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The increasing prevalence of smart devices spurs the development of emerging indoor localization technolo-

gies for supporting diverse personalized applications at home. Given marked drawbacks of popular chirp

signal-based approaches, we aim at developing a novel device-free localization system via the continuous

wave of the inaudible frequency. To achieve this goal, solutions are developed for fine-grained analyses, able

to precisely locate moving human traces in the room-scale environment. In particular, a smart speaker is

controlled to emit continuous waves at inaudible 20kHz, with a co-located microphone array to record their

Doppler reflections for localization. We first develop solutions to remove potential noises and then propose

a novel idea by slicing signals into a set of narrowband signals, each of which is likely to include at most

one body segment’s reflection. Different from previous studies, which take original signals themselves as the

baseband, our solutions employ the Doppler frequency of a narrowband signal to estimate the velocity first

and apply it to get the accurate baseband frequency, which permits a precise phase measurement after I-Q

(i.e., in-phase and quadrature) decomposition. A signal model is then developed, able to formulate the phase

with body segment’s velocity, range, and angle. We next develop novel solutions to estimate the motion state

in each narrowband signal, cluster the motion states for different body segments corresponding to the same

person, and locate the moving traces while mitigating multi-path effects. Our system is implemented with

commodity devices in room environments for performance evaluation. The experimental results exhibit that

our system can conduct effective localization for up to three persons in a room, with the average errors of

7.49cm for a single person, with 24.06cm for two persons, with 51.15cm for three persons.
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1 INTRODUCTION

The indoor localization has spurred extensive personalized applications. The prior report has re-
vealed that a person may spend almost 88.9% of the day indoors [20]. Recently, [8] has predicted
that themarket value of indoor positioning and indoor navigation is expected to exceed 23.6 billion
dollars in 2023, suggesting the tremendous demand for reliable indoor localization technologies.
Among the emerging technologies, the device-free indoor localization without requiring a user to
carry any device for sensing, is most appealing in many scenarios, prompting diverse applications
such as smart homes, healthcare services, fitness tracking, and so on. The acoustic-based device-
free sensing approach is promising and affordable, given the increasing prevalence of in-house
smart devices. Its low frequency range sensing is readily achieved by the commercial off-the-

shelf (COTS) devices. Various human-computer interaction services based on the acoustic signal
have been exploited, such as activity recognition [14, 15, 37], lip-reading [27, 45, 46], respiration
and heartbeat detection [35, 44], localization [12, 13, 19], and so on. However, it remains challeng-
ing to develop a reliable system for room-scale location trace in real home environments.
Although previous studies in device-free acoustic sensing have achieved the millimeter level

accuracy [22, 36] and extended the sensing range to 4.5m [19], they mainly strive to explore in-
audible chirp signals, which typically entice two fundamental issues. First, chirp signals require to
have short durations and large bandwidth for achieving satisfactory performance. However, when
the COTS devices are controlled to generate a short chirp signal of wide bandwidth under the
inaudible frequency, the electronic burst can occasionally cause an audible “Beep” sound on the
speaker, considered to be rather annoying to humans. In addition, due to the limited space of an in-
door environment, the chirp signal will be reflected multiple times before it completely attenuates,
resulting in multiple echoes. As these echoes are amenable to environmental changes, any human
motion may alter the echoes significantly. Therefore, the echoes of chirps can be different, difficult
to be eliminated completely, thus degrading the signal quality and incurring the range estimation
error. In sharp contrast to chirp signals, the continuous waves emitted by COTS devices do not
generate the perceptible sounds to the human as they operate in the inaudible frequency. In addi-
tion, the frequencies of reflections from stationary objects in an environment are relatively stable,
causing little interference to target signals reflected from a moving person, making it possible to
eliminate those static reflection frequencies.
In this article, we explore the continuous wave as the sensing signal and leverage the phase

change of Doppler signals for tracking the motions of moving targets. Although device-free track-
ing based on the phase measurement has been pursued previously [25, 36, 42], the sensing ranges
achieved therein are considerably short (only up to 1 meter), unsuitable for location trace track-
ing in a room. This is due to the fact that they ignored the Doppler effect of signal and directly
extracted the phase from the reflected signals by referring to the original signal as the baseline.
Albeit simple, such a method can be effective just for a short distance. However, in a room-scale
environment, the original signal will be transmitted over multiple paths to the microphone. The
multiple path signals can be viewed as several time-delay versions of the original signal, and af-
ter those signals are aggregated, the original signal experiences phase distortion. Thus applying
the original signal as the baseline tends to yield wrong phase estimation in a room-scale environ-
ment. Instead, we examine the phase change of reflected Doppler signals, permitting to acquire
the proper baseline signal from the body reflection signals. Since this way makes it possible to
obtain very accurate phase estimation over a relatively large range, the sensing range can thus be
significantly extended for applications to room-scale environments.
To this end, we strive to develop a novel device-free indoor localization system by relying on con-

tinuous waves emitted from the speaker’s built-in smart devices and performing the fine-grained
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phase and frequency analyses of Doppler signals received at the built-in microphone array to im-
plement precise indoor location trace tracking. Specifically, we control a speaker to generate the
continuous wave ultrasound at 20kHz and leverage a co-located microphone array to record re-
flected signals for analysis. We first perform the Short-time Fourier transform (STFT) to get
the spectrogram of reflected Doppler signals and then apply a set of interference cancellation tech-
niques to remove the interference/noise caused by both surrounding objects and system defects.
Considering different body segments of a moving personmay generate Doppler signals at different
frequencies, we propose a new solution by slicing signals into a set of narrowband signals, with
each narrowband likely to include the reflections from only one body segment. We next perform
the fine-grained analysis on each narrowband signal by a series of developed solutions. First, we
estimate the velocity via analyzing the original signal from the speaker and the received signal at
the microphone array, followed by utilizing such a velocity to estimate the baseband frequency of
the narrowband signal. The I-Q (i.e., in-phase and quadrature) decomposition is then applied to
accurately measure its phase. After that, a signal model is proposed to formulate the phase corre-
lated to the range, angle, and velocity. The range and angle of each narrowband signal are then
estimated by solving an optimization problem, aiming at getting each body segment’s motion state.
Next, a solution based on K-mean clustering is applied to cluster the motion states associated with
a given person. Finally, we apply the L1-norm (i.e., the sum of the magnitudes of the vectors) to
refine our estimation and remove the interference from multi-path effects, able to get the number
of moving persons and their associated location traces accurately.
Our contributions are summarized as follows:

—We develop a new device-free localization system, which leverages the continuous wave
emitted from the smart speaker as the sensing signal for precise localization. As far as we
know, this study is the very first to demonstrate the possibility of tracking multiple indi-
viduals using continuous waves. To achieve our goal, we develop solutions to perform the
fine-grained analysis of Doppler signals by extracting their frequency and phase details for
localization. Unlike the chirp-based localization counterparts, our system only relies on con-
tinuous waves at 20kHz, which utilize a small bandwidth and are both imperceptible to
humans and robust to environmental factors.

