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Recent analyses have found waves of neural activity traveling across entire visual
cortical areas in awake animals. These traveling waves modulate excitability of local
networks and perceptual sensitivity. The general computational role for these
spatiotemporal patterns in the visual system, however, remains unclear. Here, we
hypothesize that traveling waves endow the brain with the capacity to predict complex
and naturalistic visual inputs. We present a new network model whose connections can
be rapidly and efficiently trained to predict natural movies. After training, a few input
frames from a movie trigger complex wave patterns that drive accurate predictions many
frames into the future, solely from the network’s connections. When the recurrent
connections that drive waves are randomly shuffled, both traveling waves and the ability
to predict are eliminated. These results show traveling waves could play an essential
computational role in the visual system by embedding continuous spatiotemporal

structures over spatial maps.

Introduction

Five percent of synapses received by a neuron in visual cortex arrive through the feedforward
(FF) pathway that conveys sensory input from the eyes'. While these FF synapses are strong?,
“horizontal” recurrent connections coming from within the cortical region make up about 80% of
total synaptic inputs, with 95% of these connections arising from a very local patch (2 mm)
around the cell'. The anatomy of the visual system thus indicates that cortical neurons interact
with other neurons across the retinotopically organized maps? that assign nearby points in visual
space to nearby points in a cortical region, via these horizontal connections. Models of the
visual system predominantly focus only on FF*° and feedback (FB)® connections. One result of

this focus is that neurons in visual cortex are often conceived to be non-interacting “feature



detectors”, with fixed selectivity to features in visual input (driven by FF connections) that can be
modulated by expectations generated in higher visual areas (driven by FB connections).
Neuroscientists have long been interested in how horizontal connections shape neuronal
selectivity’® and “non-classical” receptive fields®'®. More recently, neuroscientists have also
been interested in adding these connections to deep learning models to understand neuronal
selectivity in visual cortex'*'®. It remains unclear, however, how horizontal connections shape

the moment-by-moment dynamics and computations in cortex while processing visual input.

Recent analyses of large-scale recordings have revealed that horizontal connections profoundly
shape spatiotemporal dynamics in cortex. Traveling waves driven by horizontal connections
have been observed in visual cortex of anesthetized animals'®2'. The relevance of traveling
waves had previously been called into question, as they were thought to disappear in the awake
state?? or to be suppressed by high-contrast visual stimuli'®?®, Recent analyses of neural activity
at the single-trial level, however, have revealed spontaneous® and stimulus-evoked® activity
patterns that travel smoothly across entire cortical regions in awake, behaving primates during
normal vision. These neural traveling waves (nTWSs) shift the balance of excitation and inhibition
as they propagate across cortex, sparsely modulating spiking activity as they pass?. Because
they drive fluctuations in neural excitability?*?’, nTWs show that neurons at one point in a visual
area (representing a small section of visual space) can strongly interact with neurons across the
entire cortical region. These results thus indicate that cortical neurons may share information
about visual scenes broadly across the retinotopic map, through nTWs generated by horizontal

connections.

What computations, then, can be done with waves of neural activity traveling across a map of
visual space? To address this question, we studied a complex-valued neural network (cv-NN)
processing visual inputs ranging from simple stimuli to natural movies. cv-NNs exhibit similar or
superior performance to standard, real-valued neural networks in many supervised learning
tasks?®, and have been used effectively in explaining biological neural dynamics®. Here, we
modified the standard FF architecture used in deep learning and computer vision to include
horizontal recurrent connections, where neurons in a single processing layer form a web of
interconnections similar to the horizontal connections in visual cortex. Horizontal recurrent
connections are thought to provide advantages' over the standard FF architecture used in
computer vision tasks®°; however, current methods for training recurrent models severely limit

both the time window over which recurrent activity can be considered and the ease with which



the networks can be trained®-*2. In recent work, we have introduced a mathematical approach to
understand the recurrent dynamics in a specific complex-valued model®. Here, we leverage this
understanding to train recurrent complex-valued networks to process visual inputs, ranging from
simple stimuli to naturalistic movie scenes. The training process for the cv-NN is rapid and
efficient, requiring only minutes of desktop computer time. The resulting networks can predict
learned movies many frames into the future, entirely from their internal dynamics alone, without
external input. During prediction, the recurrent network exhibits prominent nTWs, ranging from
simple waves propagating out from a small local input®® to complex traveling wave patterns®,
raising the possibility that nTWs enable processing spatiotemporally complex, natural, and

dynamic visual scenes.

