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Algebraic approach to spike-time neural codes in the hippocampus
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Although temporal coding through spike-time patterns has long been of interest in neuroscience, the specific
structures that could be useful for spike-time codes remain highly unclear. Here, we introduce an analytical
approach, using techniques from discrete mathematics, to study spike-time codes. As an initial example, we
focus on the phenomenon of “phase precession” in the rodent hippocampus. During navigation and learning on a
physical track, specific cells in a rodent’s brain form a highly structured pattern relative to the oscillation of popu-
lation activity in this region. Studies of phase precession largely focus on its role in precisely ordering spike times
for synaptic plasticity, as the role of phase precession in memory formation is well established. Comparatively
less attention has been paid to the fact that phase precession represents one of the best candidates for a spike-time
neural code. The precise nature of this code remains an open question. Here, we derive an analytical expression
for a function mapping points in physical space to complex-valued spikes by representing individual spike times
as complex numbers. The properties of this function make explicit a specific relationship between past and future
in spike patterns of the hippocampus. Importantly, this mathematical approach generalizes beyond the specific
phenomenon studied here, providing a technique to study the neural codes within precise spike-time sequences
found during sensory coding and motor behavior. We then introduce a spike-based decoding algorithm, based on
this function, that successfully decodes a simulated animal’s trajectory using only the animal’s initial position
and a pattern of spike times. This decoder is robust to noise in spike times and works on a timescale almost
an order of magnitude shorter than typically used with decoders that work on average firing rate. These results
illustrate the utility of a discrete approach, based on the structure and symmetries in spike patterns across finite
sets of cells, to provide insight into the structure and function of neural systems.
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I. INTRODUCTION

The brain encodes sensory information, makes decisions,
and generates motor outputs through patterns of activity
across large populations of neurons. It remains unknown,
however, whether these patterns are made up of precisely
coordinated and meaningful spike times [1], or whether the
timing of the spikes is random and only their average rate
is meaningful [2,3]. Recent experimental results in songbird
singing [4–7] and the motor system [8] indicate that precise
spike timing can dramatically influence behavior [9–12]. In
this paper, we introduce an approach to study specific, individ-
ual spike patterns, using methods from discrete mathematics.
As a first demonstration, we consider one of the clearest
experimental examples of a spike-time pattern observed in the
brain—phase precession in the rodent hippocampus.
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Phase precession

In the rodent hippocampus during navigation on a linear
track, the timing of single neuron spikes exhibits a precise re-
lationship with the large-scale population rhythm in this brain
area [13,14]. Neurons in the CA1 region of the hippocampus
fire spikes when the animal is in a specific location of an
environment, creating a neural representation of that location
[15–17]. The spiking regions of individual cells, called their
“place field,” tile the environment (Fig. 1, top). During nav-
igation, population activity in the hippocampus oscillates at
a rhythm of 8 Hz, which is termed the θ rhythm [18–21].
Place field sizes are ordered across the dorsal-ventral axis of
the CA1 region, with cells closer to the ventral pole having
progressively larger place fields [22,23]. As a result, the brain
assembles a map of physical space along an axis of cortical
space, using the θ oscillation as a metronome to tie these two
representations together. The computational consequences of
both this mapping and the precise spike timing relative to the
θ rhythm, however, remain an open question in neuroscience.

In studying the relationship of action potential timing to the
θ rhythm, researchers discovered that a single neuron begins
spiking at the peak of the population θ rhythm, with the timing
of spikes occurring earlier and earlier in following cycles [13].
This phenomenon is called “phase precession” because spikes
start at a specific phase of θ and then progress to earlier and

2470-0045/2023/108(5)/054404(11) 054404-1 Published by the American Physical Society

https://orcid.org/0000-0002-7872-4514
https://orcid.org/0000-0002-9807-9604
https://orcid.org/0000-0001-5165-9890
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.054404&domain=pdf&date_stamp=2023-11-09
https://doi.org/10.1103/PhysRevE.108.054404
https://creativecommons.org/licenses/by/4.0/


FEDERICO W. PASINI et al. PHYSICAL REVIEW E 108, 054404 (2023)

FIG. 1. Phase precession in the rodent hippocampus. Top: Five
neurons (N1–N5) with active place fields during navigation from left
to right on a linear track. Middle: While the rodent runs through the
place field of cell N3 (blue), the phase of its spikes systematically
advances with respect to the population θ rhythm (opposite in sign to
the local field potential, relative to which phase is defined), starting
close to π at the beginning of the place field, advancing to zero at the
place field center, and ending near −π at the end of the place field.
Bottom: A complex-valued representation of the pattern formed by
the phase precession of multiple neurons N1–N5 with place field
centers spaced across the track creating a compressed sequence of
spike times in each individual θ cycle.

earlier phases while the animal traverses the place field (Fig. 1,
middle). This process is critical to formation of memory traces
[24–26], which are then thought to be transferred to the neo-
cortex for consolidation and long-term storage [27,28]. The
spike-time pattern formed by a population of cells exhibiting
phase precession (Fig. 1, middle) is central to this process of
memory trace formation, as the pattern is thought to compress
behavioral sequences that last for several seconds onto the
timescale relevant for synaptic plasticity [14,24].

