Pincer-ligated Iridium Complexes with Low-Field Ancillary Ligands:

Complexes of (iPrPCP)IrCl₂ and Comparison with (iPrPCP)IrHCl

Ashish Parihara, Thomas J. Emgea, Alan S. Goldmana*

^a Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,

New Brunswick, New Jersey 08903, United States

*Email: alan.goldman@rutgers.edu

Abstract

Pincer-ligated iridium complexes have been widely developed, and (pincer)Ir(III) complexes,

particularly five-coordinate, are central to their chemistry. Such complexes typically bear two

formally anionic ligands in addition to the pincer ligand itself. Yet despite the prevalence of

halides as anionic ligands in transition metal chemistry there are relatively few examples in

which both of these ancillary anionic ligands are halides or even other monodentate low-field

anions. We report a study of the fragment (^{iPr}PCP)IrCl₂ ($^{iPr}PCP = \kappa^3 - 2,6 - C_6H_3(CH_2P^iPr_2)$), and

adducts thereof. These species are found to be thermodynamically disfavored relative to the

corresponding hydridohalides. For example, DFT calculations and experiment indicate that one

Ir-Cl bond of (iPrPCP)IrCl₂ complexes will undergo reaction with H₂ to give the (iPrPCP)IrHCl or an

adduct thereof. In the presence of aqueous HCl, (iPrPCP)IrCl₂ adds a chloride ion to give an

unusual example of an anionic transition metal complex ((iPrPCP)IrCl₃-) with a Zundel cation

(H₅O₂+). (iPrPCP)IrCl₂ is not stable as a monomer at room temperature but exists in solution as a

mixture of clusters which can add various small molecules. DFT calculations indicate that

dimerization of (iPrPCP)IrCl₂ is more favorable than dimerization of (iPrPCP)IrHCl, in accord with

its observed tendency to form clusters.

Keywords: iridium; pincer ligands; halide ligands; Zundel cation; clusters

1

INTRODUCTION

Pincer-ligated iridium complexes have been extensively developed over the past several decades, as catalysts for the functionalization of C-H bonds¹⁻³ and many other reactions⁴⁻³², as well as for other applications^{9,33-35} such as optoelectronics³⁶⁻³⁷. In almost all of this chemistry (pincer)Ir(III) species play a critical role, for example in catalytic cycles that are all-Ir(III), Ir(III)/Ir(V), or Ir(I)/(III), or as synthetic precursors. One of the earliest examples of pincer complexes in general and an archetypal example of a (pincer)Ir(III) complex is (tBuPCP)IrHCl (RPCP = κ^3 -2,6-C₆H₃(CH₂PR₂)), first reported by Shaw in 1976.³⁸ Typically, (pincer)Ir(III) complexes bear two formally anionic ligands in addition to the pincer ligand itself, e.g. $(^{R}PCP)IrHCl$, $(phebox)Ir(OAc)_{2}(H_{2}O)$ $(phebox = 2,6-bis-oxazolinephenyl)^{39}$, or $(^{tBu}P^{py}NP)IrPhH^{+}$ ($^{tBu}P^{py}NP = \kappa^3$ -2,6-bis(dialkylphosphinomethyl)pyridine) 40 . Given the prevalence of halides as anionic ligands in transition metal chemistry, it is therefore surprising that there are few examples in which both of the ancillary anionic ligands are halides or even other monodentate low-field anions such as alkoxide or various "pseudo-halides". In particular, five-coordinate Ir(III) complexes play a critical role in (pincer)Ir chemistry yet to our knowledge there is only one report of (pincer)IrX₂ complexes where both ancillary ligands are halides, ⁴¹ specifically bis-NHCpincer complexes, (C^C^C^{Mes})IrX₂. The corresponding six-coordinate ligand adducts are much less rare though still not particularly common⁴²⁻⁴⁹ and there are a few examples in which sixcoordination results from halide bridging of the (pincer)IrX₂ units.⁵⁰⁻⁵² In view of our interest in both high-oxidation catalytic cycles^{3,53-55} and synthetic precursors for species such as bishydrocarbyl (pincer)Ir complexes⁵⁶, our attention has been drawn to such dihalide complexes. Here we report spectroscopic evidence of the five-coordinate complex (iPrPCP)IrCl₂, and a study of the chemistry of this species and six-coordinate adducts thereof.

RESULTS AND DISCUSSION

The (^{iPr}PCP)Ir(I) fragment has been found in many instances to be catalytically more active than the iconic (^{tBu}PCP)Ir(I) analogue,⁵⁷⁻⁵⁸ presumably due to lesser crowding at the iridium center. In the case of Ir(III) complexes, with the metal center bearing ancillary anionic ligands in addition to the pincer, we would expect that the less sterically demanding ^{iPr}PCP ligand would

confer an even greater advantage with respect to intermolecular reactivity.⁵⁹ Accordingly, we began our study with the synthesis of (^{iPr}PCP)IrHCl⁵⁷ (**1-HCl**; **1** = (^{iPr}PCP)Ir). Although this complex is well known, previously reported synthetic routes in our experience lead to mixtures of **1-HCl** and **1-HBr**, where the bromide is derived from 1,3-bis(bromomethyl)benzene starting material⁵⁸. **1-HCl** is typically used as a precursor of the fragment (^{iPr}PCP)Ir(I), via treatment with a hydride or base; for such a purpose the presence of **1-HBr** is not problematic, but for the present work we required the pure hydridochloride. Pure proligand (^{iPr}PCP-H) was prepared by the method of Ozerov⁶⁰ and then allowed to react with [(COD)IrCl]₂⁴⁰ (Scheme 1; COD = 1,5-cyclooctadiene). Pure **1-HCl** was obtained, and X-ray quality crystals were grown by vapor diffusion of pentane into benzene. The molecular structure determined by scXRD is typical of (^RPCP)IrHCl complexes and related complexes of the type (pincer)IrHCl.^{38,61-64} In particular both molecules in the unit cell show the characteristic "Y" geometry⁶⁵⁻⁶⁷ formed by the chloride, hydride, and Ir-bound carbon, with wide angles Cl-Ir-C (164.81(9)°, 165.54(9)°) and Cl-Ir-H (120(2)°, 112(2)°), for molecules 1 and 2, respectively.