Results

The cv-NN consists of an input layer sending movie frames to a recurrently connected network
of model neurons. An individual movie frame, serving as input to the network, is represented by
a two-dimensional grid of pixels (input frame, Fig. 1a), and each pixel projects to the recurrently
connected layer through FF connections (red lines, Fig. 1a). The recurrently connected layer is
arranged on a two-dimensional grid, analogous to the retinotopic arrangement of neurons in
visual regions. Horizontal interconnections within the cv-NN then drive recurrent interactions in
the network (blue lines, Fig. 1a). Both FF and horizontal recurrent projections in the cv-NN are
matched to the approximate scale of connectivity in visual cortex®¢, so that a single pixel in an
input movie drives a local patch of neurons, with overlapping horizontal connections, in the
cv-NN. Lastly, neurons in the recurrent layer communicate with time delays approximating
axonal conduction speeds along horizontal fibers®, which have recently been shown to shape
spiking neural activity into nTWs?. The combination of FF input and dense interconnections
generates complex patterns of activity in the recurrent layer (Fig. 1b). Here, we focus on these
recurrent activity patterns to understand their computational role for movie inputs ranging from

simple to complex.
nTWs can simultaneously encode stimulus position and time of onset over spatial maps
To understand how nTWs propagating over sensory maps could facilitate visual computation,

we first studied the dynamics generated in response to a single point stimulus. Without recurrent

connections, a short point stimulus generates a small bump of activity that remains centered on



the point of input (“without recurrence”, Fig. 1c). With recurrent connections, however, the point
stimulus generates a wave that propagates out from the point of input (“with recurrence”, Fig.
1c). We then studied these stimulus-evoked waves, which are qualitatively similar to those
previously observed in visual cortex of awake primate®, in a simple decoding task. Specifically,
we let the point stimulus appear at a random time in a series of input frames, and then trained a
linear classifier to decode the time of stimulus onset from the network activity at the final frame.
As expected, without recurrent connections, the classifier performed at chance-level accuracy in
this task (Fig. 1c, right; Methods - Time-of-stimulus prediction task). With recurrence, however,
the classifier selects the correct time of stimulus appearance from the final network state with
100% accuracy. This initial example shows that traveling waves of neural activity, when
propagating on an orderly retinotopic map, can allow decoding of stimulus onset time, in

addition to stimulus location, even after the stimulus is no longer present.
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Figure 1: A topographic recurrent network model encodes temporal information of video frames via internal
wave activity. (a) Schematic of the network model. Neurons (circles) are arranged on a two-dimensional grid and are



recurrently connected (blue) locally in space like the cortical sheet. A natural image input projects locally into the
network via feedforward connections (red), mimicking retinotopy. (b) Example dynamic of the network model. Due to
the spatially local projection of the input image, an imprint of the image is visible in the grid of network activity. Due to
the local recurrent connectivity, intrinsic wave activity is generated alongside the input projection. (c) In a sequence of
six frames, exactly one of the first five contains a point stimulus, and the other frames do not. These frames are
sequentially input to the network. Top row: When the network has no recurrence, the stimulus projection remains
stationary. Bottom row: With recurrence, from the time of stimulus, the network activity contains a projection of the
stimulus and a wave radiating outward. Right: A linear classifier that received the final network state in the
no-recurrence case could not predict the time of stimulus beyond chance-level accuracy. In contrast, using the
classifier with the sixth with-recurrence network state allowed 100% accuracy since the feedforward projection of the
point stimulus triggered a radiating wave that encoded the time of stimulus in the subsequent network states.

nTWs aid forecasting movie inputs from simple to complex

Can nTWs enable the processing of the complex, dynamic, and non-stationary visual scenes
that we encounter in our natural experience? We approached this question in several steps. We
first asked whether, given an input frame from a movie, the cv-NN could be trained to accurately
predict the following frame. To perform this more complicated task, we introduced a learning rule
that requires training only a linear readout of the recurrent layer (Fig. 2a). This procedure is
analogous to a complex-valued implementation of the reservoir computing paradigm?® that has
recently proven very powerful for learning the dynamics of chaotic systems in physics®. This
training process, however, has never before been applied to naturalistic movie scenes. We find
the cv-NN can be rapidly, reliably, and efficiently trained to predict the next frame in a movie
input (Supplementary Materials - Section Ill, Table S2, Moving Bump Input). Surprisingly, with a
cv-NN trained on a movie input, the predicted next frame generated by the network can then be
provided as input, in place of the original movie (Fig. 2b). We call this process closed-loop

forecasting of entire visual scenes.

