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We develop a theoretical framework for the analysis of oblique decision
trees, where the splits at each decision node occur at linear combinations of
the covariates (as opposed to conventional tree constructions that force axis-
aligned splits involving only a single covariate). While this methodology has
garnered significant attention from the computer science and optimization
communities since the mid-80s, the advantages they offer over their axis-
aligned counterparts remain only empirically justified, and explanations for
their success are largely based on heuristics. Filling this long-standing gap be-
tween theory and practice, we show that oblique regression trees (constructed
by recursively minimizing squared error) satisfy a type of oracle inequality
and can adapt to a rich library of regression models consisting of linear com-
binations of ridge functions and their limit points. This provides a quantitative
baseline to compare and contrast decision trees with other less interpretable
methods, such as projection pursuit regression and neural networks, which
target similar model forms. Contrary to popular belief, one needs not always
trade-off interpretability with accuracy. Specifically, we show that, under suit-
able conditions, oblique decision trees achieve similar predictive accuracy as
neural networks for the same library of regression models. To address the
combinatorial complexity of finding the optimal splitting hyperplane at each
decision node, our proposed theoretical framework can accommodate many
existing computational tools in the literature. Our results rely on (arguably
surprising) connections between recursive adaptive partitioning and sequen-
tial greedy approximation algorithms for convex optimization problems (e.g.,
orthogonal greedy algorithms), which may be of independent theoretical in-
terest. Using our theory and methods, we also study oblique random forests.

1. Introduction. Decision trees and neural networks are conventionally seen as two con-
trasting approaches to learning. The popular belief is that decision trees compromise accuracy
for being easy to use and understand, whereas neural networks are more accurate, but at the
cost of being less transparent. We challenge the status quo by showing that, under suitable
conditions, oblique decision trees (also known as multivariate decision trees) achieve sim-
ilar predictive accuracy as neural networks on the same library of regression models. Of
course, while it is somewhat subjective as to what one regards as being transparent, it is
generally agreed upon that neural networks are less interpretable than decision trees [35,
41]. Indeed, trees are arguably more intuitive in their construction, which makes it easier to
understand how an output is assigned to a given input, including which predictor variables
were relevant in its determination. For example, in clinical, legal or business contexts, it may
be desirable to build a predictive model that mimics the way a human user thinks and rea-
sons, especially if the results (of scientific or evidential value) are to be communicated to a
statistical lay audience. Even though it may be sensible to deploy estimators that more di-
rectly target the functional form of the model, predictive accuracy is not the only factor the
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modern researcher must consider when designing and building an automated system. Facil-
itating human-machine interaction and engagement is also an essential part of this process.
To this end, the technique of knowledge distillation [13] is a quick and easy way to enhance
the fidelity of an interpretable model, without degrading the out-of-sample performance too
severely. In the context of decision trees and neural networks, one distills the knowledge
acquired by a neural network—which relies on nontransparent, distributed hierarchical rep-
resentations of the data—and expresses similar knowledge in a decision tree that consists of,
in contrast, easier to understand hierarchical decision rules [20]. This is accomplished by first
training a neural network on the observed data, and then, in turn, training a decision tree on
data generated from the fitted neural network model.

In this paper, we show that oblique regression trees (constructed by recursively minimizing
squared error) satisfy a type of oracle inequality and can adapt to a rich library of regression
models consisting of linear combinations of ridge functions. This provides a quantitative
baseline to compare and contrast decision trees with other less interpretable methods, such as
projection pursuit regression, neural networks and boosting machines, which directly target
similar model forms. When neural network and decision tree models are used in tandem to
enhance generalization and interpretability, our theory allows one to measure the knowledge
distilled from a neural network to a decision tree. Using our theory and methods, we also
study oblique random forests.

1.1. Background and prior work. Let (y1,xT
1 ), . . . , (yn,xT

n) be a random sample from a
joint distribution P(y,x) = Py|xPx supported on Y × X . Here, x = (x1, . . . , xp)T is a vector
of p predictor variables supported on X ⊆ Rp and y is a real-valued outcome variable with
range Y ⊆ R. Our objective is to compute an estimate of the conditional expectation, µ(x) =
E[y | x], a target which is optimal for predicting y from some function of x in mean squared
error. One estimation scheme can be constructed by dividing the input space X into subgroups
based on shared characteristics of y—something decision trees can do well.

A decision tree is a hierarchically organized data structure constructed in a top down,
greedy manner through recursive binary splitting. According to CART methodology [11], a
parent node t (i.e., a region in X ) in the tree is divided into two child nodes, tL and tR , by
maximizing the decrease in sum-of-squares error (SSE)

(1) !̂(b,a, t) = 1
n

∑

xi∈t
(yi − yt)

2 − 1
n

∑

xi∈t

(
yi − ytL1

(
aTxi ≤ b

) − ytR1
(
aTxi > b

))2
,

with respect to (b,a), with 1(·) denoting the indicator function and yt denoting the sample
average of the yi data whose corresponding xi data lies in the node t. In the conventional
axis-aligned (or, univariate) CART algorithm [11], Section 2.2, splits occur along values of a
single covariate, and so the search space for a is restricted to the set of standard basis vectors
in Rp . In this case, the induced partition of the input space X is a set of hyperrectangles. On
the other hand, the oblique CART algorithm [11], Section 5.2, allows for linear combinations
of covariates, extending the search space for a to be all of Rp . Such a procedure generates
regions in Rp that are convex polytopes.

The solution of (1) yields estimates (b̂, â), and the refinement of t produces child nodes
tL = {x ∈ t : âTx ≤ b̂} and tR = {x ∈ t : âTx > b̂}. These child nodes become new parent
nodes at the next level of the tree and can be further refined in the same manner until a
desired depth is reached. To obtain a maximal decision tree TK of depth K , the procedure is
iterated K times or until either (i) the node contains a single data point (yi,xT

i ) or (ii) all input
values xi and/or all response values yi within the node are the same. The maximal decision
tree with maximum depth is denoted by Tmax. An illustration of a maximal oblique decision
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FIG. 1. A maximal oblique decision tree with depth K = 2 in p = 2 dimensions. Splits occur along hyperplanes
of the form a1x1 + a2x2 = b.

tree with depth K = 2 is shown in Figure 1. For contrast, in Figure 2, we show a maximal
axis-aligned decision tree with depth K = 2.

In a conventional regression problem, where the goal is to estimate the conditional mean
response µ(x), the canonical tree output for x ∈ t is yt, that is, if T is a decision tree, then

(2) µ̂(T )(x) = yt = 1
n(t)

∑

xi∈t
yi,

where n(t) denotes the number of observations in the node t. However, one can aggregate
the data in each node in a number of ways, depending on the form of the target estimand.
In the most general setting, under weak assumptions, all of our forthcoming theory holds
when the node output is the result of a least squares projection onto the linear span of a
finite dictionary H that includes the constant function (e.g., polynomials, splines), that is,
ŷt ∈ argminh∈span(H)

∑
xi∈t(yi − h(xi ))

2.
One of the main practical issues with oblique CART is that the computational complexity

of minimizing the squared error in (1) in each node is extremely demanding (in fact, it is
NP-hard). For example, if we desire to split a node t with n(t) observations for axis-aligned
CART, an exhaustive search would require at most p · n(t) evaluations, whereas oblique
CART would require a prodigious 2p

( n(t)
p

)
evaluations [36].

To deal with these computational demands, Breiman et al. [11] first suggested a method
for inducing oblique decision trees. They use a fully deterministic hill-climbing algorithm to
search for the best oblique split. A backward feature elimination process is also carried out to
delete irrelevant features from the split. Heath, Kasif and Salzberg [24] propose a simulated
annealing optimization algorithm, which uses randomization to search for the best split to
potentially avoid getting stuck in a local optimum. Murthy, Kasif and Salzberg [36] use a
combination of deterministic hill-climbing and random perturbations in an attempt to find a
good hyperplane. See Brodley and Utgoff [12] for additional variations on these algorithms.

FIG. 2. A maximal axis-aligned decision tree with depth K = 2 in p = 2 dimensions. Splits occur along indi-
vidual covariates of the form xj = b for j = 1,2.
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FIG. 3. A single hidden layer neural network with K hidden nodes.

Other works employ statistical techniques like linear discriminant analysis (LDA) [30–32],
principle components analysis (PCA) [33, 40] and random projections [44].

While not the focus of the present paper, regarding nongreedy training, other researchers
have attempted to find globally optimal tree solutions using linear programming [4] or mixed-
integer linear programming [5, 7]. It should be clear that all of our results hold verbatim for
optimal trees, as greedy implementations belong to the same feasible set. While usually bet-
ter than greedy trees in terms of predictive performance, scalability to large data sets is the
most salient obstacle with globally optimal trees. Moreover, on a qualitative level, a globally
optimal tree arguably detracts from the interpretability, as humans, in contrast, often exhibit
bounded rationality and, therefore, make decisions in a more sequential (rather than antici-
patory) manner [26, and references therein]. Relatedly, another training technique is based
on constructing deep neural networks that realize oblique decision trees [29, 46] and then
utilizing tools designed for training neural networks.

While there has been a plethora of greedy algorithms over the past 30 years for training
oblique decision trees, the literature is essentially silent on their statistical properties. For
instance, assuming one can come close to optimizing (1), what types of regression functions
can greedy oblique trees estimate and how well?

