
1.  Introduction
The transit time of water is a fundamental descriptor of hydrologic systems (McGuire & McDonnell,  2006). 
Recent advances in our capability to model time-variant water transit times have substantially improved our under-
standing of storage, flow paths, and source of water in complex watersheds (Botter et al., 2011; Harman, 2015; 
Rinaldo et al., 2015; van der Velde et al., 2012). The differentiated concepts of celerity controlling rainfall-runoff 
responses and velocity driving water particle movement are increasingly recognized and used to guide water-
shed studies that aim to reconcile the diverse controls on solute transport (Benettin et  al.,  2020; Hrachowitz 
et  al.,  2015; Van der Velde, De Rooij, et  al.,  2010). However, applications of the newly evolved water age 
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younger stored water flowing through big soil pores when the tile drained system was wet. Based on the 
measured 𝐴𝐴 NO3

− isotopes, we were able to discern key microbial 𝐴𝐴 NO3
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transport of 𝐴𝐴 NO3
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that controls how water flows at the tile-drain scale. Our finding suggests that combining water age modeling 
with 𝐴𝐴 NO3
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− transport.
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theory to interpret reactive solute dynamics remain rare in the literature, precluding generalization of findings 
across temporal, spatial, and physiographical scales. Moreover, as concluded by several recent synthesis studies 
(Benettin et al., 2022; Hrachowitz et al., 2016; Li et al., 2021), a unified modeling framework based on water 
age theory for coupled water and reactive solute transport remains out of reach. This is mainly due to the contin-
ued challenge in resolving the large variability of water mixing and selection behaviors at the watershed scale 
(Benettin et al., 2022), as well as an incomplete understanding of the nonlinear interactions between hydrological 
and biogeochemical processes that govern solute dynamics along hydrologic flow transport (Li et  al., 2021). 
Overcoming these emergent challenges is imperative for modeling the transport and cycling of nitrate (𝐴𝐴 NO3

− ) at 
watershed scales and beyond, where model simulations and predictions are often confronted by the heterogene-
ous distribution of 𝐴𝐴 NO3

− sources and the uncertain occurrence and magnitude of 𝐴𝐴 NO3
− transformation processes 

(Kumar et al., 2020).

The natural abundance stable nitrogen (N) and oxygen (O) isotopes of 𝐴𝐴 NO3
− (hereafter referred simply as to 𝐴𝐴 NO3

− 
isotopes) have long been used as a tracer of 𝐴𝐴 NO3

− in hydrologic systems (Kendall et al., 2007). The unique power 
of 𝐴𝐴 NO3

− isotopes stems from the distinct partitioning of N and O isotopes between chemical species or phases, 
known as isotope fractionation (see Section 2.2 for more details). Previous studies at the watershed scale have 
combined 𝐴𝐴 NO3

− isotope measurements with end-member mixing (e.g., Kaushal et al. (2011), Yi et al. (2017), and 
Sebestyen et al. (2019)) and mass balance models (e.g., Houlton et al. (2006), Houlton and Bai (2009), and Fang 
et al.  (2015)) to differentiate N sources, track their distributions, and determine the extent of biogeochemical 
transformations acting on 𝐴𝐴 NO3

− . However, previous applications of 𝐴𝐴 NO3
− isotopes at the watershed scale typi-

cally did not explicitly account for the variability of 𝐴𝐴 NO3
− isotopic source signatures resulting from fractionation 

processes, or relied heavily upon assumptions of steady state or system stationarity, which are often violated 
under transient transport conditions. To our knowledge, the utility of 𝐴𝐴 NO3

− isotopes has not been rigorously 
evaluated against complex hydrologic conditions beyond the binary classification of base versus storm flows. 
To that end, combining 𝐴𝐴 NO3

− isotope measurements with the formulation of transport by time-variant water age 
distributions may better contextualize observed 𝐴𝐴 NO3

− isotopic variations, thus providing a new opportunity to 
dissect the often intertwined hydrological and biogeochemical processes that control reactive 𝐴𝐴 NO3

− transport.

