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What computations can be done with traveling waves in visual cortex?
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and Mind Institute, Western University, London, ON, Canada, 3Western Academy for Advanced

Research, Western University, London, ON, Canada, 4The Salk Institute for Biological Studies,

La Jolla, CA, USA, *Corresponding author: lmuller2@uwo.ca.

Recent analyses have found waves of neural activity traveling across entire visual
cortical areas in awake animals. These traveling waves modulate excitability of local
networks and perceptual sensitivity. The general computational role for these
spatiotemporal patterns in the visual system, however, remains unclear. Here, we
hypothesize that traveling waves endow the brain with the capacity to predict complex
and naturalistic visual inputs. We present a new network model whose connections can
be rapidly and efficiently trained to predict natural movies. After training, a few input
frames from a movie trigger complex wave patterns that drive accurate predictions many
frames into the future, solely from the network’s connections. When the recurrent
connections that drive waves are randomly shuffled, both traveling waves and the ability
to predict are eliminated. These results show traveling waves could play an essential
computational role in the visual system by embedding continuous spatiotemporal
structures over spatial maps.

Introduction

Five percent of synapses received by a neuron in visual cortex arrive through the feedforward

(FF) pathway that conveys sensory input from the eyes1. While these FF synapses are strong2,

“horizontal” recurrent connections coming from within the cortical region make up about 80% of

total synaptic inputs, with 95% of these connections arising from a very local patch (2 mm)

around the cell1. The anatomy of the visual system thus indicates that cortical neurons interact

with other neurons across the retinotopically organized maps3 that assign nearby points in visual

space to nearby points in a cortical region, via these horizontal connections. Models of the

visual system predominantly focus only on FF4,5 and feedback (FB)6 connections. One result of

this focus is that neurons in visual cortex are often conceived to be non-interacting “feature



detectors”, with fixed selectivity to features in visual input (driven by FF connections) that can be

modulated by expectations generated in higher visual areas (driven by FB connections).

Neuroscientists have long been interested in how horizontal connections shape neuronal

selectivity7,8 and “non-classical” receptive fields9–13. More recently, neuroscientists have also

been interested in adding these connections to deep learning models to understand neuronal

selectivity in visual cortex14,15. It remains unclear, however, how horizontal connections shape

the moment-by-moment dynamics and computations in cortex while processing visual input.

Recent analyses of large-scale recordings have revealed that horizontal connections profoundly

shape spatiotemporal dynamics in cortex. Traveling waves driven by horizontal connections

have been observed in visual cortex of anesthetized animals16–21. The relevance of traveling

waves had previously been called into question, as they were thought to disappear in the awake

state22 or to be suppressed by high-contrast visual stimuli19,23. Recent analyses of neural activity

at the single-trial level, however, have revealed spontaneous24 and stimulus-evoked25 activity

patterns that travel smoothly across entire cortical regions in awake, behaving primates during

normal vision. These neural traveling waves (nTWs) shift the balance of excitation and inhibition

as they propagate across cortex, sparsely modulating spiking activity as they pass26. Because

they drive fluctuations in neural excitability24,27, nTWs show that neurons at one point in a visual

area (representing a small section of visual space) can strongly interact with neurons across the

entire cortical region. These results thus indicate that cortical neurons may share information

about visual scenes broadly across the retinotopic map, through nTWs generated by horizontal

connections.

What computations, then, can be done with waves of neural activity traveling across a map of

visual space? To address this question, we studied a complex-valued neural network (cv-NN)

processing visual inputs ranging from simple stimuli to natural movies. cv-NNs exhibit similar or

superior performance to standard, real-valued neural networks in many supervised learning

tasks28, and have been used effectively in explaining biological neural dynamics29. Here, we

modified the standard FF architecture used in deep learning and computer vision to include

horizontal recurrent connections, where neurons in a single processing layer form a web of

interconnections similar to the horizontal connections in visual cortex. Horizontal recurrent

connections are thought to provide advantages14 over the standard FF architecture used in

computer vision tasks5,30; however, current methods for training recurrent models severely limit

both the time window over which recurrent activity can be considered and the ease with which



the networks can be trained31,32. In recent work, we have introduced a mathematical approach to