1.2. Ridge expansions. Many empirical studies reveal that oblique trees generally pro-
duce smaller trees with better accuracy compared to axis-aligned trees [24, 36] and can often
be comparable, in terms of performance, to neural networks [6, 8, 9]. Intuitively, allowing
a tree-building system to use both oblique and axis-aligned splits broadens its flexibility. To
theoretically showcase these qualities and make comparisons with other procedures (such as
neural networks and projection pursuit regression), we will consider modeling µ with finite
linear combinations of ridge functions, that is, the library

G =
{

g(x) =
M∑

k=1

gk
(
aT
k x

)
,ak ∈ Rp, gk : R &→ R, k = 1, . . . ,M,M ≥ 1,∥g∥L1 < ∞

}

,

where ∥ · ∥L1 is a total variation norm that is defined in Section 2.1. This library encompasses
the functions produced from projection pursuit regression, and more specifically—by taking
gk(z) = φ(z − bk), where φ is a fixed activation function, such as a sigmoid function or
ReLU, and bk ∈ R is a bias parameter—single hidden layer feed-forward neural networks. A
graphical representation of such a neural network is provided in Figure 3. A neural network
forms predictions according to distributed hierarchical representations of the data, whereas a
decision tree uses hierarchical decision rules (cf., Figures 1 and 2).

Since the first version of our manuscript was released on arXiv, several subsequent pa-
pers have employed our novel theoretical and methodological statistical framework to derive
consistency results for decision trees and related methods. For example, [47] applies our core
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ideas and proof techniques to deduce a consistency result for oblique decision trees in low-
dimensional settings (cf., Corollary 2.4 below), but under stronger assumptions on the target
function class G and without accounting for the underlying optimization constraints (cf., our
novel optimization framework in Section 2.2). [39] also applies our core ideas and proof
techniques to deduce a consistency result for axis-aligned decision trees within an alterna-
tive computation framework, but under stronger assumptions on the target function class G.
Finally, [37] and [17], among others (see their references), study consistency of deep neural
network methods using similar notions of Hilbert function spaces and total variation norms
as our paper does for adaptive decision trees and shallow neural networks, but without ac-
counting for the underlying optimization constraints. In particular, [37] also shows that neural
networks are able to adapt to sparsity in the data (cf., Section 3 below).

2. Main results. We first introduce notation and assumptions that are used throughout
the remainder of the paper.

2.1. Notation and assumptions. For a function f : Rp → R, we define f = (f (x1), . . . ,
f (xn))

T to be the n × 1 vector of f evaluated at the design points X = (x1, . . . ,xn)
T ∈

Rn×p . Likewise, we use µ̂(TK) to denote the n × 1 vector of fitted values of µ̂(TK). For
functions f,g ∈ L2(Px), let ∥f ∥2 = ∫

X (f (x))2 dPx(x) be the squared L2(Px) norm and
let ∥f∥2

n = 1
n

∑n
i=1(f (xi ))

2 denote the squared norm with respect to the empirical measure
on the data. Let ⟨f,g⟩n = 1

n

∑n
i=1 f (xi )g(xi ) denote the inner product with respect to the

empirical measure on the data. The response data vector y = (y1, . . . , yn)
T ∈ Rn is viewed

as a relation, defined on the design matrix X, that associates xi with yi . Thus, for example,
∥y − f∥2

n = 1
n

∑n
i=1(yi − f (xi ))

2 and ⟨y, f⟩n = 1
n

∑n
i=1 yif (xi ). We use [T ] to denote the

collection of internal (nonterminal) nodes and {t : t ∈ T } to denote the terminal nodes of the
tree. The cardinality of a set A is denoted by |A|.

We define the total variation of a ridge function x &→ h(aTx) with a ∈ Rp and h : R → R
in the node t as

V (h,a, t) = sup
P

|P|−1∑

ℓ=0

∣∣h(zℓ+1) − h(zℓ)
∣∣,

where the supremum is over all partitions P = {z0, z1, . . . , z|P|} of the interval I (a, t) =
[minx∈t aTx,maxx∈t aTx] ⊂ R (we allow for the possibility that one or both of the endpoints is
infinite). If the function h is smooth, then V (h,a, t) admits the familiar integral representation∫
I (a,t) |h′(z)|dz. We can then define the L1 norm of an additive function h(x) = ∑M

k=1 hk(x)
as

∥h∥L1 =
M∑

k=1

V (hk,ak, t).

Central to our results is the L1 total variation norm of f ∈ F = cl(G) in the node t, the
closure being taken in L2(Px). This quantity captures the local capacity of a function in F .
It is defined as

∥f ∥L1(t) := lim
ε↓0

inf
g∈G

{
M∑

k=1

V (gk,ak, t) : g(x) =
M∑

k=1

gk
(
aT
k x

)
,∥f − g∥ ≤ ε

}

.

For simplicity, we write ∥f ∥L1 for ∥f ∥L1(X ). This norm may be thought of as an ℓ1 norm on
the coefficients in a representation of the function f by elements of a normalized dictionary
of ridge functions. A classic result of Barron [1] shows that, for any function f defined on
X = [0,1]p , we have the bound ∥f ∥L1 !

∫ ∥θ∥ℓ1 |f̃ (θ)|dθ , where f̃ is the Fourier transform
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of f and ∥ · ∥ℓ1 is the usual ℓ1 norm of a vector in Rp . Furthermore, there exists an M-
term linear combination of sigmoidal ridge functions in G whose L2(Px) distance from f is
O(∥f ∥L1/

√
M).

2.2. Computational framework. As mentioned earlier, it is challenging to find the direc-
tion â that optimizes !̂(b,a, t). Many of the aforementioned computational papers address
the problem by restricting the search space to a more tractable subset of candidate directions
At with sparsity

sup
{∥a∥ℓ0 : a ∈ At

} ≤ d,

for some positive integer d , where ∥a∥ℓ0 counts the number of nonzero coordinates of a.
Because such search strategies are sometimes unlikely to find the global maximum, we theo-
retically measure their success by specifying a suboptimality (slackness) parameter κ ∈ (0,1]
and considering the probability PAt(κ) that the maximum of !̂(b,a, t) over a ∈ At ⊆ Rp is
within a factor κ of the maximum of !̂(b,a, t) on the unrestricted parameter space, a ∈ Rp .
That is, to theoretically quantify the suboptimality of the chosen hyperplane, we measure

PAt(κ) = PAt

(
max

(b,a)∈R×At
!̂(b,a, t) ≥ κ max

(b,a)∈R1+p
!̂(b,a, t)

)
,

where PAt denotes the probability with respect to the randomness in the search spaces At,
conditional on the data. The maximum of !̂(b,a, t) over (b,a) is achieved because the num-
ber of distinct values of !̂(b,a, t) is finite (at most the number of ways of dividing n obser-
vations into two groups, or, 2n − 1).

Another way of thinking about PAt(κ) is that it represents the degree of optimization mis-
specificity of At for the form of the global optimum â. For example, if At = {e1, e2, . . . , ep}
is the collection of standard basis vectors in Rp , then d = 1 and we believe that the true op-
timal solution â ∈ At corresponds to axis-aligned CART, then PAt (κ) = 1 for all values of
κ .

The definition of PAt(κ) can also be understood as a hypothesis test. Consider the re-
gression model y = β11(aTx ≤ b) + β21(aTx > b) + ε with independent Gaussian noise
ε ∼ N(0,σ 2). Set the null hypothesis H0 : â ∈ At. Then, using the likelihood ratio test with
threshold proportional to 1 − κ , PAt(κ), is the likelihood of failing to reject the null hypothe-
sis. It follows that the smaller κ is, the more likely it is that we will reject the null hypothesis
that â belongs to At.

The collection At of candidate directions can be chosen in many different ways; we discuss
some examples next.

• Deterministic. If At is nonrandom, then PAt(κ) is either zero or one for any At ⊂ Rp , and
if At = Rp , then PAt(κ) = 1 for all κ ∈ (0,1]. For the latter case, one can use strategies
based on mixed-integer optimization (MIO) Zhu et al. [49], Dunn [18], Bertsimas and
Dunn [5]. In particular, Dunn [18] presents a global MIO formulation for regression trees
with squared error that can also be implemented greedily within each node. Separately, in
order to improve interpretability, it may be of interest to restrict the coordinates of â to be
integers. Using the hyperplane separation theorem and the fact that constant multiples of
vectors in Zp are dense in Rp , it can easily be shown that if At = Zp , then PAt(κ) = 1 for
all κ ∈ (0,1]. An integer-valued search space may also lend itself to optimization strategies
based on integer programming.

• Purely random. The most naïve and agnostic way to construct At is to generate the di-
rections uniformly at random. For example, with axis-aligned CART where the global
search space consists of the p standard basis vectors {e1, e2, . . . , ep}, if At is generated
by selecting m(≤ p) standard basis vectors uniformly at random without replacement (as
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is done with random forests [10]), then PAt(κ) ≥ ( p−1
m−1

)
/
( p
m

) = m/p for all κ ∈ (0,1].
For more complex global search spaces (e.g., oblique), it is quite likely that a purely ran-
dom selection will yield very small PAt(κ). For example, if the global search space is
{a ∈ Rp : ∥a∥ℓ0 = d} and At is generated by selecting m (distinct) sets Sk ⊂ {1,2, . . . , p}
with |Sk| = d uniformly at random without replacement and setting At = ⋃

k{a ∈ Rp :
aj = 0, j /∈ Sk}, then PAt(κ) ≥ m/

( p
d

) ≈ 0 for all κ ∈ (0,1]. This has direct consequences
for the predictive performance, since, as we shall see (Section 2.4), the expected risk is in-
flated by the reciprocal probability 1/PAt(κ). Thus, generating At in a principled manner
is important for producing small risk.