In this proof-of-concept study, we combined the recently developed StorAge Selection (SAS) functions for water 
age modeling with 𝐴𝐴 NO3

− isotope measurements to examine coupled water and 𝐴𝐴 NO3
− transport in a tile-drained 

agricultural field in east-central Illinois, USA. A substantial fraction of agricultural land in the Upper Midwest 
U.S. is tile-drained to maintain high crop production by increasing soil drainage (Blann et al., 2009). The instal-
lation of subsurface drainage tiles has caused profound alterations in water and solute transport in this region, 
including intensified hydrographs, shortened groundwater flow paths, and loss of nutrients and agrochemicals 
via tile discharge (see Blann et al. (2009) and references cited therein). Indeed, the combination of N fertilizer 
applications on tile-drained watersheds has been considered the dominant source of riverine 𝐴𝐴 NO3

− yields in the 
upper Mississippi River Basin (David et al., 2010; Ma et al., 2023). Nevertheless, it remains elusive how hydro-
logical, biogeochemical, and management factors interact to control water and 𝐴𝐴 NO3

− transport in tile-drained 
systems. For example, recent studies revealed a threshold behavior in tile discharge generation, suggesting that 
any deficits in below-tile storage must be filled to raise the groundwater table to the tile elevation before signif-
icant tile discharge can be generated (Cain et al., 2022; Williams & McAfee, 2021). The remaining questions to 
be answered are what sources of water mainly contribute to tile discharge and how these contributions vary with 
antecedent wetness conditions. In addition, variations in 𝐴𝐴 NO3

− load from many tile-drained fields are found to be 
predominantly driven by the duration and quantity of tile discharge (Bauwe et al., 2020). In the watershed solute 
transport literature, this stationary export regime, termed “chemostasis,” has been variously hypothesized to 
result from a proportional change in flow- and solute-generating areas (Godsey et al., 2009), or vertical (Seibert 
et  al., 2009; Thompson et al., 2011) and areal (Basu et  al., 2010) homogeneous distribution of solute stores. 
However, while all these hypotheses allude to an intimate link between solute export regimes and water age 
dynamics (Musolff et al., 2017), we still lack robust observational constraints that can guide the testing of these 
hypotheses by disentangling coupled water and reactive solute transport.

Here we hypothesized that water age, 𝐴𝐴 NO3
− export, and 𝐴𝐴 NO3

− isotope dynamics are inherently linked in 
tile-drained agricultural systems. To test this hypothesis, we focused on discharge, solute concentrations (i.e., 
chloride (Cl) and 𝐴𝐴 NO3

− ), and 𝐴𝐴 NO3
− isotopes measured directly from tile drain outlets to isolate dominant water 

and solute transport mechanisms operating at this scale. Specifically, we addressed three key questions in this 
study: (a) How does the age of tile discharge vary with hydroclimatic conditions and reflect activation of distinct 

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034948 by U

niversity O
f Illinois A

t U
rbana C

ham
paign, W

iley O
nline Library on [30/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

YU ET AL.

10.1029/2023WR034948

3 of 26

flow paths? (b) how does tile 𝐴𝐴 NO3
− export respond to variations in tile water age? and (c) What added value can 

𝐴𝐴 NO3
− isotope measurements provide in terms of modeling coupled water and 𝐴𝐴 NO3

− transport? Finally, based 
on results from this study, we discussed implications for modeling 𝐴𝐴 NO3

− transport at the watershed scale and 
management of tile-drained fields.

2.  Background Theory
Here we provide a brief summary of recent advances in modeling water age distributions and 𝐴𝐴 NO3

− isotope finger-
printing techniques. The goal is not to provide a comprehensive review on these subjects, which can be found 
elsewhere (e.g., Rinaldo et al. (2015), Hrachowitz et al. (2016), Benettin et al. (2022), Böhlke (2002), Kendall 
et al. (2007), and Casciotti (2016)). Instead, through this summary, we hope to provide a necessary context that 
will ease the description of our modeling method and the interpretation of tracer data obtained in this study.