Phase precession and the compression of temporal se-
quences of neural activity have been well described in the
dorsal pole of CA1 [14], which represents the finest spatial
scales [22,23]. Absent, however, is a description of what
this sequence structure means for the global pattern of hip-
pocampal activity across multiple dorsoventral levels. In other
words, what can this experimental example tell us about spike-
time codes across a whole brain region? The population θ

rhythm itself, which was long thought to be synchronous
throughout hippocampal CA1, has also recently been found
to be systematically organized as a wave traveling from the
dorsal to the ventral pole of CA1 [29,30]. The combination of
phase precession at multiple levels of the dorsoventral axis,
along which the size of place fields increases linearly [31],
with the wavelike organization of the θ rhythm along this
same axis raises the possibility that a sophisticated struc-
ture is apparent in the global pattern of spike times across
the hippocampus. Understanding such a global structure in
spike times could provide insight into how the hippocampal
neural code is organized during the process of memory trace
formation.

In the following sections, we derive equations describing
spike times in the population of neurons across the hippocam-
pus during this phenomenon. By representing spike phases
relative to the θ rhythm in terms of complex numbers (Fig. 1,
bottom), we arrive at a map that relates physical space to
spike times in the hippocampus. We show that this function
leads to a symmetry between past and future spike patterns
in hippocampal populations, and that this symmetry reflects a
specific trajectory in space and time. Further, this symmetry
provides a specific meaning to the recent observation that
the θ rhythm is a wave traveling across the dorsoventral axis
[29]. Based on this function, we then introduce a spike-based
decoder that can correctly predict the animal’s location. This
decoder requires only the animal’s starting position and spike
times, and it operates on a timescale almost an order of magni-
tude shorter than current decoders that work on average firing
rate [32,33]. Importantly, this decoder, which is derived from
the mapping between physical space and spike times, allows
us to relax key simplifying assumptions made in develop-
ing the mathematical approach. Taken together, these results
provide fundamental insight into mathematical approaches to
spike-time codes, in addition to the specific temporal code
exhibited during phase precession in the hippocampus.

II. RESULTS

A. Analytical approach

We start by introducing our notation for the hippocampal
spike pattern. Experimental observations show that place field
length varies along the dorsoventral axis and is constant on
cross sections of the axis [22,23]. In order to parametrize these
quantities, we introduce the variable � ∈ [0, 1] to represent
position along the dorsoventral axis, with � = 0 being the dor-
sal pole. To good approximation, place field length increases
linearly along the dorsoventral axis [31]:

L� = L0 + (L1 − L0)�, (1)

where place field lengths range from less than 1 m at the dorsal
pole (L0) to approximately 10 m at the ventral pole (L1) [31].

The total phase precession of a place cell during a single
traversal of its place field spans approximately a full θ cy-
cle [14]. More precisely, the spikes of a cell systematically
advance their phase with respect to the θ oscillation, with a
total phase gain approaching 2π . It is well documented that
the phase of a spike (or the mean phase of a spike burst) of
an active place cell within a θ cycle reflects the fraction of the
cell’s place field the rodent has traversed at the moment of the
spike [13,14]. Note that the spike could represent a single ac-
tion potential or the centroid for a burst of spikes, as typically
considered in studies of phase precession [14,24]. Here we
construct a model which makes the relationship between the
animal’s position within place fields and spike phases precise.
Taking φ ∈ [−π, π ], the spike happens at a phase φ such that
the expression

−φ + π

2π
(2)

equals the fraction of the place field covered at the time of the
spike. Setting the space coordinate of the place field center to
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be c, the spike phase can then be retrieved as

φ = −2π
x − c

L�

. (3)

Importantly, while the phase offset of θ will change lin-
early with � as the θ wave travels over the dorsoventral axis,
reaching π at the ventral pole [30], here we represent each
spike’s phase with respect to the local θ rhythm, instead of
referencing all spikes to the phase of the θ traveling wave at
the dorsal pole.

A spike happening at the physical space-time coordinates
(xs, ts) can thus be mapped to a complex valued spike phasor
using (1) and (3). The mapping from physical space and time
to complex-valued spikes can be seen as a map H : R2 → C:

H : (xs, ts) → exp

(
−2π i

xs − c

L0 + (L1 − L0)�

)
. (4)

As expected from experimental evidence [24], only spatial
position appears explicitly in the H map. Time, on the other
hand, is implicit in Eq. (4), both as a discrete count of the
current θ cycle number, and as a continuous measure of the
precise spike phase that, within the current θ cycle, satisfies
Eqs. (2) and (3). In other words, xs and ts completely deter-
mine each other, provided the animal’s velocity is known. The
formulation of the H map as an explicit function of xs alone
has the advantage of being independent of the animal’s veloc-
ity. Notably, H is flexible enough to be applied to contexts
of varying velocity within a single trajectory. This closed-
form analytical expression now allows us to understand the
functional significance of phase precession in terms of sym-
metries in this discrete pattern of interleaved spikes in the
hippocampus.

B. Space-time symmetries in the H map

We now describe the time evolution of the spike pattern
in terms of the H map, by defining operations equivalent to
shifting the spike pattern across θ cycles in time or across
place cells in space. We then use these operations to study
symmetries in this space-time representation in the hippocam-
pus. While we focus in this section on the well-studied case of
rodents navigating on a linear track, the analytical form for the
H map allows us to generalize quite naturally to spike patterns
in two dimensions, as we will show later.

First, we describe the time evolution of the spike pattern
in terms of the H map. Assuming that in the jth θ cycle the
animal’s velocity v j is constant (without requiring constant
velocity on a longer timescale), Eq. (3) implies that the spik-
ing frequency f� of a place cell at dorsoventral location � is

f� = fθ + v j

L�

= fθ + v j

L0 + (L1 − L0)�
. (5)

The derivation of (5) is detailed in Appendix A 1. Note that
(5) defines the rate of phase change at each position in space
in a local manner, without requiring global information about
the full phase precession, and that this rate can change from
cycle to cycle.