— Novel solutions to enable the phasemeasurement of Doppler signals are developed by slicing
the Doppler signals into narrowband signals to have each narrowband contain the reflection
of a single body segment for the fine-grained analysis of human body patterns. So, the nar-
rowband signals can be viewed as single tone signals, enabling to estimate the phase of each
narrowband signal determined by estimating its baseband signal. We are the first to extract
the phase of a Doppler signal by dividing it into narrowband signals, which can facilitate the
fine-grained analysis for multiple-person location tracing. A new signal model is then pro-
posed for each narrowband signal to fuse the target velocity, range, and angle, enabling the
estimation of the motion states of different body segments. Motion state clustering and loca-
tion trace solutions are also proposed to precisely group together reflections from different
body segments of the same person and to further eliminate the multi-path effect.

—We implement our system with COTS devices and conduct extensive experiments for per-
formance evaluation. The experimental results exhibit that our system: (1) can achieve the
precise location tracking for a single person, with an average error of 7.49cm; (2) can support
the multi-target tracking, having the average errors of 24.06cm and of 51.15cm, respectively,
for two and three persons; (3) is robust to various environmental factors; (4) can be extended
for locating a stationary person with a swing arm.
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2 RELATEDWORK

Acoustic signal applications have gained increasing interest in the research community. Among
them, acoustic-based tracking has become prevalent in recent years, by taking advantage of widely
available speakers and microphones built in commodity devices. This section discusses the current
state-of-the-arts in acoustic localization and differentiates them from our work.

2.1 Acoustic-Based Tracking

Some research efforts [3, 7, 17, 29, 34, 41, 41, 43] entail to develop the device-based tracking by
requiring a user to carry the device for localization. This line of solutions indirectly tracks human
motions by sensing the movement of carried devices. But, they are inconvenient and impractical
in many scenarios, since a person may forget or be reluctant to carry the device. In contrast, our
system belongs to device-free tracking, freeing a user from carrying any device to make it more
attractive.
Previous device-free tracking mainly relies on controlling the speaker to transmit chirp signals

(i.e., OFDM, FMCW, Zadoff-Chu (ZC) sequence) and analyzing reflected signals for tracking. For
example, [22, 23] have exploited the correlation of OFDM signals for measuring the time-of-flight

(ToF) for finger and activity tracking. [12, 13, 49] leveraged the FMCW signal and developed a
series of signal processing techniques for motion tracking in the room-scale environment and
indoor floor plan mapping. [21] leveraged the ZC sequence to infer user’s hand patterns when
tapping the PIN code. In contrast, our system achieves target localization in approximately 0.63
seconds. Also, they are using FMCW signals, and the chirp signal-based solutions typically require
large bandwidth for accurate tracking (i.e., 16khz to 20khz). Although they work on the inaudible
ultrasound range, some people may still perceive such wideband ultrasound disturbingly, as a
result of frequency changes. Another potential drawback is that the audible “Beep” sound may be
produced, annoying human life. Differently, our system relies on emitting the continuous wave
for sensing, which can substantially avoid such drawbacks.
Some earlier methods [18, 19] have demonstrated the viability of neural networks in aiding lo-

calization. For example, [19] utilized both the 2DMUSIC algorithm and beamforming to extend the
sensing range, coupled with a recurrent neural network (RNN) to determine target locations.
[18] directly inputted data into a deep neural network (DNN) for finger tracking. One notewor-
thy distinction in our approach is its ability to operate directly without collecting additional data
and labeling processes while achieving room-scale tracking. In addition, our approach takes into
account practical considerations, such as the limited hardware and computational constraints of
commercial off-the-shelf (COTS) devices, which might raise challenges for the applicability of
existing methods. Although taking longer than earlier methods (i.e., 0.63 sec versus some 0.05 sec
in [18, 19]) for localization, our approach nonetheless is still considered to exhibit near real-time
localization.
Our research is closely related to [36], where demonstrated the feasibility of tracking the hand

movement for the first time by utilizing the phase information of continuous waves. That work an-
alyzed the signal phase by acquiring the difference between the baseband signal and the reflected
signal via I-Q decomposition [36]. However, it considered the frequency of baseband signals to be
the same as that of original signals, potentially resulting in excessive interference between them.
Since the acoustic signal experiences fast attenuation with the distance, the reflection signals over
a long range become rather weak and thus are hard to be separated from the strong baseband
signal, rendering it suitable only for limited-range sensing. In contrast, our work leverages the
phase of Doppler signals for analysis, which has a large difference from that of the baseband
signal to yield clean phase information after I-Q decomposition. The tracking range can then be
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substantially extended, applicable to room-scale environments. Note that the phase of chirp
signals was analyzed in certain prior studies for motion tracking. For example, [42] relied on the
phase change of OFDM signals to track fine-grained chest movements for respiration detection.
[47] leveraged the phase of FMCW signals to infer the finger position, whereas [25] tracked the
finger movements by combining the ZC sequence phase and amplitude information. However,
it’s worth noting that these systems are primarily designed for finger tracking and may not be
suitable for room-scale localization. Meanwhile, they underperform our approach, which directly
measures the phase of continuous waves over a set of narrowband signals that incur low noise
for sound phase estimation.

2.2 RF-Based Localization

Next, we briefly review RF-based solutions for sensing and tracking target movement, contrasting
them with our approach in the acoustic domain. RF-based solutions can be summarized into three
categories: Radar-based sensing, RFID-based sensing, and Wi-Fi based sensing.
Many efforts on radar-based sensing [1, 6, 10, 11, 38, 38, 48, 50, 50] have been conducted for

single/multi-target tracking. They all call for large bandwidth and the antenna array(s) to acquire
signals, requiring specialized hardware to transmit and receive signals to incur considerable extra
costs. RFID-based solutions [9, 16, 24, 30–32] for human motion tracking were also considered, by
leveraging the RFID tags and readers for localization. However, they typically require users to wear
the RFID tags for localization, deemed inconvenient and cumbersome. Although some device-free
tracking solutions [5, 40] have been proposed, they experience limited sensing ranges, usually
in tens of centimeters to make them unsuitable for the room-scale environment. Location trace
tracking techniques based on the Wi-Fi signals have been widely studied [1, 2, 4, 10, 26, 33, 39].
However, they utilize large bandwidth to achieve satisfactory localization accuracy, occupying the
communication channels at 2.4 GHz or 5 GHz and thus negatively impacting the operations of
nearby Wi-Fi-based devices to a certain extent. In addition, most of them involve multiple trans-
mission links, often calling for large antenna arrays and customized hardware for processing to
hinder their adoption for commodity device-based applications.

