

pp0

◆

as N !1.
Corollary 3 (A Conditional Version of Active Information):

Suppose that the interest is in active information due to
sampling bias conditionally on the number NT0, . . . , NT,S�1

of individuals with different symptoms that are tested. The
corresponding prevalence and active information are

p̄N = E
�
p̂|{NTs}S�1

s=0

�
=

S�1X

s=0

⇢̂⇡sp0s. (58)

and

Ī
+
TN = log

p̄N

p0
(59)

respectively. Using the same type of argument as in the proof
of Theorem 1, it can be shown that

N
1/2(p̂� p̄N ) �!L N(0, V1) (60)

and

N
1/2

✓
Î
+
T �

✓
Ī
+
TN � log

p̄0

p0

◆◆

�!L N

✓
0,

V1

p2
+

V3 + V4

p̄2
0

� 2V5

pp̄0

◆
(61)

as N !1.
Remark 3: The V2 and V6 terms are missing in (60) and

(61), compared to (52) and (54). These terms correspond to the
fact that the actual proportions ⇢̂⇡s of tested individuals with
different symptoms deviate slightly from the corresponding
expected proportions ⇢⇡s. Because of these missing variance
terms of (60) and (61), the standard errors of p̂ and Î

+
T

are smaller when a conditional rather than an unconditional
approach is used, and the confidence intervals for p̄N and Ī

+
TN

are shorter than those for p and I
+
T .

Example 5 (MNAR With Unknown Strata Sizes, Contd):
Let us generalize Example 4 and consider an MNAR sampling
scheme where the sizes ⇢s of symptom classes might
not be known, although the other MAR condition (17)
holds. It is assumed that lower and upper bounds
0  asN  ⇢s  bsN  1 of ⇢s are known. The maximum
entropy approach of Example 4 will be generalized. To this
end, assume that the vector ⇢ = (⇢0, . . . , ⇢S�1) is a random
variable supported on

R =

(
⇢; asN  ⇢s  bsN ;

S�1X

s=0

⇢s = 1

)
, (62)
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a subset of the (S � 1)-simplex of dimension 0  d  S � 1,
where d = max(|{s; asN < bsN}| � 1, 0). By the maximum
entropy principle, ⇢ has a uniform density f⇢ on R, which
degenerates to a point mass at R when d = 0. This gives rise
to estimates

⇡̂s =
NTs

NE(⇢s)
(63)

of the sampling probabilities ⇡s. Inserting (63) into (43),

⇢̂s =
E(⇢s)PS�1

r=0 E(⇢s)
= E(⇢s) =

Z

R
rsf⇢(r)dr, (64)

with r = (r0, . . . , rS�1). Since R in (62) is convex, it follows
that ⇢̂s 2 R.

The MAR sampling scheme of Example 2 corresponds to
the special case asN = bsN = E(⇢s) = ⇢s = ⇢̂s and d = 0.
For the MNAR COVID-19 model of Example 4, we recall that
S = 2. Use (36) to rewrite (43) according to

⇢̂0 = 1�NT1/
�
N ⇡̂

MaxEnt
1

�
, ⇢̂1 = NT1/

�
N ⇡̂

MaxEnt
1

�
.

(65)

With an apriori assumption ⇡̂
MaxEnt
0  ⇡̂

MaxEnt
1 , equation (65)

implies that R has the maximal dimension d = S � 1 = 1 as
long as NT < N . Indeed, since

a0N = 1�NT1/NT , b0N = 1�NT1/N,

a1N = NT1/N, b1N = NT1/NT ,

we then have that asN < bsN for s = 0, 1. It then follows
from (64) that

⇢̂0 = 1�NT1/(2NT ) · (NT /N + 1) ,

⇢̂1 = NT1/(2NT ) · (NT /N + 1) . (66)

Insertion of (31) and (66) into (44) finally leads to (37). It is
shown in the Appendix that Theorem 1 holds with

C11 = C00 = �C01 = �C10

=
⇥
(1 + ⇡)2B11 + ⇢

2
⇡1⌃⇡

+2(1 + ⇡)⇢⇡1⌃⇢⇡1] /4, (67)
D11 = D00 = �D01 = �D10

= [(1 + ⇡)B11 + ⇢⇡1⌃⇡⇢1]/2, (68)

and

⌃⇡⇢s = lim
N!1

NCov
�
⇡̂

MaxEnt
, ⇢̂⇡s

�

= ⇢s⇡s(1� ⇡s)/⇡ � ⇢s⇡s⌃⇡/⇡
2
. (69)

Example 6 (MNAR With Unknown Strata Sizes, Contd):
In the previous example it was assumed that the set R of
symptom size classes in (62) was convex. We will now
consider models where

R = {⇢(✓) = (⇢0(✓), . . . , ⇢S�1(✓)); ✓ 2 ⇥} (70)

is not necessarily convex, but the d-dimensional parameter
set ⇥ is. The maximum entropy principle is used to assign
a uniform prior distribution to ✓ on ⇥. This gives rise to
estimates

⇢̂ = ⇢(E(✓)) = (⇢̂0, . . . , ⇢̂S�1).