The visual cortex readily processes and operates on dynamic visual inputs on timescales of
milliseconds to seconds. We then asked whether closed-loop forecasting in this system could
work on the scale of tens to hundreds of frames in an input movie. Starting with the first half of a
movie containing a simple moving bump stimulus tracing out a trajectory in two-dimensional
space (Fig. 2c), we find that the trained cv-NN can produce the entire second half of the movie
as output from its trained synaptic weights alone (Fig. 2d and Movie S1). As in the previous
example, activity in the recurrent layer exhibits a dynamic spatiotemporal pattern extending
beyond the immediate FF imprint of the stimulus and structured by the recurrent connections in
the network (Fig. 2e and Movie S1). These results demonstrate that recurrent cv-NNs can

produce simple video inputs from their recurrent connections through this rapid and efficient



training process. Finally, when we remove the recurrent connections, the cv-NN produces an
activity pattern that represents only the average of FF stimulus imprints, without having learned
the underlying spatiotemporal process®. In this case, the cv-NN no longer produces an accurate
closed-loop forecast (Fig. 2f). These results demonstrate the importance of both the

spatiotemporal patterns in the reservoir and the horizontal recurrent dynamics generating them.
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Figure 2: The network can forecast a simple video input many frames into the future. (a) As in the classification
example (Figure 1), a video frame projects into the network in a spatially local manner and a recurrent network
interaction occurs, generating internal wave activity on top of the projection. The network outputs an image from its
network state via a matrix of trainable weights. Training entails one-shot linear regression between a set of network
states and the corresponding desired output frames (the one-step-ahead next frames). Shown: a schematic
representation of the one-shot linear regression for one time step. (b) Once training of the readout weights is
complete, closed-loop forecasting begins. To properly test how well the network model learned the underlying
spatiotemporal process from the training data, it is deprived of ground-truth data of any kind during this step. Instead,




the forecast next frame at one time step serves as the input frame for the following time step. (c) Video frames of the
data: a bump tracing an orbit. (d) Corresponding closed-loop forecasts generated by the network model with optimal
recurrence. (e) Network activity for the optimal-recurrence case. Cosine of phase of activation shown. (f) Closed-loop
forecast in the case without recurrence.

We find that closed-loop forecast performance in this system depends on two key factors: (1)
the ratio of horizontal recurrent strength to feedforward input strength and (2) the spatial extent
of the recurrence. To study the first factor in detail, we measured closed-loop forecast
performance using an index of structural similarity (SSIM)*', which quantifies the perceptual
match between two images. We studied SSIM between movie frames produced by the
closed-loop forecast process and the ground truth at different ratios of recurrence to input (Fig.
3a; see also Fig. S1 and Methods - Network connectivity and Network dynamics). Once the
stimulus is removed and the closed-loop forecast begins (video frame 1, Fig. 3a), forecast
performance in cv-NNs with low recurrent strength quickly drops close to zero (light blue line,
Fig. 3a). By contrast, cv-NNs at optimal recurrent strength sustain closed-loop forecasts for long
timescales (gray line, Fig. 3a), extending beyond 100 video frames into the future. Importantly,
networks where recurrence is too strong also perform poorly, with SSIM dropping near zero
within a short timeframe (copper line, Fig. 3a). Systematic quantification of SSIM across ratios of
recurrent strength to input strength reveals that performance is best when the recurrence and
input are approximately balanced (Fig. 3b), highlighting the importance of the interplay between
these two fundamental circuit patterns in visual cortex. We next studied performance as a
function of the spatial extent of recurrent connectivity. The best performance occurs for recurrent
lengths on approximately the same spatial scale as the moving bump stimulus (Fig. 3c), with
performance dropping for recurrent lengths outside this range. This result demonstrates that
recurrent connections, which span from local to long-range in visual cortex®“?, utilize features in

the closed-loop forecasting task best when matched to the spatial scale of the input.
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Figure 3: Moving bump forecast performance depends on specific properties of the recurrent connections.
(a) Structural similarity between a forecast frame and the ground truth as a function of closed-loop forecast video



frame. Each curve corresponds to a different network parameter implementation. Curves have been smoothed by a
moving-average filter (filter width of 30 time steps). Shaded error is the absolute difference between filtered and
unfiltered. (b) Total structural similarity, in which a single SSIM is calculated for the whole movie, as a function of the
recurrence-to-input ratio. In the parameter space, each point differs only in recurrent strength. Smoothing and error
shading is the same as in a. (c) Total structural similarity as a function of recurrent length. In the three-dimensional
parameter space comprising the recurrent strength (rs), recurrent length (rl), and input strength (is), averages across
rs-is planes at fixed rl were computed (gray curve). The peak coincides with the standard-deviation width of the
Gaussian bump stimulus (dashed vertical line). Shaded area: variance. Solid black curve: maximum structural
similarity at each recurrent length.