2.1.  Water Age Distributions and SAS Functions

The water age concept is based on the representation of hydrologic systems as a dynamic population of water 
particles that age as they move from inflow (e.g., precipitation) to outflow (e.g., discharge and evapotranspira-
tion). More specifically, by conceptualizing a hydrologic system as a single control volume with a total storage 
(S), an influx of precipitation (J) as the only water input, and discharge (Q) and evapotranspiration (ET) as 
outputs, the water age (T) is defined as the time interval between the entrance of a water particle into the volume 
and its exit via either Q or ET. Based on this definition, the T is conditioned on the exit time. The water age distri-
bution (p), therefore, summarizes the distribution of T for a cohort of such particles, reflecting the random nature 
of T as a result of complex dispersion in the subsurface. Importantly, the age distributions of outfluxes (pQ and 
pET) are distinct from the storage age distribution (pS), which refers to the distribution of the time elapsed since 
the entrance of a water particle that is still present within the storage.

In real-world hydrologic systems, the age distributions of storage and outfluxes are variable in time due to the 
nonstationary entrance of zero-age particles via J and the nonuniform selection of older particles by Q and ET 
(Botter et al., 2011; Harman, 2015; van der Velde et al., 2012). The temporal evolution of the water age distribu-
tions can be formally described by the master equation expressing mass conservation over time and age (Botter 
et al., 2011), which has been reformulated by Harman (2015) using the cumulative age distributions as:

𝜕𝜕𝜕𝜕𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇)

𝜕𝜕𝜕𝜕
= 𝐽𝐽 (𝑡𝑡) −𝑄𝑄(𝑡𝑡)𝑃𝑃𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇) − ET(𝑡𝑡)𝑃𝑃ET(𝑇𝑇 𝑇 𝑇𝑇) −

𝜕𝜕𝜕𝜕𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇)

𝜕𝜕𝜕𝜕
� (1)

where t is time; PQ(T, t) and PET(T, t) are the cumulative age distributions for Q and ET, respectively; and ST(T, t) 
is age-ranked storage (Harman, 2015; van der Velde et al., 2012), defined as the product of the cumulative storage 
age distribution, PS(T, t), and the storage at time t:

𝑆𝑆𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇) = 𝑆𝑆(𝑡𝑡)𝑃𝑃𝑆𝑆 (𝑇𝑇 𝑇 𝑇𝑇)� (2)

Thus, the age-ranked storage ST(T, t) quantifies the cumulative volumes of water in storage as classified according 
to their age T at time t (Harman, 2015). The introduction of ST makes it possible to re-express PQ(T, t) and PET(T, 
t) by assigning each of them a SAS function Ω(ST, t) that dictates how much each different age-ranked storage 
contributes to Q and ET:

Ω𝑄𝑄(𝑆𝑆𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇),𝑡𝑡 ) = 𝑃𝑃𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇)� (3)

ΩET(𝑆𝑆𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇),𝑡𝑡 ) = 𝑃𝑃ET(𝑇𝑇 𝑇 𝑇𝑇)� (4)

This re-expression greatly simplifies the parameterization of PQ(T, t) and PET(T, t), which can be otherwise chal-
lenging because PQ(T, t) and PET(T, t) are dependent on the entire history of storage states. In addition, solution 
to Equation 1 allows one to back-calculate, at any time, the storage age distribution pS(T, t) and through, the SAS 
functions, the outflux age distributions, pQ(T, t) and pET(T, t):

𝑝𝑝𝑠𝑠(𝑇𝑇 𝑇 𝑇𝑇) =
𝜕𝜕𝜕𝜕𝑠𝑠(𝑇𝑇 𝑇 𝑇𝑇)

𝜕𝜕𝜕𝜕
=

𝜕𝜕𝜕𝜕𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇)