Scheme 1. Synthesis of (iPrPCP-H) Pro-ligand and Metalation to give 1-HCl (ORTEP Diagram shown, 50% Probability Level, Molecule 1)

We initially attempted to generate **1-Cl₂** by the addition of anhydrous HCl to **1-HCl**. However, even after heating at 80 °C for 1 h, and then addition of 3,3-dimethylbutene (TBE) as a potential hydrogen acceptor and further heating overnight, no reaction was observed by 1 H and 31 P NMR spectroscopy. The reaction of **1-HCl** with 1 equiv aqueous $HCl_{(aq)}$ (36% w/w), however, led to partial conversion to what was believed to be (iPr PCP) $IrCl_2 \cdot H_2O$ (**1-Cl₂(H₂O)**). The reaction with 3 equiv of HCl(aq) at 50 °C went to 51 % completion in 230 min and reached 60% completion in 330 min (Scheme 2). Removing the atmosphere of the J-young NMR tube in vacuo, followed by further heating at 50 °C for 90 min resulted in 95% conversion to a mixture

of **1-Cl₂(H₂O) and [1-Cl₃⁻]**. These observations indicated that the failure of the reaction to proceed to completion in a sealed system was due to the buildup of H₂, and presumably an equilibrium in which the back reaction, surprisingly, includes hydrogenolysis of an Ir-Cl bond.

Scheme 2. Reaction of 1-HCl with HCl_(aq) (no added hydrogen acceptor)

To more effectively remove H_2 and drive the reaction fully to completion, the reaction with $HCl_{(aq)}$ was conducted with 3,3-dimethylbutene (TBE) added to act as a hydrogen acceptor. After 330 min at 50 °C, 97% loss of **1-HCl** was observed by ¹H NMR spectroscopy and after an additional 90 min, no **1-HCl** could be detected (> 99% conversion).

Attempts to grow crystals from n-octane led to individual crystals of two different materials, determined by scXRD to be $\mathbf{1}\text{-Cl}_2(\mathbf{H}_2\mathbf{O})$ and $[\mathbf{1}\text{-Cl}_3][\mathbf{H}_5O_2]$ (Scheme 3, Figure 1). The latter contains anionic $\mathbf{1}\text{-Cl}_3^-$ and, interestingly, the Zundel cation⁶⁸⁻⁶⁹, $[\mathbf{H}_5O_2]^+$. There are only a few crystallographically characterized examples of anionic metal complexes with a Zundel cation.⁷⁰⁻⁷¹

Scheme 3. Reaction of 1-HCl with HCl_(aq) (3 equiv) and TBE

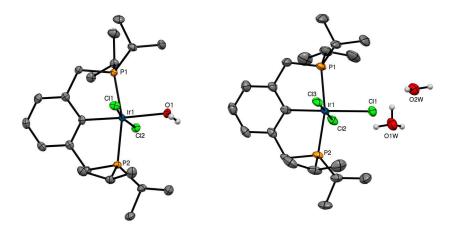


Figure 1. Molecular structure of $1-Cl_2(H_2O)$ and $1-Cl_3(H_5O_2)$ determined by scXRD. Hydrogen atoms other than those on water molecules omitted for clarity.

The anionic complex $[1-Cl_3^-]$ was also independently generated by the reaction of $1-Cl_2(H_2O)$ with *tert*-butylammonium chloride (Scheme 4).

Scheme 4. Synthesis of [1-Cl₃][TBA]

When only 0.5 eq $HCl_{(aq)}$ was added to **1-HCl** (along with 1.75 eq TBE; Scheme 5) it was noted that both the **1-Cl₂(H₂O)** product and the "unreacted" **1-HCl** formed adducts of H₂O. At 25 °C the H₂O adduct **1-HCl(H₂O)** appeared to be in equilibrium with free **1-HCl**, while no evidence of free **1-Cl₂** was observed. When the solution was heated above 75 °C, the broad signal in the ³¹P NMR spectrum, attributable to **1-HCl** and **1-HCl(H₂O)** undergoing rapid exchange, gave rise to a sharp signal attributable to free **1-HCl** (with no significant coordination of water) at δ 57. In the case of **1-Cl₂** a sharp signal at δ 25.2 was observed at room temperature, attributable to **1-Cl₂(H₂O)**. Upon increasing temperature the signal shifted downfield and broadened giving rise to a broad signal at δ 34.5 at 135 °C, which we attribute to **1-Cl₂** and **1-Cl₂(H₂O)** undergoing

rapid exchange (SI, Figure S3.20). Thus H₂O is found to bind much more strongly to **1-Cl₂** than to **1-HCl** in the given solution.

Scheme 5. (a) Generation of (^{iPr}PCP)IrHCl·H₂O and (^{iPr}PCP)IrCl₂·H₂O. (b) Binding affinity of H₂O to (^{iPr}PCP)IrHCl and (^{iPr}PCP)IrCl₂.

(b)
$$\begin{array}{c} P^{i}Pr_{2} \\ CI_{x_{i}} \\ Ir - OH_{2} \\ P^{i}Pr_{2} \\ \hline \\ H_{x_{i}} \\ Ir - OH_{2} \\ \hline \\ P^{i}Pr_{2} \\ \hline \\ P^{i}Pr_{2} \\ \hline \\ H_{x_{i}} \\ Ir - CI \\ \hline \\ P^{i}Pr_{2} \\ \hline \end{array}$$

Attempts to quantify the binding constants of H_2O to $\mathbf{1}\text{-}\mathbf{Cl_2}$ and to $\mathbf{1}\text{-}\mathbf{HCl}$ in individual solutions were stymied by the difficulty of reproducibly obtaining solutions with a known concentration of water in hydrocarbon solvent. The experiment described above, with both complexes present in a single solution, therefore appears to be a more meaningful (albeit qualitative) indicator of the greater binding affinity of water for $\mathbf{1}\text{-}\mathbf{Cl_2}$.

Addition of CO to a p-xylene- d_{10} solution of 1-Cl₂(H_2O) resulted in rapid substitution of the water to give trans-1-Cl₂(CO). For comparison, CO was added to a solution of 1-HCl resulting in immediate formation of cis-1-HCl(CO) (Scheme 6). Assignments were based on 1 H and ^{31}P NMR spectroscopy. X-ray quality crystals were obtained in both cases by vapor diffusion of pentane to saturated solutions of the complexes in benzene solvent, and the NMR solution-phase assignments were in agreement with solid-phase molecular structures obtained by scXRD for both carbonyl complexes (Figure 2).

Scheme 6. Synthesis of 1-Cl₂(CO) and 1-HCl(CO)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} P^{i}Pr_{2} \\ Cl_{s_{i}} \end{array} \\ \begin{array}{c} P^{i}Pr_{2} \\ P^{i}Pr_{2} \\ P^{i}Pr_{2} \\ P^{i}Pr_{2} \end{array} \\ \begin{array}{c} P^{i}Pr_{2} \\ P^{i}Pr_{2} \\ P^{i}Pr_{2} \\ P^{i}Pr_{2} \end{array} \\ \begin{array}{c} P^{i}Pr_{2} \\ P^{i}Pr_{2}$$

Figure 2. Molecular structure of **1-Cl₂(CO)** and **1-HCl(CO)** determined by scXRD. Hydrogen atoms, except the hydride of **1-HCl(CO)** omitted for clarity.