The parameter set ⇥ is determined by some apriori assump-
tions as well as constraints imposed by data. Since ⇥ is convex
it follows that ✓̂ = E(✓) 2 ⇥ and hence ⇢̂ 2 R. In order to
illustrate this approach, assume that the testing probability of
the symptom classes satisfy

⇡s(✓) =
⇡0

1� ✓s
(71)

for s = 0, . . . , S � 1, with ✓ a d = 1-dimensional parameter
that satisfies 0  ✓  ✓̄ for some appropriately chosen upper
bound ✓̄. The lower zero bound on ✓ ensures that testing
probability ⇡s is a monotone and non-decreasing function of
symptom strength s. Equation (71) gives rise to bias-corrected
symptom class sizes

⇢s(✓) =
NTs(1� ✓s)

PS�1
r=0 NTr(1� ✓r)

when ✓ is the true parameter. The corresponding estimated
symptom class sizes are

⇢̂s = ⇢s

⇣
✓̂

⌘
=

NTs

⇣
1� ✓̂s

⌘

PS�1
r=0 NTr

⇣
1� ✓̂r

⌘ , (72)

with ✓̂ = E(✓) = ✓̄/2. Note that (72) is consistent with (43),
when the estimated sampling probabilities are chosen as ⇡̂s =
⇡0/(1 � ✓̂s). The upper bound ✓̄ on ✓ is determined by the
requirement ⇢̂s � NTs/N for s = 0, . . . , S�1. It can be seen
that this leads to

✓̄ = min

(
N �NT

sN �
P

r rNTr
; s such that sN >

X

r

NTr

)
.

VI. TESTING ERRORS

Following [30], we now extend the model and allow for
testing errors, when the disease status at a medical lab or the
behavioral characteristics at a social platform are registered
imperfectly. We assume that the probability is ↵s of falsely
classifying an individual of symptom group s with feature
value 0 (i = 0) as having feature value 1 (i = 1), whereas the
probability of falsely classifying an individual with symptoms
s and feature value 1, as having feature value 0, is �s. Let ↵̌s

and �̌s be the corresponding fractions of wrongly classified
subjects among the NTs individuals with symptoms s that
were tested. Whereas a fraction NTs1/NTs of tested individ-
uals with symptoms s have the feature 1, the corresponding
reported fraction is

p̌0s = ↵̌s(1�NTs1/NTs) +
�
1� �̌s

�
NTs1/NTs

= ↵̌s +
�
1� ↵̌s � �̌s

�
NTs1/NTs. (73)

Although NTs is known, the number NTs1 of tested individu-
als with symptoms s that have the feature (i = 1), is unknown.
Consequently NTs1/NTs is unknown as well, but on the
other hand it has the correct expected value E(NTs1/NTs) =
p0s. The reported fraction p̌0s of diseased individuals with
symptoms s, on the other hand, is known and therefore an
estimator of p0s that is biased due to the presence of testing
errors. Notice also that the testing error fractions ↵̌s and �̌s are
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random variables that approximate the expected testing error
rates ↵s and �s. But since ↵̌s and �̌s are unknown they are
not viewed as estimators of ↵s and �s.

In order to construct a bias adjusted estimator p̂0s of p0s,
suppose ↵̂s and �̂s are estimators of ↵s and �s that make use
of other data. Formula (73) suggests

p̂0s =
p̌s0 � ↵̂s

1� ↵̂s � �̂s

=
↵̌s � ↵̂s +

�
1� ↵̌s � �̌s

�
· NTs1/NTs

1� ↵̂s � �̂s

. (74)

We can also view ↵̂s and �̂s as predictors of the random
quantities ↵̃s and �̃s. In the ideal case when ↵̂s = ↵̃s and
�̂s = �̃s, it would be possible to eliminate the effect of testing
errors, so that p̂0s = NTs1/NTs.

The estimators p̂ and p̂0 of the prevalences p and p0, before
and after correction for testing bias, are defined as in (41)
and (44), but with the symptom specific prevalence estimates
p̂0s given by (74) instead of (31). In order to study the
asymptotic properties of p̂, p̂0 and Î

+
T , we need to know the

asymptotic behaviour of the actual testing error fractions ↵̌s

and �̌s, as well as the asymptotics of the estimated testing error
fractions ↵̂s and �̂s. For the actual testing error rates ↵̌s and �̌s

we assume that type I and II testing errors occur, independently
between individuals, with probabilities ↵s and �s. From this
it follows that ↵̌s and �̌s are binomial proportions, whose
asymptotics is summarized in the following lemma:

Lemma 2: The fractions ↵̌s and �̌s of tested individuals
with errors of type I and II, for symptom classes s =
0, . . . , S � 1 are all independent random variables. Moreover,
they satisfy

N
1/2(↵̌s � ↵s) �!L N(0,⌃↵↵s) (75)

and

N
1/2(�̌s � �s) �!L N(0,⌃��s) (76)

respectively as N !1, with

⌃↵↵s = ↵s(1� ↵s)/[⇢⇡s(1� p0s)],
⌃��s = �s(1� �s)/[⇢⇡sp0s].

Regarding the vectors ↵̂ = (↵̂0, . . . , ↵̂S�1) and �̂ =⇣
�̂0, . . . , �̂S�1

⌘
of estimated type I and II errors, their asymp-

totics depend on the way these estimators are constructed.
We will assume that they are independent of all ↵̌s and �̌s

and converge to asymptotic limits ↵̄ = (↵̄0, . . . , ↵̄S�1) and
�̄ =

�
�̄0, . . . , �̄S�1

�
respectively. In more detail, we assume

asymptotic normality

N
1/2
⇣
↵̂� ↵̄, �̂ � �̄

⌘
�!L N

✓
0,

✓
⌦↵↵ ⌦↵�

⌦T
↵� ⌦��

◆◆
(77)

as N ! 1, with an asymptotic covariance matrix of order
2S that involves the matrices ⌦↵↵ = (⌦↵↵rs)S�1

r,s=0, ⌦�� =
(⌦��rs)S�1

r,s=0, and ⌦↵� = (⌦↵�rs)S�1
r,s=0 of order S.