The visual system readily processes richly textured and naturalistic visual scenes. To examine
this type of stimulus in the cv-NN, we considered naturalistic video inputs for next-frame
prediction and closed-loop forecasting. To do this, we used videos from the Weizmann Human
Action Dataset*®. As above, we trained linear readout weights of the cv-NN on these individual
naturalistic movie inputs (Fig. 4a) and then tested whether, given the first half of the input movie,
the network could produce the second half in a closed-loop forecast (Fig. 4b). Even with a much
more sophisticated input than the previous examples, the cv-NN can be trained rapidly and
efficiently on the natural movie inputs (Supplementary Materials - Section Ill, Table S2, Walking
Person Input). As in previous examples, at optimal values of the network parameters (Methods -
Parameter optimization), the cv-NN accurately produces the natural movie using only its
connection weights (Fig. 4c,d and Movie S2). In this case, the recurrent connections in the
cv-NN create complex wave patterns (Fig. 4e and Movie S2). The recurrent connections and
their resulting complex activity patterns are important for success in this task, as networks

without recurrence do not produce accurate closed-loop forecasts (Fig. 4f).
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Figure 4: The recurrent network performs next-frame forecasting of a natural video input. (a) Training follows
as in the moving bump example (Fig. 2a). (b) Next-frame closed-loop forecasting follows as in the moving bump
example (Fig. 2b). (c) Video frames of the data: a person walking. (d) Corresponding closed-loop forecasts generated
by the network model in the case of optimal recurrence. (e) Corresponding network states for the optimal-recurrence
case (panel d). Cosine of phase shown. (f) Same as d, but in the absence of recurrence.

We then studied what specific features of the recurrent connections enable predicting
naturalistic movie inputs. As in the moving bump example, networks perform best when

recurrence and input are approximately balanced, and the performance quickly decays when



the recurrence is too weak or too strong (Figs. 5a,b). This result shows that, as in the simple
case of the moving bump, the complex spatiotemporal predictions generated by the network
depend on a sophisticated interplay between input and recurrent connections. We next studied
the role of connection topography and distance-dependent time delays. To do this, we started
with networks that achieve accurate predictions and randomly shuffled both the connections and
time delays (Fig. 6a). We then compared the closed-loop forecast performance and network
activity in the topographic and shuffled cases. In the topographic case, the cv-NN produces
accurate predictions and complex traveling wave patterns, as before (Fig. 6b,c). The shuffled
versions of the cv-NN, however, produce spatiotemporally unstructured activity in the recurrent
layer (Fig. 6d) and do not achieve accurate closed-loop forecasts, even after retraining (Fig. 6e;
see also Supplementary Materials - Table S3 and Movie S3). Finally, the specific spatiotemporal
structure of the input movie is also important: a cv-NN at the optimal hyperparameters for a
natural movie cannot be retrained to do closed-loop forecasting on a randomized
(phase-shuffled) version of the same movie (Supplementary Materials - Table S1),
demonstrating that the cv-NN utilizes the specific spatiotemporal correlations in the movie to
generate its forecast. Taken together, these results demonstrate that the complex
spatiotemporal patterns generated by horizontal recurrent connections in the cv-NN enable
performance on next-frame prediction and closed-loop forecasting tasks for sophisticated

natural movie inputs.

a b
1 1
!_ 1.8 =
A=) m®
£08 114 7 - 0.8
= 125 =
Eos 2 — 06
7] 1 X g
- 0.8 &
504 8 S 0.4
© 06 @ E
= 3 < 0.2
7 0.2 04 2 m 0.
\ 0.2 B
3
0 = e 0 2
0 50 100 150 200 250 10 10
video frame recurrence-to-input ratio

