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ABSTRACT
Word-aware sentiment analysis has posed a significant challenge
over the past decade. Despite the considerable efforts of recent lan-
guage models, achieving a lightweight representation suitable for
deployment on resource-constrained edge devices remains a cru-
cial concern. This study proposes a novel solution by merging two
emerging paradigms, the Word2Vec language model and Hyperdi-
mensional Computing, and introduces an innovative framework
named Word2HyperVec. Our framework prioritizes model size and
facilitates low-power processing during inference by incorporating
embeddings into a binary space. Our solution demonstrates signifi-
cant advantages, consuming only 2.2 W, up to 1.81× more efficient
than alternative learning models such as support vector machines,
random forest, and multi-layer perceptron.
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1 INTRODUCTION
Language processing systems are in high demand, especially with
the advent of Chat Generative Pre-trained Transformer (ChatGPT)
byOpenAI, which has sparked immense interest within themachine
learning (ML) community. However, it is essential to consider the
design aspect of language encoders and classifiers in hardware to
create portable models suitable for future use in mobile devices.
While large models are effective in most conversation contexts,
there is a need for lightweight models, particularly for sentiment-
based topics, which can benefit hardware designers and a subset of
Large Language Models (LLMs).
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Figure 1: Proposed framework: Word2HyperVec.

Hyperdimensional computing (HDC) systems have obtained sig-
nificant attention in recent years due to their lightweight architec-
ture and single-pass learning capabilities [4]. By encoding data into
binary hypervectors (+1, -1), cumulative data accumulations enable
holistic brain-like learning [1]. Once data is represented in ran-
dom binary hypervectors, learning involves binary logic operations
such as shifting, accumulation, population counting, and binary
similarity checks [3]. This study employs HDC as an intermediary
to represent data in binary form, comprehensively representing
multiple linguistic inputs from the language model encoder. Our
results demonstrate comparable accuracy with conventional ML
models, with reduced model size, shorter interference runtime, and
lower power consumption.

2 PROPOSED FRAMEWORK
We propose Word2HyperVec, a framework that integrates two criti-
cal concepts: the Word2Vec model and hypervector processing. The
framework leverages the Word2Vec model [5], utilizing the neural
network-based model to generate linguistic data based on word
embeddings within sentences. Each word undergoes encoding, con-
tributing to the overall sentence embedding model. For evaluation,
we utilize US Airlines Sentiments sourced from Twitter data [2].
This dataset comprises two classes, positive class (+) and negative
class (-), reflecting the sentiment of tweet senders. We disregard
neutral sentiments in this study.
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As depicted in Step I of Figure 1, the framework first obtains
samples (tweets) for each class, representing single sentences.
Subsequently, Word2Vec generates encoding values for each word
in Step II. These embeddings are then cumulatively added position-
wise to form a single sentence embedding, denoted as A1 to A64
with a 64-embedding size. Analogous to HDC and its positional
shifting, each sentence embedding undergoes positional embed-
ding (𝐸1,...,𝐸64), which is then multiplied by trainable weights (𝑤 )
adjusted via logistic regression for binary learning problems in Step
III. This step alleviates the learning burden of HDC.

Step IV in Figure 1 illustrates the HDC learning phase, where
binary data is derived from random hypervector generation using
𝐸𝑤 (embeddings × weights). Each 𝐸𝑤 is converted into a D-size
binary data (𝐻 ) comprising random +1s and -1s. Similar to the
accumulation step in baseline HDC, positional accumulations are
applied over each 𝐻 . The accumulated vector (𝑆) in scalar form
is updated through each sample until the end of the first epoch,
serving as the reference epoch for validation purposes.

Once both positive and negative class labels generate their cor-
responding class vectors (𝑆), starting from the second epoch, each
incoming 𝑆 undergoes cosine similarity evaluation to determine
whether it aligns correctly with the expected label class. Correct
classifications prompt the second epoch to adjust the sample effect
using a learning rate (𝐿𝑅) and accumulate it back onto the corre-
sponding class hypervector, depicted as 𝑆new = 𝑆old + (LR × 𝐹 ).

3 EVALUATION RESULTS
Simulation results shown in Figure 2 illustrate how epoch-based
training benefits HDC models. As with many ML processes, the
initial training phase is somewhat turbulent but quickly stabilizes.
As we can see, in both scenarios of Figure 2 (a) with an LR of 1
and Figure 2 (b) with an LR of 10, the training accuracy improves
consistently over epochs. Meanwhile, cosine similarity, an indica-
tor of class separability in the model, decreases correspondingly,
suggesting that the classes are becoming more distinct. This trend
is reminiscent of the familiar loss curves in other ML training pro-
cesses, reinforcing that the model genuinely learns to differentiate
between classes. By reinforcing correctly predicted classifications,
we effectively enhance the model’s ability to form robust hyperdi-
mensional representations for each class.

Table 1 reports the performance results. The most significant
observation is the tangible improvement in test accuracy, achiev-
ing up to 82% accuracy. This leap in performance, accomplished
without increasing model size or inference time, indicates a suc-
cessful learning trajectory rather than mere data memorization.
The plots in Figure 2 confirm that the model is internalizing the
underlying structure of the data, evidenced by the steady learning
and meaningful cosine similarity metrics. We observe that HDC
surpasses other algorithms in efficiency. It exhibits inference times
that are roughly 2.76× to 10.36× faster, is 1.77× to 1.82× more
power-efficient, and maintains a model size that is approximately
20.42× to 1050.88× smaller than traditional ML algorithms. This
underscores the potential of HDC, especially when optimized with
an epoch-based training approach, to deliver high accuracy without
increasing computational costs, making it a prime candidate for
applications where both efficiency and accuracy are crucial.

(a) (b)

Figure 2: HDC model training with two different LRs. (a) a
model with 𝐿𝑅=1, (b) a model with 𝐿𝑅=10.

Table 1: Word2HyperVec vs. Machine Learning Algorithms

Embedding❖ Algorithm❖ Accuracy Mod. Size Infer. Time (sec.)★ Power(W)●

word2vec

SVM 0.80 2.14 MB 0.0152 3.9 W
RF 0.82 8.21 MB 0.0570 4 W
MLP 0.82 163.39 KB 0.0124 3.3 W
HDC 0.82 8 KB 0.0055 2.2 W

★ Inference conducted on an edge device equipped with a 1.2GHz
quad-core ARM Cortex-A53 CPU, 1GB of RAM, and 64-bit architec-
ture.
❖Embeddings are created using the Word2vec model for this study.
Embedding model, HDC (D=1000), and ML models trained on a
12th Gen Intel® Core™ i7-12800H CPU with 20 logical cores.
● Power value for each algorithmmeasured with USB power-meter.

4 CONCLUSIONS
Examining HDC alongside established ML algorithms highlights
HDC’s remarkable potential for efficient computing. With an accu-
racy on par with robust models like RF and MLP and superior to
SVM, it stands out for its exceptionally small model size and fast
inference while maintaining the lowest power consumption among
the tested algorithms. The implementation of an epoch-based train-
ing approach further enhances HDC. Remarkably, accuracy im-
provements do not come at the cost of model size or inference speed,
both of which remain exceptionally efficient. These attributes make
HDC a highly attractive option for devices with limited memory
and energy, showcasing the HDC’s important role in embedded
computing, where hardware efficiency is paramount.
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