Formulas (75)-(77) suggest that the estimated prevalence
(74) within symptom classes s = 0, . . . , S�1 converge to the

elements of p̄0 = (p̄0, . . . , p̄S�1) as N !1, where

p̄0s =
↵s � ↵̄s + (1� ↵s � �s)p0s

1� ↵̄s � �̄s
(78)

Note in particular that p̄0s = p0s when the type I and II error
rates are estimated consistently, that is, when ↵̄s = ↵s and
�̄s = �s. With these preliminaries we are ready to formulate
the following extension of Theorem 1:

Theorem 2: Suppose the conditions of Theorem 1 hold,
and additionally that the estimated prevalances p̂0 =
(p̂00, . . . , p̂0,S�1) of all symptom classes involve correction
for testing errors, as defined in (73)-(74), and with testing
error rate estimates ↵̂s and �̂s being asymptotically normal,
according to (77), and independent of testing error rates ↵̌s

and �̌s of the sample. Then

N
1/2 (p̂0 � p̄0, ⇢̂⇡ � ⇢⇡, ⇢̂� ⇢̄)

�!L N

0

@0,

0

@
Ā 0 0
0 B D

0 D
T

C

1

A

1

A (79)

as N ! 1, with B = (Brs)S�1
r,s=0, C = (Crs)S�1

r,s=0, and
D = (Drs)S�1

r,s=0 the same square matrices of dimension S as
in Theorem 1, whereas Ā = (Ārs)S�1

r,s=0 is a matrix whose
elements are defined in the appendix. Moreover, p̂, p̂0 and
Î
+
T = log(p̂/p̂0) are asymptotically normal estimators of p̄ =P

s ⇢⇡sp̄0s, p̄0 =
P

s ⇢̄sp̄0s and Ī
+
T = log(p̄/p̄0) respectively,

in the sense that

N
1/2(p̂� p̄) �!L N(0, V1 + V2),

N
1/2(p̂0 � p̄0) �!L N(0, V3 + V4),

N
1/2
⇣
Î
+
T � Ī

+
T

⌘
�!L N(0, V ) (80)

as N !1, with

V =
V1 + V2

p2
+

V3 + V4

p̄2
0

� 2(V5 + V6)
pp̄0

and

V1 =
X

r,s

⇢⇡r⇢⇡sĀrs, V2 =
X

r,s

p̄0rp̄0sBrs,

V3 =
X

r,s

⇢̄r⇢̄sĀrs, V4 =
X

r,s

p̄0rp̄0sCrs,

V5 =
X

r,s

⇢⇡s⇢̄sĀrs, V6 =
X

r,s

p̄0rp̄0sDrs. (81)

Remark 4: The asymptotic bias of the estimator Î
+
T of

active information I
+
T , in Theorem 2, is

Ī
+
T � I

+
T = log

✓
p̄

p

◆
� log

✓
p̄0

p0

◆
. (82)

The first term log(p̄/p) on the right hand side of (82) is due
to error in testing, whereas the second term log(p̄0/p0) is due
to testing bias as well as errors in testing. Only the second
bias term is present when there are no errors in testing (cf.
Theorem 1).

Remark 5: Suppose testing error rates are estimated inde-
pendently between symptom classes, so that ⌦↵↵, ⌦�� , and
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⌦↵� in (77) are diagonal matrices. It follows from the proof
of Theorem 2 that Ā is diagonal under this assumption.

Remark 6: Theorem 2 differs from Theorem 1 in that Ārs,
p̄0s, and p̄ replace Ars, p0s, and p respectively. In the special
case of no testing errors (↵s = �s = 0) and perfect estimation
of testing errors (↵̄s = ↵s, �̄s = �s, and ⌦↵↵ = ⌦�� =
⌦↵� = 0), we have that Ārs = Ars, p̄0s = p0s, and p̄ =
p. Theorem 2 then reduces to Theorem 1, and the variance
components V1, . . . , V6 of both theorems are then the same.

VII. NUMERICAL ILLUSTRATIONS

A. Examples 1-3
This section illustrates with simulations the methodology

under the framework of Examples 1-3. In these simula-
tions, N denotes known population size which is increased
from 1000 to 1000000. The true population prevalence of
feature value 1 is set at p0 = 0.20. Only two levels of
symptoms will be considered, s 2 {0, 1}. The proportion
⇢1 of people with symptoms in the population is 0.20 and
without symptoms it is ⇢0 = 0.80. The proportion of positive
cases (i = 1) with symptoms ⇢11 = 0.15, and the proportion
of positive cases without symptoms ⇢01 = 0.05. Notice that
⇢01 + ⇢11 = p0.

For Examples 1-2, the testing group within each symptom
class is assumed to be independent of the feature status (⇡si =
⇡s), in accordance with (17). Let ⇡1 be the probability of
testing the symptomatic group, and ⇡0 be the probability of
testing the asymptomatic group.

In the case of MCAR (Example 1), the sampling probability
⇡ is set to 0.6. Thus, estimated sampling fractions ⇡̂

MCAR
00 =

⇡̂
MCAR
01 = ⇡̂

MCAR
10 = ⇡̂

MCAR
11 = ⇡̂

MCAR are same. The overall
prevalence rate p̂

MCAR
0 = p̂ can be estimated by the positive

rate (27) in the testing sample.
For the MAR scenario of Example 2, the probability of

testing in the symptomatic group ⇡1 is set to 0.90, while the
probability of testing in the asymptomatic group is ⇡0 = 0.10.
The estimated sampling fractions are assumed to be con-
stant by symptoms from (29). Thus, the estimated population
prevalence p̂0 in (30) differs from the sum of p̂0s, and it
is a weighted average of the positive test rate by symptom
proportions in the population.