𝜕𝜕𝜕𝜕

1

𝑆𝑆(𝑡𝑡)
� (5)
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𝑝𝑝𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇) =
𝜕𝜕𝜕𝜕𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇)

𝜕𝜕𝜕𝜕
=

𝜕𝜕Ω𝑄𝑄(𝑆𝑆𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇),𝑡𝑡 )

𝜕𝜕𝜕𝜕
� (6)

𝑝𝑝ET(𝑇𝑇 𝑇 𝑇𝑇) =
𝜕𝜕𝜕𝜕ET(𝑇𝑇 𝑇 𝑇𝑇)

𝜕𝜕𝜕𝜕
=

𝜕𝜕ΩET(𝑆𝑆𝑇𝑇 (𝑇𝑇 𝑇 𝑇𝑇),𝑡𝑡 )

𝜕𝜕𝜕𝜕
� (7)

The SAS approach can be used to simulate movement of tracers such as Cl and stable water isotopes through a 
hydrologic system, which in turn allows inverse modeling of the shape and variability of SAS functions using 
tracer data. Although tracers like Cl often do not behave conservatively due to mass transfer, evaporation, and/
or biogeochemical processes (Kirchner et al., 2010), these nonconservative behaviors can be accounted for under 
the SAS modeling framework using a generalized expression of solute transport (Harman, 2015; van der Velde 
et al., 2012):

𝐶𝐶𝑄𝑄(𝑡𝑡) = ∫
∞

0

𝐶𝐶𝑆𝑆 (𝑇𝑇 𝑇 𝑇𝑇)𝑝𝑝𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇)𝑑𝑑𝑑𝑑� (8)

Equation 8 states that each stored volume can be associated with a tracer concentration CS(T, t), which retains 
impacts from all related input and nonconservative transport processes. The tracer concentration in Q, CQ(t), is 
therefore obtained by integrating the weighted contribution of all discharged volumes according to pQ(T, t).

Previous applications of SAS functions to characterizing time-variant water age distributions have provided insight 
into water mixing and selection mechanisms in various hydrologic settings. At the watershed scale, the shape of 
SAS functions for Q has often been found to reflect marked preference for younger stored water. Moreover, this 
preferential release of younger water is also often more pronounced during wetter conditions or larger storms—a 
phenomenon known as the “inverse storage effect” (Harman, 2015). Consequently, a larger storage promotes an 
increase in younger water release, resulting in shorter transit times (Benettin et al., 2022). The physical origin 
of the inverse storage effect has been linked to activations of fast/short flow paths triggered by exceedance of 
certain storage thresholds (Kaandorp et al., 2018; Kim et al., 2016; Pangle et al., 2017; Wilusz et al., 2020; Yang 
et al., 2018). However, on the other hand, deviations of water age dynamics from a young water preference and 
inverse storage effect have also been reported in some watersheds, where increased hydrologic connectivity 
of aged water in storage may cause mobilization of these water during storm events (Klaus et al., 2013), and 
for vertical water percolation in soils, where flow regime was dominated by advection (Asadollahi et al., 2020; 
Queloz et al., 2015). These findings advocate for more research on the variability of water age dynamics across 
diverse hydrologic compartments. In addition, because the estimation of SAS functions relies on calibration 
against tracer data, definitive diagnosis of an inverse storage effect can be challenging due to nonconservative 
tracer behaviors and uncertainties in SAS model inputs and model structure (Harman, 2015).

2.2.  Nitrate Isotope Fingerprinting

Just as stable water isotopes are to characterizing water mixing and flow dynamics in hydrologic systems, stable 
isotope ratio measurements of 𝐴𝐴 NO3

− are an indispensable tool for understanding the dynamics and relative rates 
of biogeochemical processes comprising the N cycle (Böhlke, 2002; Casciotti, 2016; Kendall et al., 2007). N and 
O isotope ratios are generally expressed using the delta (δ) notation in units of per mil (‰):

𝛿𝛿
15
N =

(

15
N ∶

14
Nsample∕

15
N ∶

14
Nreference − 1

)

× 1000� (9)

𝛿𝛿
18
O =

(

18
O ∶

16
Osample∕

18
O ∶

16
Oreference − 1

)

× 1000� (10)

N2 in air is the N isotope reference, and O in Vienna standard mean ocean water (VSMOW) is the O isotope 
reference.