Figure 5: Natural movie forecast performance depends on specific properties of the recurrent connections.
(a) Several examples of closed-loop forecast performance. Structural similarity between a forecast frame and the
ground truth as a function of video frame during closed-loop forecasting. Each curve corresponds to a different ratio
of recurrent strength to input strength. Curves have been smoothed by a moving-average filter (filter width of 30 time
steps). Shaded error is the absolute difference between filtered and unfiltered. (b) Total structural similarity, in which a
single SSIM is computed for the whole movie, as a function of the recurrence-to-input ratio. In the parameter space,
each point differs only in recurrent strength. Smoothing and error shading is the same as in a.
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Figure 6: Randomly shuffling recurrent connections eliminates nTWs and ability to forecast. (a) Left: the
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lines) and local distance-dependent horizontal connectivity (blue lines). There are also synaptic time delays
proportional to a neuron pair’s separation distance within the horizontal recurrent circuitry. Right: by randomizing the
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removed. (b) The network activity of the topographic network in response to frames of a natural movie input. (c)
Closed-loop forecasts generated by the topographic network. Forecast frames correspond to network states in a. (d)
Network activity of the shuffled network. (e) Closed-loop forecasts generated by the shuffled network.

The nTW network model is capable of forecasting multiple movies without retraining

We lastly sought to understand whether the cv-NN could perform closed-loop forecasts on
multiple movies it had previously learned, and switch flexibly with changing inputs. To do this,
we implemented a simple competitive process (Methods - Movie switching), so that the network
could adapt its output based on the similarity of its prediction to its input (Fig. 7a). When
performing a closed-loop forecast, this extended network model can receive a new input from its
learned set, and then rapidly switch to closed-loop forecasting this new movie input within a few
frames (Fig. 7b and Movie S4). This result demonstrates that the process of closed-loop
forecasting, mediated by horizontal recurrent fibers in the network, can generalize to realistic

visual conditions with multiple, changing input streams.
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Figure 7: The network is capable of forecasting multiple movies without being retrained. (a) The recurrent
network model was adapted to contain a higher-level competitive-learning process. Left: Readout matrices were
learned separately for separate examples. Right: Storing the learned readout matrices in a higher-level matrix, the



present network state drove the aggregate matrix toward either of the learned matrices via an unsupervised
competitive learning rule. (b) Beginning with feeding frames from movie 1, the network takes some time to recall the
learned matrix that results in an accurate closed-loop forecast. Quickly switching to a different movie, the network
once again takes some time to adjust its output weights before converging to the correct ones for an accurate
closed-loop forecast.

Discussion

In this work, we have introduced a model to understand whether traveling waves generated by
horizontal connections in visual cortex may play a computational role in processing natural
visual inputs. By adapting a recurrent neural network model using a new dynamical update rule
and a new learning rule, this model can efficiently learn video inputs ranging from simple visual
stimuli to complex natural scenes. Further, this network model is broadly consistent with
spatiotemporal dynamics recently observed in the visual system of the alert primate. In the case
of a single point stimulus (Fig. 1c), the network produces a traveling wave radiating out from the
point of input, similar to the responses observed in primary and secondary visual cortex of the
awake monkey in response to a brief visual input®. In the case of a moving bump stimulus (Fig.
2), the network produces a bump of activity, reflecting the movie input but embedded within a
larger spatiotemporal pattern, consistent with anticipatory responses observed in retinal
populations* and in primary visual cortex*. Finally, in the case of naturalistic movie inputs (Fig.
4), the network produces complex spatiotemporal patterns, which can be mathematically
described in this model as the summation of multiple traveling waves*=4. The responses of this
network to natural movie inputs ranging from simple to complex are thus qualitatively consistent

with observations of neuronal dynamics in vivo.

These results provide fundamental insight into the function of horizontal recurrent connections,
whose effect on the moment-by-moment dynamics in the visual system has remained
unexplained. While there has been much interest in the function of recurrent horizontal fibers in
visual cortex, for example in explaining direction and orientation selectivity in V178, or in
center-surround models of the receptive field"'*#¢ general computational roles for traveling
waves generated by the massive recurrent circuitry in single cortical areas on the single-trial
level remain unknown. Successful models of the visual system, including feature-based models
and deep convolutional neural networks, have provided insight into how neural systems could
process single image inputs, but explain only a fraction of the variance in neural responses to

natural sensory stimuli'®*"“¢, The cv-NN may provide new opportunities for understanding how



the visual system processes continuously updated, movie-like visual inputs, where information is
extracted from the visual environment moment-by-moment as it comes from the eye. The
sophisticated closed-loop movie forecasts produced by this network, and the fact that this
closed-loop forecast process can generalize to multiple movie inputs, represent an important
step in explaining the computational role of recurrent connections and traveling waves in visual

cortex.
Methods
Network connectivity

The recurrent network is arranged on a square grid of N nodes. The network grid is treated as a
discretized Euclidean plane such that the side lengths span distances of unity. Boundaries are

not periodic. The recurrent weight Wij from node J to node i is inversely proportional to their
Euclidean distance %ij so as to give local connectivity like that of the neocortical sheet.
Specifically, Wij is Gaussian as a function of dij