Finally an MNAR situation of Example 3 is considered.
Unlike MAR, the simulations were repeated without assuming
⇡si = ⇡s. Here, ⇡00 = 0.20, ⇡01 = 0.30, ⇡10 = 0.70, ⇡11

= 0.80. Thus, using the weighted positive test rate p̂0 from
equation (30), as for MAR, biased results, for which the bias
will not vanish asymptotically, are expected.

Each experiment is repeated M = 500 times. Let p̂
(m)

and p̂
(m)
0 refer to the prevalence estimates of iteration m 2

{1, . . . ,M} before and after correction for testing bias.
We will use tildes to denote Monte Carlo estimates, and put

Ẽ(p̂) =
MX

m=1

p̂
(m)

/M,

Ẽ(p̂0) =
MX

m=1

p̂
(m)
0 /M.

TABLE I
MONTE CARLO-ESTIMATED ACTIVE INFORMATION UNDER MCAR

TABLE II
MONTE CARLO-ESTIMATED ACTIVE INFORMATION UNDER MAR

The corresponding Monte Carlo estimates of active informa-
tions I

+
T , I

+
C and I

+, are defined as

Ĩ
+
T = log

h
Ẽ(p̂)/p0

i
,

Ĩ
+
C = log

h
Ẽ(p̂0)/Ẽ(p̂)

i
,

Ĩ
+ = log

h
Ẽ(p̂0)/p0

i
= Ĩ

+
T + Ĩ

+
C . (83)

These estimates should not be confused with Î
+(m)
T =

log
⇣
p̂
(m)

/p̂
(m)
0

⌘
and Î

+(m)
C = �Î

+(m)
T , which are computed

for each simulation. The Law of Large Numbers implies that
Ĩ
+
T ! log[E(p̂)/p0] and Ĩ

+ ! log[E(p̂0)/p0] as the number
of simulations M ! 1, for each fixed N . Note also that
Ĩ
+
T ! I

+
T and Ĩ

+ ! log(p̄0/p0) as N ! 1, for each fixed
M , with p̄0 the asymptotic limit of p̂0. In particular, the closer
to zero Ĩ

+ is, the more successful the bias correction of the
prevalence estimate is.

Table I shows the active information of MCAR. As described
above, the probabilities were averaged over the M = 500 real-
izations before calculating the active information values in
(83). The estimated active information of the correction, Ĩ

+
C ,

is 0 because p̂
(m)
0 = p̂

(m) in MCAR. Thus, the active informa-
tion of the bias-adjusted prevalence estimate for MCAR, Ĩ

+,
is obtained from Ĩ

+
T . Notice that Ĩ

+
T = Ĩ

+ converges to 0 with
increasing N . This is to be expected from Remark 2, since
p̄0 = p0 for MCAR schemes.

Next, active information values under the MAR simulation
were obtained, as shown in Table II. The active information
of the bias-adjusted prevalence estimate in MAR is seen to
increase as population increases, removing asymptotically the
effect of a small overcorrection, with Ĩ

+ converging to 0 as
N gets larger. Again, this is to be expected from Remark 2,
since p̄0 = p0 for any MAR scheme.

For MNAR, the active information Ĩ
+ of the bias-adjusted

prevalence estimate for this simulation is displayed in
Table III, showing that the strategy partially corrects the
sampling bias. However, this bias correction does not improve
with increasing N , since Ĩ

+ does not converge to 0. This is
to be expected, since p̄0 6= p0 for a MNAR scheme.
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TABLE III
MONTE CARLO-ESTIMATED ACTIVE INFORMATION UNDER MNAR

TABLE IV
EMPIRICAL RMSE FOR THREE SAMPLING MODEL SIMULATIONS

TABLE V

FRACTION OF CONFIDENCE INTERVALS CI(m)
p0 FOR THE TWO

MARSCENARIOS OF FIGURES 1 AND 2 THAT COVER THE TRUE
PREVALENCE p0 OUT OF M = 500 RUNS OF THE SIMULATION.

THE NOMINAL COVERAGE IS 1� ↵ = 0.95

Empirical root mean squared errors

RMSE =

vuut 1
M

MX

m=1

⇣
p̂
(m)
0 � p0

⌘2

for the bias-corrected population prevalence estimates under
each scenario are reported in Table IV, together with their stan-
dard deviations in parentheses. Clearly, the empirical RMSEs
drop to zero with increasing N under MAR and MCAR but
not under MNAR where even for very large population sizes,
the estimation of population prevalence cannot be improved.
This is in line with the comments below Tables I-III, since
RMSE ! |p̄0 � p0| as N !1.

B. Asymptotics

Section V develops the asymptotic limiting distribution of
the bias-corrected population prevalence estimator p̂0 in (44).
Two MAR-scenarios are explored here: i) small p0, where the
proportion of symptomatic individuals in the population ⇢1 is
set to 0.1, the population prevalence p0 is set to 0.05, and the
proportion of positive cases with symptoms ⇢11 equals 0.07;
and ii) large p0, where ⇢1 = 0.2, p0 = 0.15, and ⇢11 = 0.1.