understand the recurrent dynamics in a specific complex-valued model33. Here, we leverage this

understanding to train recurrent complex-valued networks to process visual inputs, ranging from

simple stimuli to naturalistic movie scenes. The training process for the cv-NN is rapid and

efficient, requiring only minutes of desktop computer time. The resulting networks can predict

learned movies many frames into the future, entirely from their internal dynamics alone, without

external input. During prediction, the recurrent network exhibits prominent nTWs, ranging from

simple waves propagating out from a small local input25 to complex traveling wave patterns34,

raising the possibility that nTWs enable processing spatiotemporally complex, natural, and

dynamic visual scenes.

Results

The cv-NN consists of an input layer sending movie frames to a recurrently connected network

of model neurons. An individual movie frame, serving as input to the network, is represented by

a two-dimensional grid of pixels (input frame, Fig. 1a), and each pixel projects to the recurrently

connected layer through FF connections (red lines, Fig. 1a). The recurrently connected layer is

arranged on a two-dimensional grid, analogous to the retinotopic arrangement of neurons in

visual regions. Horizontal interconnections within the cv-NN then drive recurrent interactions in

the network (blue lines, Fig. 1a). Both FF and horizontal recurrent projections in the cv-NN are

matched to the approximate scale of connectivity in visual cortex35,36, so that a single pixel in an

input movie drives a local patch of neurons, with overlapping horizontal connections, in the

cv-NN. Lastly, neurons in the recurrent layer communicate with time delays approximating

axonal conduction speeds along horizontal fibers37, which have recently been shown to shape

spiking neural activity into nTWs26. The combination of FF input and dense interconnections

generates complex patterns of activity in the recurrent layer (Fig. 1b). Here, we focus on these

recurrent activity patterns to understand their computational role for movie inputs ranging from

simple to complex.

nTWs can simultaneously encode stimulus position and time of onset over spatial maps

To understand how nTWs propagating over sensory maps could facilitate visual computation,

we first studied the dynamics generated in response to a single point stimulus. Without recurrent

connections, a short point stimulus generates a small bump of activity that remains centered on



the point of input (“without recurrence”, Fig. 1c). With recurrent connections, however, the point

stimulus generates a wave that propagates out from the point of input (“with recurrence”, Fig.

1c). We then studied these stimulus-evoked waves, which are qualitatively similar to those

previously observed in visual cortex of awake primate25, in a simple decoding task. Specifically,

we let the point stimulus appear at a random time in a series of input frames, and then trained a

linear classifier to decode the time of stimulus onset from the network activity at the final frame.

As expected, without recurrent connections, the classifier performed at chance-level accuracy in

this task (Fig. 1c, right; Methods - Time-of-stimulus prediction task). With recurrence, however,

the classifier selects the correct time of stimulus appearance from the final network state with

100% accuracy. This initial example shows that traveling waves of neural activity, when

propagating on an orderly retinotopic map, can allow decoding of stimulus onset time, in

addition to stimulus location, even after the stimulus is no longer present.

Figure 1: A topographic recurrent network model encodes temporal information of video frames via internal
wave activity. (a) Schematic of the network model. Neurons (circles) are arranged on a two-dimensional grid and are



recurrently connected (blue) locally in space like the cortical sheet. A natural image input projects locally into the
network via feedforward connections (red), mimicking retinotopy. (b) Example dynamic of the network model. Due to
the spatially local projection of the input image, an imprint of the image is visible in the grid of network activity. Due to
the local recurrent connectivity, intrinsic wave activity is generated alongside the input projection. (c) In a sequence of
six frames, exactly one of the first five contains a point stimulus, and the other frames do not. These frames are
sequentially input to the network. Top row: When the network has no recurrence, the stimulus projection remains
stationary. Bottom row: With recurrence, from the time of stimulus, the network activity contains a projection of the
stimulus and a wave radiating outward. Right: A linear classifier that received the final network state in the
no-recurrence case could not predict the time of stimulus beyond chance-level accuracy. In contrast, using the
classifier with the sixth with-recurrence network state allowed 100% accuracy since the feedforward projection of the
point stimulus triggered a radiating wave that encoded the time of stimulus in the subsequent network states.