3 PROBLEM STATEMENT

This article aims at developing a new device-free localization system via inaudible acoustic sens-
ing by harnessing pervasively available commercial off-the-shelf (COTS) smart home devices.
The speaker of a smart device is controlled to emit the inaudible acoustic signals at 20kHz, while
the built-in microphone array receives the reflected signals from the moving target for analyses in
order to track its moving trace. Although the chirp signal-based solutions have been extensively
pursued for localization, they have inherent drawbacks. First, the COTS devices are originally man-
ufactured for sending the continuous waves, but when controlled to generate the chirp signals in
the inaudible frequency band (i.e., 18kHz to 23kHz), the electric burst at the speaker may bump
noise audible to a human. Such noise sounds like “Beep”, which can annoy people’s life. Second, the
chirp signals require large bandwidth for accurate tracking [17], but their associated ultrasonic sig-
nal is more likely to be heard by some sensitive people. Third, due to the frequency fluctuation of
chirp signals, their reflection echoes from the environment will overlap with those from the mov-
ing target, making them hard to be differentiated and thus incurring potential location estimation
errors.

3.1 Our Goal and Challenges

To overcome the limitations of chirp-based localization, we control the speaker to emit the contin-
uous waves of inaudible acoustic signals while measuring the phase changes of Doppler shifts for
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tracking the walking trace of a human in room-scale environments. Our approach is expected to
have three salient features when compared with chirp-based methods. First, the continuous waves
are generated by following the original design of COTS devices, so their controlled transmissions in
the inaudible frequency will not generate audible noise. Second, the static environment reflection
will have a relatively stable frequency, which can be easily differentiated from shifted frequencies
caused by a moving target. Third, the distance resolution is superior, given that the phase measure-
ment can track the subtle distance variation via a small phase shift. Besides, analyzing the phase
shift of Doppler signals can eliminate any potential error caused by the Doppler effect. Nonethe-
less, a set of technical challenges surfaces in designing such a system for deployment in home
environments, outlined as follows:

— The previous solutions for finger, hand, or chest tracking by measuring the phase change
of continuous waves, are inapplicable here since they consider the original signal as a base-
band signal. However, the human moving often has a speed high enough to cause the clear
Doppler effect of original signal. For example, a continuous acoustic wave with a frequency
of fc = 20kHz reflected by a walking person with a speed ofv = 0.5m/s incurs 29Hz Doppler
shift on the baseband signal. Such a frequency shift will cause a considerable error in phase
estimation, if the original signal is considered as a baseband signal. Hence, it is necessary
to design new methods toward identifying the shifted baseband signals for accurate phase
estimation.

— Different body segments will generate various Doppler shifts, with their phases mixed at the
receiver side. It is challenging to isolate them and identify the respective baseband signal of
each body segment, while grouping those shift phases associated with the same person in a
room where multiple persons exist.

— The multipath reflections will cause strong interference with target signals of interest in
room environments and they fluctuate with the movement of a target. It is challenging to
mitigate multi-path effects, calling for new solutions for differentiating the target reflections.

This article aims at overcoming the aforementioned challenges and develop the first continuous
wave-based localization system based on the phase measurement, to be deployable for use in home
environments. We briefly outline how we overcome the challenges mentioned above.

— To address the first challenge, our proposed system will take into account the Doppler shift
as the baseband frequency. We achieve this by calculating the velocity of the body for de-
termining the associated Doppler shift, and then combining it with the original frequency
emitted by the speaker to serve as the baseband frequency.

— To tackle the second challenge, we’ll segment the baseband signal into a series of narrow-
band signals, based on the fact that each narrowband is likely to contain reflections from
at most one body segment. Subsequently, we compute the motion states, encompassing ve-
locity, range, and angle of arrival, for the body segments within these narrowband signals.
Ultimately, a clustering algorithm is employed to group together reflection signals originat-
ing from the same individual.

— The third challenge will be addressed by spectral subtraction, where we record the back-
ground reflection of the environmental objects and then subtract it from the recorded signals
to get a clean signal of the human reflection.

Our solution is expected to work not only for the single person tracking, but also applicable
for tracking multiple persons. Before presenting our design details in the next section, we briefly
provide some preliminary knowledge relevant to our design next.
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3.2 Preliminary Knowledge

Parameters of Human Motion. To track the moving trace of a human, the following parame-
ters are needed: (1) Range, indicating the absolute distance between the target and the device; (2)
Velocity, representing the moving speed of a target (with a target signifying one body segment);
(3) Angle-of-Arrival (AoA), denoting the angle of a target corresponding to the device.
Doppler Effect. In our system, the movement of a target will generate the frequency shift of the
original signal, which can be captured for sensing its motion status. The frequency of Doppler
signal is determined by the signal frequency and velocity of the signal transmitter and receiver.
If the signal transmitter is stationary and the receiver is moving at a velocity ofv , the frequency

of its Doppler shift can be represented as

f1 =
c +v

c
f0, (1)

where c is the sound propagation speed in the air. If the signal receiver is stationary and the
transmitter is moving at a velocity of v , the frequency of its Doppler shift can be represented as

f2 =
c

c −v
f0. (2)

Hence, the motion state of the signal transmitter or receiver significantly impacts the Doppler
frequency. In our problem, a moving person can be seen as a moving signal receiver, if the signal
reaches the body from the speaker, or as a virtual moving signal transmitter, if the signal is reflected
from the body to the microphone array. As such, the Doppler frequency of a moving target can be
expressed by

fv =
c +v

c

c

c −v
f0 =

c +v

c −v
f0. (3)

4 SYSTEM DESIGN

In this section, we elaborate our design of the continuous-wave based localization system. Fig-
ure 1 presents the workflow of our system, consisting of four component modules: Sensing, Signal
Processing, Signal Modeling, and Target Localization. The Sensing module involves a speaker to
generate the continuous wave at 20 kHz and a microphone array to receive the reflected signals.
In the Signal Processing module, we first perform the STFT on received signals to generate their
spectrogram. Then, we develop a solution to eliminate the interference signals that (1) come from
the direct transmission and (2) are reflected from surrounding objects. What remains is a clean
spectrogram, which is next divided into a set of narrowband signals, aiming at segregating signal
components that are reflected from different human body segments. The Signal Modeling employs
a series of our developed solutions for estimating the baseband signal in each narrowband signal,
calculating the velocity according to its frequency, and analyzing the phase change of each nar-
rowband signal for obtaining the signal phase with the aid of range, AoA, and velocity. Finally,
the Target Localization module relies on our developed estimator for estimating the location pa-
rameters of body segments. It applies K-means clustering and L1-norm to fuse the estimation of a
moving person, with the multipath effect mitigated to get the moving trace of a target. The details
of each design component are provided next.