Corollary 1 and Corollary 2 are used to estimate �
2
p0

=
V3/N . Figures 1 and 2 show 95% CIs for p0 over M =
500 realizations of the simulations for increasing N , for each
of the two MAR-scenarios, with the red dashed lines indicating
the true value of p0. Table V gives the empirical coverage
probabilities for these scenarios.

Fig. 1. Confidence interval plots of CI(m)
p0 for M = 500 simulations and

increasing population sizes under the MAR scenario 1, with ⇢1 = 0.1 and
p0 = 0.05.

Fig. 2. Confidence interval plots of CI(m)
p0 for M = 500 simulations and

increasing population sizes under the MAR scenario 2, with ⇢1 = 0.2 and
p0 = 0.15.

VIII. DISCUSSION

A. Summary

In this paper we study prevalence estimation of a
binary-valued feature when individuals with various degrees
of symptoms voluntarily decide to be “tested” for this feature.
Active information is used to quantify the testing bias due
to the fact that individuals with stronger symptoms, who are
more likely to have value 1 of the feature, are also more
likely to be tested. Incomplete testing is treated as a missing
data problem, analogous to survey sampling, with non-tested
individuals treated as non-respondents. Bias-corrected estima-
tors are defined, and their asymptotic properties are derived,
for a wide range of missingness mechanisms where data is
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either missing at random (MAR) or data is missing not at
random (MNAR). In particular, we focus on a non-standard
type of MNAR scheme where i) response probabilities depend
on covariates (symptoms) but not on outcomes (feature status),
and ii) all non-respondents’ covariates and outcome variables
are unknown to the data analyst.

B. Interpretation of Information Theoretic Approach
We have assumed that individuals voluntarily are tested

for feature 1, and based on this assumption we quantified
the increased prevalence p of feature 1 among the tested
individuals, compared to the total population prevalance p0,
as active information I

+
T = log(p/p0) due to testing. From the

point of view of the data analyst, since testing is voluntary,
I
+
T > 0 represents external information that individuals bring

in, in order to simplify the analyst’s search for those that have
feature 1.

Suppose however that it is possible for the data analyst to
control the testing protocol, and that his goal is to find as many
individuals as possible with feature 1, at the smallest possible
cost. If the cost is proportional to the number NT ⇡ N⇡

of tested individuals, this amounts to maximizing the number
NT1 ⇡ NT · p of individuals with feature 1, subject to an
upper bound ⇡  ⇧ on the fraction of tested individuals.
Assume that testing probabilities only depend on symptoms
(17), with ⇡s the probability that individuals with symptoms
s 2 {0, 1, . . . , S � 1} are tested. We also postulate that the
symptom strata fractions ⇢s as well the symptom specific
prevalences p0s are fixed. Since the total population preva-
lence p0 only depends on {⇢s}S�1

s=0 and {p0s}S�1
s=0 (cf. (34)),

it follows that p0 is fixed as well. The prevalence p among
the tested individuals, on the other hand, additionally depends
on {⇡s}S�1

s=0 . Thus the task of the data analyst is equivalent
to finding a testing protocol {⇡s}S�1

s=0 that maximizes I
+
T =

log(p/p0) subject to ⇡ =
P

s ⇢s⇡s  ⇧. If prevalences
p00  · · ·  p0,S�1 increase with strength of symptoms, it can
be seen that the optimal testing procedure is given by

⇡s(⇧) =

8
><

>:

0; s = 0, 1, . . . , r(⇧)� 1,

⇧�F̄ (r(⇧)+1)
⇢r(⇧)

; s = r(⇧),

1; s = r(⇧) + 1, . . . , S � 1,

(84)

where r(⇧) is the solution of F̄ (r + 1) < ⇧  F̄ (r) for
the survival function F̄ (r) =

PS�1
s=r ⇢s of the symptom strata

fraction distribution {⇢s}S�1
s=0 . The optimal testing protocol

(84) corresponds to an active information

I
+
T,max(⇧) = log

pmax(⇧)
p0

(85)

due to testing, with pmax(⇧) the testing prevalence obtained
from protocol (84). This protocol is such that individuals are
being tested in order of the strength of their symptoms, until
a fraction ⇧ of all individuals have been tested. It can be seen
that the maximal active information of (85) is a decreasing
function of ⇧, converging to log(p0,S�1/p0) and 0, as ⇧ !
0 and ⇧ ! 1 respectively. That is, the smaller the resources
⇧ of the data analyst, the more active information (85) the
optimal sampling protocol (84) represents.

C. Extensions

The results of this paper can be extended in various
ways. A first type of extension is to consider more elaborate
covariates. For instance, if prevalence estimation in different
localities (such as medical laboratories or social platforms)
l = 1, . . . , L, it is appropriate to divide the population into
various subpopulations Xlsi with different combinations of
localities l, symptoms s and feature status i. In this context,
the prevalence of feature value 1 can be made to not only
depend on symptoms but also on localities. That is,

p0ls =
|Xls1|

|Xls0| + |Xls1|
,

within each locality-symptom stratum (l, s), reflects that dif-
ferent localities have different medical testing procedures or
different rules for social behaviour. This amounts to treating
z = (l, s) as a two-dimensional covariate, with feature status
i as the binary outcome variable.