nTWs aid forecasting movie inputs from simple to complex

Can nTWs enable the processing of the complex, dynamic, and non-stationary visual scenes

that we encounter in our natural experience? We approached this question in several steps. We

first asked whether, given an input frame from a movie, the cv-NN could be trained to accurately

predict the following frame. To perform this more complicated task, we introduced a learning rule

that requires training only a linear readout of the recurrent layer (Fig. 2a). This procedure is

analogous to a complex-valued implementation of the reservoir computing paradigm38 that has

recently proven very powerful for learning the dynamics of chaotic systems in physics39. This

training process, however, has never before been applied to naturalistic movie scenes. We find

the cv-NN can be rapidly, reliably, and efficiently trained to predict the next frame in a movie

input (Supplementary Materials - Section III, Table S2, Moving Bump Input). Surprisingly, with a

cv-NN trained on a movie input, the predicted next frame generated by the network can then be

provided as input, in place of the original movie (Fig. 2b). We call this process closed-loop

forecasting of entire visual scenes.

The visual cortex readily processes and operates on dynamic visual inputs on timescales of

milliseconds to seconds. We then asked whether closed-loop forecasting in this system could

work on the scale of tens to hundreds of frames in an input movie. Starting with the first half of a

movie containing a simple moving bump stimulus tracing out a trajectory in two-dimensional

space (Fig. 2c), we find that the trained cv-NN can produce the entire second half of the movie

as output from its trained synaptic weights alone (Fig. 2d and Movie S1). As in the previous

example, activity in the recurrent layer exhibits a dynamic spatiotemporal pattern extending

beyond the immediate FF imprint of the stimulus and structured by the recurrent connections in

the network (Fig. 2e and Movie S1). These results demonstrate that recurrent cv-NNs can

produce simple video inputs from their recurrent connections through this rapid and efficient



training process. Finally, when we remove the recurrent connections, the cv-NN produces an

activity pattern that represents only the average of FF stimulus imprints, without having learned

the underlying spatiotemporal process40. In this case, the cv-NN no longer produces an accurate

closed-loop forecast (Fig. 2f). These results demonstrate the importance of both the

spatiotemporal patterns in the reservoir and the horizontal recurrent dynamics generating them.

Figure 2: The network can forecast a simple video input many frames into the future. (a) As in the classification
example (Figure 1), a video frame projects into the network in a spatially local manner and a recurrent network
interaction occurs, generating internal wave activity on top of the projection. The network outputs an image from its
network state via a matrix of trainable weights. Training entails one-shot linear regression between a set of network
states and the corresponding desired output frames (the one-step-ahead next frames). Shown: a schematic
representation of the one-shot linear regression for one time step. (b) Once training of the readout weights is
complete, closed-loop forecasting begins. To properly test how well the network model learned the underlying
spatiotemporal process from the training data, it is deprived of ground-truth data of any kind during this step. Instead,



the forecast next frame at one time step serves as the input frame for the following time step. (c) Video frames of the
data: a bump tracing an orbit. (d) Corresponding closed-loop forecasts generated by the network model with optimal
recurrence. (e) Network activity for the optimal-recurrence case. Cosine of phase of activation shown. (f) Closed-loop
forecast in the case without recurrence.

We find that closed-loop forecast performance in this system depends on two key factors: (1)

the ratio of horizontal recurrent strength to feedforward input strength and (2) the spatial extent

of the recurrence. To study the first factor in detail, we measured closed-loop forecast

performance using an index of structural similarity (SSIM)41, which quantifies the perceptual

match between two images. We studied SSIM between movie frames produced by the

closed-loop forecast process and the ground truth at different ratios of recurrence to input (Fig.