4.1 Sensing

The speaker is controlled to keep sending the 20kHz continuous waves. We select 20kHz because
it is imperceptible by most people and is also large enough to produce a significant Doppler ef-
fect. The signal will be transmitted at the low power for saving energy while the microphone
array keeps sensing the sound pressure between 19kHz and 21kHz. Once it senses the power
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Fig. 1. The workflow of our continuous waves-based localization system via inaudible acoustic sensing.

level exceeding a certain threshold due to Doppler signals caused by a moving target, our system
is triggered to transmit the high powered continuous wave at frequency f0 = 20kHz with re-
ceived signals processed for localization. The transmitted continuous wave can be represented as
follows:

F (t) = A cos (2π f0t) . (4)

Themicrophone array receives the Doppler shift signals, which are reflected from different body
segments of a moving person, at a sampling frequency of 44.1kHz. Such a sampling frequency en-
sures the reflected signals are entirely reconstructed from the signals recorded by the microphone
array, according to the Nyquist Sampling Theorem.

4.2 Signal Processing

The recorded signals via the microphone array are inputted to the Signal Processing module for
eliminating the interference and then split into a set of narrowband signals.

4.2.1 Short Time Fourier Transform Processing. We apply the short-time Fourier transform

(STFT) to generate the spectrogram of signals. In particular, the signals are sliced by a set of
small time windows with a length of 0.3s. Two consecutive time windows are overlapped with
95%, meaning an 1s signal will be sliced into 66 bins. Each small bin is multiplied by a Hamming
window, and then a 21000-point Fast Fourier transform (FFT) is applied to each bin. We divide
the frequency into 21000 sub-bands, having a frequency resolution of 1Hz.

4.2.2 Interference Cancellation. Amoving person can be considered as a cluster of moving body
segments (e.g., head, torso, arms, and legs), generating a collection of disparate reflection signals to
be received by the microphone array. Besides, the direct transmission signals from the speaker and
reflections from stationary objects are also received by themicrophone array. Hence, the composite
signals received by the microphone array can be modeled by

R(t) = A cos (2π f0t)+
∑

Sr +
∑

An cos(2π f0(t − τn )) + N (t), (5)

where A cos (2π f0t) is the signal directly transmitted from the speaker to the microphone array.
∑

Sr represents the combined signal reflected from different moving body segments. Since the
move of each body segment causes a Doppler effect, the frequency of each Sr differs among one
another and also differs from f0. The termAn cos (2π fc (t − τn)) represents the signal reflected from
surrounding objects. Since these objects are stationary, their reflections have the same frequency
as the transmitting signal f0. N (t) indicates the noise caused by system defects. In this step, we aim
at eliminating three categories of signals: (1) the direct transmission signals, (2) signals reflected
from surrounding stationary objects, and (3) the noise.
Given the first two categories of signals have the frequency of f0 = 20kHz, we can directly set the

spectrogram power at 20kHz to 0 for elimination. However, in practice, the smart home speaker
is not designed to generate the high-frequency ultrasound, so the frequency actually fluctuates
slightly over time. We cannot completely remove them by setting the spectrogram power at 20kHz
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to 0. Our empirical studies exhibit that such signal fluctuation typically ranges from 19.99kHz to
20.01kHz. Hence, we set the spectrogram power in this range to be 0 instead, for fully removing
direct transmission signals and reflections from surrounding objects.
On the other hand, the noise in the ultrasound domain is caused by system defects, seen as the

points spreading over the spectrogram. Such noise does not vary with time, allowing us to subtract
it by spectral subtraction directly. In particular, we let themicrophone periodically record the noise
in the static environment and then subtract the latest recorded noise from the current signal.

4.2.3 Signal Slicing. After the above process, we get a relatively clean spectrogram for
∑

Sr (t),
which can be considered as the pure Doppler signal, expressed as

∑

Sr (t) =
∑

αm cos (2π fm(t − τm)) , (6)

where fm represents each baseband signal frequency and τm indicates its ToF. Notably, the multi-
path reflection is also included therein, and its effect elimination will be described in Section 4.4.3.
Each body segment can be viewed as a virtual signal transmitter. Hence, the baseband signal rep-
resents the signal transmitted from the virtual signal transmitter to the microphone array. The
virtual signal senders (corresponding to different body segments) have different speeds during
human walks or moves, thus generating baseband signals at different frequencies. As such, Equa-
tion (6) can be considered as the superimposition of multiple baseband signals with different delays.
Our goal is to separate the

∑

Sr into multiple narrowband signals corresponding to different body
segments.
We next analyze the spectrogram of

∑

Sr (t). Considering the human walking/moving speed in
a room is no more than 4m/s , we only need to take into account signals at the frequency range
of 19.5Hz to 20.5Hz, to sufficiently cover all Doppler shifts from a moving person. Assume F (f , t)
represents the Doppler energy of frequency f at a certain time t on the spectrogram. Since F (f , t)
changes with the frequency, by analyzing its peaks, we can identify the frequency components
of

∑

Sr (t) that signify the Doppler frequencies of different body segments. Our empirical study
exhibits the averaged difference between two consecutive frequency components is about 20Hz.
Thus, we divide the entire spectrogram into a set of 20Hz narrowband signals. The 20Hz band
results in 0.05m/s velocity resolution, sufficiently to differentiate the Doppler shifts from different
body segments. As such, each narrowband signal can be represented as

Sr (t) = αm cos (2π fm(t − τm)) , (7)

Notably, τm is a one-way ToF that corresponds to the time taken by the signal to travel from a vir-
tual signal sender to the microphone. Since only the frequency range of 19.5Hz to 20.5Hz is taken
into account with the narrowband signal of 20Hz bandwidth, the microphone covers 48 narrow-
band signals. But, not all narrowband signals contain the Doppler reflections from moving body
segments, so those narrowband signals whose averaged amplitudes below a predefined threshold
are discarded.