With (5), we can now define an operation equivalent to
shifting the spike pattern across θ cycles in time. Let ck be
the position of the place field center of cell k, and let x( j,k)

denote the position at which cell k fires during θ cycle j.
The phase corresponding to this spike (or burst) is given
by (�S j )k = H (x( j,k) ) = exp(−2π i x( j,k)−ck

L�
). If we let T� = 1/ f�

denote the time between consecutive spikes of the same cell,
then the spike phase of the cell (�S j+1)k in the subsequent θ

cycle can be described in terms of (�S j )k:

(�S j+1)k = exp

(
−2π i

x( j+1,k) − ck
L�

)

= exp

(
−2π i

x( j,k) + v jT� − ck
L�

)

= exp

(
−2π i

x( j,k) − ck
L�

)
exp

(
−2π i

v jT�

L�

)

= H
(
x( j,k)

)
exp

(
−2π i

v j

L� f�

)

= (�S j )k exp

(
−2π i

v j

L� f�

)
. (6)

This equation indicates that, to advance �S j to the next θ cycle,
we rotate clockwise by an angle of 2π

v j

L� f�
.

Next, we define an operation equivalent to shifting the
spike pattern across place cells in space. We fix the dorsoven-
tral location � so that all place fields under consideration have
length L�. In order to illustrate this idea, we now consider
a simplified scenario in which v is constant during a single
run. Because place fields are uniformly distributed within
navigation environments [34], we can select a population of
cells whose centers have a constant spatial offset. Specifically,
we consider the population with place field centers evenly
spaced vTθ m apart, so that a new cell begins firing each
θ cycle. In this case [Figs. 2(c)–2(g)], the phase difference
�φ� = −2π v

L� f�
between spikes of the same cell in two con-

secutive θ cycles equals the difference in phase between the
spikes in the same θ cycle of two cells with consecutive place
field centers:

�φn = 2π

Tθ

(Tθ − T�) = 2π

(
1 − fθ

f�

)
. (7)

Therefore, the following rotation transforms the spike of cell
k − 1 in θ cycle j into the spike of cell k in θ cycle j
[Fig. 2(b)]:

(�Sj )k = (�S j )k−1 exp

[
2π i

(
1 − fθ

f�

)]
. (8)

Equations (6) and (8) allow us to derive an explicit expres-
sion for the symmetry in the hippocampal spike code. Take
τ = ( f� − fθ ) to be the temporal frequency of the phase pre-
cession phenomenon itself (with units rad/s) and χ = 1/L�

to be the spatial frequency determined by the length of a
place field (with units rad/m). When v = τ/χ , the discrete
spike pattern is invariant in time, i.e., (�Sj )k−1 = (�S j+1)k ∀ k ∈
[1,NA], where NA is the number of actively spiking cells
(see Appendix A 1). Here, the quantity τ/χ has an important
physical meaning: this invariant, with units of m/s, repre-
sents a fixed trajectory linking past to future locations on
a specific space-time scale. Further, the temporal frequency
determining this space-time scale is τ = ( f� − fθ ), represent-
ing two key phenomena internal to the hippocampus, the θ

054404-3



FEDERICO W. PASINI et al. PHYSICAL REVIEW E 108, 054404 (2023)

Theta Cycle j

Position 
(along track)

 

c
k

x(j,k)

- c k

x(j,k) - ck

(a)

cell k

j+1

x(j+1,k)

v j x(j+1,k)

Time 

(d)
x x x

v v

S
j

S
j+1 S

j+2

H H H

H'             H'

cell k

cell k+1

 

Cycle j   Cycle j+1
(c)(b)

(e) (f) (g)

 

j+1)k

(S
j
)k 

(S
(Sj)k+1 

 
 

(S k )j

Proportionate  

to the fraction of  

place field k+1 traversed

j+1

j

Advance 
One Cycle

Advance 
One Cell-π

time

phase

cell k

cell k-1

π cycle j+1cycle j

FIG. 2. Phase precession schematic with computation of �φ� and �φn. (a) Schematic depicting the relationship between phase, time, and
space in the hippocampus. In θ cycle j, cell k spikes near the −π phase, indicating place field k began in the recent past. The time between
the spikes of cell k in θ cycles j and j + 1 is given by T�, which is slightly shorter than the length of the θ cycle, Tθ . In that time, the rat
travels a distance of v jT� along the track. The place field center ck and the rat’s physical positions at the time of the spikes are denoted. (b) This
diagram demonstrates the relationships between the vector operations for the population of neurons under consideration, where H maps a
physical position along the track to the spikes of the full population using the shift between cells, and H′ propagates the spike pattern of the
population into the next θ cycle using the shift in time. (c) The difference between �φn and �φ�. (d) When these two quantities are equal, the
spike pattern of the population is invariant. Advancing forwards one θ cycle simply rotates the labels of the spikes clockwise by one spike.
(e) The x and y axes represent the time and spike phase, respectively. The vertical black bars demarcate θ cycles. The diagonal black lines
represent the phase of the θ cycle. The blue and red circles represent the spike phases of two cells at the same location along the dorsoventral
axis. These phases are determined by the intersection points of the θ -cycle phase (diagonal black lines) with the colored lines, the slope of
which is determined by the spiking frequency of the place cell. (f) Computation of �φn. A closeup view shows the invariant case when the
phase difference between the spikes of two cells with consecutive place fields, �φn, is exactly opposite to the phase difference between spikes
of the same cell in consecutive θ cycles �φ�. The diagonal black lines have slope 2π/Tθ by construction, since they represent the phase of the
θ oscillation across by one cycle. This means 2π

Tθ
= �φn

Tθ −T�
. (g) Here, the same values are represented on the unit circle in the complex plane.