• Data-dependent. Perhaps the most interesting and useful way of generating informative
candidate directions in At is to take a data-driven approach. One possibility is to use di-
mensionality reduction techniques, such as PCA, LDA and Lasso, on a separate sample
{(ỹi , x̃T

i ) : x̃i ∈ t}. The search space At can then be defined in terms of the top principle
components produced by PCA or LDA, or similarly, in terms of the relevant coordinates
selected by Lasso. Additional randomization can also be introduced by incorporating, for
example, sparse random projections or random rotations [44]. On an intuitive level, we
expect these statistical methods that aim to capture variance in the data to produce good
optimizers of the objective function. Indeed, empirical studies with similar constructions
provide evidence for their efficacy over purely random strategies [21, 33, 40].

In order to control the predictive performance of the decision tree theoretically, we assume
the researcher has chosen a meaningful method for selecting candidate directions At, either
with prior knowledge based on the context of the problem, or with an effective data-driven
strategy.

2.3. Orthogonal tree expansions. We now present a technical result about the construc-
tion of trees that is crucial in proving our main results. While Lemma 2.1 below focuses on
the special case of constant fit at the terminal nodes for concreteness, all proofs (see Section 6
and the Supplementary Material [14]) are given in full generality. To be more precise, our re-
sults in the Appendix allow for any finite-dimensional least squares fit at the terminal nodes,
and thus give a general orthogonal tree expansion in the function space for adaptive oblique
decision trees, covering canonical adaptive axis-aligned decision trees as a special case.

Lemma 2.1 shows that the tree output µ̂(T )(x) is equal to the empirical orthogonal pro-
jection of y onto the linear span of orthonormal decision stumps, defined as

(3) ψt(x) = 1(x ∈ tL)n(tR) − 1(x ∈ tR)n(tL)√
w(t)n(tL)n(tR)

,

for internal nodes t ∈ [T ], where w(t) = n(t)/n denotes the proportion of observations that
are in t. By slightly expanding the notion of an internal node to include the empty node (i.e.,
the empty set), we define ψt(x) ≡ 1 if t is the empty node, in which case the tree outputs the
grand mean of all the response values. The decision stump ψt in (3) is produced from the
Gram–Schmidt orthonormalization of the functions {1(x ∈ t),1(x ∈ tL)} with respect to the
empirical inner product space:

{
1(x ∈ t)

∥1(x ∈ t)∥n
,

1(x ∈ tL) − ⟨1(x∈tL),1(x∈t)⟩n
∥1(x∈t)∥2

n
1(x ∈ t)

∥1(x ∈ tL) − ⟨1(x∈tL),1(x∈t)⟩n
∥1(x∈t)∥2

n
1(x ∈ t)∥n

}

=
{1(x ∈ t)√

w(t)
,
1(x ∈ tL)n(tR) − 1(x ∈ tR)n(tL)√

w(t)n(tL)n(tR)

}
.

We refer the reader to Section 6 for an orthonormal decomposition of the tree output that holds
in a much more general setting (i.e., when the node output is the least squares projection onto
the linear span of a finite dictionary).
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LEMMA 2.1. If T is a decision tree constructed with CART methodology (either axis-
aligned or oblique), then its output (2) admits the orthogonal expansion

(4) µ̂(T )(x) =
∑

t∈[T ]
⟨y,ψ t⟩nψt(x),

where ψ t = (ψt(x1), . . . ,ψt(xn))
T. By construction, ∥ψ t∥n = 1 and ⟨ψ t,ψ t′ ⟩n = 0 for dis-

tinct internal nodes t and t′ in [T ]. In other words, µ̂(T ) is the empirical orthogonal projec-
tion of y onto the linear span of {ψ t}t∈[T ]. Furthermore,

(5)
∣∣⟨y,ψ t⟩n

∣∣2 = !̂(b̂, â, t).

REMARK 1 (Connection to sieve estimation literature). Another way of thinking about
CART is through the lens of least squares sieve estimation. For example, for a fixed but
otherwise arbitrary ordering of the internal nodes of T , suppose # is the n × |[T ]| data
matrix [ψt(xi )]1≤i≤n,t∈[T ] and #(x) is the |[T ]| × 1 feature vector (ψt(x))t∈[T ]. Then

µ̂(T )(x) = #(x)T(
#T#

)−1#Ty = #(x)T#Ty.

From this perspective, standard sieve estimation and inference theory [15, 25] cannot be
applied to studying the statistical properties of µ̂(T )(x) because the implied (random) basis
functions depend on the entire sample (y,X) through the adaptive (recursive) split regions
underlying the decision tree construction (i.e., the induced random partitioning).

Lemma 2.1 suggests that there may be some connections between oblique CART and
sequential greedy optimization in Hilbert spaces. Indeed, our analysis of the oblique CART
algorithm suggests that it can be viewed as a local orthogonal greedy procedure in which
one iteratively projects the data onto the space of all constant predictors within a greedily
obtained node. The algorithm also has similarities to forward-stepwise regression because,
at each current node t, it grows the tree by selecting a feature, ψ t, most correlated with the
residuals, (yi − yt)1(xi ∈ t), per (5) and (1), and then adding that chosen feature along with
its coefficient back to the tree output in (4).

The proofs show that this local greedy approach has a very similar structure to standard
global greedy algorithms in Hilbert spaces. Indeed, the reader familiar with greedy algorithms
in Hilbert spaces for overcomplete dictionaries will recognize some similarities in the analy-
sis (see the orthogonal greedy algorithm [3] in which one iteratively projects the data onto the
linear span of a finite collection of greedily obtained dictionary elements). As with all orthog-
onal expansions, the decomposition of µ̂(TK) in Lemma 2.1 allows one to write down a recur-
sive expression for the training error. That is, from µ̂(TK) = µ̂(TK−1) + ∑

t∈TK−1
⟨y,ψ t⟩nψ t,

one obtains the identity

(6)
∥∥y − µ̂(TK)

∥∥2
n = ∥∥y − µ̂(TK−1)

∥∥2
n −

∑

t∈TK−1

∣∣⟨y,ψ t⟩n
∣∣2.

Furthermore, using the fact that ⟨y,ψ t⟩n is the result of a local maximization, namely the
equivalence (5) in Lemma 2.1, one can construct an empirical probability measure ) on (b,a)

and lower bound |⟨y,ψ t⟩n|2 by
∫

!̂(b,a, t)d)(b,a), which is itself further lower bounded by
an appropriately scaled squared nodewise excess training error (see Lemma 6.1). Combining
this with (6), we can establish a useful training error bound. We formalize this result next.
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2.4. Training error bound for oblique CART. Applying the techniques outlined earlier,
we can show the following result (Lemma 2.2) on the training error of the tree. Our result
provides an algorithmic guarantee, namely that the expected excess training error of a depth
K tree constructed with oblique CART methodology decays like 1/K , and with additional
assumptions (see Section 3), like 4−K/q for some q > 2. To the best of our knowledge, this
result is the first of its kind for oblique CART. The math behind it is surprisingly simple;
in particular, unlike past work on axis-aligned decision trees, there is no need to directly
analyze the partition that is induced by recursively splitting, which often entails showing
that certain local (i.e., node-specific) empirical quantities concentrate around their population
level versions [16, 42, 43, 45].

For the following statements, the output of a depth K tree TK constructed with oblique
CART methodology using the search spaces {At : t ∈ [T ]} is denoted µ̂(TK). Throughout the
paper, we use E to denote the expectation with respect to the joint distribution of the (possibly
random) search spaces {At : t ∈ [TK ]} and the data.

LEMMA 2.2 (Training error bound for oblique CART). Let E[y2 log(1 + |y|)] < ∞ and
g ∈ F with ∥g∥L1 < ∞. Then, for any K ≥ 1,

(7) E
[∥∥y − µ̂(TK)

∥∥2
n

] ≤ E
[∥y − g∥2

n

] +
∥g∥2

L1
E[maxt∈[TK ] P −1

At
(κ)]

κK
.

For this result to be nonvacuous, the only additional assumption needed is that the largest
of the reciprocal probabilities, P −1

At
(κ), are integrable with respect to the data and (possibly

random) search spaces. A simple sufficient condition is that the splitting probabilities are
almost surely bounded away from zero, which we record in the following assumption for
future reference.

ASSUMPTION 1 (Nonzero splitting probabilities). The splitting probabilities are uni-
formly bounded away from zero. That is,

inf
n≥1

inf
t∈[Tmax]

PAt(κ) > 0 a.s.

Section 2.2 discusses optimization algorithms/approaches that would satisfy Assump-
tion 1, and, more generally, that would guarantee E[maxt∈[TK ] P −1

At
(κ)] < ∞.

2.5. Pruning. Without proper tuning of the depth K , the tree TK can very easily become
overly complicated, causing its output µ̂(TK)(x) to generalize poorly to unseen data. While
one could certainly select good choices of K via a holdout method, in practice, complexity
modulation is often achieved through pruning. We first introduce some additional concepts,
and then go on to describe such a procedure.