4.3 Signal Modeling

Each narrowband signal is considered to be associated with one specific virtual signal transmitter.
We then perform I-Q decomposition to analyze its phase, which is affected by τm and determined
by the range, angle, and velocity, according to Equation (7). After the phase of the narrowband
signal is analyzed, we then build a signal model to formulate the narrowband signal in terms of
three parameters, i.e., range, angle, and velocity.

I-Q decomposition: Figure 2 illustrates the process of I-Q decomposition. The narrowband signal
Sr (t) is multiplied by the continuous wave of cos2π fm(t) and its 90-degree phase-shifted version
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Fig. 2. I-Q decomposition.

of sin2π fm(t), where fm denotes the frequency when the original 20kHz signal is received by the
moving body segment, and it can be calculated via Equation (1). Sincev is unknown yet, so we need
to calculatev first, done by directly applying FFT to the narrowband signal to get its frequency fv .
According to Equation (3), we can derive the velocity v of the narrowband signal and then apply
Equation (1) to obtain fm .
With fm , we next perform I-Q decomposition. According to the fact of cosA cosB =

1
2 (cos(A + B) + cos(A − B)), we get cos(A − B) by filtering out the high frequency component of
cos(A + B) through a low pass filter. Thus, In-Phase signal I (t) and Quadrature signal Q(t) can be
represented as

I (t) =
1

2
α1 cos 2π fmτ , Q(t) =

1

2
α1 sin 2π fmτ . (8)

Figures 3 and 4 present the 0.1s examples of In-Phase signal and of Quadrature signal, respectively,
with the baseband frequency equal to 20.045kHz. From the two figures, we clearly observe a
phase change regarding the waveforms of I-signal and Q-signal. By combing them, we arrive at
a complex signal, denoted by

SM (t) = I (t) + jQ(t) =
1

2
α1e

j2π fmτ
. (9)

Figure 5 shows the I-Q trace of a complex signal, in which the I-Q trace moving around one circle
corresponds to a 2π phase change. From Equation (9), the phase change is caused by the change
of τ .

Phase Analysis: We next analyze the phase of a complex signal by first obtaining τ , since it
determines the phase. Notably, τ is the one-way traveling time from an associated moving body
segment to the receiver, and it varies according to the change of distance between the segment
and the receiver. Suppose that a target is moving across the distance of r (t) and with the angle of

θ . Then, r (t) causes a one-way time of r (t )
c
, where c is the sound speed. Our experiment employs a

liner 4-microphone array, with the distance between its two adjacent microphones equal to d . As
Figure 6 shows, for the k th microphone, the respective ToF of a received signal travels for an extra

time of (k−1)d cos θ
c

compared to that received by the first microphone (the rightmost one). Hence,
ToF for the signal received at the k th microphone can be computed by

τ =
r (t)

c
+

(k − 1)d cosθ

c
. (10)
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Fig. 3. I-signal waveform. Fig. 4. Q-signal waveform.

Fig. 5. Complex I-Q trace.

With Equation (9), we have the complex signal at the k th microphone:

SM (t) = I (t) + jQ(t) =
1

2
α1e

j2π fm (
r (t )
c
+

(k−1)d cosθ
c

)
, (11)

where fm is the baseband frequency that already has been estimated. In Figure 5, the I-Q trace
combines 0.1s worth of I-single and Q-signal, and the baseband frequency fm is 20.045kHz. There
are about 4.3 circles in the figure, and the phase change of τ in 0.1s is 4.3× 2π = 8.6π . In this small
time period, the velocity and AoA are deemed constant. So, the distance change is due solely to a
change in r (t). We can calculate the distance change Δr through the accumulated phase change of

τ given by 2π
fmΔr

c
= 8.6π to yield Δr = 0.073m.

To mathematically model this, we consider the velocity v of each moving body segment to be
constant. Then, r (t) can be denoted as r (t) = r + vt , where r is the initial range. SM (t) is thus
expressed by

SM (t) = I (t) + jQ(t) =
1

2
α1e

j2π fm ( r
c
+
vt

c
+

(k−1)d cosθ
c

)
. (12)
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Fig. 6. Additional distance caused by the microphone array structure.

We represent this signal model as SM = 1
2α · R ·V ·Θk , where R,V , and Θk are defined as follows:

R(r ) = e j2π
r

c
fm
,

V (v) = e j2π
vt

c
fm
,

Θk (θ ) = e j2π
(k−1)d cosθ

c
fm
.

(13)

Since v is already calculated by the previous step, we only need to consider R and Θ components
when analyzing r and θ of each body segment in its associated narrowband signal.

4.4 Target Estimating

In this section, we first estimate r and then θ of each narrowband signal and cluster the estimated
parameters corresponding to the same person.

4.4.1 Motion State Estimator. In each round of estimation, we take into account those narrow-
band signals that last for 0.1s . Given the sampling rate of 44.1kHz, each narrowband signal con-
tains N = 4410 samples. As discussed in Section 4.2.3, the narrowband signals that contain no
Doppler reflections are discarded. We denote the number of remaining narrow bands as B and

represent all narrowband signals by Σ = [Sr1, Sr2, Sr3, . . . , Srb , . . . , Sr B ]
T . On each narrowband,

since we have signals from M microphones, after I-Q decomposition, Srb can be represented as

Srb =
[

Sb1, Sb2, . . . , Sbk , . . . , SbM
]T
, where Sbk denotes the signals received at the kth microphone.

Since Sb1, Sb2, . . . , SbM are considered to have the same r ,θ , and v , according to Equation (13), we
can formulate an optimization problem for each narrowband signal Srb as follows:

(θ , r ) = argmax|

M
∑

k=1

Sbk · R∗(r ) · Θ∗
k (θ )|, (14)

where (·)∗ indicates the conjugate operation. With the correct θ and r are estimated, Equation (14)
gives rise to the local maximum value. Due to the searching range of (−90◦, 90◦) for θ , from
Equation (13), we can see Θ

∗(θ ) is not a periodic function. Hence, θ has a unique solution
corresponding to each Sr i . However, since r is in the range from 0m to several meters, R∗(r ) is a
periodic function, making the optimal solution of r nonunique and calling for a further process
to estimate the correct r .
Consider the two body segments of upper limbs with their motion states (r1,v1,θ1) and