Rotating clockwise by �φ� propagates the spike of a cell into the subsequent θ cycle. A rotation of �φn counterclockwise is a shift forwards
in space: it transforms the spike of cell k into the spike of cell k + 1, which has the next place field.

rhythm itself and the spiking frequency of a place cell during
phase precession. Finally, while we focused on the case of
constant speed, the spike patterns resulting from an arbitrary
time-varying movement profile (reflecting changes in speed)
involve a straightforward extension of this calculation.

This mathematical approach becomes even more revealing
when considering this invariant at multiple dorsoventral levels
in the hippocampus. The quantity τ/χ is independent of �.
This quantity defines a space-time scale projecting a trajectory
into the future. This specific space-time scale remains invari-
ant whether the local populations represent the smallest spatial
scales [“dorsal,” Fig. 3(a) right] or the largest spatial scales
[“ventral,” Fig. 3(a) right]. As the θ wave sweeps across CA1
during each oscillation cycle [color scale, Fig. 3(a)], the local
populations across the dorsoventral axis represent a trajectory
with a fixed scale within the context of a larger and larger
cognitive map. The direction of the traveling θ wave, which
experiments show systematically starts in the dorsal region
and propagates to the ventral, provides a specific spatiotempo-
ral organization to the global activity in the hippocampus (see
Sec. III B). The global organization of the hippocampal spike

code during an individual θ cycle [Fig. 3(b)] thus represents
a single, invariant trajectory linking the past and future at
increasing spatial scales.

C. Spike-based decoder

We next sought to understand how this spatiotemporal
pattern of spiking could be decoded under realistic condi-
tions. Specifically, we sought to test whether the approach
described in the analytical expressions above could be ro-
bust both to noise in the specific phase of the spike and to
relaxing assumptions made in the derivation. To do this, we
developed a computational approach to estimate the inverse
of the H map (see Appendix A 2). Trajectories of varying
lengths and curvature were randomly generated within a two-
dimensional (2D) physical environment tiled by Gaussian
place fields [Fig. 4(a)]. A simplified model was used to gener-
ate phase precession along these 2D trajectories [Fig. 4(b);
see Appendix A 1]. Note that neither constant speed along
the trajectories nor full 2π phase precession was assumed.
For simplicity, we model uniformly sized place cells at each
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(a)

(b)

FIG. 3. Relationship between dorsoventral location and phase
precession. (a) A mouse brain depiction is colored by the phase
offset of the θ rhythm along the dorsoventral axis, along which
the θ rhythm travels as a wave with total phase offset π [30].
(b) Phase precession is depicted for three cells at different locations
along the dorsoventral axis using the same color scheme.

dorsoventral location; we note, however, that generating place
fields with varying lengths has no significant effect on these
results.

Given the set of generated spikes, the rodent’s position
is estimated by computing a weighted sum of vectors deter-
mined by the spike phases of cells with active place fields.
More precisely, in each θ cycle, the set of vectors from the
animal’s current estimated position to the center of each active
place field is computed. The direction of each vector is given
by the sign of the spike phase of the corresponding cell,
depending on whether the animal is approaching or leaving
the place field center. The weight of each vector in the sum
is given by the fraction of the place field traversed since the
previous estimate [Fig. 4(c); see Eq. (A8) for fraction and
normalizing factor]. The sum of all contributing vectors is
added to the animal’s current estimated position to produce
a position update. Error improves with increasing number of
active neurons, until reaching an asymptote around 30 cm at
approximately 100 neurons. We start the process at an initial
spatial location for the animal, apply the decoding step to up-
date the spatial location, and then repeat this step to iteratively
update the estimate of the animal’s spatial location. Critically,
this spike-based decoding algorithm receives only the initial

(a) (b)

(c)

FIG. 4. Encoding and decoding spike phases. (a) A 2D space
tiled with place fields. Each neuron is represented by a 2D Gaussian
defining the firing rate of the cell at each position in the place field.
The values of the Gaussian for a particular cell along the trajectory
define the black one-dimensional curve in (b). The intersections of
the LFP (red) with this curve define the phase of a spike (or spike
burst). These intersections occur on the rising phase before the peak
firing rate (which occurs at the center of the place field) and on the
falling phase after the peak. (c) The decoding step to update the
position estimate x̂T at time T for a simple case with only two place
fields.

spatial location, after which it computes each new estimate
based on the previous estimate. In this way, the decoded tra-
jectories presented here are based only on an initial condition
and the internally generated spike train, in much the same
way the process would be implemented in the brain. Note
that the error measure plotted here thus requires the decoder
to estimate the correct space-time prediction, as the position
decoded from spikes on a single θ cycle is compared to the
subject’s actual position at that same time.