We say that T is a pruned subtree of T ′, written as T ≼ T ′, if T can be obtained from T ′

by iteratively merging any number of its internal nodes. A pruned subtree of Tmax is defined
as any binary subtree of Tmax having the same root node as Tmax. Recall that the number of
terminal nodes in a tree T is denoted |T |. As shown in Breiman et al. [11, Section 10.2], the
smallest minimizing subtree for the penalty coefficient λ = λn ≥ 0,

(8) Topt ∈ argmin
T ≼Tmax

{∥∥y − µ̂(T )
∥∥2
n + λ|T |},

exists and is unique (smallest in the sense that if Topt optimizes the penalized risk of (8), then
Topt ≼ T for every pruned subtree T of Tmax). For a fixed λ, the optimal subtree Topt can
be found efficiently by weakest link pruning, that is, by successively collapsing the internal
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node that decreases ∥y − µ̂(T )∥2
n the most, until we arrive at the single-node tree consisting

of the root node. This method enumerates a finite list of trees for which the objective function
can then be evaluated to find the optimal subtree. Good values of λ can be selected using
cross-validation on a holdout subset of data, for example. See Mingers [34] for a description
of various pruning algorithms.

We now present our main consistency and convergence rate results for both pruned and
un-pruned oblique trees.

2.6. Oracle inequality for oblique CART. Our main result establishes an adaptive predic-
tion risk bound (also known as an oracle inequality) for oblique CART under model misspec-
ification; that is, when the true model may not belong to F . Essentially, the result shows that
oblique CART performs almost as if it was finding the best approximation of the true model
with ridge expansions, while accounting for the goodness-of-fit and descriptive complexity
relative to sample size. To bound the integrated mean squared error (IMSE), the training error
bound from Lemma 2.2 is coupled with tools from empirical process theory [22] for studying
partition-based estimators. Our results rely on the following assumption regarding the data
generating process.

ASSUMPTION 2 (Exponential tails of the conditional response variable). The conditional
distribution of y given x has exponentially decaying tails. That is, there exist positive con-
stants c1, c2, γ and M , such that for all x ∈ X ,

P
(|y| > B + M | x

) ≤ c1 exp
(−c2B

γ )
, B ≥ 0.

In particular, note that γ = 1 for subexponential data, γ = 2 for sub-Gaussian data and
γ = ∞ for bounded data. Using the layer cake representation for expectations, that is,
|µ(x)| ≤ E[|y| | x] = ∫ ∞

0 P(|y| ≥ z | x)dz, Assumption 2 implies that the conditional mean is
uniformly bounded:

sup
x∈X

∣∣µ(x)
∣∣ ≤ M + c1

∫ ∞

0
exp

(−c2z
γ )

dz = M ′ < ∞.

THEOREM 2.3 (Oracle inequality for oblique trees). Let Assumption 2 hold. Then, for
any K ≥ 1,

(9)

E
[∥∥µ − µ̂(TK)

∥∥2]

≤ 2 inf
f ∈F

{
∥µ − f ∥2 +

∥f ∥2
L1

E[maxt∈[TK ] P −1
At

(κ)]
κK

+ C
2Kd log(np/d) log4/γ (n)

n

}
,

where C = C(c1, c2,γ ,M) is a positive constant. Furthermore, if the penalty coefficient sat-
isfies λn ≍ (d/n) log(np/d) log4/γ (n), then

E
[∥∥µ − µ̂(Topt)

∥∥2] ≤ 2 inf
K≥1,f ∈F

{
∥µ − f ∥2 +

∥f ∥2
L1

E[maxt∈[TK ] P −1
At

(κ)]
κK

+ C
2Kd log(np/d) log4/γ (n)

n

}
.(10)

Consistency of oblique trees follows from Theorem 2.3 under the additional assumption
that the splitting probabilities are bounded away from zero (Assumption 1) and that the depth
K grows appropriately with the sample size.
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COROLLARY 2.4 (Consistency for fixed dimension). Let Assumptions 1 and 2 hold. If
K ≍ logn, then

lim
n→∞E

[∥∥µ − µ̂(TK)
∥∥2] = 0,

and if the penalty coefficient satisfies λn ≍ (d/n) log(np/d) log4/γ (n), then

lim
n→∞ E

[∥∥µ − µ̂(Topt)
∥∥2] = 0.

While Corollary 2.4 shows that oblique trees are consistent for fixed dimension p, it does
not provide a rate of convergence. Under a few additional assumptions, however, Theorem 2.3
implies that the oblique tree is consistent with a logarithmic rate of convergence even when
the dimension grows with the sample size.

COROLLARY 2.5 (Consistency for possibly growing dimension). Let Assumptions 1
and 2 hold and suppose {µn} is a sequence of regression functions that belong to F
with supn ∥µn∥L1 < ∞. Assume furthermore that d = p = O(n1−ξ ) for some ξ ∈ (0,1).
If K ≍ logn, then

E
[∥∥µn − µ̂(TK)

∥∥2] = O
(
(logn)−1)

,

and if the penalty coefficient satisfies λn ≍ (d/n) log(np/d) log4/γ (n), then

E
[∥∥µn − µ̂(Topt)

∥∥2] = O
(
(logn)−1)

.

The results also hold trivially if d and p are fixed.

REMARK 2 (Connection to adaptive axis-aligned decision trees). By considering ele-
ments of G with ak = ek (the standard basis vectors in Rp) and M = p, we recover the
additive library

Fadd =
{

f (x) =
p∑

j=1

fj (xj ) : fj : R &→ R
}

.

Additive models have played an important role in the development of theory for CART. For
example, [42] show consistency of axis-aligned CART for fixed-dimensional additive mod-
els. More recent work has tried to illustrate the adaptive properties of axis-aligned CART on
sparse additive models with growing dimensionality [16, 27, 28, 43], some of which can be
recovered as a special case of our more general theory. To see this, note that global optimiza-
tion of the splitting criterion (1) is feasible with axis-aligned CART (d = 1), and hence κ = 1
and PAt(κ) = 1. Then, according to (10), since d = 1, the pruned tree estimator is consistent
for regression functions in the class Fadd even in the so-called NP-dimensionality regime,
where log(p) = O(n1−ξ ) for some ξ ∈ (0,1). This result was previously established in [28]
for axis-aligned CART.

These sort of high-dimensional consistency guarantees are not possible with nonadaptive
procedures that do not automatically adjust the amount of smoothing along a particular di-
mension according to how much the covariate affects the response variable. Such procedures
perform local estimation at a query point using data that are close in every single dimension,
making them prone to the curse of dimensionality even if the true model is sparse (typical
minimax rates [22] necessitate that p must grow at most logarithmically in the sample size
to ensure consistency). This is the case with conventional multivariate (Nadaraya–Watson or
local polynomial) kernel regression in which the bandwidth is the same for all directions, or
k-nearest neighbors with Euclidean distance.
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3. Fast convergence rates. When the model is well specified and the response values
are bounded (i.e., γ = ∞), as Corollary 2.5 illustrates, the oracle inequality in (9) yields
relatively slow rates of convergence. Because shallow oblique trees often compete empir-
ically with wide neural networks [6, 8, 9], a proper mathematical theory should reflect
such qualities. It is therefore natural to compare these rates with the significantly better
rn = √

(p/n) log(n) rates for similar function libraries, achieved by neural networks [2].
In both cases, the prediction risk converges to zero if p = o(n/ log(n)) (or equivalently, if
rn = o(1)), but the speed differs from logarithmic to polynomial. It is unclear whether the
logarithmic rate for oblique CART is optimal in general. We can, however, obtain compa-
rable rates to neural networks by granting two assumptions. Importantly, these assumptions
only need to hold on average (with respect to the joint distribution of the data and the search
sets) and not almost surely for all realizations of the trees. Because most papers that study
the convergence rates of neural network estimators proceed without regard for computational
complexity, to ensure a fair comparison, we will likewise assume here that d = p, κ = 1 and
PAt(κ) = 1 (i.e., direct optimization of (1)).

Our first additional assumption puts a global ℓq constraint on the local L1 total variations
of the regression function µ across all terminal nodes of TK . This is a type of regularity
condition on both the tree partition of X and the regression function µ. It ensures a degree
of compatibility between the nonadditive tree model and the additive form of the regression
function. In particular, if there existed an (oblique) tessellation of the input space such that the
target function is piecewise constant, then the following assumption would hold trivially (i.e.,
the approximation model is correctly specified). The assumption more generally disciplines
the degree of misspecification in globally approximating the unknown target conditional ex-
pectation function when employing adaptive oblique tree methods.

ASSUMPTION 3 (Aggregated ℓq variation). The regression function µ belongs to F and
there exist positive numbers V and q > 2 such that, for any K ≥ 1,

(11) E
[ ∑

t∈TK

∥µ∥q
L1(t)

]
≤ V q.

For fixed K and finite ∥µ∥L1 , there is always some choice of V and q for which (11) is
satisfied since

lim sup
q→∞

(
E

[ ∑

t∈TK

∥µ∥q
L1(t)

])1/q

≤ E
[
max
t∈TK

∥µ∥L1(t)

]
≤ ∥µ∥L1,

and hence, for example, E[∑t∈TK
∥µ∥q

L1(t)] ≤ (2∥µ∥L1)
q for q large enough, but finite. How-

ever, this alone is not enough to validate Assumption 3 because q may depend on the sample
size through its dependence on the depth K = Kn. Hence, it is important that (11) hold for
the same q uniformly over all depths.

It turns out that Assumption 3 can be verified to hold for V = ∥µ∥L1 and all q > 2 when
p = 1. To see this, recall that I (a, t) = [minx∈t aTx,maxx∈t aTx]. Because the collection of
terminal nodes {t : t ∈ TK} forms a partition of X , when p = 1, so does {I (a, t) : t ∈ TK} for
I (a,X ) = [minx∈X aTx,maxx∈X aTx]. Thus, the L1 total variation is additive over the nodes,
that is,

∑
t∈TK

∥µ∥L1(t) = ∥µ∥L1 , in which case
∑

t∈TK

∥µ∥q
L1(t) ≤ ∥µ∥q

L1
, q ≥ 1.