The δ 15N and δ 18O values of 𝐴𝐴 NO3
− vary during enzyme-driven biological processes, which are arguably most 

relevant in the context of 𝐴𝐴 NO3
− cycling in hydrologic systems (Kendall et  al., 2007). Specifically, enzymatic 

isotope fractionation arises from small differences in the rates of reactions containing heavy and light isotopes. 
If the reaction rate can be characterized by a first-order dependence on the substrate concentration, then the 
fractionation factor, α, can be defined as  Lk/ Hk, where  Lk is the first-order rate constant for the reaction of the 
light isotope-containing molecule (e.g.,  14N 16O 16O 16O) and  Hk is the first-order rate constant for the reaction of 
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the heavy isotope-containing molecule (e.g.,  14N 18O 16O 16O) (Bigeleisen & Wolfsberg, 1957). The fractionation 
factor can also be expressed in per mil as an isotope effect, ε, defined as:

𝜀𝜀 = (𝛼𝛼 − 1) × 1000 = (
𝐿𝐿
𝑘𝑘∕

𝐻𝐻
𝑘𝑘 − 1) × 1000� (11)

Most of enzymatic reactions involved in biogeochemical 𝐴𝐴 NO3
− cycling preferentially use light isotope-containing 

molecules due to a larger energy investment for using the heavier isotope (Granger & Wankel, 2016). This pref-
erence at the enzyme level results in an enrichment of heavy isotopes in the substrate pool (correspondingly an 
enrichment of light isotopes in the product pool) and is termed the kinetic isotope effect, with α > 1 and ε > 0 
(because  Lk/ Hk > 1).

Recent progress in the quantification of kinetic isotope effects for key microbial processes of the N cycle has 
provided a basis for interpreting the δ 15N and δ 18O values of environmental 𝐴𝐴 NO3

− (Granger & Wankel, 2016; Yu 
& Elliott, 2018). For example, nitrification (i.e., aerobic oxidation of ammonia (NH3) to 𝐴𝐴 NO3

− ) has been shown 
to express a strong kinetic N isotope effect, with reported  15ε ranging between 25 and 35‰ (Casciotti et al., 2003; 
Mariotti et al., 1981; Yu & Elliott, 2018). This means that when NH3 supply to nitrifying microbes is not limited 
and the kinetic isotope effect is fully expressed, the 𝐴𝐴 NO3

− produced has a δ 15N value about 30‰ lower than that 
of the substrate NH3. The isotope systematics underlying the δ 18O of 𝐴𝐴 NO3

− produced from nitrification is more 
complex, as it involves kinetic O isotope fractionations during the incorporation of O atoms from water and O2 
into the produced 𝐴𝐴 NO3

− as well as O isotope exchange between water and nitrite, an intermediate of nitrification 
(Buchwald & Casciotti, 2010; Casciotti et al., 2010). Collectively, these O isotope fractionations form a direct 
link between the δ 18O of water and that of 𝐴𝐴 NO3

− resulting from nitrification in soil (Yu & Elliott, 2018).

Perhaps the most powerful utility of 𝐴𝐴 NO3
− isotopes in hydrologic systems is to trace denitrification. While assimi-

latory 𝐴𝐴 NO3
− uptake by plants and microbes (Fang et al., 2015) and physical processes like diffusion and dispersion 

(Mnich & Houlton, 2016) do not exhibit appreciable isotope fractionations on 𝐴𝐴 NO3
− , enzymatic bond breaking 

during denitrification imprints a strong isotope effect on 𝐴𝐴 NO3
− isotopes (Denk et al., 2017; Yu & Elliott, 2021). 