This decoding algorithm allows us to study how the spike
train structure described by the H map may encode the
position of the animal under realistic conditions, including bi-
ological noise in the spike phase, varying speed of the animal,
and phase precession in two dimensions. We first applied the
decoding algorithm to linear trajectories within a 2D environ-
ment [Fig. 5(a), solid line and dots], which were well handled
by the algorithm. Further, the general form of the H map
provides a straightforward generalization to decoding two-
dimensional trajectories with arbitrary curvature [Fig. 5(b),
black solid line and black dots]. The trajectories decoded by
the algorithm are robust to noise in the spike phase [Fig. 5(b),
blue dots, and Fig. 5(d)]. In contrast, random spike phases
resulted in decoded trajectories extending far from the correct
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(a) (b)

(c)

(e)

(d)

FIG. 5. Spike-train decoding based on the H map. (a) A one-dimensional trajectory in a 2D environment. A linear trajectory (solid line) is
plotted for a simulated rodent running from left to right (color changing from blue to yellow in time), along with dots for decoded positions
in each θ cycle (same color code). Simulated place cells have 1-m fields, leading to 169 active neurons on this trajectory. (b) An example
2D trajectory (solid line) is plotted along with the results from several decoding models: the H model (black dots), the H model with π/16
phase noise, and a null model in which each spike is assigned a random phase value. Place cells have 1-m fields, and 388 cells are active along
the 3.36-m trajectory. (c) For the example trajectory in (b), mean error is plotted as a function of the number of place fields active along the
trajectory. Different numbers of place fields were randomly generated to tile the 2D space surrounding the trajectory, resulting in different
numbers of cells with place fields overlapping the trajectory. (d) Decoding error for the same trajectory plotted as a function of added phase
noise. For each value of phase noise, ten iterations were used to produce the plot. Solid lines represent mean decoding error averaged over
realizations, and shaded regions represent standard error. (e) Mean error for 2500 random trajectories is plotted as a function of trajectory
length.

path and in different directions on each iteration [Fig. 5(b), red
dots]. Further, varying the length, curvature, and speed of the
trajectories does not significantly impact decoding [Fig. 5(e)].
These results show that a decoding algorithm inspired by the
H map introduced in this paper can faithfully decode spatial
locations from the temporal pattern of spikes alone, and on the
timescale of a single θ cycle.

III. DISCUSSION

In this paper, we have introduced a discrete mathemati-
cal approach to spike patterns that are a key component of
memory formation [13,24]. A central idea in neuroscience is
that memories are stored across large groups of neurons [35].
Neural activity is composed of discrete spiking events, but
nearly all models of memory focus on the continuous rate of
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spikes, rather than their discrete timing. This approximation
has been convenient because precise spike times are generally
considered to be stochastic; however, more and more recent
experimental work suggests that precise timing of spikes
across groups of cells may be critical to memory formation
[24,26,36].

By starting with a specific experimental observation in the
hippocampus, where the clearest demonstration of a precise
spike-time pattern has been found, we have introduced a
discrete approach to the problem of spike times in memory.
We first introduced a model for this precise pattern of spike
times, and we then derived an analytical expression for the
function mapping points in physical space to complex-valued
spike times. We find this function leads to a clear space-time
symmetry between past and future spike patterns in the hip-
pocampus. This theoretical approach unites the role of the
hippocampus in spatial navigation with its role in memory
formation.

Finally, we introduced a spike-based decoder that operates
on individual, discrete spike events. The aim of this decoder
is to demonstrate that the simplifications used in deriving the
analytical expression can be relaxed. To make this demon-
stration, we generate spikes based on a simplified model of
phase precession, add specific forms of variability that may
occur in real-world settings, and test whether a simulated an-
imal’s position can be successfully decoded. The decoder can
successfully predict an animal’s spatial location under noise
in spike times, variable running speed, and two-dimensional
trajectories, demonstrating that the simplifications used in
deriving the analytical expression can be relaxed to handle a
variety of cases. For example, the decoder can handle phase
relationships that are not perfectly linear with position across
the place field. Previous work has demonstrated that there
can be differences in the slope of phase precession between
the first and second half of the place field [24]; recent work,
however, has demonstrated that the relationship may be quite
linear when considering phase precession on single trials [37].
This is also an important consideration for phase precession in
two dimensions, where the animal’s trajectory may not always
pass perfectly through the center of a cell’s place field. The
performance of the spike-based decoder in the case of curved
trajectories, where the phase precession can be more compli-
cated than a simple progression with space, demonstrates that
the spike-time code represented by the H map operates well
under these conditions. More generally, this further illustrates
the utility of our analytical approach: by obtaining a complete
analytical understanding of the mapping in a carefully chosen,
one-dimensional case of phase precession, the mapping im-
mediately generalizes to multiple dimensions. Finally, while
the intention of this decoder is to demonstrate that the analyt-
ical approach is robust to real-world phenomena, we note this
spike-based decoder makes successful predictions using data
on the timescale of a single θ cycle (≈ 125 ms), a timescale
almost an order of magnitude shorter than typically used with
rate-based decoders [32,33].

A. Difference from previous work

Theoretical work on phase precession has largely focused
on its role in memory formation, since these spike-time

structures compress behavioural timescales onto the scale
of a single θ cycle [14]. This sequence compression has
been causally implicated in the process of memory formation
by pharmacological manipulation of N-methyl-D-aspartate
(NMDA) receptors [24], can allow temporal-order learning
[38], and has been studied both in spiking network models
[39] and analytically [40]. Further, previous computational
studies have proposed models for the generation of the phase
precession phenomenon [41–44] and Ref. [40] studied how
phase precession (where cells spike at a frequency just higher
than the population) can be consistent with the oscillation
in the population spiking activity. Finally, a position-θ -phase
model is proposed in Ref. [45] to investigate the modulation
of firing rate by running speed. These studies demonstrate
interest in developing theoretical approaches to phase pre-
cession. This previous work, however, placed less emphasis
on studying phase precession as a spike-time code. Due to
the lack of theoretical work on this topic, many critical as-
pects of phase precession remain unexplored, including what
behaviorally relevant features could be encoded by phase
precessing populations and how phase precession general-
izes beyond one-dimensional linear tracks (as considered in
Refs. [14,24]).