In general, for p > 1, a crude and not very useful bound is
∑

t∈TK
∥µ∥q

L1(t) ≤ 2K∥µ∥q
L1

;
however, the average size of

∑
t∈TK

∥µ∥q
L1(t) will often be smaller because it depends on the
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specific geometry of the tree partition of X , which captures heterogeneity in the regression
function µ. More specifically, the size will depend on how the intervals I (a, t) overlap across
t ∈ TK as well as how much µ varies within each terminal node. We do not expect q to
exceed the dimension p, provided that µ is smooth. This is because, by smoothness, ∥µ∥L1(t),
a proxy for the oscillation of µ in the node is also a proxy for the diameter of the node.
Then, because the nodes are disjoint convex polytopes, on average, we expect ∥µ∥p

L1(t) to
be a proxy for their volume (i.e., their p-dimensional Lebesgue measure), in which case
E[∑t∈TK

∥µ∥p
L1(t)] is a constant multiple of the volume of X .

Our final additional assumption puts a moment bound on the maximum number of obser-
vations that any one node can contain. Essentially, it says that the Lν norm of maxt∈TK n(t)
is bounded by a multiple of the average number of observations per node.

ASSUMPTION 4 (Node size moment bound). Let q > 2 be the positive number from
Assumption 3. There exist positive numbers A and ν ≥ 1 + 2/(q − 2) such that, for any
K ≥ 1,

(
E

[(
max
t∈TK

n(t)
)ν])1/ν ≤ An

2K
.

Our risk bounds below show that A = An is permitted to grow polylogarithmically with
the sample size, without affecting the rate of convergence. Because

E
[
max
t∈TK

n(t)
]
≤

(
E

[(
max
t∈TK

n(t)
)ν])1/ν

,

and there are at most 2K disjoint regions t in the partition of X induced by the tree at depth
K such that

∑
t∈TK

n(t) = n, Assumption 4 implies that, on average, no region contains dis-
proportionately more observations than the average number of observations per region, that
is, n/2K . Importantly, it still allows for situations where some regions contain very few ob-
servations, which does tend to happen in practice. For example, if n = 1000, K = 2 and T2
has four terminal nodes with n(t) ∈ {5,5,495,495}, then maxt∈TK n(t) ≤ An/2K holds with
A = 2.

Previous work [6, 8] has shown that feed-forward neural networks with Heaviside activa-
tions can be transformed into oblique decision trees with the same training error. While these
tree representations of neural networks require significant depth (the depth of the tree in their
construction is at least the width of the target network), they nonetheless demonstrate a proof-
of-concept that supports their extensive empirical investigations showing that the modeling
power of oblique decision trees is similar to neural networks, even if the trees have modest
depth (K ≤ 8). Our work not only complements these past studies, it also addresses some of
the scalability issues associated with global optimization by theoretically validating greedy
implementations.

LEMMA 3.1. Let d = p, κ = 1 and PAt(κ) = 1, and let Assumptions 3 and 4 hold, and
assume E[y2 log(1 + |y|)] < ∞. Then, for any K ≥ 1,

(12) E
[∥∥y − µ̂(TK)

∥∥2
n

] ≤ E
[∥y − µ∥2

n

] + AV 2

4(K−1)/q
.

THEOREM 3.2. Let d = p, κ = 1 and PAt(κ) = 1, and let Assumptions 2, 3 and 4 hold.
Then, for any K ≥ 1,

E
[∥∥µ − µ̂(TK)

∥∥2] ≤ 2AV 2

4(K−1)/q
+ C

2K+1p log4/γ+1(n)

n
,



CONVERGENCE RATES OF OBLIQUE REGRESSION TREES 479

where C = C(c1, c2,γ ,M) is a positive constant. Furthermore, if the penalty coefficient sat-
isfies λn ≍ (p/n) log4/γ+1(n), then

(13) E
[∥∥µ − µ̂(Topt)

∥∥2] ≤ 2(2 + q)

(
AV 2

q

)q/(2+q)(Cp log4/γ+1(n)

n

)2/(2+q)

.

As mentioned earlier, we see from (13) that A = An (as well as V = Vn) is allowed to
grow polylogarithmically without affecting the convergence rate. When the response values
are bounded (i.e., γ = ∞), the pruned tree estimator µ̂(Topt) achieves the rate r

2/(2+q)
n =

((p/n) log(n))2/(2+q), which when q ≈ 2, is nearly identical to the
√

rn rate in Barron [2] for
neural network estimators of regression functions µ ∈ F with ∥µ∥L1 < ∞. While we make
two additional assumptions (Assumptions 3 and 4) in order for oblique CART to achieve full
modeling power on par with neural networks, our theory suggests that decision trees might
be preferred in applications where interpretability is valued, without suffering a major loss in
predictive accuracy. We also see from these risk bounds that q plays the role of an effective
dimension, since it—and not the ambient dimension p—governs the convergence rates. As
we have argued above, if µ is smooth, then q should be at most p, and so the convergence
rate in (13) should always be at least as fast as the minimax optimal rate (1/n)2/(2+p) for
smooth functions in p dimensions.

4. Oblique random forests. A random forest is a randomized ensemble of trees. While
traditional random forests use axis-aligned trees, it is also possible to work with oblique trees.

The randomization mechanism in a random forest affects the way each tree is constructed,
and consists of two parts. The first part generates a subsample without replacement of size
N < n from the original training data, on which the tree is trained, and the second part gen-
erates a random collection of candidate splitting directions at each node, from which the
optimal one is chosen (see the discussion under the purely random heading in Section 2 for
generating At).

Let . denote the random variable whose law governs the aforementioned randomiza-
tion mechanism and let TK(.) be the associated maximal tree of depth K . Let $ =
(.1, . . . ,.B)T denote B independent copies of ., corresponding to B trees TK(.b), for
b = 1, . . . ,B . The output of the random forest at a point x is obtained by averaging the pre-
dictions of all B trees in the forest, namely

µ̂($)(x) = 1
B

B∑

b=1

µ̂
(
TK(.b)

)
(x).

By convexity of squared error loss, the expected risk can be bounded as follows:

E
[∥∥µ − µ̂($)

∥∥2] ≤ 1
B

B∑

b=1

E
[∥∥µ − µ̂

(
TK(.b)

)∥∥2] = E
[∥∥µ − µ̂

(
TK(.)

)∥∥2]
.

The above bound, although crude, tells us that we should expect the random forest to perform
no worse than a single (random) tree.

4.1. Oracle inequality for oblique forests. We can now establish an oracle inequality for
oblique forests similar to that of Theorem 2.3. Conditional on the randomness due to the
indices I ⊂ {1, . . . , n} of the original training data that belong to the subsampled training
data, µ̂(TK(.b)) is a depth K oblique tree (with randomized splits) trained on N samples
for each draw b = 1, . . . ,B . This means that E[∥µ − µ̂(TK(.b))∥2 | I] enjoys the exact
same bounds in Theorem 2.3 but with n replaced by the effective sample size |I| = N . We
formalize this notion in Theorem 4.1.
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THEOREM 4.1 (Oracle inequality for oblique forests). Suppose Assumptions 2 holds. Let
µ̂($) be the output of the oblique random forest constructed with oblique trees of depth K .
Then

E
[∥∥µ − µ̂($)

∥∥2]

≤ 2 inf
f ∈F

{
∥µ − f ∥2 +

∥f ∥2
L1

E[maxt∈[TK ] P −1
At

(κ)]
κK

+ C
2Kd log(Np/d) log4/γ (N)

N

}
,

where C is some positive constant and N is the subsample size.

While the efficacy of forests is not reflected in these risk bounds, they do show that forests
of oblique trees inherit the same desirable properties as single trees. It should be noted that
the expectation in the second term of the bound in Theorem 4.1 is over the subsampled
data (instead of over the entire data set as in Theorem 2.3). As such, for consistency results
similar to those in Corollaries 2.4 and 2.5, the splitting probabilities would need to be almost
surely bounded away from zero (Assumption 1) for any realization of the subsampled data.
Additionally, with the stronger assumptions analogous results to Theorem 3.2 can also be
derived for oblique forests. We omit details to conserve space.

5. Conclusion and future work. We explored how oblique decision trees—which out-
put constant averages over polytopal partitions of the feature space—can be used for pre-
dictive modeling with ridge expansions, sometimes achieving the same convergence rates as
neural networks. The theory presented here is encouraging as it implies that interpretable
models can exhibit provably good performance similar to their black-box counterparts such
as neural networks. The computational bottleneck still remains the main obstacle for practi-
cal implementation. Crucially, however, our risk bounds show that favorable performance can
occur even if the optimization is only done approximately. We conclude with a discussion of
some directions for potential future research.

5.1. Multilayer networks. We can go beyond approximating single-hidden layer neural
networks if instead the split boundaries of the oblique trees have the form aT%(x) = b, where
% is a multidimensional feature map, such as the output layer of a neural network. For ex-
ample, if %k(x) = φ(aT

k x − bk), where φ is some activation function, then this additional
flexibility allows us to approximate two-hidden layer networks, that is, functions of the form∑

k2
ck2φ(

∑
k1

ck1,k2φ(aT
k1,k2

x − bk1,k2)).