A second extension is to consider more general regression
models, with data x = (z, y) 2 X that consists of covariates
z and a an arbitrary type of outcome variable y (such a
continuous or a count variable). Suppose our goal is to estimate
the expected response

µ0 = E0(Y ) =
X

x2X
yP0(x) = E0[µ0(Z)],

with P0 the population distribution of X = (Z, Y ) and
µ0(z) = E0(Y |Z = z). Let µ̂ be the sample mean of the
response variable among the respondents. If the sampling
probability ⇡x = ⇡z is a function of covariates only, it follows
that the asymptotic limit of of µ̂ is

µ = E⇡(Y ) =
P

x2X y⇡zP0(z, y)P
x2X ⇡zP0(z, y)

= E⇡[µ0(Z)],

rather than µ0, where E⇡ refers to expectation with respect to
the size-biased covariate distribution

P (z) =
⇡zP0(z)P
z0 ⇡z0P0(z0)

,

whereas P0(z) =
P

y P0(z, y) is the population distribution
of the covariate. A number of examples of size-biased dis-
tributions are provided in [35]. A corrected estimate µ̂0 of
µ0 is asymptotically unbiased only for MAR schemes for which
the covariate distribution P0 is known. When P0 is unknown,
we have a sampling scheme with MNAR data. It is possible
for such a scheme to define µ̂ from a Bayesian prior on P0,
similarly as in Example 4.

Hence, in a more general setting, in this paper we consider
how to estimate the expected outcome µ0 = E(Y ) from
a sample, when the sampling probabilities depend on some
covariate Z, and the data analyst does not know the covariate
nor the outcome Y among the non-respondents. We believe
this framework has applications within a number of areas
beyond epidemiology, such as behavioral science, quality
control and market research.
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APPENDIX A
PROOFS

Proof of Lemma 1: In order to prove (47), we start by
analysing the elements of N

1/2(p̂0�p0). From (31)-(33) and
properties of the hypergeometric distribution [36], it follows
that the conditional mean and variance of the estimated
prevalence of symptom class s equal

E(p̂0s|NTs) =
NTsp0s

NTs
= p0s,

Var(p̂0s|NTs) =
p0s(1� p0s)(Ns �NTs)

(Ns � 1)NTs
(86)

respectively. Averaging (86) over NTs, the corresponding
unconditional expected value and normalized variance are

E(p̂0s) = p0s,

NVar(p̂0s) = p0s(1� p0s)
N

Ns � 1
E

✓
Ns �NTs

NTs

◆

! p0s(1� p0s)
1� ⇡s

⇢s⇡s
= Ass, (87)

with the limit taken as N ! 1, and with Ass the diagonal
element of symptom class s for the matrix A defined in (48).
In the last step of (87) we made use of the fact that Ns =
N⇢s and NTs/(N⇢s⇡s) ! 1 as N !1. Equation (87), and
asymptotic normality of the hypergeometric distribution when
p0s is kept fixed and NTs/ (N⇢s⇡s) ! 1, implies

N
1/2 (p̂0s � p0s) �!L N (0, Ass) (88)

as N ! 1, for s = 0, . . . , S � 1. Next we consider several
estimated prevalences jointly. It follows from (31), (86), and
the fact that {p̂0s}S�1

s=0 are conditionally independent given
{NTs}S�1

s=0 , that

Cov (p̂0r, p̂0s) = E [Cov (p̂0r, p̂0s) |NTr, NTs]
+ Cov [E (p̂0r|NTr) , E (p̂0s|NTs)]

= 0 + 0 = 0 (89)

whenever r 6= s. That is, the elements of p̂0 =
(p̂00, . . . , p̂S�1,S�1) are uncorrelated. This implies that

N
1/2 (p̂0 � p0) �!L N (0, A) , (90)

asymptotically as N !1, with

A = diag(A00, . . . , AS�1,S�1)

a diagonal matrix, with diagonal entries as in (88). Next,
in order to verify that

N
1/2(⇢̂⇡ � ⇢⇡) �!L N (0, B) (91)

we will analyze the elements of ⇢̂⇡ � ⇢⇡ . The number of
tested individuals with symptoms s is binomially distributed,

NTs ⇠ Bin(N⇢s, ⇡s), for s = 0, . . . , S�1. Writing NTs/N =
⇢s⇡s + "s, (42) yields that

⇢̂⇡s =
⇢s⇡s + "sPS�1

r=0 (⇢r⇡r + "r)

= ⇢⇡s +
"sPS�1

r=0 ⇢r⇡r

�
⇢s⇡s

PS�1
r=0 "r⇣PS�1

r=0 ⇢r⇡r

⌘2

+
PS�1

r=0 "rPS�1
r=0 ⇢r⇡r

"
⇢⇡s �

⇢s⇡s + "sPS�1
r=0 (⇢r⇡r + "r)

#
,

and the last term on the right-hand side is op

�
N
�1/2

�
.

Invoking the definition of ⇡ in (38), and rearranging terms,
it is possible to rewrite the last displayed equation as

⇡
2(⇢̂⇡s � ⇢⇡s) = (⇡ � ⇢s⇡s)"s � ⇢s⇡s

X

r 6=s

"r

+ op

⇣
N
�1/2

⌘
. (92)

The random variables "0, . . . , "S�1 are independent with bino-
mial variances

Var("s) = ⇢s⇡s(1� ⇡s)/N. (93)

It therefore follows from (92) that (91) holds, with asymptotic
variance matrix B = (Brs) having elements

⇡
4
Bss = (⇡ � ⇢s⇡s)2⇢s⇡s(1� ⇡s)

+ (⇢s⇡s)2
X

r 6=s

⇢r⇡r(1� ⇡r)

and

⇡
4
Brs = �⇡⇢r⇡r(1� ⇡r)⇢s⇡s � ⇡⇢r⇡r⇢s⇡s(1� ⇡s)