3a; see also Fig. S1 and Methods - Network connectivity and Network dynamics). Once the

stimulus is removed and the closed-loop forecast begins (video frame 1, Fig. 3a), forecast

performance in cv-NNs with low recurrent strength quickly drops close to zero (light blue line,

Fig. 3a). By contrast, cv-NNs at optimal recurrent strength sustain closed-loop forecasts for long

timescales (gray line, Fig. 3a), extending beyond 100 video frames into the future. Importantly,

networks where recurrence is too strong also perform poorly, with SSIM dropping near zero

within a short timeframe (copper line, Fig. 3a). Systematic quantification of SSIM across ratios of

recurrent strength to input strength reveals that performance is best when the recurrence and

input are approximately balanced (Fig. 3b), highlighting the importance of the interplay between

these two fundamental circuit patterns in visual cortex. We next studied performance as a

function of the spatial extent of recurrent connectivity. The best performance occurs for recurrent

lengths on approximately the same spatial scale as the moving bump stimulus (Fig. 3c), with

performance dropping for recurrent lengths outside this range. This result demonstrates that

recurrent connections, which span from local to long-range in visual cortex6,42, utilize features in

the closed-loop forecasting task best when matched to the spatial scale of the input.

Figure 3: Moving bump forecast performance depends on specific properties of the recurrent connections.
(a) Structural similarity between a forecast frame and the ground truth as a function of closed-loop forecast video



frame. Each curve corresponds to a different network parameter implementation. Curves have been smoothed by a
moving-average filter (filter width of 30 time steps). Shaded error is the absolute difference between filtered and
unfiltered. (b) Total structural similarity, in which a single SSIM is calculated for the whole movie, as a function of the
recurrence-to-input ratio. In the parameter space, each point differs only in recurrent strength. Smoothing and error
shading is the same as in a. (c) Total structural similarity as a function of recurrent length. In the three-dimensional
parameter space comprising the recurrent strength (rs), recurrent length (rl), and input strength (is), averages across
rs-is planes at fixed rl were computed (gray curve). The peak coincides with the standard-deviation width of the
Gaussian bump stimulus (dashed vertical line). Shaded area: variance. Solid black curve: maximum structural
similarity at each recurrent length.

The visual system readily processes richly textured and naturalistic visual scenes. To examine

this type of stimulus in the cv-NN, we considered naturalistic video inputs for next-frame

prediction and closed-loop forecasting. To do this, we used videos from the Weizmann Human

Action Dataset43. As above, we trained linear readout weights of the cv-NN on these individual

naturalistic movie inputs (Fig. 4a) and then tested whether, given the first half of the input movie,

the network could produce the second half in a closed-loop forecast (Fig. 4b). Even with a much

more sophisticated input than the previous examples, the cv-NN can be trained rapidly and

efficiently on the natural movie inputs (Supplementary Materials - Section III, Table S2, Walking

Person Input). As in previous examples, at optimal values of the network parameters (Methods -

Parameter optimization), the cv-NN accurately produces the natural movie using only its

connection weights (Fig. 4c,d and Movie S2). In this case, the recurrent connections in the

cv-NN create complex wave patterns (Fig. 4e and Movie S2). The recurrent connections and

their resulting complex activity patterns are important for success in this task, as networks

without recurrence do not produce accurate closed-loop forecasts (Fig. 4f).



Figure 4: The recurrent network performs next-frame forecasting of a natural video input. (a) Training follows
as in the moving bump example (Fig. 2a). (b) Next-frame closed-loop forecasting follows as in the moving bump
example (Fig. 2b). (c) Video frames of the data: a person walking. (d) Corresponding closed-loop forecasts generated
by the network model in the case of optimal recurrence. (e) Corresponding network states for the optimal-recurrence
case (panel d). Cosine of phase shown. (f) Same as d, but in the absence of recurrence.

We then studied what specific features of the recurrent connections enable predicting

naturalistic movie inputs. As in the moving bump example, networks perform best when

recurrence and input are approximately balanced, and the performance quickly decays when



the recurrence is too weak or too strong (Figs. 5a,b). This result shows that, as in the simple

case of the moving bump, the complex spatiotemporal predictions generated by the network

depend on a sophisticated interplay between input and recurrent connections. We next studied

the role of connection topography and distance-dependent time delays. To do this, we started

with networks that achieve accurate predictions and randomly shuffled both the connections and

time delays (Fig. 6a). We then compared the closed-loop forecast performance and network

activity in the topographic and shuffled cases. In the topographic case, the cv-NN produces

accurate predictions and complex traveling wave patterns, as before (Fig. 6b,c). The shuffled

versions of the cv-NN, however, produce spatiotemporally unstructured activity in the recurrent