5.2. Classification. While we have focused on regression trees, oblique decision trees are
commonly applied to the problem of binary classification, that is, yi ∈ {−1,1}. In this case,
because Gini impurity [11, 23] is equivalent to the squared error criterion (1), our results also
directly apply to the classification setting provided the conditional class probability η(x) =
P(y = 1 | x) belongs to F and has finite ∥η∥L1 . A more natural assumption when modeling
probabilities, however, would be to have the log-odds f (x) = log(η(x)/(1−η(x))) belong to
F and have finite ∥f ∥L1 . In this case, we must use another widely used splitting criterion, the
information gain, namely the amount by which the binary entropy of the class probabilities
in the node can be reduced from splitting the parent node [23, 38]:

IG(b,a, t) = H(t) − n(tL)

n(t)
H(tL) − n(tR)

n(t)
H(tR),

where H(t) = η(t) log(1/η(t))+ (1 − η(t)) log(1/(1 − η(t))) and η(t) = 1
n(t)

∑
xi∈t 1(yi = 1).

Interestingly, maximizing the information gain in the node is equivalent to minimizing the
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node-wise logistic loss with respect to the family of log-odds models of the form θt(x) =
β11(aTx ≤ b) + β21(aTx > b); that is,

(b̂, â) ∈ argmax
(b,a)

IG(b,a, t) ⇐⇒ (β̂1, β̂2, b̂, â) ∈ argmin
(β1,β2,b,a)

∑

xi∈t
log

(
1 + exp

(−yiθt(xi )
))

.

One can use techniques from Klusowski and Tian [28], which exploits connections to se-
quential greedy algorithms for other convex optimization problems [48] (e.g., LogitBoost),
to establish a training error bound (with respect to logistic loss) akin to Lemma 2.2.

6. Proofs. Our discussion so far has focused on oblique trees that output a constant (sam-
ple average) at each node. Fortunately, most of our results hold in a much more general
setting. In particular, we can allow for the nodes to output ŷt ∈ argminh∈span(H)

∑
xi∈t(yi −

h(xi ))
2, where H is a finite-dimensional dictionary that contains the constant function. The

proofs here deal with the general case.
In what follows, we assume without loss of generality that the infimum in the definition of

∥f ∥L1 for f ∈ F is achieved at some element g ∈ G, since otherwise there exists g ∈ G with
∥f − g∥ arbitrarily small and ∥g∥L1 arbitrarily close to ∥f ∥L1 . We denote the supremum
norm of a function f : X &→ R by ∥f ∥∞ = supx∈X |f (x)|. Additionally, we slightly abuse
notation by taking y − ŷt to mean y − ŷt1, where 1 = (1, . . . ,1)T is the n × 1 vector of ones.

PROOF OF LEMMA 2.1. Set Ut = {u(x)1(x ∈ tL) + v(x)1(x ∈ tR) : u, v ∈ span(H)} and
consider the closed subspace Vt = {v(x)1(x ∈ t) : v ∈ span(H)}. By the orthogonal decom-
position property of Hilbert spaces, we can express Ut as the direct sum Vt ⊕ V⊥

t , where
V⊥

t = {u ∈ Ut : ⟨u, v⟩n = 0, for all v ∈ Vt}. Let 1t be any orthonormal basis for Vt that in-
cludes w−1/2(t)1(x ∈ t), where we remind the reader that w(t) = n(t)/n. Let 1⊥

t be any
orthonormal basis for V⊥

t that includes the decision stump (3). We will show that

(14) µ̂(T )(x) =
∑

t∈[T ]

∑

ψ∈1⊥
t

⟨y,ψ⟩nψ(x),

where {ψ ∈ 1⊥
t : t ∈ [T ]} is an orthonormal dictionary and, furthermore, that

(15)
∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2 = !̂(b̂, â, t).

These identities are the respective generalizations of (4) and (5). Because ŷt(x) is the
projection of y onto Vt, it follows that ŷt(x) = ∑

ψ∈1t⟨y,ψ⟩nψ(x). For similar reasons,
ŷtL(x)1(x ∈ tL) + ŷtR(x)1(x ∈ tR) = ∑

ψ∈1t∪1⊥
t
⟨y,ψ⟩nψ(x).

To prove the identity in (14) (and, as a special case, (4)), using the above expansions,
observe that for each internal node t,

(16)
∑

ψ∈1⊥
t

⟨y,ψ⟩nψ(x) = (
ŷtL(x) − ŷt(x)

)
1(x ∈ tL) + (

ŷtR(x) − ŷt(x)
)
1(x ∈ tR).

For each x ∈ X , let t0, t1, . . . , tK−1, tK = t be the unique path from the root node t0 to the
terminal node t that contains x. Next, sum (16) over all internal nodes and telescope the
successive internal node outputs to obtain

(17)
K−1∑

k=0

(
ŷtk+1(x) − ŷtk (x)

) = ŷtK (x) − ŷt0(x) = ŷt(x) − ŷ(x),

where ŷ ∈ argminh∈H
∑n

i=1(yi − h(xi ))
2. Combining (16) and (17), we have

∑

t∈T

ŷt(x)1(x ∈ t) = ŷ(x) +
∑

t∈[T ]\{t0}

∑

ψ∈1⊥
t

⟨y,ψ⟩nψ(x) =
∑

t∈[T ]

∑

ψ∈1⊥
t

⟨y,ψ⟩nψ(x),
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where we recall that the null node t0 is an internal node of T . Next, we show that {ψ ∈ 1⊥
t :

t ∈ [T ]} is orthonormal. The fact that each ψ has unit norm, ∥ψ∥2
n = 1, is true by definition.

If ψ,ψ ′ ∈ 1⊥
t , then by definition, ⟨ψ,ψ ′⟩n = 0. Let t and t′ be two distinct internal nodes

and suppose ψ ∈ 1⊥
t and ψ ′ ∈ 1⊥

t′ . If t ∩ t′ = ∅, then orthogonality between ψ and ψ ′ is
immediate, since ψ(x) · ψ ′(x) ≡ 0. If t ∩ t′ ≠ ∅, then due to the nested property of the nodes,
either t ⊆ t′ or t′ ⊆ t. Assume without loss of generality that t ⊆ t′. Then ψ ′, when restricted
to x ∈ t, belongs to Vt, which also implies that ψ and ψ ′ are orthogonal, since ψ ∈ V⊥

t .
Finally, the decrease in impurity identity (15) (and, as a special case, (5)) can be shown as

follows:

!̂(b̂, â, t) = 1
n

∑

xi∈t

(
yi − ŷt(xi )

)2 − 1
n

∑

xi∈t

(
yi − ŷtL(xi )1(xi ∈ tL) − ŷtR(xi )1(xi ∈ tR)

)2

=
(1

n

∑

xi∈t
y2
i −

∑

ψ∈1t

∣∣⟨y,ψ⟩n
∣∣2

)
−

(1
n

∑

xi∈t
y2
i −

∑

ψ∈1t∪1⊥
t

∣∣⟨y,ψ⟩n
∣∣2

)

=
∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2.

"

Throughout the remaining proofs, we will assume that there exists a positive constant

Q ≥ 1 such that supx∈X |µ̂(T )(x)| ≤ Q ·
√

max1≤i≤n
1
i

∑i
ℓ=1 y2

ℓ , almost surely. This assump-
tion is drawn from the bound

∣∣ŷt(x)
∣∣ ≤

√√√√ max
1≤i≤n

1
i

∑

1≤ℓ≤i

y2
ℓ

√√√√w(t)
∑

ψ∈1t

ψ2(x),

which is established by first using the basis expansion for ŷt provided in the proof of
Lemma 2.1 and the Cauchy–Schwarz inequality,

∣∣ŷt(x)
∣∣ =

∣∣∣∣
∑

ψ∈1t

⟨y,ψ⟩nψ(x)

∣∣∣∣ ≤
√ ∑

ψ∈1t

∣∣⟨y,ψ⟩n
∣∣2

√ ∑

ψ∈1t

ψ2(x),

and then, because {ψ : ψ ∈ 1t} is orthonormal, employing Bessel’s inequality to obtain∑
ψ∈1t |⟨y,ψ⟩n|2 ≤ n−1 ∑

xi∈t y
2
i ≤ w(t)max1≤i≤n

1
i

∑i
ℓ=1 y2

ℓ . Thus, Q could be taken to

equal (or be an almost sure bound on) supx∈X maxt∈[T ]
√

w(t)
∑

ψ∈1t ψ
2(x). In the conven-

tional case where the tree outputs a constant in each node, 1t = {w−1/2(t)1(x ∈ t)}, and hence
Q = 1. To ensure that µ̂(T )(x) is square-integrable, that is, E[supx∈X |µ̂(T )(x)|2] < ∞, we
merely need to check that E[max1≤i≤n

1
i

∑i
ℓ=1 y2

ℓ ] < ∞. This follows easily from Doob’s
maximal inequality for positive submartingales [19, Theorem 5.4.4], since E[y2 log(1 +
|y|)] < ∞ by assumption.

PROOF OF LEMMAS 2.2 AND 3.1. Define the excess training error as RK = ∥y −
µ̂(TK)∥2

n − ∥y − g∥2
n. Define the squared nodewise norm and nodewise inner product as

∥f∥2
t = 1

n(t)
∑

xi∈t(f (xi ))
2 and ⟨f,g⟩t = 1

n(t)
∑

xi∈t f (xi )g(xi ), respectively. We define the
nodewide excess training error as RK(t) = ∥y − ŷt∥2

t − ∥y − g∥2
t . We use this to rewrite

the total excess training error as a weighted combination of the nodewide excess train errors:
RK = ∑

t∈TK
w(t)RK(t), where w(t) = n(t)/n, and t ∈ TK means t is a terminal node of TK .