As a result, denitrification causes the δ 15N and δ 18O values of the residual 𝐴𝐴 NO3
− to increase exponentially as 

𝐴𝐴 NO3
− concentrations decrease. More importantly, the effects of denitrification on the dual isotopic composition 

of 𝐴𝐴 NO3
− are considered coupled since both the N and O atoms originate in the same molecule. This coupled frac-

tionation is analogous to the simultaneous enrichments of heavier hydrogen and O isotopes in the residual water 
during evaporation (Bowen et al., 2018), and is represented by a line with a slope of 1 in the dual isotope space of 

𝐴𝐴 NO3
− (Granger et al., 2006), analogous to the evaporation line in the dual isotope space of water. Therefore, devi-

ations from the denitrification line may indicate occurrence of 𝐴𝐴 NO3
− production processes such as nitrification 

and/or changes in the δ 15N and δ 18O values of the source 𝐴𝐴 NO3
− (Granger & Wankel, 2016).

3.  Materials and Methods
3.1.  Study Site

This study was conducted on a tile-drained field in Douglas County located in the Upper Embarras River (UER) 
watershed near Tuscola, Illinois (39°43′ N, 88°14′ W) (Figure 1a). The field is about 60 ha total and constitutes 
two adjacent sub-fields separated by a ditch that empties into the UER approximately 6 km distant (Figure 1a). 
This region has a humid continental climate, with cold winters (average January temperature of −2°C) and 
warm summers (average July temperature of 23°C). The 30-year (1993–2022) mean annual precipitation was 
1,008 mm (NOAA, 2022). Minor snow accumulation is not uncommon in winter at this site, but it rarely lasts 
longer than a few weeks, and on average melts within a few days. Throughout the study period (2015–2022), 
weather conditions at the site, including precipitation, air temperature, humidity, solar radiation, and wind speed, 
were measured at 15-min intervals using a weather station equipped with a tipping bucket rain gauge (Davis 
Instruments Corporation, USA) (Figure 1a). Snowfall data measured in liquid water equivalents were retrieved 
from a meteorological station about 9 km from the site (NOAA, 2022).

The UER watershed is representative of the glaciated Midwest, characterized by low-gradient topography and 
poorly drained soils. The study site is nearly flat with land surface slopes ranging from 0% to 2%. Soil profiles 
at the site reflect glacial deposition patterns, with very deep, fine-textured soils formed on lacustrine deposits, 
and bedrock depths are believed to be 50–100 m below the surface (Andino et al., 2020; Cain et al., 2022). The 
soil at the site is classified as a Milford silty clay loam (fine, mixed, superactive, mesic Typic Endoaquolls) 
(USDA-NRCS, 2016).

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034948 by U

niversity O
f Illinois A

t U
rbana C

ham
paign, W

iley O
nline Library on [30/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

YU ET AL.

10.1029/2023WR034948

6 of 26

For each of the two sub-fields comprising the study site, a system of parallel drains was installed approximately 
40 years ago at depths ranging from 1.2 to 1.5 m below the soil surface. Each drain system is composed of one 
main drain fed by a set of lateral drains spaced 30.5 m apart, all consisting of 12.7 cm diameter perforated plastic 
pipe. The drain outlet of each sub-field empties into the ditch 1.5 m above the ditch bed. During the study period, 
each of the lateral tiles in the two sub-fields was monitored as a part of a replicated fertilizer management study 
(Andino et al., 2020). Specifically, an inline water level control structure (AgriDrain Corporation, USA) was 
installed on each lateral tile at approximately 4 m from the junction with the tile main for discharge and solute 
concentration measurements.

This study focuses on the field-scale observations on three lateral tiles, hereafter referred to as Tiles A, B, and C 
(see their locations in Figure 1a). The lengths of these tiles range from 500 to 570 m. Assuming that the midpoints 
between two adjacent tiles form a no-flow boundary, the discharge-contributing area of the three tiles were esti-
mated to range from 1.6 to 1.8 ha. Compared to Tile B, Tile A and Tile C are bounded by more depressional areas, 
although the areas intersected were limited and spatially scattered (Figure 1a).