layer (Fig. 6d) and do not achieve accurate closed-loop forecasts, even after retraining (Fig. 6e;

see also Supplementary Materials - Table S3 and Movie S3). Finally, the specific spatiotemporal

structure of the input movie is also important: a cv-NN at the optimal hyperparameters for a

natural movie cannot be retrained to do closed-loop forecasting on a randomized

(phase-shuffled) version of the same movie (Supplementary Materials - Table S1),

demonstrating that the cv-NN utilizes the specific spatiotemporal correlations in the movie to

generate its forecast. Taken together, these results demonstrate that the complex

spatiotemporal patterns generated by horizontal recurrent connections in the cv-NN enable

performance on next-frame prediction and closed-loop forecasting tasks for sophisticated

natural movie inputs.

Figure 5: Natural movie forecast performance depends on specific properties of the recurrent connections.
(a) Several examples of closed-loop forecast performance. Structural similarity between a forecast frame and the
ground truth as a function of video frame during closed-loop forecasting. Each curve corresponds to a different ratio
of recurrent strength to input strength. Curves have been smoothed by a moving-average filter (filter width of 30 time
steps). Shaded error is the absolute difference between filtered and unfiltered. (b) Total structural similarity, in which a
single SSIM is computed for the whole movie, as a function of the recurrence-to-input ratio. In the parameter space,
each point differs only in recurrent strength. Smoothing and error shading is the same as in a.



Figure 6: Randomly shuffling recurrent connections eliminates nTWs and ability to forecast. (a) Left: the
topographic network model used throughout this study, featuring feedforward projections of the image input (red
lines) and local distance-dependent horizontal connectivity (blue lines). There are also synaptic time delays
proportional to a neuron pair’s separation distance within the horizontal recurrent circuitry. Right: by randomizing the
horizontal connection weights and time delays assigned to the network neurons, the topography in the network is



removed. (b) The network activity of the topographic network in response to frames of a natural movie input. (c)
Closed-loop forecasts generated by the topographic network. Forecast frames correspond to network states in a. (d)
Network activity of the shuffled network. (e) Closed-loop forecasts generated by the shuffled network.

The nTW network model is capable of forecasting multiple movies without retraining

We lastly sought to understand whether the cv-NN could perform closed-loop forecasts on

multiple movies it had previously learned, and switch flexibly with changing inputs. To do this,

we implemented a simple competitive process (Methods - Movie switching), so that the network

could adapt its output based on the similarity of its prediction to its input (Fig. 7a). When

performing a closed-loop forecast, this extended network model can receive a new input from its

learned set, and then rapidly switch to closed-loop forecasting this new movie input within a few

frames (Fig. 7b and Movie S4). This result demonstrates that the process of closed-loop

forecasting, mediated by horizontal recurrent fibers in the network, can generalize to realistic

visual conditions with multiple, changing input streams.

Figure 7: The network is capable of forecasting multiple movies without being retrained. (a) The recurrent
network model was adapted to contain a higher-level competitive-learning process. Left: Readout matrices were
learned separately for separate examples. Right: Storing the learned readout matrices in a higher-level matrix, the



present network state drove the aggregate matrix toward either of the learned matrices via an unsupervised
competitive learning rule. (b) Beginning with feeding frames from movie 1, the network takes some time to recall the
learned matrix that results in an accurate closed-loop forecast. Quickly switching to a different movie, the network
once again takes some time to adjust its output weights before converging to the correct ones for an accurate
closed-loop forecast.

Discussion

In this work, we have introduced a model to understand whether traveling waves generated by

horizontal connections in visual cortex may play a computational role in processing natural

visual inputs. By adapting a recurrent neural network model using a new dynamical update rule

and a new learning rule, this model can efficiently learn video inputs ranging from simple visual

stimuli to complex natural scenes. Further, this network model is broadly consistent with

spatiotemporal dynamics recently observed in the visual system of the alert primate. In the case

of a single point stimulus (Fig. 1c), the network produces a traveling wave radiating out from the

point of input, similar to the responses observed in primary and secondary visual cortex of the

awake monkey in response to a brief visual input25. In the case of a moving bump stimulus (Fig.