We found the trans geometry of **1-Cl₂(CO)** to be somewhat surprising since one might expect that mutually cis coordination of the two weak-trans-influence chloride ligands would be more favorable. Accordingly, DFT calculations were conducted, initially for the very uncrowded analogue (MePCP)IrCl₂(CO); the *cis*-chloride configuration was calculated to be more favorable for this complex, although by only 1.8 kcal/mol (Table 1). The calculated difference between *cis*-and *trans*-chloride isomers was greater in the case of the very crowded analogue (tBuPCP)IrCl₂(CO) with the former being 4.8 kcal/mol lower in free energy. This result is in good agreement with calculations indicating that for (tBuPCP)IrX₂L complexes the coordination sites

cis to the Ir-bound carbon are significantly more crowded than the trans site.⁶⁴ Surprisingly however – but consistent with the experimentally determined geometry – the trans-chloride configuration was calculated to be more favorable than cis for **1-Cl₂(CO)**, by 2.4 kcal/mol, even though this complex is expected to be intermediate between (MePCP)IrCl₂(CO) and (tBuPCP)IrCl₂(CO) with respect to steric crowding. Inspection of the calculated structures of **1-Cl₂(CO)** reveals five individual contact distances between PCP ligand hydrogen atoms and each chloride ligand between 2.61 Å and 2.97 Å (Figure 3). These close contact distances reflect *favorable* interactions⁷²⁻⁷⁴, possibly with H-bonding character⁷⁵. Thus the modest "crowding" found in **1-Cl₂(CO)** can account for the greater stability of the trans chloride configuration, as opposed to the *lack of crowding* in (MePCP)IrCl₂(CO) or the severe crowding in (tBuPCP)IrCl₂(CO).

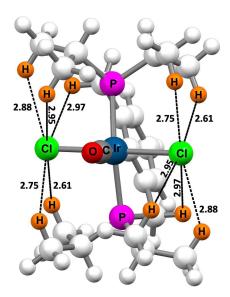


Figure 3. Calculated structure of 1-Cl₂(CO), colored to highlight close CH-Cl distances (given in Å).

Table 1. Calculated relative stability of trans- versus cis-(RPCP)IrCl₂(CO) for R = Me, Pr, Bu

<i>trans</i> -isomer	<i>cis-</i> isomer	ΔG(cis-trans)
PMe ₂ CI, Ir CO CI PMe ₂	PMe ₂ CI, Ir CI CO PMe ₂	-1.8 kcal/mol
PiPr ₂ CI, Ir CO CI PiPr ₂	PiPr ₂ CI, Ir CI CO PiPr ₂	2.4 kcal/mol
P ^t Bu ₂ CI, Ir CO CI P ^t Bu ₂	PtBu ₂ CI. Ir CI CO PtBu ₂	-4.8 kcal/mol

Transition metal hydrides typically react with acids to yield H_2 . As indicated in Scheme 2, however, $\mathbf{1}\text{-Cl}_2(H_2O)$ appears to react with H_2 to yield $\mathbf{1}\text{-HCl}(H_2O)$, i.e. the reverse of acidolysis resulting in formation of H_2 . Confirming this proposal, addition of 1 atm H_2 to a solution of $\mathbf{1}\text{-Cl}_2(H_2O)$, resulted in complete conversion to $\mathbf{1}\text{-HCl}(H_2O)$ within 24 h (Scheme 7). Our DFT calculations predict that hydrogenolysis of Ir-Cl bonds of both $\mathbf{1}\text{-Cl}_2$ and $\mathbf{1}\text{-Cl}_2(H_2O)$ is very slightly endergonic ($\Delta G^\circ = 2.9$ kcal/mol and 2.4 kcal/mol, respectively; Figure 4) in the gas phase, while with the use of a solvent (toluene) continuum model, the reactions are calculated to be essentially ergoneutral ($\Delta G^\circ = 0.3$ kcal/mol and -1.3 kcal/mol respectively). In contrast, hydrogenolysis of the Ir-Cl bond of either $\mathbf{1}\text{-HCl}$ or $\mathbf{1}\text{-HCl}(H_2O)$ is very highly endergonic ($\Delta G^\circ = 0.3$ kcal/mol; Figure 5).

Scheme 7. Reaction of (iPrPCP)IrCl₂(H₂O) with 1 atm of H₂ to Generate (iPrPCP)IrHCl(H₂O)

Figure 4. Thermodynamics of hydrogenolysis of 1-Cl₂ and 1-Cl₂(H₂O)

$$P^{i}Pr_{2}$$

$$H_{a}$$

$$P^{i}Pr_{2}$$

$$+ HCI$$

$$\Delta G_{(g)} = 29.6 \text{ kcal/mol}$$

$$\Delta G_{(sol)} = 30.0 \text{ kcal/mol}$$

$$\Delta G_{(sol)} = 30.2 \text{ kcal/mol}$$

$$\Delta G_{(sol)} = 31.2 \text{ kcal/mol}$$

$$\Delta G_{(sol)} = 29.2 \text{ kcal/mol}$$

$$\Delta G_{(sol)} = 29.2 \text{ kcal/mol}$$

Figure 5. Thermodynamics of hydrogenolysis of 1-HCl and 1-HCl(H₂O)

From the relative thermodynamics of the hydrogenolysis reactions of Figures 4 and 5 it follows that the comproportionation reactions shown in Figure 6 are extremely favorable. This result is consistent with chemistry of other hydride/halide pincer metal complexes, including those that we have recently reported of ruthenium complexes (PPP)RuXY (XY = H_2 , HCl, Cl_2).⁷⁷ In all these cases we attribute the favorability of the pincer hydridohalides (5- or 6-coordinate) to the coordination of two strong-trans-influence ligands (hydride and the metal-bound carbon or phosphorus in the case of PCP and PPP respectively) positioned mutually cis, and trans to weak trans-influence ligands (H_2O or chloride) or to a vacant coordination site.