In this paper, we have utilized approaches from discrete
mathematics to understand the spike-time structure involved
in phase precession. The H map, which relates points on a
trajectory to complex-valued spikes in a hippocampal popu-
lation, provides not only a formula for the spike times in the
simplified one-dimensional scenario considered in the analyt-
ical approach, but also a straightforward generalization to two
(or more) dimensions. Further, this map reveals a symmetry
in the hippocampal representation, which encodes not just the
animal’s position but also trajectories linking past and future
positions. Finally, we show that the dorsal-ventral sweep of θ

plays a specific role in this code: the traveling θ wave unites
local representations of trajectory across CA1 in the context
of an expanding spatial map.

B. θ traveling wave in the hippocampus

These results provide insight into the global organization of
hippocampal activity during memory formation and the recent
observation that θ is a wave that travels from dorsal to ventral
portions of the hippocampus [29,30]. The hippocampus is
thought to be where a “cognitive map” [16,46] emerges, such
that information about an animal’s location during naviga-
tion serves as the brain’s “GPS system” [47]. If the central
function of the hippocampus were only to precisely encode
spatial location, we might expect the temporal organization
of activity during a θ cycle to sweep from the ventral, coarsest
spatial scale of representation to the dorsal, finest spatial scale,
analogous to a radar sweep that would initially scan across
coarse scales and progressively narrow its focus to identify
an object’s location. If, on the other hand, the fundamental
function of the hippocampus is linking past and future, then
a sweep from the dorsal to the ventral pole would represent
a trajectory linking past and future positions at a fixed space-
time scale within a larger and larger spatial map. Interestingly,
recent experiments have reported that neural activity can en-
code possible future positions and that this neural activity can
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be precisely coordinated both within and between θ cycles
[48–50]. Though these reports are not directly aligned with
the phenomenon studied here, these experiments represent
potential avenues for connecting this mathematical approach
with analysis of neural recordings in future work.

These mathematical results provide a guiding framework
for thinking about spike-time codes distributed in a sophisti-
cated spatiotemporal pattern over an entire brain region. We
note that, while the equations in this paper consider always
the local phase of θ at a specific point on the dorsoventral axis,
this approach is able to provide initial insights into the inter-
play of phase precession with the traveling-wave organization
of θ in the hippocampus. By adding an explicit representation
of phase offset along the dorsoventral axis, future work could
study the organization of the global spike pattern across many
populations in CA1 that simultaneously exhibit phase preces-
sion while also representing navigational space at different
scales. In this way, our mathematical results provide initial in-
sights into the role of the θ traveling wave in the hippocampus.
Specifically, the hippocampus establishes memories as a link
between past experience and predictions of future states [27].
Our mathematical analysis reveals an invariant in the spike
pattern generated by phase precession that represents a fixed
trajectory linking past to future locations on a specific space-
time scale. Going further, considering the θ wave traveling
across the dorsoventral axis, the invariant represents the same
fixed trajectory within an expanding spatial map. Because
the θ wave systematically travels from the dorsal to ventral
section of CA1 (i.e., from smallest to largest place fields), the
spatial context always expands. This is contrary to what one
may imagine would occur in a GPS that uses increasingly fine
precision to locate a specific target. Our mathematical analysis
thus reveals a specific computational role for the traveling θ

wave found in the hippocampus [29,30], in terms of linking
memories of the past to future predictions at a precise spatial
and temporal scale.

C. A discrete approach to spike-time codes

Spike times are often considered to be random and mod-
eled as stochastic point processes. As such, it is not the events
themselves, but rather the rates at which they occur, that are
most often related to behavior. This may be due, in part, to
the lack of mathematical tools capable of accounting for the
precise timing of spikes. Approaches from discrete mathe-
matics may provide a new avenue for exploring how spike
timing may contribute meaningfully to neural computation.
By studying specific spike-time patterns, and leveraging their
algebraic properties (such as symmetries), it may be possi-
ble to uncover general theoretical principles for the role of
spike timing in neural computation. In this paper, we intro-
duce a map-based approach to phase precession, one of the
best known examples of a specific spike-time pattern. Rep-
resenting neural spikes as complex numbers allows for the
exploration of symmetries, like the rotations described above,
not easily observable in a linear variable. Many possibilities
exist for future work to develop general methods for arbi-
trary spike-time codes in populations of the hippocampus and
neocortex.
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APPENDIX A: METHODS

1. Complex-valued spikes

We begin by recalling the H map and notation from the
main text. For cells at a fixed location � ∈ [0, 1] along the
dorsoventral axis of CA1, all place fields have length L� =
L0 + (L1 − L0)�. Suppose that cell k has place field center ck
and spikes at the physical position x( j,k) in θ cycle j. Then the
spike phase of cell k in θ cycle j is given by

(�S j )k = H (x( j,k) ) = exp

(
−2π i

x( j,k) − ck
L�

)
. (A1)

By definition, the angular velocity of the θ oscillation, that
is, the time derivative of the θ phase, is ω = 2π/Tθ . However,
considering the cells’ phase precession, said angular velocity
can also be measured from the phase difference of two con-
secutive spikes of the same cell, and the relative time interval:
ω = (2π + �φ�)/T� (it is worth remembering that �φ� < 0).
Equating the two expressions we get

fθ = 2π + �φ�

2π
f� = f� + �φ�

2πT�

= f� − �x�

L�T�

,

where the last equality follows from (3), and �x� is the dis-
tance between the physical points on the animal’s trajectory at
which the two consecutive spikes happen.