2), the network produces a bump of activity, reflecting the movie input but embedded within a

larger spatiotemporal pattern, consistent with anticipatory responses observed in retinal

populations44 and in primary visual cortex45. Finally, in the case of naturalistic movie inputs (Fig.

4), the network produces complex spatiotemporal patterns, which can be mathematically

described in this model as the summation of multiple traveling waves33,34. The responses of this

network to natural movie inputs ranging from simple to complex are thus qualitatively consistent

with observations of neuronal dynamics in vivo.

These results provide fundamental insight into the function of horizontal recurrent connections,

whose effect on the moment-by-moment dynamics in the visual system has remained

unexplained. While there has been much interest in the function of recurrent horizontal fibers in

visual cortex, for example in explaining direction and orientation selectivity in V17,8, or in

center-surround models of the receptive field11,13,46, general computational roles for traveling

waves generated by the massive recurrent circuitry in single cortical areas on the single-trial

level remain unknown. Successful models of the visual system, including feature-based models

and deep convolutional neural networks, have provided insight into how neural systems could

process single image inputs, but explain only a fraction of the variance in neural responses to

natural sensory stimuli15,47,48. The cv-NN may provide new opportunities for understanding how



the visual system processes continuously updated, movie-like visual inputs, where information is

extracted from the visual environment moment-by-moment as it comes from the eye. The

sophisticated closed-loop movie forecasts produced by this network, and the fact that this

closed-loop forecast process can generalize to multiple movie inputs, represent an important

step in explaining the computational role of recurrent connections and traveling waves in visual

cortex.

Methods

Network connectivity

The recurrent network is arranged on a square grid of N nodes. The network grid is treated as a

discretized Euclidean plane such that the side lengths span distances of unity. Boundaries are

not periodic. The recurrent weight from node to node is inversely proportional to their

Euclidean distance so as to give local connectivity like that of the neocortical sheet.

Specifically, is Gaussian as a function of :

The coefficient is called the recurrent strength and the standard deviation is called the𝑎
recurrent length. Both are free parameters. The maximum possible value of is (corner to

corner), and, for example, means that the recurrent length equals the network side

length. Further, all N2 such weights are strictly positive, and the N-by-N matrix of such weights is

symmetric ( ). Diagonal weights ( ) are not set to zero.

Network dynamics

Network dynamics are given by a complex-valued equation. A complex number is of the form

, where is the real part, is the imaginary part, and is the imaginary constant

defined as . Equivalently, , where m is the modulus and ɸ is the argument. A

complex number is intuitively visualized as a two-dimensional vector, where is its

Cartesian representation and is its polar representation. What distinguishes a complex

number from a standard two-dimensional vector is the multiplication rule: multiplication of two



complex numbers corresponds to both a scaling and a rotation in the so-called complex plane.

This property makes complex-valued representations of observable quantities more concise

than real-valued representations, and thus, complex numbers are a central tool in physics and

engineering. From the perspective of biological vision, a complex-valued representation is

useful. Since phase information is important for representing visual inputs, complex-valued

models, which efficiently represent phase in the argument , are ideal. Indeed, complex-valued

models of vision are widely explored49. Given the practical utility of artificial neural networks and

deep learning (including for modeling biological neural networks), complex-valued neural

networks, in which the neural activations are complex-valued, are of great interest. However,

they are notoriously difficult to train, especially in a recurrent architecture50. We make an

advance here on this front by choosing a unique dynamical equation and by exploiting the

advantages of reservoir computing.

The discrete-time dynamical equation for each node is𝑖
(1a)

(1b)

Here, is the complex-valued activation, is the feedforward input of the image stimulus

to node , and is the recurrent weight from node to node (Methods - Network

connectivity). Further, is the discrete time delay between nodes and , given by

in which the Euclidean distance between nodes and (Methods -

Network connectivity) is scaled by the parameter , which represents the speed of activation

transmission across the network, and rounds to the nearest integer in

accord with the discrete-time dynamics. The value of is randomly sampled between 0 and 0.1

( ), meaning the activation travels a distance of up to one-tenth the network side

length per time step. Lastly, the modulus of (i.e., ) is normalized (Equation 1b), which

confines on the complex unit circle, and thus, the phase of contains the dynamics. We

note that modulus normalization is a common operation used in complex-valued neural

networks50.