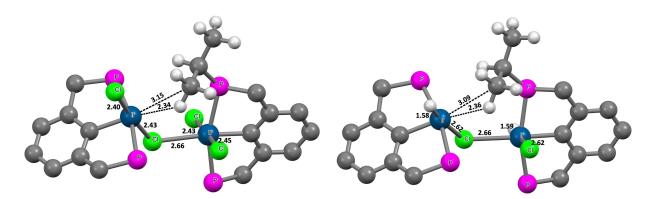
Figure 6. Thermodynamics of Comproportionation of 1-HCl/1-H₂ and 1-HCl(H₂O)/1-H₂(H₂O)

The synthesis of $\mathbf{1}\text{-}\mathbf{Cl_2}$ was attempted via removal of H_2O from $\mathbf{1}\text{-}\mathbf{Cl_2}(\mathbf{H_2O})$ in vacuo. The resulting solid could be redissolved in p-xylene- d_{10} . The ^{31}P NMR spectrum comprised ten discrete signals (all but one of which was relatively sharp). Of these, eight were in the range δ 23 – δ 36, and two at ca. δ 47 (SI, Figure S3.18). Upon heating the solution to 135 °C, these signals converged to a single broad signal at ca. δ 40. When the solution was allowed to return to room temperature the same spectrum with ten discrete signals reappeared. Addition of H_2O to this solution yielded $\mathbf{1}\text{-}\mathbf{Cl_2}(\mathbf{H_2O})$ and addition of CO then yielded $\mathbf{1}\text{-}\mathbf{Cl_2}(\mathbf{CO})$. We propose that upon loss of H_2O from $\mathbf{1}\text{-}\mathbf{Cl_2}(\mathbf{H_2O})$ a complex mixture of oligomers, $[\mathbf{1}\text{-}\mathbf{Cl_2}]_n$ is formed. Upon heating, this material dissociates reversibly to give an equilibrium with monomeric $\mathbf{1}\text{-}\mathbf{Cl_2}$ (Scheme 8).

Scheme 8. Reversible Formation of (iPrPCP)IrCl₂ Clusters

This conclusion is in agreement with the observation, discussed above, that heating a solution of **1-Cl₂(H₂O)** results in a downfield shift of the ³¹P NMR signal from δ 25.25 to ca. δ 35. The difference between the chemical shifts, δ 35 versus δ 40, reflects that, due to the presence of H₂O, even at 135 °C there remains a significant concentration of **1-Cl₂(H₂O)** in solution (Scheme 5b).

The putative $[1-Cl_2]_n$ acts as a synthetic precursor of $1-Cl_2$. In addition to the reactions with H_2O and CO noted above, the addition of ethylene (1 atm) affords $1-Cl_2(C_2H_4)$ (Scheme 9). The same species can be obtained directly via the displacement of H_2O from $1-Cl_2(H_2O)$ by ethylene (Scheme 10). The addition of H_2 atmosphere to $[1-Cl_2]_n$ initially results in the formation of a single species, which we assign as $1-Cl_2(H_2)$ (SI, Figure S3.21), which then apparently undergoes loss of HCl to afford 1-HCl.


Scheme 9. Formation of (iPrPCP)IrCl₂ Clusters and Reactions to form Adducts

$$\begin{array}{c} P^{i}Pr_{2} \\ CI_{\lambda_{i}} | r OH_{2} \\ CI_{\lambda_{i}$$

Scheme 10. Independent Synthesis of 1-Cl₂(C₂H₄)

DFT calculations of simple dimerization may shed light on the conclusion that $\mathbf{1}\text{-}\mathbf{Cl_2}$ tends to form clusters, in contrast with the observed behavior of $\mathbf{1}\text{-}\mathbf{HCl}$. A dimer of $\mathbf{1}\text{-}\mathbf{Cl_2}$ was computed, showing a single bridging chloride and a σ -C-H bonding interaction between a phosphino-i-propyl group of the Ir center accepting the bridging chloride with the Ir center donating the bridging chloride. In the case of $\mathbf{1}\text{-}\mathbf{HCl}$, a strikingly analogous dimeric structure is found.

Formation of such dimers $(\mathbf{1-XCl})_2$ (X = H or Cl) requires that for both monomeric units of each dimer, X and Cl are positioned mutually trans. In the case of $\mathbf{1-Cl_2}$ this is essentially no different than in the monomer (calculated C_{PCP} -Ir-Cl angles of 95.2°) whereas dimerization requires a complete rearrangement of the coordination sphere of $\mathbf{1-HCl}$. In particular, dimerization of $\mathbf{1-HCl}$ requires repositioning of the chloride to the empty coordination site approximately trans to the strong-trans-influence hydride ligand (which is reflected in the longer Ir-Cl distances of $(\mathbf{1-HCl})_2$; Figure 7. Accordingly, dimerization of $\mathbf{1-Cl_2}$ is calculated to be 5.6 kcal/mol more exergonic $(\Delta G^\circ = -0.9 \text{ kcal/mol})$ than that of $\mathbf{1-HCl}$ ($\Delta G^\circ = 4.8 \text{ kcal/mol}$), although this is only a tentative and possibly partial explanation of the apparently greater tendency of $\mathbf{1-Cl_2}$ to form clusters. We also suspect that favorable CH-Cl interactions play a role. This could include interactions between $\mathbf{1-Cl_2}$ units as well intramolecular interactions, such as seen in Figure 3, that are favored by the configuration with mutually trans chloride ligands. Lastly, we note that $(\mathbf{1-Cl_2})_2$ has three terminal chlorides available for further bridging whereas $(\mathbf{1-HCl})_2$ obviously only has one.

Figure 7. Calculated lowest-energy structures of dimers of **1-Cl₂** and **1-HCl**. Phosphinoisopropyl groups (other than the *i*-Pr group engaged in σ -C-H bonding with the complementary iridium center) and backbone H atoms omitted for clarity. Selected distances (to Ir) in Å.

SUMMARY

Attempts to generate the complex **1-Cl₂** have revealed insight into the nature of this species, likely applicable in part to other high-oxidation-state pincer complexes with halide ligands. **1-Cl₂** and adducts thereof are found to be thermodynamically very disfavored relative to **1-HCl** and adducts thereof; this is manifest for example in the need to add a hydrogen acceptor to drive the reaction of **1-HCl** with excess HCl to form **1-Cl₂** or, conversely, the formation of **1-HCl** from

the reaction of $\mathbf{1}\text{-}\mathbf{Cl_2}$ with H_2 . $\mathbf{1}\text{-}\mathbf{Cl_2}$ is not stable as a monomer but exists in solution as a mixture of clusters which can add various small molecules. In the presence of aqueous HCl, $\mathbf{1}\text{-}\mathbf{Cl_2}$ adds chloride ion to give an unusual example of an anionic transition metal complex with a Zundel cation ($H_5O_2^+$). DFT calculations indicate the favorability of formation of a dimer of $\mathbf{1}\text{-}\mathbf{Cl_2}$ with terminal chloride ligands that are potentially available for further bridging with additional monomeric units.