(r2,v2,θ2), respectively. Although their speeds and angles may be different due to the motions
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of body segments, their horizontal ranges are similar. As such, to get the correct r , we can con-
sider that some body segments from the same person have the same distance to the microphone
array. Equation (12) reveals that each narrowband signal’s initial phase is affected by r and θ .
Since we can remove Θ from a narrowband signal by multiplying its corresponding Θ∗

k
, the initial

phase of the remaining signal is determined solely by r . Denote ϕ1 and ϕ2, as the initial phases
of two narrowband signals, which can be extracted directly from signals themselves. Assuming
their corresponding frequencies are fm1 and fm2 after removing Θ. According to Equation (12), for
two narrowband signals with the same distance, we have ϕ1 = 2π fm1

r
c
and ϕ2 = 2π fm2

r
c
, which

give rise to
ϕ1

fm1
=

ϕ2

fm2
, implying that the ratio of the initial phase over the baseband frequency is

identical for all signals with the same distance. Based on this result, we calculate phase-frequency
ratios with respect to all Z narrowband signals. For each narrowband signal, we identify another
one with the closest phase-frequency ratio for conjecture to have the similar distance. This results
in a total of Z pairs, with each pair considered to have the same distance. For each pair of nar-
rowband signals with their frequencies of (fm1, fm2) and their initial phases of (ϕ1,ϕ2), we have

2π fm1
r
c
− 2π fm2

r
c
= ϕ1 − ϕ2. Then, the distance r can be calculated by r =

Δϕc

Δf
, where Δϕ is the

initial phase difference and Δf is the baseband frequency difference of two baseband signals in
this pair. Next, r is fed to the optimizer characterized by Equation (14) for refinement. That is, we
slightly shift r ’s value to find the closest optimal solution. In the end, we can have Z sets of (r ,v,θ )
values in total.

Until now, we get the motion states from different body segments and are yet to identify
the moving person. The next subsection describes a clustering algorithm to associate all proper
(r ,v,θ ) values with the same person, given that those (r ,v,θ ) values represent the person’s motion
states.

4.4.2 Clustering Motion States. The reflections from different body segments of a moving per-
son have relatively identical θ and r values, even their v values are different. On the other hand,
the reflections from body segments of different persons possess markedly different (θ , r ,v) values.
Based on these facts, it is possible to cluster (θ , r ,v) values associated with the same person to-
gether. Here, we apply the K-means algorithm to perform such clustering over Z sets of (r ,v,θ )
values, with each set treated as one point in the 3-D space and inputted to the algorithm.

We employ the silhouette value [28] to help improve our K-means clustering. That is, corre-
sponding to each point i , the silhouette value can be defined as follows:

si =
bi − ai

max {ai ,bi }
,

where ai indicates the averaged distance from the ith point to all other points in the same cluster,
and bi is the minimum averaged distance from the ith point to points in each other cluster. So,
the silhouette value ranges from -1 to +1, with a high value signifying the object well matched
with its own cluster and poorly matched to other clusters. If the majority of points have the high
silhouette values, good clustering results. Otherwise, the clustering configuration is inappropriate,
likely to have too many or too few clusters. Here, the averaged silhouette value over all data points
quantifies the clustering effectiveness degree. We explore K in a proper range to select the value
which yields the highest averaged silhouette value.

After getting a clustering configuration, potential errors may still exist. For example, one per-
son’s corresponding points may be separated into multiple clusters. In this case, we rely on the
inter-cluster distance to further mitigate errors, by calculating the euclidean distance between two
clusters’ centroids. If the inter-cluster distance of two clusters is below a pre-defined threshold,
they are merged into one cluster.
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Fig. 7. Identifying the target points with the help of the previous estimation.

Ideally, we aim at clustering all points corresponding to the same person together through this
step. However, the multipath effect may cause wrong (r ,v,θ ) values. Besides, the same narrow-
band may include the signals of different body segments, albeit to a low probability but warrant-
ing further refinement. The next subsection outlines a trace estimation solution for addressing
aforementioned issues to enhance localization through refining our results.

4.4.3 Trace Identification. Given that a person’s movement is continuous, the two consecu-
tively estimated (r ,v,θ ) values of the same person should be similar. Since a rather short signal
of 0.1s is considered at a time, the changes in a person’s angle, range, and velocity are very small.
Hence, we can take into account a sequence of two consecutive 0.1s estimations to measure their
difference per pair for the trace identification of a moving person. For each cluster j at the time
point of t −1, we calculate its centroid, i.e., the averaged r ,v, and θ values over all points, indicated
as rt−1(j),vt−1(j) and θt−1(j), respectively. Similarly, for each cluster i at the time point of t , we cal-
culate the averaged r ,v, and θ values over all points, denoted as rt (i),vt (i), and θt (i), respectively.
For each cluster pair of i and j, their L-1 distance is obtained by

L1(i, j) = |rt (i) − rt−1(j)| + |vt (i) −vt−1(j)| + |θt (i) − θt−1(j)| . (15)

For each i , we find corresponding j that has the minimum L1(i, j). Notably, if i and j are associated
with the same person, the L-1 distance should be very small. Otherwise, if i is from a multi-path
reflection, its corresponding L-1 distance tends to be large due to the quick change of reflection
paths. This way identifies the moving trace of a person, starting from a cluster associated with
the person. Figure 7 show an example for cluster centroids of two consecutive 0.1s signals, plotted
in a 2-D plane. In the figure, the green points show the currently estimated points, and red
points show the previously estimated points, plotted in a 2-D plane. Comparing the previous
points and current points, we can see the positions of the circled points have almost no changes,
whereas the positions of other points change largely. Thus the circled points are considered as
the target points from the same person. Other points are considered to be caused by multi-path
reflections.

5 EXPERIMENT

We have implemented our motion tracking system for conducting extensive experiments to eval-
uate its performance.
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Fig. 8. Localization errors when locating a single

person.
Fig. 9. Localization errors at different ranges.

5.1 Experiment Setup

Our system comprises a ReSpeaker 4-Mic Linear Array, which is connected to a Raspberry Pi 4
and a co-located Edifier R1280DB speaker. Note that smart devices do not release their APIs, so we
cannot directly program their microphones for our purpose. Instead, we are using the ReSpeaker
4-Mic Linear Array, which has a layout similar to those of current smart devices. This microphone
array has four microphones, with the distance between two adjacent microphones is 5.08cm. We
place the microphone array atop the speaker to ensure that both the microphone and the speaker
are located in the same place. When our system is triggered, the speaker is controlled to send con-
tinuous sinusoid wave at 20kHz with a sampling frequency of 44.1kHz. The transmission power
is tuned to 80% of the maximum volume, so the measured power at 1 meter away from the speaker
is 45dB. The microphone array records reflected signals, which are saved via the Raspberry Pi 4
at the sampling rate of 44.1kHz. The Raspberry Pi 4 is connected to a laptop via Wi-Fi connection
and all signals are processed via Matlab in this laptop. We measure the located positions of mov-
ing persons in the 2-D plane, by creating their corresponding trajectories on the floor to serve as
the ground truth. The localization error is used as our evaluation metric, defined by the Euclidean
distance between each located position and its ground truth coordinate.