From the orthogonal decomposition of the tree, as given in (14), we have

(18)
∥∥y − µ̂(TK)

∥∥2
n = ∥∥y − µ̂(TK−1)

∥∥2
n −

∑

t∈TK−1

∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2.
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Subtracting ∥y − g∥2
n on both sides of (18), and using the definition of RK , we obtain

(19) RK = RK−1 −
∑

t∈TK−1

∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2.

Henceforth, we adopt the notation ETK [RK ] to mean that the expectation is taken with respect
to the joint distribution of {At : t ∈ [TK ]}, conditional on the data. We can assume E[RK ] > 0
for all K ≥ 1, since otherwise, by definition of RK , E[RK ] = E[∥y− µ̂(TK)∥2

n −∥y−g∥2
n] ≤

0, which directly gives the desired result. Using the law of iterated expectations and the
recursive relationship obtained in (19),

ETK [RK ] = ETK−1

[
ETK |TK−1[RK ]]

= ETK−1[RK−1] − ETK−1

[
ETK |TK−1

[ ∑

t∈TK−1

∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2

]]
.

(20)

By (15) and the suboptimality probability, PA(t)(κ), we can rewrite the term inside the iterated
expectation in (20) as

(21)

∑

t∈TK−1

∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2

=
∑

t∈TK−1

!̂(b̂, â, t) ≥
∑

t∈TK−1

1
(
!̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
!̂(b,a, t)

)
!̂(b̂, â, t)

≥ κ
∑

t∈TK−1

1
(
!̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
!̂(b,a, t)

)
max

(b,a)∈R1+p
!̂(b,a, t).

Taking expectations of both sides of (21) with respect to the conditional distribution of TK

given TK−1, we have

(22)

ETK |TK−1

[ ∑

t∈TK−1

∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2

]

≥ κ
∑

t∈TK−1

ETK |TK−1

[
1
(
!̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
!̂(b,a, t)

)
max

(b,a)∈R1+p
!̂(b,a, t)

]
.

By definition of PA(t),

(23)

∑

t∈TK−1

ETK |TK−1

[
1
(
!̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
!̂(b,a, t)

)
max

(b,a)∈R1+p
!̂(b,a, t)

]

=
∑

t∈TK−1

PAt(κ) max
(b,a)∈R1+p

!̂(b,a, t) ≥
∑

t∈TK−1:RK−1(t)>0

PAt(κ) max
(b,a)∈R1+p

!̂(b,a, t).

In turn, by Lemma 6.1,

(24)
∑

t∈TK−1:RK−1(t)>0

PAt(κ) max
(b,a)∈R1+p

!̂(b,a, t) ≥
∑

t∈TK−1:RK−1(t)>0

w(t)
R2

K−1(t)

P −1
At

(κ)∥g∥2
L1(t)

,

and by Lemma A.1 (see the Supplemental Material [14] for statement and proof),

(25)

∑

t∈TK−1:RK−1(t)>0

w(t)
R2

K−1(t)

P −1
At

(κ)∥g∥2
L1(t)

≥
(
∑

t∈TK−1:RK−1(t)>0 w(t)RK−1(t))2

∑
t∈TK−1:RK−1(t)>0 w(t)P −1

At
(κ)∥g∥2

L1(t)

≥ (R+
K−1)

2

∑
t∈TK−1

w(t)P −1
At

(κ)∥g∥2
L1(t)

,
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where R+
K−1 = ∑

t∈TK−1:RK−1(t)>0 w(t)RK−1(t) ≥ RK−1. Combining (22), (23), (24) and (25)
and plugging the result into (20), we obtain

ETK [RK ] ≤ ETK−1[RK−1] − κETK−1

[
(R+

K−1)
2

∑
t∈TK−1

w(t)P −1
At

(κ)∥g∥2
L1(t)

]
.

Using [14, Lemma A.1], again, we have

ETK−1

[
(R+

K−1)
2

∑
t∈TK−1

w(t)P −1
At

(κ)∥g∥2
L1(t)

]
≥ (ETK−1[R+

K−1])2

ETK−1[
∑

t∈TK−1
w(t)P −1

At
(κ)∥g∥2

L1(t)]
.

We have therefore derived the recursion

(26) ETK [RK ] ≤ ETK−1[RK−1] − κ
(ETK−1[R+

K−1])2

ETK−1[
∑

t∈TK−1
w(t)P −1

At
(κ)∥g∥2

L1(t)]
.

Next, let us take the expectation of both sides of (26) with respect to the data, apply [14,
Lemma A.1], and use the fact that R+

K−1 ≥ RK−1 and E[RK−1] > 0 to obtain

E[RK ] ≤ E[RK−1] − κE
[

(ETK−1[R+
K−1])2

ETK−1[
∑

t∈TK−1
w(t)P −1

At
(κ)∥g∥2

L1(t)]

]

≤ E[RK−1] − κ
(E[R+

K−1])2

E[∑t∈TK−1
w(t)P −1

At
(κ)∥g∥2

L1(t)]

≤ E[RK−1] − κ
(E[RK−1])2

E[∑t∈TK−1
w(t)P −1

At
(κ)∥g∥2

L1(t)]
.

We have therefore obtained a recursion for E[RK ], which we can now solve thanks to
Lemma 6.2. Setting ak = E[Rk] and bk = κ/E[∑t∈Tk−1

w(t)P −1
At

(κ)∥g∥2
L1(t)] in Lemma 6.2,

we have

(27) E[RK ] ≤ 1

κ
∑K

k=1 1/E[∑t∈Tk−1
w(t)P −1

At
(κ)∥g∥2

L1(t)]
.

The next part of the proof depends on the assumptions we make about w(t), PAt(κ) and
∥g∥2

L1(t) and how they enable us to upper bound

E
[ ∑

t∈TK−1

w(t)P −1
At

(κ)∥g∥2
L1(t)

]
.

For Lemma 2.2: In this case, we do not impose any assumptions on w(t). We can use the
fact that

∑
t∈TK−1

w(t) = 1 and ∥g∥2
L1(t) ≤ ∥g∥2

L1
for all t ∈ TK−1 to get

E
[ ∑

t∈TK−1

w(t)P −1
At

(κ)∥g∥2
L1(t)

]

≤ ∥g∥2
L1

E
[

max
t∈TK−1

P −1
At

(κ)
∑

t∈TK−1

w(t)
]

= ∥g∥2
L1

E
[

max
t∈TK−1

P −1
At

(κ)
]

≤ ∥g∥2
L1

E
[

max
t∈[TK ]

P −1
At

(κ)
]
.

Plugging this bound into (27), we obtain the desired inequality in (7) on the expected excess
training error, namely

E[RK ] ≤
∥g∥2

L1
E[maxt∈[TK ] P −1

At
(κ)]

κK
.
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For Lemma 3.1: If we grant Assumptions 3 and 4, and take g = µ ∈ G, we can arrive at a
stronger bound. Recall that we also assume that κ = 1 and PAt(κ) = 1. Since q > 2, by two
successive applications of Hölder’s inequality, we have

(28)
∑

t∈TK−1

w(t)∥µ∥2
L1(t) ≤

( ∑

t∈TK−1

(
w(t)

)q/(q−2)
)1−2/q( ∑

t∈TK−1

∥µ∥q
L1(t)

)2/q

,

and

(29)

E
[( ∑

t∈TK−1

(
w(t)

)q/(q−2)
)1−2/q( ∑

t∈TK−1

∥µ∥q
L1(t)

)2/q]

≤
(

E
[ ∑

t∈TK−1

(
w(t)

)q/(q−2)
])1−2/q(

E
[ ∑

t∈TK−1

∥µ∥q
L1(t)

])2/q

.

Combining the two inequalities (28) and (29), we obtain

E
[ ∑

t∈TK−1

w(t)∥µ∥2
L1(t)

]
≤

(
E

[ ∑

t∈TK−1

(
w(t)

)q/(q−2)
])1−2/q(

E
[ ∑

t∈TK−1

∥µ∥q
L1(t)

])2/q

.

Assumptions 3 and 4 provide further upper bounds, since
(

E
[ ∑

t∈TK−1

(
w(t)

)q/(q−2)
])1−2/q(

E
[ ∑

t∈TK−1

∥µ∥q
L1(t)

])2/q

≤
(
2K−1E

[(
max

t∈TK−1
w(t)

)q/(q−2)])1−2/q
(

E
[ ∑

t∈TK−1

∥µ∥q
L1(t)

])2/q

≤ 2(K−1)(1−2/q)
(
E

[(
max

t∈TK−1
w(t)

)ν])1/ν
(

E
[ ∑

t∈TK−1

∥µ∥q
L1(t)

])2/q

≤ AV 2

4(K−1)/q
.

Plugging this bound into (27), we obtain the desired inequality (12) on the expected excess
training error, namely E[RK ] ≤ AV 2

4(K−1)/q . "

PROOF OF THEOREMS 2.3 AND 3.2. See the Supplemental Material [14]. "

PROOF OF THEOREM 4.1. See the Supplemental Material [14]. "

PROOF OF COROLLARY 2.4. See the Supplemental Material [14]. "

PROOF OF COROLLARY 2.5. See the Supplemental Material [14]. "

6.1. Additional lemmas. First, we state and prove a lemma that establishes an important
connection between the decrease in impurity and the empirical nodewise excess risk.