■ ASSOCIATED CONTENT

Supporting Information

Complete experimental details and synthetic procedures, NMR data, computational details and data, computed energies and thermodynamic quantities (**PDF**)

Optimized structures for calculated species (.mol format) (**ZIP**)

Accession Codes

CCDC 2309473, 2309474, 2309483, 2309501, 2311745 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION

Corresponding Authors

Alan S. Goldman – Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States; orcid.org/0000-0002-2774-710X; Email: alan.goldman@rutgers.edu

Authors

Ashish Parihar – Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States; orcid.org/0000-0003-1049-0077 **Thomas J. Emge** – Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States; orcid.org/0000-0003-4685-8419

Notes

The authors declare no competing financial interests.

■ ACKNOWLEDGMENTS

We thank the U. S. Department of Energy Office of Science (DE-SC0020139) for support of this research. The National Science Foundation is acknowledged for grant CHE-2117792 for acquisition of the X-ray diffractometer used to obtain all scXRD structures for this work.

■ REFERENCES

- (1) Kumar, A.; Bhatti, T. M.; Goldman, A. S. Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes Chem. Rev. 2017, 117, 12357-12384.
- http://dx.doi.org/10.1021/acs.chemrev.7b00247
- (2) Valdes, H.; Garcia-Eleno, M. A.; Canseco-Gonzalez, D.; Morales-Morales, D. Recent Advances in Catalysis with Transition-Metal Pincer Compounds ChemCatChem 2018, 10, 3136-3172. https://doi.org/10.1002/cctc.201702019
- (3) Wang, Y.; Huang, Z.; Liu, G.; Huang, Z. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond Acc. Chem. Res. 2022, 55, 2148-2161. https://doi.org/10.1021/acs.accounts.2c00311
- (4) Morales-Morales, D.; Redon, R.; Wang, Z.; Lee, D. W.; Yung, C.; Magnuson, K.; Jensen, C. M. Selective dehydrogenation of alcohols and diols catalyzed by a dihydrido iridium PCP pincer complex Can. J. Chem. **2001**, 79, 823-829. https://doi.org/10.1139/v01-070
- (5) Peris, E.; Crabtree, R. H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes Coord. Chem. Rev. 2004, 248, 2239-2246. https://doi.org/10.1016/j.ccr.2004.04.014
- (6) Clarke, Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.; Lough, A. J.; Abdur-Rashid, K. A Family of Active Iridium Catalysts for Transfer Hydrogenation of Ketones Organometallics 2006, 25, 4113-4117. https://doi.org/10.1021/om060049z
- (7) Dietrich, B. L.; Goldberg, K. I.; Heinekey, D. M.; Autrey, T.; Linehan, J. C. Iridium-Catalyzed Dehydrogenation of Substituted Amine Boranes: Kinetics, Thermodynamics, and Implications for Hydrogen Storage Inorg. Chem. 2008, 47, 8583-8585. https://doi.org/10.1021/ic801161g
- (8) Yang, J.; White, P. S.; Brookhart, M. Scope and Mechanism of the Iridium-Catalyzed Cleavage of Alkyl Ethers with Triethylsilane J. Am. Chem. Soc. 2008, 130, 17509-17518. https://doi.org/10.1021/ja806419h (9) Albrecht, M.; Morales-Morales, D. Pincer-type iridium complexes for organic transformations *Iridium* Complexes in Organic Synthesis 2009, 299-323.
- (10) Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)-Pincer Complexes J. Am. Chem. Soc. 2009, 131, 14168-14169. https://doi.org/10.1021/ja903574e
- (11) Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex Organometallics 2011, 30, 6742-6750. http://dx.doi.org/10.1021/om2010172
- (12) Ahmed Foskey, T. J.; Heinekey, D. M.; Goldberg, K. I. Partial Deoxygenation of 1,2-Propanediol Catalyzed by Iridium Pincer Complexes ACS Catal. 2012, 2, 1285-1289. http://dx.doi.org/10.1021/cs300120d
- (13) Chianese, A. R.; Shaner, S. E.; Tendler, J. A.; Pudalov, D. M.; Shopov, D. Y.; Kim, D.; Rogers, S. L.; Mo, A. Iridium Complexes of Bulky CCC-Pincer N-Heterocyclic Carbene Ligands: Steric Control of Coordination Number and Catalytic Alkene Isomerization Organometallics 2012, 31, 7359-7367.
- http://dx.doi.org/10.1021/om300468d
- (14) Kang, P.; Cheng, C.; Chen, Z.; Schauer, C. K.; Meyer, T. J.; Brookhart, M. Selective Electrocatalytic Reduction of CO₂ to Formate by Water-Stable Iridium Dihydride Pincer Complexes J. Am. Chem. Soc. 2012, 134, 5500-5503. https://doi.org/10.1021/ja300543s
- (15) Haibach, M. C.; Guan, C.; Wang, D. Y.; Li, B.; Lease, N.; Steffens, A. M.; Krogh-Jespersen, K.; Goldman, A. S. Olefin Hydroaryloxylation Catalyzed by Pincer-Iridium Complexes J. Am. Chem. Soc. 2013, 135, 15062-15070. http://dx.doi.org/10.1021/ja404566v