Assume that in each θ cycle, j, the rat’s velocity is con-
stant and given by v j = �x�/T�; however, this velocity need
not be constant along the whole trajectory. Then, the spiking
frequency in θ cycle j of a place cell at dorsal-ventral location
� can be written as

f� = fθ + v j

L�

. (A2)

Note that this equation defines a local slope [Figs. 2(e)
and 2(f), red and blue lines], and does not require global
information about the full phase precession (i.e., it still holds
when the cell does not precess a full 2π ). Let T� = 1/ f� denote
the time between spikes of the same cell in two consecutive
θ cycles. Then, the physical distance traveled between those
two spikes is v jT�, as in Fig. 2(a). This quantity can be used to
define the shift required to propagate the spike phase of cell k
from θ cycle j into cycle j + 1. In this way, it is unnecessary
to compute (�S j+1)k from the H map directly: it can also be
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estimated from x( j,k), T�, and v j as follows:

(�S j+1)k = H (x( j+1,k) )

= exp

(
−2π i

x( j+1,k) − ck
L�

)

= exp

(
−2π i

x( j,k) + v jT� − ck
L�

)

= exp

(
−2π i

x( j,k) − ck
L�

)
exp

(
−2π i

v jT�

L�

)

= H
(
x( j,k)

)
exp

(
−2π i

v j

L� f�

)

= (�S j )k exp

(
−2π i

v j

L� f�

)
. (A3)

Therefore, rotating clockwise by an angle of 2π
v j

L� f�
propa-

gates the spike of cell k forward to the next θ cycle.
Now, let v j = v be constant throughout the trajectory,

and suppose a new neuron begins spiking every θ cycle. In
this case, the phase difference �φ� = −2π v

L� f�
between the

spikes of the same cell in two consecutive θ cycles equals
the difference in phase between the spikes in the same θ

cycle of two cells with consecutive place field centers. This
quantity is given by �φn and can be computed from Fig. 2(f)
as �φn = 2π

Tθ
(Tθ − T�) = 2π (1 − fθ

f�
). Here, the positive slope

represents moving from the spike of the red cell to that of the
blue cell. Since the red cell has precessed more than the blue
cell, we know the place field of the red cell began before that
of the blue cell; i.e., if blue denotes cell k, then red denotes
cell k − 1.

We can therefore define the following rotation to transform
the spike of cell k − 1 in θ cycle j into the spike of cell k in θ

cycle j:

(�Sj )k = (�S j )k−1 exp

[
2π i

(
1 − fθ

f�

)]
. (A4)

Equivalently, (�Sj )k−1 = (�S j )k exp[−2π i(1 − fθ
f�

)] shifts back-
wards in space, moving from one cell to another with a place
field that began earlier in the trajectory.

As in Fig. 2(g), we define the shift from one cell to the next
by the rotation of 2π (1 − fθ

f�
) counterclockwise. Importantly,

this phase difference, �φn, is exactly opposite �φ�. We can
therefore shift forwards in time (i.e., propagate the spike of
a cell forwards one θ cycle) by rotating clockwise, and shift
forwards in space (i.e., shift to the cell with the subsequent
place field) by rotating counterclockwise. Furthermore, when
considering a population of NA active cells at dorsal-ventral
location �, in which a new cell begins spiking every θ cycle,
the phase pattern of the population remains invariant across
the trajectory. In this case, the spike phases of the neurons are
equally spaced around the unit circle in the complex plane,
and advancing forwards in time simply rotates the neuron
indices from spike to spike. These rotations can be used to
define the following vector operations, depicted in Fig. 2(b),
which consider the aforementioned population of cells as a
whole.

First, map the animal’s position along the track to the
population spike pattern in one θ cycle using the following
operation: H : R → CNA maps x( j,1) → �Sj , with

(�S j )k = (�S j )1 exp

[
2π ik

(
1 − fθ

f�

)]
. (A5)

Here, cell 1 is the active cell with the earliest place field
center; i.e, in θ cycle j, cell 1 reaches the end of its place
field and spikes close to phase −π . This operation maps the
physical location of a single spike to the spike pattern of the
full population.

Second, map the spike pattern in one θ cycle to the spike
pattern in the next θ cycle using the shift between θ cycles:
H′ : CNA → CNA maps �S j → �S j+1 with

�S j+1 = �S j exp

(
−2π i

v

L� f�

)
. (A6)

These vector operations can be composed, as illustrated in
Fig. 2(b). As such, in the simplified case of constant speed,
it is unnecessary to recompute the population spike pattern of
the NA active cells individually in each θ cycle using the H
map. Instead, the H map can be used to define the population
spike pattern from one physical position, and then the H′
map can be used to propagate the spike pattern forwards in
time. In this case, the spike pattern is invariant in time; i.e.,
(S j+1)k+1 = (S j )k for all cells k and θ cycles j, as is made
clear by reexpressing (Sj+1)k+1 as two specific rotations of
(S j )k:

(S j+1)k+1 = (S j+1)k exp

[
2π i

(
1 − fθ

f�

)]

(shift forward one cell)

= (S j )k exp

(
−2π i

v

L� f�

)
exp

[
2π i

(
1 − fθ

f�

)]

(shift forward one θ cycle)

= (S j )k precisely when

− 2π i
v

L� f�
+ 2π i

(
1 − fθ

f�

)
= 0. (A7)

In this case, we have that

v

L� f�
= 1 − fθ

f�
⇒ v

L�

= f� − fθ ⇒ v = ( f� − fθ )L�,

which yields the relationship v = τ/χ where τ = ( f� − fθ )
is the difference between the cellular frequency and the θ

frequency, and χ = 1/L� is the spatial frequency determined
by the length of the place fields.