The specific form of Equation 1a is unique compared to other complex-valued neural-network

equations because it involves a pairwise node attraction . Another

system with pairwise attraction is the Kuramoto model, a popular model for studying

synchronization in nonlinear systems51–53. Our presented system has a correspondence with the

Kuramoto model54, and allows the description of the dynamics for individual realization in terms

of the eigenvalues and eigenvectors of the network33. Along with the choice of local network

connectivity and distance-dependent delays, the presented system gives rise to meaningful

spatiotemporal self-organization dynamics, and for this reason, the recurrent weights

need not be trained.

The initial network state is for all nodes, and the first several time steps contain

transient activity associated with the input disrupting the initial steady state of the system. For

the time-of-stimulus prediction task, this transient activity is important to the model and was

used, while for the next-frame forecasting task, it is distracting to the model and was discarded.

Image read-in

Each discrete time step, a digital grayscale image is read into the network. Prior to read-in, the

image is mean-subtracted and divided by its standard deviation across all its pixels (i.e.,

z-scored). Image read-in is accomplished with a local feedforward projection, which mimics

retinotopy and preserves the spatial correlations in the image. Technically, this is a

two-dimensional interpolation using the bilinear kernel common in image processing, which

takes a weighted average in the nearest 2-by-2 pixel neighbourhood. The projected image has

rows and columns like the network grid, and each pixel intensity of the projected

image is given by (Equation 1a). Lastly, is scaled according to , where

is called the input strength. In our model, is the third and final free parameter after the

recurrent strength and recurrent length.

Time-of-stimulus prediction task

Classification was performed using the basic perceptron. For an input vector

, where are features, and a label , the goal is to

find a hyperplane , where is a



vector containing the bias and weights , that separates the data in the

N-dimensional feature space according to their binary class (0 or 1). During training, with a

sub-optimal vector and one example vector, the output classification is

computed, where is the Heaviside step function defined as unity for positive argument and

zero otherwise. For the desired classification (either 0 or 1), the signed distance is

computed, where . With each new example , the vector is updated using the

delta rule , where is the learning rate. To use the perceptron in multiclass

classification, the one-versus-rest scheme is used. That is, for the set of classes

, binary classification is performed separately times. Each time

, the two classes are defined such that and , where “\” denotes the set

difference. Then, there are M weight vectors , and M inner products

for a given data vector . The multiclass

classification is .

In the time-of-stimulus classification task (Fig. 1c), input frames were 50 by 50 pixels, and the

network was 50 by 50 nodes. There were six frames. One of the first five frames was randomly

chosen to contain the point stimulus, and the remaining frames were entirely zero intensity. The

point stimulus was an isotropic two-dimensional Gaussian of standard deviation 0.05, and the

input frames are defined on the Cartesian grid . The stimulus was centered in

the frame. The sequence of frames was sequentially input to the network. There are exactly five

classes: each of the first five frames in which the point stimulus could occur. The column vector

of activations corresponding to the final (sixth) frame was used as predictors for all trials. The

task was repeated 100 000 times, with the time of stimulus (1 or 2 or 3 or 4 or 5) randomly

rechosen each time.

Next-frame forecasting

The network outputs an image of rows and columns of pixels–the same size as the

input image–at each time step. In both examples (moving bump and natural movie), the network

was 50 by 50 nodes. Recalling that is the complex-valued activation of node at discrete

time t (Equations 1a and 1b), the output transformation is linear:



Here, is the pixel intensity of the output image, and is the readout weight of

the M-by-N matrix , where . The prime notation (‘) indicates that

was mean-subtracted, which was done to avoid an intercept

term during training.

The readout weights of are the only weights trained in our model, making our network

a reservoir computer. Reservoir computers are recurrent neural networks that avoid the issues

associated with training recurrent weights, and have been shown to perform well in time series

forecasting38. Suppose training begins at time step 1, after discarding the initial transient, and

ends at time step T. Defining , the matrix of regressors is

then

and the matrix of regressands (desired outputs) is

Hence, the desired outputs are simply the set of one-step-ahead frames. Here, is the

column vectorization of the input image frame (before read-in), and is also mean-subtracted.