- (16) Guo, L.; Liu, Y. H.; Yao, W. B.; Leng, X. B.; Huang, Z. Iridium-Catalyzed Selective alpha-Alkylation of Unactivated Amides with Primary Alcohols *Org. Lett.* **2013**, *15*, 1144-1147. https://doi.org/10.1021/ol400360g
- (17) Lee, C.-I.; Zhou, J.; Ozerov, O. V. Catalytic dehydrogenative borylation of terminal alkynes by a SiNN pincer complex of iridium *J. Am. Chem. Soc.* **2013**, *135*, 3560-3566. http://dx.doi.org/10.1021/ja311682c (18) Lao, D. B.; Owens, A. C. E.; Heinekey, D. M.; Goldberg, K. I. Partial Deoxygenation of Glycerol Catalyzed by Iridium Pincer Complexes *ACS Catal.* **2013**, *3*, 2391-2396. https://doi.org/10.1021/cs400551g (19) Haibach, M. C.; Lease, N.; Goldman, A. S. Catalytic Cleavage of Ether C-O Bonds by Pincer Iridium Complexes *Angew. Chem., Intl. Ed.* **2014**, *53*, 10160–10163. https://dx.doi.org/10.1002/anie.201402576
- (20) Zhou, M.; Johnson, S. I.; Gao, Y.; Emge, T. J.; Nielsen, R. J.; Goddard, W. A.; Goldman, A. S. Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes *Organometallics* **2015**, *34*, 2879–2888. http://pubs.acs.org/doi/abs/10.1021/acs.organomet.5b00200
- (21) Lee, C.-I.; Shih, W.-C.; Zhou, J.; Reibenspies, J. H.; Ozerov, O. V. Synthesis of Triborylalkenes from Terminal Alkynes by Iridium-Catalyzed Tandem C-H Borylation and Diboration *Angew. Chem., Intl. Ed.* **2015**, *54*, 14003-14007. https://doi.org/10.1002/anie.201507372
- (22) Press, L. P.; Kosanovich, A. J.; McCulloch, B. J.; Ozerov, O. V. High-Turnover Aromatic C-H Borylation Catalyzed by POCOP-Type Pincer Complexes of Iridium *J. Am. Chem. Soc.* **2016**, *138*, 9487-9497. http://pubs.acs.org/doi/pdfplus/10.1021/jacs.6b03656
- (23) Wang, Y.; Huang, Z.; Leng, X.; Zhu, H.; Liu, G.; Huang, Z. Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism *J. Am. Chem. Soc.* **2018**, *140*, 4417-4429. https://doi.org/10.1021/jacs.8b01038
- (24) Dodge, H. M.; Kita, M. R.; Chen, C.-H.; Miller, A. J. M. Identifying and Evading Olefin Isomerization Catalyst Deactivation Pathways Resulting from Ion-Tunable Hemilability *ACS Catal.* **2020**, *10*, 13019-13030. https://doi.org/10.1021/acscatal.0c03784
- (25) Kawakami, R.; Kuriyama, S.; Tanaka, H.; Konomi, A.; Yoshizawa, K.; Nishibayashi, Y. Iridium-catalyzed Formation of Silylamine from Dinitrogen under Ambient Reaction Conditions *Chem. Lett.* **2020**, *49*, 794-797. https://doi.org/10.1246/cl.200254
- (26) Kirkina, V. A.; Osipova, E. S.; Filippov, O. A.; Silantyev, G. A.; Gelman, D.; Shubina, E. S.; Belkova, N. V. Dehydrogenation of amine-boranes catalyzed by a PCsp³P pincer iridium complex *Mendeleev Commun.* **2020**, *30*, 276-278. https://doi.org/10.1016/j.mencom.2020.05.004
- (27) Webber, R.; Qadir, M. I.; Sola, E.; Martin, M.; Suarez, E.; Dupont, J. Fast CO2 hydrogenation to formic acid catalyzed by an Ir(PSiP) pincer hydride in a DMSO/water/ionic liquid solvent system *Catal. Commun.* **2020**, 146, 106125. https://doi.org/10.1016/j.catcom.2020.106125
- (28) Camp, A. M.; Kita, M. R.; Blackburn, P. T.; Dodge, H. M.; Chen, C.-H.; Miller, A. J. M. Selecting Double Bond Positions with a Single Cation-Responsive Iridium Olefin Isomerization Catalyst *J. Am. Chem. Soc.* **2021**, 143, 2792-2800. https://doi.org/10.1021/jacs.0c11601
- (29) Hung, M.-U.; Press, L. P.; Bhuvanesh, N.; Ozerov, O. V. Examination of a Series of Ir and Rh PXL Pincer Complexes as (Pre)catalysts for Aromatic C-H Borylation *Organometallics* **2021**, *40*, 1004-1013. https://doi.org/10.1021/acs.organomet.1c00081
- (30) Yoo, C.; Miller, A. J. M. Stepwise lodide-Free Methanol Carbonylation via Methyl Acetate Activation by Pincer Iridium Complexes *J. Am. Chem. Soc.* **2021**, *143*, 12633-12643. https://doi.org/10.1021/jacs.1c05185 (31) Decker, D.; Drexler, H.-J.; Baumann, W.; Reiss, F.; Beweries, T. Catalytic dehydrocoupling of methylamine
- borane using Yamashita's [Ir(PBP)] boryl complex characterisation of a novel highly fluxional Ir tetrahydride *New J. Chem.* **2022**, *46*, 22314-22321. https://doi.org/10.1039/d2nj04914g
- (32) Messori, A.; Gagliardi, A.; Cesari, C.; Calcagno, F.; Tabanelli, T.; Cavani, F.; Mazzoni, R. Advances in the homogeneous catalyzed alcohols homologation: The mild side of the Guerbet reaction. A mini-review *Catal. Today* **2023**. https://www.sciencedirect.com/science/article/pii/S092058612300010X
- (33) van Koten, G. Pincer Ligands as Powerful Tools for Catalysis in Organic Synthesis *J. Organomet. Chem.* **2013**, *730*, 156-164. https://doi.org/10.1016/j.jorganchem.2012.12.035