5.2 Performance on Locating a Single Moving Person

In this experiment, we let a person walk at his natural speed along the predefined trajectory. Our
system processes the reflected signals to get this person’s location at each 0.1s. The localization
error in each 0.1s is calculated, with the CDF result depicted in Figure 8. This figure reveals that the
localization error of 40% (or 80%) positions is less than 5.4cm (or 12.5cm), with themean localization
error equal to 7.49cm. Such results are promising and demonstrate that our system can accurately
track a person’s moving trace.
Further experiments are conducted to evaluate the localization errors of different distances away

from the speaker. We truncate the collected data at five distance ranges, i.e., (1m ∼ 2m), (2m ∼

3m), (3m ∼ 4m), (4m ∼ 5m) and (5m ∼ 6m), indicating by 1m, 2m, 3m, 4m, and 5m. Figure 9 shows
results ofmean errors for distances of 1m, 2m, 3m, 4m, and 5m, equal to 3.6cm, 4.3cm, 7.9cm, 13.7cm,
and 21.09cm, respectively. Obviously, a larger distance leads to a bigger error, as expected since the
acoustic signals experience fast attenuation when the distance increases. The reflected signals are
weakened for a bigger distance, causing Doppler signals harder to be extracted and thus yielding
bigger errors in calculating phase and velocity to deteriorate performance. Nonetheless, the maxi-
mum error of 21.09cm at the range of (5m − 6m) is far smaller than the human body size, making
our system suffice for use in the room scale environment.
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Fig. 10. Impact of different speeds.

5.3 Robustness for Single Person Localization

To show the robustness of our system, we take into account different factors and examine their
impacts on our system performance.

Impact of Moving Speeds. We let a person walk at different speeds for examining system per-
formance. Three different walking speeds are considered: (1) low speed (< 1m/s), (2) normal speed
(around 1m/s), and (3) high speed. Figure 10 shows the quartiles figure under the three moving
speeds. From this figure, we observe our system to achieve the worse performance when a person
is moving at the low or high speed, in comparison to moving at the normal speed. Specifically, the
averaged errors are 7.4cm, 10.1cm, and 13.2cm respectively, with respect to the normal speed, low
speed, and high speed. The reason is as follows. When a person is walking at the high speed, the
Doppler effect is more apparent to make our system’s assumption of a person’s velocity consid-
ered as a constant in a short time period to yield a large error. On the other hand, a slow walking
speed weakens the Doppler effect, resulting in light narrowband signals for localization, thereby
degrading system performance.

Impact of Audible Sounds. Since our system works at the 20kHz, inaudible to human, we next
examine the possible impacts of pervasively existing audible sounds. Two audible sounds com-
mon in the home environments are considered: (1) humans talking and (2) music playing. The
two sound sources are placed at 0.5m away from the speaker. Figure 11 shows the performance
of our system under different scenarios, where silent indicates that no audible sound exists in the
environment. When comparing three scenarios, we can observe the audible sounds (i.e., human
talking and music playing) only have slight impacts on system performance. The averaged er-
rors in a silent environment, a human talking environment, and a music playing environment are
7.4cm, 9.3cm, and 10.4cm, respectively. The reason is that the two audible sounds do not generate
any frequency component in the ultrasound domain, without causing interference to our system.
The slight performance difference comes from frequency leakage caused by imperfect STFT, which
produces certain unexpected high-frequency components, interfering with the target signal. But
such frequency leakage typically is insignificant due to the use of continuous wave, yielding a
minor impact.

Impact of Different Devices.We next show our system is transferable to different devices. Three
different speakers are examined, i.e., Edifier R1280DB, Logitech z200, and Amazon Echo, indicated
respectively as Speaker 1, Speaker 2, and Speaker 3. In our experiment, speakers’ volumes are
tuned to the same level and we let them emit the 20kHz continuous wave. Our system performance
results of those three different speakers are shown in Figure 12. We observe that Speakers 2 and
3 underperform Speaker 1. The reason is that Amazon Echo generates signals in all directions,

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 61. Publication date: April 2024.



Room-Scale Location Trace Tracking via Continuous Acoustic Waves 61:17

Fig. 11. Impact of audible sounds.

Fig. 12. Performance with different speakers.

making their reflected signals have relatively low power to result in a low SNR. Logitech z200 is
the cheapest device, so its generated signals have lower quality than that of Edifier R1280DB’s
signals. However, their performance levels are still acceptable, i.e., 80% of localization errors being
less than 18.8cm. Overall, the averaged localization errors of Speaker 1, Speaker 2, and Speaker
3 are 7.4cm, 11.7cm, and 12.1cm, respectively. Such experimental results demonstrate the good
transferability of our system to different smart home devices.

Impact of Different Environments. We next conduct experiments in three rooms with differ-
ent layouts to quantify the robustness of our system, with experimental results demonstrated in
Figure 13. Our system is found to achieve the similar performance in three rooms, with the mean
localization errors of 7.4cm, 9.6cm, and 9.0cm, respectively. This is due to the fact that reflections
from all environments have the same frequency as the originally transmitted signal, which is fully
eliminated via our noise cancellation step. It is thus concluded that our system is robust to the
environmental changes.

5.4 Tracking Multiple Moving Persons

Our system is also applicable for locating multiple moving persons. We conduct experiments to
show its performance when multiple moving persons co-exist in a room.

Localization Performance. Two persons walk on two predefined trajectories (i.e., straight lines)
separated by 2m. Figure 14 shows the CDFs of localization errors under two moving persons,
with mean errors equal to 22.6cm and 25.4cm, respectively. When comparing to Figure 8, we find
the performance results are degraded since some Doppler signals from two bodies have identical
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Fig. 13. Impact of different environment.

Fig. 14. Localization errors when locating two moving persons.

frequencies, overlapped in the same narrowband, and making them hard to be separated. Since the
maximum error is less than 50cm, our system is accurate enough for tracking two persons’ traces.