Training entails ordinary least-squares linear regression between and . Because is

highly underdetermined (containing far fewer frames than pixels per frame), the matrix 2-norm of

was simultaneously minimized during regression to reduce model bias.

Following training is closed-loop forecasting. At this point, the network activation has been

primed by being driven with the training frames, and the readout matrix has been trained. In

the first time step of closed-loop forecasting, we input the corresponding video frame.



Subsequently for steps , the predicted output at time step t serves as the input for time step

t+1.

In the moving bump example (Fig. 2), the frames are 30 by 30 pixels and defined on a

Cartesian grid. A two-dimensional isotropic Gaussian of standard deviation 0.2

traced a Lissajous curve given by the parametric equations and

, where is the center of the Gaussian in space and t is a continuously

valued time variable55. The Lissajous trajectory was discretized to have 100 frames per cycle.

The first cycle was discarded to omit the initial transient network activity, the network was

trained on the subsequent 3 cycles, and closed-loop forecasting was performed on the 2 cycles

subsequent to that.

In the natural video example (Fig. 4), a walking video from the Weizmann Human Action

Dataset56 was used, in which a person walks across the scene. We present several key

examples here, but note that the model successfully performs closed-loop forecasting for all

movies in this dataset. Segmentation masks of the people in the videos are included with this

dataset (https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html). Using these

masks, we cropped the frames so that the person was centered throughout the entire walk,

giving frames of approximately 80 by 50 pixels. Without performing this step, our network model

would fail: the training data would be independent from the closed-loop forecast data since they

would occupy exclusive regions of the pixel space, and the model would not generalize to the

prediction data. Such nonstationary data have been successfully taught to networks with

approximate translation invariance, and translation invariance is likely used in the brain to learn

such processes57. However, translation invariance is beyond the scope of our study. The frames

were then resized to be exactly 80 by 50 pixels. Finally, each video was around 70 frames long.

To get more frames without interpolation, we “bookended” each video by concatenating it with

its temporal reverse sequence, where one cycle consists of the original frames followed by the

bookended frames. The result is a longer video with the same spatiotemporal statistics. The first

cycle was discarded to omit the initial transient network activity, the network was trained on the

subsequent 3 cycles, and closed-loop prediction was performed on the 2 cycles subsequent to

that.



To measure the balance between feedforward input and recurrent interaction, we devised the

recurrence-to-input ratio. Per Equation 1a, the input and recurrence terms are the column

vectors

and

respectively. Further, let the matrices

and

be the horizontal concatenations of and , respectively, over closed-loop forecast times

. The ratio is defined as

where denotes the Frobenius matrix norm of a matrix G, which is equivalent to the

Euclidean vector norm of the vectorization of G.

Movie switching



The network was trained on two movie inputs: one of a walking person (movie 1) and one of a

jumping person (movie 2), both from the Weizmann dataset. The same recurrent matrix was

used in each case–only the learned matrices ( and , respectively) differed. Let

, where . stores both learned matrices, and the present input

modulates the relative contribution of and using an update rule for . The structural

similarity between the input and output were computed at each time step t ( ), and the

change thereof was computed at each time step as . The

update rule is , where and is the learning rate, set to 0.1.

Depending on which movie (movie 1 or movie 2) drives the network, tends toward 1 or 0,

respectively. Once this happens, this driving input is removed and closed-loop forecasting

commences as described. Switching entails instantaneously transitioning from closed-loop

forecasting of one movie to driving the network with the frames of another movie. then

updates as described and is followed by closed-loop forecasting again.

Parameter optimization

The random-search algorithm was used to optimize parameters for closed-loop forecasting.

Within specified bounds, each parameter was randomly sampled, giving a point in the

parameter space. The parameter space was randomly sampled in this way many times, and

each time, the structural similarity index was computed as the performance index. The bounds

within which the parameters were sampled are given in Table I.

parameter sampled interval

recurrent strength
recurrent length
input strength

(0, 0.2)
(0, 0.2)
(0, 0.2)
(0, 0.1)

Table I: Intervals over which model parameters were randomly searched during optimization.
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