Wi = ae~ %/ 20,
The coefficient a is called the recurrent strength and the standard deviation b is called the

recurrent length. Both are free parameters. The maximum possible value of dij is V2 (corner to
corner), and, for example, b = 1 means that the recurrent length equals the network side
length. Further, all N2 such weights are strictly positive, and the N-by-N matrix of such weights is

symmetric (Wi; = Wji), Diagonal weights (wi:) are not set to zero.
Network dynamics

Network dynamics are given by a complex-valued equation. A complex number =z is of the form
z =x + 1y, where z is the real part, ¥ is the imaginary part, and i is the imaginary constant
defined as i> = —1. Equivalently, z = mei¢, where m is the modulus and ¢ is the argument. A
complex number is intuitively visualized as a two-dimensional vector, where (7,9) is its

Cartesian representation and (m, ) is its polar representation. What distinguishes a complex

number from a standard two-dimensional vector is the multiplication rule: multiplication of two



complex numbers corresponds to both a scaling and a rotation in the so-called complex plane.
This property makes complex-valued representations of observable quantities more concise
than real-valued representations, and thus, complex numbers are a central tool in physics and
engineering. From the perspective of biological vision, a complex-valued representation is
useful. Since phase information is important for representing visual inputs, complex-valued
models, which efficiently represent phase in the argument ¢, are ideal. Indeed, complex-valued
models of vision are widely explored*®. Given the practical utility of artificial neural networks and
deep learning (including for modeling biological neural networks), complex-valued neural
networks, in which the neural activations are complex-valued, are of great interest. However,
they are notoriously difficult to train, especially in a recurrent architecture®. We make an
advance here on this front by choosing a unique dynamical equation and by exploiting the

advantages of reservoir computing.

The discrete-time dynamical equation for each node i is

N
a;[t] = a;ft — 1] + (Jn [t] - izwz‘j@i(% [t_l_n"]_ai[t_u))
J=1 (1a)

ailt] == aift] / |ailt]]- (1b)

Here, ailt] is the complex-valued activation, zi[t] is the feedforward input of the image stimulus
to node 7, and Wij is the recurrent weight from node J to node J (Methods - Network
connectivity). Further, 7ij is the discrete time delay between nodes i and J, given by
7ij = round[d;;/v] in which the Euclidean distance %ij between nodes i and J (Methods -
Network connectivity) is scaled by the parameter v, which represents the speed of activation
transmission across the network, and round[d;; /v] rounds @i/V to the nearest integer in
accord with the discrete-time dynamics. The value of v is randomly sampled between 0 and 0.1
(v e (0, 0-1)), meaning the activation travels a distance of up to one-tenth the network side
length per time step. Lastly, the modulus of @i 1] (i.e., ‘ai[t]‘) is normalized (Equation 1b), which

confines ailt] on the complex unit circle, and thus, the phase of ailt] contains the dynamics. We
note that modulus normalization is a common operation used in complex-valued neural

networks®.



The specific form of Equation 1a is unique compared to other complex-valued neural-network

equations because it involves a pairwise node attraction @i [t —1— 7] —ailt — 1], Another
system with pairwise attraction is the Kuramoto model, a popular model for studying
synchronization in nonlinear systems®'-%3. Our presented system has a correspondence with the
Kuramoto model**, and allows the description of the dynamics for individual realization in terms
of the eigenvalues and eigenvectors of the network®. Along with the choice of local network

connectivity and distance-dependent delays, the presented system gives rise to meaningful

spatiotemporal self-organization dynamics, and for this reason, the recurrent weights {wi;}

need not be trained.