- (34) van Koten, G.; Gossage, R. A. U. *The Privileged Pincer-Metal Platform: Coordination Chemistry & Applications*; Springer International Publishing, 2015.
- (35) *Pincer Compounds: Chemistry And Applications*; Morales-Morales, D., Ed.; Elsevier B.V.: Amsterdam, 2018.
- (36) Albrecht, M.; van Koten, G. Platinum Group Organometallics Based on "Pincer" Complexes: Sensors, Switches, and Catalysts *Angew. Chem., Intl. Ed.* **2001**, *40*, 3750-3781. <a href="https://doi.org/10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6">https://doi.org/10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6
- (37) Yan, J.; Song, M.; Zhou, D.-Y.; Yiu, S.-M.; Liao, L.-S.; Chi, Y.; Xie, M. Charge-Neutral Ir(III) Metal Phosphors Bearing Functional Pyrazole—Pyridine—Pyrazole Chelates *Organometallics* **2023**, *42*, 2070-2078. https://doi.org/10.1021/acs.organomet.3c00245
- (38) Moulton, C. J.; Shaw, B. L. Transition Metal-Carbon Bonds. Part XLII. Complexes of Nickel, Palladium, Platinum, Rhodium and Iridium with the Tridentate Ligand 2,6-bis[(di-tert-butylphosphino)methyl]phenyl *J. Chem. Soc., Dalton Trans.* **1976**, 1020-1024. https://doi.org/10.1039/DT9760001020
- (39) Ito, J.-i.; Shiomi, T.; Nishiyama, H. Efficient preparation of new rhodium- and iridium-[bis(oxazolinyl)-3,5-dimethylphenyl] complexes by C-H bond activation: applications in asymmetric synthesis *Adv. Synth. Catal.* **2006**, *348*, 1235-1240. https://doi.org/10.1002/adsc.200606049
- (40) Ben-Ari, E.; Gandelman, M.; Rozenberg, H.; Shimon, L. J. W.; Milstein, D. Selective Ortho C-H Activation of Haloarenes by an Ir(I) System *J. Am. Chem. Soc.* **2003**, *125*, 4714-4715. http://pubs.acs.org/doi/abs/10.1021/ja028362p
- (41) Schultz, K. M.; Goldberg, K. I.; Gusev, D. G.; Heinekey, D. M. Synthesis, Structure, and Reactivity of Iridium NHC Pincer Complexes *Organometallics* **2011**, *30*, 1429-1437. https://doi.org/10.1021/om101024x (42) Ito, J.-i.; Shiomi, T.; Nishiyama, H. Efficient Preparation of New Rhodium- and Iridium-[Bis(oxazolinyl)-3,5-dimethylphenyl] Complexes by C H Bond Activation: Applications in Asymmetric Synthesis *Adv. Synth. Catal.* **2006**, *348*, 1235-1240. https://doi.org/10.1002/adsc.200606049
- (43) Oakley, S. H.; Coogan, M. P.; Arthur, R. J. Synthesis of Bis(imino)aryl Iridium Pincer Complexes and Demonstration of Catalytic Hydrogen-Transfer Activity *Organometallics* **2007**, *26*, 2285-2290. https://doi.org/10.1021/om070059f
- (44) Raynal, M.; Pattacini, R.; Cazin, C. S. J.; Vallée, C.; Olivier-Bourbigou, H.; Braunstein, P. Reaction Intermediates in the Synthesis of New Hydrido, N-Heterocyclic Dicarbene Iridium(III) Pincer Complexes *Organometallics* **2009**, *28*, 4028-4047. https://doi.org/10.1021/om900226c
- (45) Zuo, W.; Braunstein, P. N-Heterocyclic Dicarbene Iridium(III) Pincer Complexes Featuring Mixed NHC/Abnormal NHC Ligands and Their Applications in the Transfer Dehydrogenation of Cyclooctane *Organometallics* **2012**, *31*, 2606-2615. http://dx.doi.org/10.1021/om200444q
- (46) Owens, C. P.; Varela-Alvarez, A.; Boyarskikh, V.; Musaev, D. G.; Davies, H. M. L.; Blakey, S. B. Iridium(III)-bis(oxazolinyl)phenyl catalysts for enantioselective C-H functionalization *Chem. Sci.* **2013**, *4*, 2590-2596. http://dx.doi.org/10.1039/C3SC50886B
- (47) Jagenbrein, M.; Danopoulos, A. A.; Braunstein, P. Bis-N-heterocyclic carbene 'pincer' ligands and iridium complexes with CF3 Substituted phenylene backbone *J. Organomet. Chem.* **2015**, *775*, 169-172. https://doi.org/10.1016/j.jorganchem.2014.05.035
- (48) Li, N.; Zhu, W.-J.; Huang, J.-J.; Hao, X.-Q.; Gong, J.-F.; Song, M.-P. Chiral NCN Pincer Iridium(III) Complexes with Bis(imidazolinyl)phenyl Ligands: Synthesis and Application in Enantioselective C–H Functionalization of Indoles with α -Aryl- α -diazoacetates *Organometallics* **2020**, *39*, 2222-2234. https://doi.org/10.1021/acs.organomet.0c00174
- (49) Das, S.; Mandal, S.; Malakar, S.; Emge, T. J.; Goldman, A. S. Bis(N-xylyl-imino)phenyl "NCN" Iridium Pincer Complexes. Thermodynamics of Ligand Binding and C-C Bond Cleavage *ChemRxiv* (*preprint*) **2023**. https://doi.org/10.26434/chemrxiv-2023-r4jt6
- (50) Bauer, E. B.; Andavan, G. T. S.; Hollis, T. K.; Rubio, R. J.; Cho, J.; Kuchenbeiser, G. R.; Helgert, T. R.; Letko, C. S.; Tham, F. S. Air- and Water-Stable Catalysts for Hydroamination/Cyclization. Synthesis and Application of CCC-NHC Pincer Complexes of Rh and Ir *Org. Lett.* **2008**, *10*, 1175-1178. https://doi.org/10.1021/ol8000766

- (51) Raynal, M.; Cazin, C. S. J.; Vallée, C.; Olivier-Bourbigou, H.; Braunstein, P. An unprecedented, figure-of-eight, dinuclear iridium(I) dicarbene and new iridium(III) 'pincer' complexes *Chem. Commun.* **2008**, 3983-3985. http://dx.doi.org/10.1039/B808806C
- (52) Daniels, R. E.; McKenzie, L. K.; Shewring, J. R.; Weinstein, J. A.; Kozhevnikov, Valery N.; Bryant, H. E. Pyridazine-bridged cationic diiridium complexes as potential dual-mode bioimaging probes *RSC Advances* **2018**, *8*, 9670-9676. http://dx.doi.org/10.1039/C8RA00265G
- (53) Allen, K. E.; Heinekey, D. M.; Goldman, A. S.; Goldberg, K. I. Alkane Dehydrogenation by C-H Activation at Iridium(III) *Organometallics* **2013**, *32*, 1579-1582. http://dx.doi.org/10.1021/om301267c
- (54) Gao, Y.; Guan, C.; Zhou, M.; Kumar, A.; Emge, T. J.; Wright, A. M.; Goldberg, K. I.; Krogh-Jespersen, K.; Goldman, A. S. β-Hydride Elimination and C–H Activation by an Iridium Acetate Complex, Catalyzed by Lewis Acids. Alkane Dehydrogenation Cocatalyzed by Lewis Acids and [2,6-Bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl]iridium *J. Am. Chem. Soc.* **2017**, *139*, 6338–6350. http://dx.doi.org/10.1021/jacs.6b12995 (55) Zhou, X.; Malakar, S.; Dugan, T.; Wang, K.; Sattler, A.; Marler, D. O.; Emge, T. J.; Krogh-Jespersen, K.;
- (55) Zhou, X.; Malakar, S.; Dugan, T.; Wang, K.; Sattler, A.; Marler, D. O.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Alkane Dehydrogenation Catalyzed by a Fluorinated Phebox Iridium Complex *ACS Catal.* **2021**, *11*, 14194-14209. https://doi.org/10.1021/acscatal.1c03562
- (56) Ghosh, R.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Combined experimental and computational studies on carbon-carbon reductive elimination from bis(hydrocarbyl) complexes of (PCP)Ir *J. Am. Chem. Soc.* **2008**, *130*, 11317-11327. http://dx.doi.org/10.1021/ja800434r
- (57) Liu, F.; Goldman, A. S. Efficient Thermochemical Alkane Dehydrogenation and Isomerization Catalyzed by an Iridium Pincer Complex *Chem. Commun.* **1999**, 655-656. https://doi.org/10.1039/A900631A
- (58) Kumar, A.; Zhou, T.; Emge, T. J.; Mironov, O.; Saxton, R. J.; Krogh-Jespersen, K.; Goldman, A. S. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product J. Am. Chem. Soc. **2015**, 137, 9894-9911. http://doi.org/10.1021/jacs.5b05313
- (59) Bhatti, T. M.; Kumar, A.; Parihar, A.; Moncy, H. K.; Emge, T. J.; Waldie, K. M.; Hasanayn, F.; Goldman, A. S. Metal—Ligand Proton Tautomerism, Electron Transfer, and C(sp3)—H Activation by a 4-Pyridinyl-Pincer Iridium Hydride Complex *J. Am. Chem. Soc.* **2023**, *145*, 18296—18306. https://doi.org/10.1021/jacs.3c03376
- (60) Shih, W.-C.; Ozerov, O. V. One-Pot Synthesis of 1,3-Bis(phosphinomethyl)arene PCP/PNP Pincer Ligands and Their Nickel Complexes *Organometallics* **2015**, *34*, 4591-4597.