2. Spike-based decoding algorithm

To implement the decoder, we first generate a trajectory
in a two-dimensional space tiled with NC place fields. Place
field centers {ck}NC

k=1 are randomly generated and uniformly
distributed across the space. The place fields all have the same
diameter L reflecting cells in a specific dorsal-ventral location
in the hippocampus. The trajectory is given by the positions
{x j} corresponding to θ cycles j ∈ [1,NT ]. Note that the time
resolution of the generated trajectory is much finer than the
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length of a θ cycle. Within each cycle, the simulated animal
travels over a short line segment, which we represent by a set
of points, x j . The decoded position, x̂ j , is a point representing
the decoder’s estimate for the position of set x j .

Since the sequence of line segments {x j} captures both
position and time, there is no need to assume the animal
moves at a constant speed. As such, we implement trajectories
with varying speeds, accelerations, lengths, and curvatures.
We used a simple model to generate phase precession along
the trajectory using a Gaussian place field and sinusoidal θ

rhythm. The combination of the firing rate profile and the θ

oscillation determines at which phase the spike occurs in each
θ cycle. Following previous work [24], the moment that the
sinusoidal oscillation crosses the level of excitatory input de-
termined by the place field at each spatial location determines
the spike. This moment is on the rising phase for the first half
of the place field and on the falling phase for the second. Note
that the spike could represent a single action potential or the
centroid for a burst of spikes, as typically considered in studies
of phase precession [14,24].

This method is used to generate a matrix of spikes, S, where
entry S( j,k) ∈ [−π, π ] gives the spike phase of cell k during θ

cycle j. Note that, while NC represents the total number of
place fields tiling the space, only a small fraction of them are
active during any given θ cycle. The number of cells which
are active in a specific θ cycle, NA, j , is given by the number of
place fields which overlap the line segment x j . If cell k does
not spike during θ cycle j, S( j,k) = NaN .

The decoder takes as input the initial position, x1, and the
matrix of spikes S. Decoding proceeds as follows.

For j = 1, x̂ j = x j,1, the first point in the line segment x1.
For j ∈ [2,NT ], where NT is the total number of θ cycles in
the trajectory,

x̂ j = x̂ j−1 + π

NA, j

NC∑
k=1

Fj,k
(−1)α (x̂ j−1 − ck )

‖(−1)α (x̂ j−1 − ck )‖ (A8)

where

α =
{

0 S( j,k) > 0
1 S( j,k) � 0

and Fj,k represents the fraction of place field k traversed in θ

cycle j. This fraction is determined by

Fj,k = L

2π
(S( j,k) − S( j−1,k) + π ).

For each θ cycle, the vectors (x̂ j−1 − ck ) are computed
for each active cell k. Each of these vectors forms a line
segment from the animal’s current estimated position, x̂ j−1, to
the center of a place field corresponding to an active cell. The
directions of these vectors are determined by the exponent α;
i.e., the animal moves towards the center of a place field with
positive spike phase, and away from the center if the spike
phase is negative. Note that here spike phases are defined with
respect to the local-field potential, which is opposite to the
population oscillation discussed in the main text. The vectors
are then normalized to unit length and multiplied by Fj,k , so
the magnitude of the vector is determined by the fraction
of the place field traversed during that θ cycle. The sum of
these vectors estimates the animal’s movement during that
θ cycle. However, it overestimates the amount of distance
covered by the animal due to overlap between place fields. The
normalizing factor π

NA, j
was chosen experimentally to reduce

the effects of this overlap. Finally, this vector sum is added to
the animal’s current position to produce an estimated position
update.

To compute the accuracy of the decoded trajectory, we con-
sider the minimum Euclidean distance from each estimate x̂ j
to the line segment x j . Define the line segment x j := {x j,i}NS, j

i=1 ,
where NS, j denotes the number of points in the line segment,
determined by the speed of the animal’s movement during θ

cycle j. Then, the accuracy of the estimate for a single θ cycle
is given by

d j := min
i

‖x j,i − x̂ j‖.

For the entire trajectory, we then define the mean error em :=
1
NT

∑NT
j=1 d j and cumulative error ec := ∑NT

j=1 d j .
In Fig. 5(d), the mean error is plotted for one example

trajectory with varying amounts of active place fields and
added phase noise. In Fig. 5(e), the mean error is plotted for
500 random trajectories of varying lengths. To produce this
plot, the number of place fields tiling the space was held con-
stant, and 500 randomly generated trajectories were decoded
in separate realizations of the decoding algorithm. Note that
trajectories near the boundary of the space result in increased
error due to edge effects, which are straightforward to address
but not considered here. The example in Fig. 5(b) was chosen
to avoid the boundaries, but the trajectories in Fig. 5(d) were
completely random.
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