+ ⇢r⇡r⇢s⇡s

X

t

⇢t⇡t(1� ⇡t)

when r 6= s. Making use of the definition of ⌃⇡ in (50), it is
easily seen that the last two displayed equations simplify to
(49). The proof of (47) is finalized by making use of (90)
and (91), and noticing that p̂0 is asymptotically independent
of {"s}S�1

s=0 , and hence of ⇢̂. In order to prove (50), it follows
from the definition of {"s}S�1

s=0 and (38) that

⇡̂ =
P

s NTs

N
=
P

s N(⇡s⇡s + "s)
N

= ⇡ +
X

s

"s. (94)

Since {"}S�1
s=0 are independent with variances as in (93),

formula (50) follows.
Proof of Theorem 1: We will start by proving (52). To this

end, write

p̂�p =
X

s

⇢⇡s (p̂0s � p0s) +
X

s

(⇢̂⇡s � ⇢⇡s) p0s

+
X

s

(⇢̂⇡s � ⇢⇡s) (p̂0s � p0s) . (95)

Each term on the right-hand side of (95) is now analyzed.
As for the first term of (95) we invoke (88) and find that

N
1/2

S�1X

s=0

⇢⇡s(p̂0s � p0s) �!L N (0, V1) (96)
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as N ! 1. Since the left hand side of (96) is a linear
combination of the elements of p̂0 � p0, and since A is
a diagonal matrix, it follows from (51) that the asymptotic
variance in (96) equals V1 =

PS�1
s=0 ⇢

2
⇡sAss. This formula for

V1 is identical to the first line of (55). The expressions for
V1 in the next two lines of (55) follow from the definitions of
Ass and ⇢⇡s in (48) and (40) respectively. As for the second
term of (95),

N
1/2

S�1X

s=0

(⇢̂⇡s � ⇢⇡s)p0s �!L N(0, V2) (97)

is also deduced from (51), with V2 =
P

r,s p0rp0sBrs

as defined in (55). In order to simplify this expression of
V2 according to the subsequent line of (55), we make use
of the definition of Brs in (49) and find that

⇡
4
V2 = ⇡

2
X

s

⇢s⇡s(1� ⇡s)p0s

� 2⇡

X

r,s

⇢r⇡r⇢s⇡s(1� ⇡s)p0rp0s

+ ⌃⇡

X

r,s

⇢r⇡rp0r⇢s⇡sp0s

=
X

s

⇢s⇡s(1� ⇡s)

"
⇡

2 � 2⇡p0s

X

r

⇢r⇡rp0r

+

 
X

r

⇢r⇡rp0r

!2
3

5

= ⇡
2
X

s

⇢s⇡s(1� ⇡s)(p0s � p)2,

where in the last step we inserted the definition of p in
(39). Because of (51), the first two terms on the right-hand
side of (95) are asymptotically independent. Moreover, since
p̂0s � p0s = Op

�
N
�1/2

�
according to (88), and ⇢̂⇡s � ⇢⇡s =

Op

�
N
�1/2

�
according to (91), the last term on the right

hand side of (95) is op

�
N
�1/2

�
. Equation (52) therefore

follows from (95), (96), and (97), by summing the asymptotic
variances of the latter two formulas.

In order to prove (53), we proceed similarly as for (52) and
split the estimation error

p̂0 � p̄0 =
X

s

⇢̄s(p̂0s � p0s)

+
X

s

p0s(⇢̂s � ⇢̄s) + op

⇣
N
�1/2

⌘
(98)

into a sum of three terms. By an argument similar to the one
that led to (96) and (97), we find that

N
1/2
X

s

⇢̄s(p̂0s � p0s) �!L N(0, V3),

N
1/2
X

s

p0s(⇢̂s � ⇢̄s) �!L N(0, V4), (99)

with asymptotic variances V3 =
P

s ⇢̄
2
sAss and V4 =P

r,s p0rp0sCrs, in agreement with (55). Formula (53) follows
from (99) and the fact that the two main terms on the right
hand side of (98) are asymptotically independent (which is a
consequence of (51)).

Only (54) remains to be proven. To this end, write

Î
+
T = I

+
T � log

p̄0

p0
+ log

p̂

p
� log

p̂0

p̄0
. (100)

Consequently, by a Taylor expansion of the logarithmic func-
tion around 1,

Î
+
T = I

+
T � log(p̄0/p0) + (R1 + R2)/p

� (R3 + R4)/p̄0 + op

⇣
N
�1/2

⌘
, (101)

where R1 =
P

s ⇢⇡s(p̂0s� p0s) and R2 =
P

s(⇢̂⇡s� ⇢⇡s)p0s

are the first two terms on the right hand side of (95), whereas
R3 =

P
s ⇢̄s(p̂0s � p0s) and R4 =

P
s p0s(⇢̂s � ⇢̄s) denote

the first two terms on the right hand side of (98).
In analogy with (96), (97) and (99), it can be shown that

N
1/2(R1, R2, R3, R4)

�!L N

0

BB@(0, 0, 0, 0),

0

BB@

V1 0 V5 0
0 V2 0 V6

V5 0 V3 0
0 V6 0 V4

1

CCA

1

CCA , (102)

as N !1, with V1, V2, V3, V4, V5, V6 as defined in (55). The
proof of (54) is finalized by combining (101) and (102).