https://doi.org/10.1021/acs.organomet.5b00671

- (61) Gottker-Schnetmann, I.; White, P.; Brookhart, M. Iridium Bis(phosphinite) p-XPCP Pincer Complexes: Highly Active Catalysts for the Transfer Dehydrogenation of Alkanes *J. Am. Chem. Soc.* **2004**, *126*, 1804 -1811. https://doi.org/10.1021/ja0385235
- (62) Kovalenko, O. O.; Wendt, O. F. An Electron Poor Iridium Pincer Complex for Catalytic Alkane Dehydrogenation *Dalton Trans.* **2016**, *45*, 15963-15969. http://dx.doi.org/10.1039/C6DT01816E
- (63) Zhang, X.; Wu, S.-B.; Leng, X.; Chung, L. W.; Liu, G.; Huang, Z. N-Bridged Pincer Iridium Complexes for Highly Efficient Alkane Dehydrogenation and the Relevant Linker Effects *ACS Catal.* **2020**, *10*, 6475-6487. https://doi.org/10.1021/acscatal.0c00539
- (64) Gordon, B. M.; Lease, N.; Emge, T. J.; Hasanayn, F.; Goldman, A. S. Reactivity of Iridium Complexes of a Triphosphorus-Pincer Ligand Based on a Secondary Phosphine. Catalytic Alkane Dehydrogenation and the Origin of Extremely High Activity *J. Am. Chem. Soc.* **2022**, *144*, 4133-4146. https://doi.org/10.1021/jacs.1c13309
- (65) Jean, Y.; Eisenstein, O. Ligand dependent nature of three possible shapes for a d⁶ pentacoordinated complex *Polyhedron* **1988**, *7*, 405-407. https://doi.org/10.1016/S0277-5387(00)80491-X
- (66) Rachidi, I. E. I.; Eisenstein, O.; Jean, Y. A theoretical study of the possible structures of d⁶ ML₅ complexes *New J. Chem.* **1990**, *14*, 671-677.
- (67) Riehl, J. F.; Jean, Y.; Eisenstein, O.; Pelissier, M. Theoretical study of the structures of electron-deficient d^6 ML₅ complexes. Importance of a pi-donating ligand *Organometallics* **1992**, *11*, 729-737. https://pubs.acs.org/doi/10.1021/om00038a035

- (68) Zundel, G.; Metzger, H. Energiebänder der tunnelnden Überschuß-Protonen in flüssigen Säuren. Eine IRspektroskopische Untersuchung der Natur der Gruppierungen H₅O₂⁺ **1968**, *58*, 225-245. https://doi.org/10.1524/zpch.1968.58.5 6.225
- (69) Dahms, F.; Fingerhut, B. P.; Nibbering, E. T. J.; Pines, E.; Elsaesser, T. Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy *Science* **2017**, *357*, 491-495. https://doi.org/10.1126/science.aan5144
- (70) Pettinari, C.; Marchetti, F.; Pettinari, R.; Drozdov, A.; Semenov, S.; Troyanov, S. I.; Zolin, V. A new rare-earth metal acylpyrazolonate containing the Zundel ion H_5O_2 *stabilized by strong hydrogen bonding *Inorg. Chem. Comm.* **2006**, *9*, 634-637. https://doi.org/10.1016/j.inoche.2006.03.008
- (71) Cotton, F. A.; Fair, C. K.; Lewis, G. E.; Mott, G. N.; Ross, F. K.; Schultz, A. J.; Williams, J. M. Precise structural characterizations of the hexaaquovanadium(III) and diaquohydrogen ions. X-ray and neutron diffraction studies of $[V(H_2O)_6][H_5O_2](CF_3SO_3)_4$ J. Am. Chem. Soc. **1984**, 106, 5319-5323. https://doi.org/10.1021/ja00330a047
- (72) Taylor, R.; Kennard, O. Crystallographic evidence for the existence of CH···O, CH···N and CH···Cl hydrogen bonds *J. Am. Chem. Soc.* **1982**, *104*, 5063-5070. https://doi.org/10.1021/ja00383a012
- (73) Khrizman, A.; Cheng, H. Y.; Bottini, G.; Moyna, G. Observation of aliphatic C–H···X hydrogen bonds in imidazolium ionic liquids *Chem. Commun.* **2015**, *51*, 3193-3195. http://dx.doi.org/10.1039/C4CC09783A
- (74) Fillion, E.; Wilsily, A.; Fishlock, D. Probing Persistent Intramolecular C–H···X (X = O, S, Br, Cl, and F) Bonding in Solution Using Benzyl Meldrum's Acid Derivatives *J. Org. Chem.* **2009**, *74*, 1259-1267. https://doi.org/10.1021/jo802311w
- (75) B. Aakeröy, C.; A. Evans, T.; R. Seddon, K.; Pálinkó, I. The C–H···Cl hydrogen bond: does it exist? *New Journal of Chemistry* **1999**, *23*, 145-152. http://dx.doi.org/10.1039/A809309A
- (76) For purposes of simplifying the comparative analysis we consider hydrogenolysis of *trans-***1-Cl**₂(**H**₂**O**) to give *trans-***1-HCl(H**₂**O**). However, *cis-***1-HCl(H**₂**O**) is calculated to be more stable than *trans-***1-HCl(H**₂**O**), by 1.7 kcal/mol (gas phase) and 2.3 kcal/mol (solvent continuum).
- (77) Malakar, S.; Gordon, B. M.; Mandal, S.; Emge, T. J.; Goldman, A. S. Ruthenium Complexes of a Triphosphorus-Coordinating Pincer Ligand: Ru–P Ligand-Substituent Exchange Reactions Driven by Large Variations of Bond Energies *Inorg. Chem.* **2023**, *62*, 4525–4532. https://doi.org/10.1021/acs.inorgchem.2c04416