Impact of Distances between Two Targets. The impact of the distance separating two persons
is assessed. We let two persons be separated 3m, 2m, 1m, and 0.5m, respectively, when walking
toward the speaker from 5m away to 1m away. Figure 15 plots the localization errors under various
separation distances. We observe that our system performance degrades as the separation distance
drops.
Our system performs the best at the separation distance of 3m, with the averaged errors of

21.2cm, and 21cm, respectively, for the two persons. Under the separation distance of 0.5m, our
system performs the worst, with the mean errors of 102cm and 99cm, respectively. The reason is
that when two persons are closer to each other, their mutual interference hike, making our system
harder to cluster them.

Performance under Different Target Counts. We increase the number of targets from 1 to 3
for examining the system performance results. Three sets of experiments are conducted, respec-
tively under single person, two persons, and three persons. In each experimental set, every target
walks toward the speaker at his/her natural speed. Figure 16 shows the CDF curves of localization
errors with respect to the three target counts, with different color curves denoting the three tar-
get counts. Their averaged errors are 7.4cm, 24.1cm, and 51.2cm, respectively. It is observed that
our system performance degrades faster with a larger target count. Especially, with three targets,
more than 40% of measured points have their localization errors exceeding 50cm. The reason is that
more targets increase the chance that Doppler signals from different targets overlap in the same
narrowband and incur more complex multipath reflections, making it harder to separate signals
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Fig. 15. Localization errors under different separation distances.

Fig. 16. Localization errors on different target counts.

from different persons. Nonetheless, the localization errors are still less than 1m, useful for coarse
location tracking.

5.5 Extension to Locate a Stationary Person

Since our system relies on the phase change of Doppler signals for localization, it cannot localize
a stationary object. However, we can have an aid of arm swings to localize a stationary person.
To this end, an experiment is undertaken to gauge the performance of localizing static targets, by
letting the participants stand at predefined points with their arms swing. Figure 17 depicts the CDF
curves, with the red curve (or blue curve) indicating the mean localization errors of a single person
(or two persons). When comparing to Figures 8 and 14 (respectively for locating the single moving
person and two moving persons), we find degraded performance. This is due to the fact that the
reflections from arm swings are much weaker than those from the entire body segments, giving
rise to inferior performance. However, themean errors are of 21.1cm (or 35.4cm) for a single person
(or two persons). Such results are still promising, suggesting that our system is applicable to track
the movement of a relatively small target or fine-grained movement, such as gesture tracking.

6 DISCUSSION

As the first work to explore the feasibility of continuous wave-based localization via the phase
measurement of Doppler signals for room-scale location tracking, our current design exhibits some
limitations that will be further addressed in the future.
First, our system performance will substantially degrade if a target moves extremely slowly

due to its resulting weak Doppler effects. In this case, the Doppler signals are to have similar
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Fig. 17. Localization errors when locating the stationary persons.

frequencies as that of the direct transmission signals, but their strengths are much weaker. The
current signal cancellation method fails to work since these two types of signals cannot be differ-
entiated. Besides, the amplitude of direct transmission signals is far higher than that of Doppler
signals, further preventing the proposed system from extracting correct phase information. To
overcome such a limitation, one plausible method is to impose an additional requirement by
letting the target swing his/her arm(s) in walking. Another direction is to develop new signal
processing techniques able to separate weak Doppler signals from the direct transmissions. Such
a problem remains challenging, deferred to our future work.
Second, our system can perform well for tracking up to two targets if their walking trajecto-

ries are in the constrained range, with noticeable degradation expected for tracking three or more
targets. To overcome such limitations, one direction is to increase the microphone amounts while
implementing a beamforming algorithm to differentiate multiple targets for higher resolution. An-
other direction is to leverage the circular microphone array, which can cover a larger range better.
However, its omnidirectional transmission will incur intensive multi-path interference, calling for
a more advanced signal processing solution to mitigate it.
Third, the system’s performance on AoA estimation is limited, due to its need for uniform mi-

crophone spacing that often causes sidelobes to appear when estimating the AoA. Typically, the
sidelobes may have their values close to the correct AoA, thus introducing ambiguity in AoA es-
timation. To mitigate the sidelobes effect, we can utilize the non-uniform microphone array [19]
to mitigate AoA “side lobes” for better performance, yielding a higher AoA resolution. New signal
processing solutions for dealing with such an effect are also planned in our future work.
Forth, our system cannot resolve multiple targets if their body segments have exactly the same

velocity, albeit rather unlikely. Our experiment unveils that the proposed system can still discern
participants walking at similar paces, provided that their body segments move at different speeds.
If all body segments have exactly same speeds, however, their reflections possess the same Doppler
frequencies, making them unable to be differentiated. In this case, we have to rely solely on the
phase, which is different due to various ranges and angles. A new signal processing solution is
required to separate two signals with the same frequency but different phases.
Fifth, the system cannot guarantee consistent performance across different environments. Its

performance tends to decrease in environments with a higher density of objects due to more dy-
namic reflections from the complex surrounding objects, making it harder to isolate the signal
from the human body. Meanwhile, our system’s effectiveness tends to drop in larger spaces due to
its limited working range. Nevertheless, the experimental result reveals that, even at a distance of 5
meters, our system still exhibits a localization error of 21.09cm, sufficing for use in most indoor set-
tings. In our future research, we intend to enhance the system by incorporating multiple devices
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or utilizing various tone frequencies. This way aims at enriching the Doppler signals and cap-
ture more detailed localization information, especially in scenarios involving multiple individuals
simultaneously. Another research direction involves the implementation of a robust signal pro-
cessing algorithm, allowing for the direct separation of signals from distinct targets. Additionally,
the integration of deep learning approaches to further refine the system’s localization capabilities
can be considered. We are to thoroughly investigate them in our future work.

7 CONCLUSION

This article has proposed a novel indoor location tracking system via the inaudible continuous
waves, by leveraging the speaker andmicrophone array built in a commodity device. The proposed
system controls the speaker of such a device to emit inaudible continuous waves for sensing and
utilizes the co-located microphone array to record the reflected Doppler signals for analysis. A
set of solutions has been developed for removing environmental interference, analyzing the phase
change, and clustering reflections from a given person, plus result refinement, toward achieving
accurate location tracking in room-scale settings. We have implemented our system with com-
modity devices and conducted extensive experiments to evaluate the performance of our system.
Experimental results have demonstrated that our system is promising in effectively tracking the
traces of up to three moving persons and is robust to various factors. The benefits of our system
include being (1) reliant on the continuous wave, which is inaudible to humans, (2) implemented
on COTS devices, and (3) generally applicable for room-scale tracking. Our proposed solutions
and approaches are valuable and provide affluent insights, to benefit future work on tracking fine-
grained movements.
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