The initial network state is @i[0] = 0+ 0i for all nodes, and the first several time steps contain
transient activity associated with the input disrupting the initial steady state of the system. For
the time-of-stimulus prediction task, this transient activity is important to the model and was

used, while for the next-frame forecasting task, it is distracting to the model and was discarded.
Image read-in

Each discrete time step, a digital grayscale image is read into the network. Prior to read-in, the
image is mean-subtracted and divided by its standard deviation across all its pixels (i.e.,
z-scored). Image read-in is accomplished with a local feedforward projection, which mimics
retinotopy and preserves the spatial correlations in the image. Technically, this is a
two-dimensional interpolation using the bilinear kernel common in image processing, which

takes a weighted average in the nearest 2-by-2 pixel neighbourhood. The projected image has
VN rows and VN columns like the network grid, and each pixel intensity of the projected
image is given by Zilt] (Equation 1a). Lastly, Zilt] is scaled according to Zilt] := €zi[t] where ¢
is called the input strength. In our model, ¢ is the third and final free parameter after the

recurrent strength and recurrent length.
Time-of-stimulus prediction task

Classification was performed using the basic perceptron. For an input vector

U= (1, vy, ---, UN)T, where v1, ..., Un are features, and a label S {07 1}, the goal is to

find a hyperplane @ ¥ ="b+uv;+ - +uyvy =0, where @ = (b, u1, -, un)’ is a



vector containing the bias b and weights u1,...,un, that separates the data in the

N-dimensional feature space according to their binary class (0 or 1). During training, with a
sub-optimal i vector and one example ¥ vector, the output classification I = H(ﬁTﬁ) is

computed, where H(") is the Heaviside step function defined as unity for positive argument and

zero otherwise. For the desired classification d (either 0 or 1), the signed distance A =d — [ is

computed, where A € {-1,0,1} with each new example ¥, the i vector is updated using the
delta rule @ := 4+ AUA, where ) is the learning rate. To use the perceptron in multiclass

classification, the one-versus-rest scheme is used. That is, for the set of classes
C={a,c...,ci,...,cm}, binary classification is performed separately M times. Each time

1, the two classes are defined such that ¢ = 1 and C\e = 0, where “\” denotes the set

difference. Then, there are M weight vectors U1,--.,U; ..., UM, and M inner products
f _ T — f_—»T—» _ - T - i . .
1=UU, ooy Ji=U; U, oo JM = UM U for a given data vector U. The multiclass
classification is ar&max. {f1,..., fi,. .., fu}

In the time-of-stimulus classification task (Fig. 1c), input frames were 50 by 50 pixels, and the
network was 50 by 50 nodes. There were six frames. One of the first five frames was randomly
chosen to contain the point stimulus, and the remaining frames were entirely zero intensity. The

point stimulus was an isotropic two-dimensional Gaussian of standard deviation 0.05, and the

input frames are defined on the Cartesian grid [—2,2] x [~2,2] The stimulus was centered in
the frame. The sequence of frames was sequentially input to the network. There are exactly five
classes: each of the first five frames in which the point stimulus could occur. The column vector
of activations corresponding to the final (sixth) frame was used as predictors for all trials. The
task was repeated 100 000 times, with the time of stimulus (1 or 2 or 3 or 4 or 5) randomly

rechosen each time.
Next-frame forecasting

The network outputs an image of M, rows and M. columns of pixels—the same size as the

input image—at each time step. In both examples (moving bump and natural movie), the network

was 50 by 50 nodes. Recalling that ai[t] is the complex-valued activation of node 7 at discrete

time t (Equations 1a and 1b), the output transformation is linear:



yilt] = Z vija;lt]'.

Here, Yilt] is the i pixel intensity of the output image, and Vij is the (¢,J)"" readout weight of
the M-by-N matrix V', where M = M, M.  The prime notation (‘) indicates that

T
aft] = (al[t]’ aslt], -+, anlt]) was mean-subtracted, which was done to avoid an intercept

term during training.

The readout weights {vi;} of V are the only weights trained in our model, making our network
a reservoir computer. Reservoir computers are recurrent neural networks that avoid the issues
associated with training recurrent weights, and have been shown to perform well in time series

forecasting®. Suppose training begins at time step 1, after discarding the initial transient, and

T
ends at time step T. Defining alt] = (aift], a2t], -+, an[t]') , the matrix of regressors is

then
A= {a[l]' al2]" - - a[T]'] :
and the matrix of regressands (desired outputs) is

D= 7Rl 118 - s 4]

Hence, the desired outputs are simply the set of one-step-ahead frames. Here, f1t] is the

column vectorization of the '

input image frame (before read-in), and is also mean-subtracted.
Training entails ordinary least-squares linear regression between A and D. Because D is
highly underdetermined (containing far fewer frames than pixels per frame), the matrix 2-norm of

V' was simultaneously minimized during regression to reduce model bias.