LEMMA 6.1 (Impurity bound). Define RK−1(t) = ∥y − ŷt∥2
t − ∥y − g∥2

t . Let t be a ter-
minal node of TK−1, and assume RK−1(t) > 0. Then, if g ∈ G,

max
(b,a)∈R1+p

!̂(b,a, t) ≥ w(t)R2
K−1(t)

∥g∥2
L1(t)

.
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PROOF OF LEMMA 6.1. Assume that g ∈ G, g(x) = ∑M
k=1 gk(aT

k x) and that g(xi ) is not
constant across xi ∈ t, the result being trivial otherwise. We use g′

k to denote the divided
difference of gk of successive ordered datapoints in the ak direction in node t. That is, if the
data {(yi,xT

i ) : xi ∈ t} is reindexed so that aT
k x1 ≤ aT

k x2 ≤ · · · ≤ aT
k xn(t), then

(30) g′
k(b) = gk(aT

k xi+1) − gk(aT
k xi )

aT
k xi+1 − aT

k xi
for aT

k xi ≤ b < aT
k xi+1 and i = 1, . . . , n(t) − 1,

where g′
k(b) = 0 if b = aT

k xi = aT
k xi+1. Let

(31)
d)(b,ak)

d(b,ak)
= |g′

k(b)|√P(tL)P(tR)
∑M

k′=1
∫ |g′

k′(b′)|
√

P(t′L)P(t′R)db′

denote the Radon–Nikodym derivative (with respect to the Lebesgue measure and counting
measure) of a probability measure on (b,a) after splitting node t at the decision boundary
aT
k x = b. Here, tL = tL(b,ak) and tR = tR(b,ak) are the child nodes of t after splitting at

aT
k x = b, and P(tL) = n(tL)/n(t) and P(tR) = n(tR)/n(t) are the proportions of observations

in node t that is in tL and tR , respectively. Similarly, t′L = t′L(b′,ak′) and t′R = t′R(b′,ak′) are
the child nodes of t after splitting at aT

k′x = b′. Additionally, define

ψ̃t(x) = 1(x ∈ tL)P(tR) − 1(x ∈ tR)P(tL)√
P(tL)P(tR)

=
√

w(t)ψt(x).

Note that {ψ̃t : t ∈ [TK ]} is an orthonormal dictionary with respect to the nodewise inner
product, ⟨·, ·⟩t. Because a maximum is larger than an average, max(b,a)∈R1+p !̂(b,a, t) ≥∫

!̂(b,ak, t)d)(b,ak). Then, using the identity from (15) and the fact that the decision stump
ψt belongs to 1⊥

t (see (3)), we have

(32) max
(b,a)∈R1+p

!̂(b,a, t) ≥
∫ ∑

ψ∈1⊥
t

∣∣⟨y,ψ⟩n
∣∣2 d)(b,ak) ≥

∫ ∣∣⟨y,ψ t⟩n
∣∣2 d)(b,ak).

By the definition of ψ̃t and Jensen’s inequality,
∫ ∣∣⟨y,ψ t⟩n

∣∣2 d)(b,ak) = w(t)
∫ ∣∣⟨y, ψ̃ t⟩t

∣∣2 d)(b,ak)

≥ w(t)
(∫ ∣∣⟨y, ψ̃ t⟩t

∣∣ d)(b,ak)

)2
.

(33)

Our next task will be to lower bound the expectation
∫ |⟨y, ψ̃ t⟩t|d)(b,ak). First, note

the following identity: 1(x ∈ tL)P(tR) − 1(x ∈ tR)P(tL) = −(1(xTa > b) − P(tR))1(x ∈ t),
which means

√
P(tL)P(tR)⟨y, ψ̃ t⟩t = √

P(tL)P(tR)⟨y − ŷt, ψ̃ t⟩t = −⟨y − ŷt,1(xTa > b)⟩t.
Using this identity together with the empirical measure (defined in (31)), we see that the
expectation in (33) is lower bounded by

(34)

∫ ∣∣⟨y − ŷt, ψ̃ t⟩t
∣∣ d)(b,ak) =

∑M
k=1

∫ |g′
k(b)||⟨y − ŷt,1(aT

k x > b)⟩t|db
∑M

k′=1
∫ |g′

k′(b′)|
√

P(t′L)P(t′R)db′

≥ |⟨y − ŷt,
∑M

k=1
∫

g′
k(b)1(aT

k x > b)db⟩t|
∑M

k′=1
∫ |g′

k′(b′)|
√

P(t′L)P(t′R)db′
.

Then, by the definition of g′
k , we have

∑M
k=1

∫
g′

k(b)1(aT
k xi > b)db = g(xi ) − g(x1) for each

i = 1,2, . . . , n(t), and hence

(35)

〈

y − ŷt,
M∑

k=1

∫
g′

k(b)1
(
aT
k x > b

)
db

〉

t

= ⟨y − ŷt,g⟩t.
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In light of (32), (33), (34) and (35), we obtain

(36) max
(b,a)∈R1+p

!̂(b,a, t) ≥ w(t)|⟨y − ŷt,g⟩t|2

(
∑M

k′=1
∫ |g′

k′(b′)|
√

P(t′L)P(t′R)db′)2
.

Next, we derive upper and lower bounds on the denominator and numerator of (36), respec-
tively. First, we look at the denominator. Note that for each k′, the integral can be decomposed
as follows:

(37)
∫ ∣∣g′

k′
(
b′)∣∣

√
P

(
t′L

)
P

(
t′R

)
db′ =

n(t)−1∑

i=1

∫

{b′:n(t′L)=i}

∣∣g′
k′

(
b′)∣∣

√(
i/n(t)

)(
1 − i/n(t)

)
db′.

Then, using the fact that
√

(i/n(t))(1 − i/n(t)) ≤ 1/2 for 1 ≤ i ≤ n(t), and that the end points
of each integral in the sum of (37) can be explicitly identified from the definition of g′

k′ in (30),

∫ ∣∣g′
k′

(
b′)∣∣

√
P

(
t′L

)
P

(
t′R

)
db′ ≤ 1

2

n(t)−1∑

i=1

∫

{b′:n(t′L)=i}

∣∣g′
k′

(
b′)∣∣ db′

= 1
2

n(t)−1∑

i=1

∫ aT
k′xi+1

aT
k′xi

∣∣g′
k′

(
b′)∣∣ db′.

(38)

By the definition of g′
k′ as a divided difference (30) and the definition of total variation, for

each k′,

(39)
n(t)−1∑

i=1

∫ aT
k′xi+1

aT
k′xi

∣∣g′
k′

(
b′)∣∣ db′ =

n(t)−1∑

i=1

∣∣gk′
(
aT
k′xi+1

) − gk′
(
aT
k′xi

)∣∣ ≤ V (gk′,ak′, t).

Combining (38) and (39) and plugging the result into the summation in the denominator
of (36), we get

M∑

k′=1

∫ ∣∣g′
k′

(
b′)∣∣

√
P

(
t′L

)
P

(
t′R

)
db′ ≤ 1

2

M∑

k′=1

V (gk′,ak′, t) = 1
2
∥g∥L1(t).

Next, we lower bound the numerator in (36). Using the Cauchy–Schwarz inequality and
the fact that ⟨y − ŷt,y⟩t = ∥y − ŷt∥2

t , we obtain

(40) ⟨y − ŷt,g⟩t = ⟨y − ŷt,y⟩t − ⟨y − ŷt,y − g⟩t ≥ ∥y − ŷt∥2
t − ∥y − ŷt∥t∥y − g∥t.

By the AM-GM inequality, we know that ∥y − ŷt∥t∥y − g∥t ≤ 1
2(∥y − ŷt∥2

t + ∥y − g∥2
t ).

Plugging this into (40), we get ⟨y − ŷt,g⟩t ≥ 1
2(∥y − ŷt∥2

t − ∥y − g∥2
t ). Now, squaring both

sides and using the assumption that RK−1(t) > 0, we have

∣∣⟨y − ŷt,g⟩t
∣∣2 ≥ 1

4
(∥y − ŷt∥2

t − ∥y − g∥2
t
)2 = 1

4
R2

K−1(t).

Now we can put the bounds on the numerator and denominator together to get the desired
result:

max
(b,a)∈R1+p

!̂(b,a, t) ≥ w(t)R2
K−1(t)

∥g∥2
L1(t)

.
"

Next, we provide a solution to a simple recursive inequality.
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LEMMA 6.2. Let {ak} be a decreasing sequence of numbers and {bk} be a positive se-
quence numbers satisfying the following recursive expression:

ak ≤ ak−1(1 − bkak−1), k = 1,2, . . . ,K.

Then

aK ≤ 1
∑K

k=1 bk

, K = 1,2, . . .

PROOF OF LEMMA 6.2. We may assume without loss of generality that aK−1 > 0; oth-
erwise the result holds trivially since aK ≤ aK−1 ≤ 0 ≤ 1∑K

k=1 bk
. For K = 1,

a1 ≤ a0(1 − b1a0) ≤ 1
4b1

<
1
b1

.

For K > 1, assume aK−1 ≤ 1∑K−1
k=1 bk

. Then, either aK−1 ≤ 1∑K
k=1 bk

, in which case we are

done since aK ≤ aK−1, or, aK−1 ≥ 1∑K
k=1 bk

, in which case

aK ≤ aK−1(1 − bKaK−1) ≤ 1
∑K−1

k=1 bk

(
1 − bK

∑K
k=1 bk

)
= 1

∑K
k=1 bk

. "
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