Proof of Lemma 2: There are NTs0 tested individuals
with symptoms s and no disease, and each one of them is
independently classified as diseased with probability ↵s. From
this it follows that the total number of subjects with symptoms
s and no disease, that are reported as diseased, is NTs0↵̌s,
with a binomial distribution NTs0↵̌s|NTs0 ⇠ Bin(NTs0, ↵s)
conditionally on NTs0. Since NTs0 = N⇢⇡s(1�p0s)+op(N),
and E(↵̌s|NTs0) = ↵s, by first moment properties of the
binomial distribution it follows that

NVar(↵̌s � ↵s) = NE[Var(↵̌s � ↵s|NTs0)]
= NE[↵s(1� ↵s)/NTs0]
! ↵s(1� ↵s)/[⇢⇡s(1� p0s)]
= ⌃↵↵s (103)

as N ! 1, where in the second step we made use of the
formula for the variance of a binomial distribution. Weak
convergence of ↵̌s in (75) follows from (103) and the Central
Limit Theorem, applied to the binomial distribution. Weak
converge of �̌s in (76) is proved in the same way.

Proof of Theorem 2: It follows from (74), (78), and a Taylor
expansion of the difference between these two equations, that

p̂0s � p̄0s = Ks1(NTs1/NTs � p0s)
+ Ks2(↵̌s � ↵s) + Ks3(�̌s � �s)

+ Ks4(↵̂s � ↵̄s) + Ks5(�̂s � �̄s)
+ op(N�1/2), (104)

with

Ks1 = (1� ↵s � �s)/Ks

Ks2 = (1� p0s)/Ks,

Ks3 = �p0s/Ks,

Ks4 =
⇥
↵s + �̄s � 1 + p0s(1� ↵s � �s)

⇤
/K

2
s ,

Ks5 = [↵s � ↵̄s + p0s(1� ↵s � �s)] /K
2
s ,
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Ks = 1� ↵̄s � �̄s. (105)

Making use of (75)-(77) and (88), it follows from (104) that

N
1/2 (p̂0 � p̄0) �!L N

�
0, Ā

�
(106)

as N !1, with Ā =
�
Ārs

�
having components

Āss = K
2
s1Ass + K

2
s2⌃↵↵s + K

2
s3⌃��s + K

2
s4⌦↵↵ss

+ K
2
s5⌦��ss + 2Ks4Ks5⌦↵�ss, (107)

and

Ārs = Kr4Ks4⌦↵↵rs + Kr5Ks5⌦��rs

+ Kr4Ks5⌦↵�rs + Kr5Ks4⌦↵�sr (108)

when r 6= s. The rest of the proof of Theorem 2 is analogous
to the proof of Theorem 1.

Verifying formulas (67)-(69): We will show that the MNAR
model of Example 4 satisfies the assumptions of Theorem 1,
i.e. that formulas (67)-(69) of the follow-up Example 5 hold.
Since there are only S = 2 symptom classes, their estimated
sizes, before and after correction for testing bias, satisfy

⇢̂⇡0 + ⇢̂⇡1 = 1,

⇢̂0 + ⇢̂1 = 1. (109)

From this it follows that

B00 = B11 = �B01 = �B10,

C00 = C11 = �C01 = �C10,

D00 = D11 = �D01 = �D10, (110)

and the upper equation is also a direct consequence of the
explicit formula for Brs in (49). It suffices, in view of (110),
to establish (67) and (68) for C11 and D11, with ⌃⇡⇢s as in
(69). It is possible, because of (10) and (42), to rewrite the
expression for ⇢̂1 in (66) as

⇢̂1 =
1
2
⇢̂⇡1(1 + ⇡̂), (111)

with asymptotic limit

⇢̄1 =
1
2
⇢⇡1(1 + ⇡). (112)

Taking the difference between (111) and (112), we find that

⇢̂1 � ⇢̄1 =
1
2
(1 + ⇡)(⇢̂⇡1 � ⇢⇡1)

+
1
2
⇢⇡1(⇡̂ � ⇡) + op

⇣
N
�1/2

⌘
. (113)

Similarly as in the proof of Theorem 1, it can be shown that

N
1/2 (⇢̂1 � ⇢̄1, ⇡̂ � ⇡)

�!L N

✓
(0, 0),

✓
B11 ⌃⇡⇢1

⌃⇡⇢1 ⌃⇡

◆◆
(114)

as N !1, where

B11 = ⇢0⇡0⇢1⇡1(⇡ � ⇡0⇡1)

is deduced from (49) when S = 2,

⌃⇡ = NVar(⇡̂) = ⇢0⇡0(1� ⇡0) + ⇢1⇡1(1� ⇡1)

is taken from (50), and

⌃⇡⇢1 = lim
N!1

Cov(⇡̂, ⇡̂⇡1).

Because of (113) and (114) we have that

C11 = lim
N!1

NVar(⇢̂1)

=
(1 + ⇡)2B11 + ⇢

2
⇡1⌃⇡ + 2(1 + ⇡)⇢⇡1⌃⇡⇢1

4
,

and

D11 = lim
N!1

NCov(⇢̂⇡1, ⇢̂)

= (1 + ⇡)B11/2 + ⇢⇡1⌃⇡⇢1/2,

in agreement with (67) and (68) respectively. It remains to
establish the formula for ⌃⇡⇢s in (69). To this end, we make
use of (92) and (94) in order to write

⌃⇡⇢s = lim
N!1

NCov(⇡̂, ⇢̂⇡1)

= lim
N!1

NCov

 
X

r

"r, "s/⇡ � ⇢s⇡s

X

r

"r/⇡
2

!

= ⇢s⇡s(1� ⇡s)/⇡ � ⇢s⇡s⌃⇡/⇡
2
,

where in the last step we utilized (50), (93), and the indepen-
dence of {"r}S�1

r=0 . ⇤
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