Following training is closed-loop forecasting. At this point, the network activation has been
primed by being driven with the training frames, and the readout matrix V' has been trained. In

the first time step of closed-loop forecasting, we input the corresponding video frame.



Subsequently for steps {t}, the predicted output at time step t serves as the input for time step
t+1.

In the moving bump example (Fig. 2), the frames are 30 by 30 pixels and defined on a
[—2,2] X [~2,2] Cartesian grid. A two-dimensional isotropic Gaussian of standard deviation 0.2
traced a Lissajous curve given by the parametric equations zc(t) =sin(t/3) and

Ye(t) = COS(t), where (Zc,Ye) is the center of the Gaussian in space and t is a continuously
valued time variable®. The Lissajous trajectory was discretized to have 100 frames per cycle.
The first cycle was discarded to omit the initial transient network activity, the network was
trained on the subsequent 3 cycles, and closed-loop forecasting was performed on the 2 cycles

subsequent to that.

In the natural video example (Fig. 4), a walking video from the Weizmann Human Action
Dataset®® was used, in which a person walks across the scene. We present several key
examples here, but note that the model successfully performs closed-loop forecasting for all
movies in this dataset. Segmentation masks of the people in the videos are included with this
dataset (https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html). Using these
masks, we cropped the frames so that the person was centered throughout the entire walk,
giving frames of approximately 80 by 50 pixels. Without performing this step, our network model
would fail: the training data would be independent from the closed-loop forecast data since they
would occupy exclusive regions of the pixel space, and the model would not generalize to the
prediction data. Such nonstationary data have been successfully taught to networks with
approximate translation invariance, and translation invariance is likely used in the brain to learn
such processes®. However, translation invariance is beyond the scope of our study. The frames
were then resized to be exactly 80 by 50 pixels. Finally, each video was around 70 frames long.
To get more frames without interpolation, we “bookended” each video by concatenating it with
its temporal reverse sequence, where one cycle consists of the original frames followed by the
bookended frames. The result is a longer video with the same spatiotemporal statistics. The first
cycle was discarded to omit the initial transient network activity, the network was trained on the
subsequent 3 cycles, and closed-loop prediction was performed on the 2 cycles subsequent to
that.



To measure the balance between feedforward input and recurrent interaction, we devised the
recurrence-to-input ratio. Per Equation 1a, the input and recurrence terms are the column
vectors

alt] = {@[t]}Y,
and
N

N
T[t] = { — IZ wijei(aj[tlﬁj}ai[tl])} ’
j=1

=1

respectively. Further, let the matrices
R = lr[t] rlt+1] - r[t’]}
and

X = {x[t] xft+1] - x[tl]]

be the horizontal concatenations of 7[t] and x[t], respectively, over closed-loop forecast times

{t,t+1,....t'} The ratio is defined as

12l
1X1e’

where ||GllF denotes the Frobenius matrix norm of a matrix G, which is equivalent to the

Euclidean vector norm of the vectorization of G.

Movie switching



The network was trained on two movie inputs: one of a walking person (movie 1) and one of a
jumping person (movie 2), both from the Weizmann dataset. The same recurrent matrix was

used in each case—only the learned matrices (Vi and V2, respectively) differed. Let

V=cVi+(1-c)Va, where ¢ € [0,1]. V stores both learned matrices, and the present input

modulates the relative contribution of Vi and V2 using an update rule for c. The structural
similarity between the input and output were computed at each time step t (SSIM[t]), and the
change thereof was computed at each time step as ASSIM = SSIM[t] — SSIM[t — 1] The
update rule is ¢ := ¢ + Ac, where Ac = —1 sgn[ASSIM] and "] is the learning rate, set to 0.1.

Depending on which movie (movie 1 or movie 2) drives the network, ¢ tends toward 1 or O,
respectively. Once this happens, this driving input is removed and closed-loop forecasting
commences as described. Switching entails instantaneously transitioning from closed-loop
forecasting of one movie to driving the network with the frames of another movie. ¢ then

updates as described and is followed by closed-loop forecasting again.
Parameter optimization

The random-search algorithm was used to optimize parameters for closed-loop forecasting.
Within specified bounds, each parameter was randomly sampled, giving a point in the
parameter space. The parameter space was randomly sampled in this way many times, and
each time, the structural similarity index was computed as the performance index. The bounds

within which the parameters were sampled are given in Table I.

parameter sampled interval
recurrent strength (0, 0.2)
recurrent length (0,0.2)
input strength (0,0.2)
v (0, 0.1)

Table I: Intervals over which model parameters were randomly searched during optimization.
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