Identical agricultural management practices were applied to the soil overlying the three tiles. Briefly, a 2-year 
crop rotation of corn-soybean, a common practice in the Midwestern U.S., was used. During the study period, 
corn was planted in 2015, 2017, 2019, and 2021, and soybean was planted in alternative years of 2016, 2018, 
2020, and 2022. While soybean was no-till planted, strip-till was used during the fall prior to the corn phase for 
seedbed preparation. In the corn years, anhydrous NH3 was knifed into surface soil in the spring before corn 
planting, and 32% urea-ammonium-nitrate (UAN) was side-dressed after corn emergence. N fertilizer was not 
applied to soybean. During the study period, potash (KCl) was applied once to the entire field on 17 April 2021 
as a potassium fertilizer. The application rate was 50 kg Cl ha −1. The field is not irrigated, so the only water input 
is precipitation.

3.2.  Tile Drainage Measurements and Concentration Data

Each inline monitoring structure was equipped with a stoplog containing a 45° V-notch weir, and water depth 
within the structure was recorded using a water level sensor (Model 3001, Solinst, USA) at 15-min intervals. Tile 
discharge rates were determined using a discharge equation for inline water level control structures developed by 
Chun and Cooke (2008) and normalized by the estimated tile drainage area of the respective tiles. Daily discharge 
rates were then aggregated from the 15-min data. From January 2015 to July 2022, we collected water samples 

Figure 1.  (a) Study location and study site map showing the parallel tile drain systems and depression depth derived from 1.8-m LiDAR digital elevation data of 
the site. (b) Schematic of the control volume used in the StorAge Selection modeling. J, ET, Q, and R denote precipitation, evapotranspiration, tile discharge, and a 
combined flux of deep percolation and groundwater exfiltration, respectively.
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from each of the three inline monitoring structures using automated samplers (ISCO 3700C, Teledyne Isco Inc., 
USA). The sampling frequency was weekly. Water samples (n = 1090) were retrieved from the automated water 
samplers within 48 hr of the collection. Upon return to the laboratory, water samples were vacuum filtered and 
analyzed for 𝐴𝐴 NO3

− and Cl concentrations using a Dionex ICS1600 Ion Chromatograph.

To facilitate the modeling of water age and the related analysis for 𝐴𝐴 NO3
− export regime, the measured 𝐴𝐴 NO3

− and 
Cl concentrations for all three tiles along with tile discharge measured at Tile B are shown in Figure 2. Every 
year during the study period, the tiles ceased to flow at the onset of peak growing season (GS) (i.e., late July 
to early August) due to enhanced crop ET. Typically, not long after crop harvest in October or November, the 
flow resumed, usually triggered by a few intense precipitation events. Here, we use water year, defined as 1 
October to 30 September, instead of calendar year, to describe the measured flow and tracer results, because it 
better aligns with the onset and cessation of the tile discharge. The measured 𝐴𝐴 NO3

− concentrations exhibit high 
temporal variability during the corn years, with abruptly increased concentrations following every fertilization 
event (Figure 2a). In contrast, 𝐴𝐴 NO3

− concentrations measured during the soybean years were relatively stable 
(Figure 2a). These patterns were consistent among the three tiles.

A unique trend emerged from the measured Cl concentrations (Figure  2b). The Cl concentrations decreased 
gradually from about 10 to 16 mg L −1 at the beginning of the study period to less than 4 mg L −1 in the spring of 
2021, and then increased to high values again following the potash application (Figure 2b), the first application 
since the study initiated in 2015. Therefore, the initial high Cl concentrations in discharge were due to past potash 
fertilizer applications that occurred prior to the onset of this study. Though we do not know exact dates and input 
amounts, these pre-study Cl inputs via potash fertilizer are likely to be of similar or greater magnitude given 

Figure 2.  Temporal variations in (a) 𝐴𝐴 NO3
− and (b) Cl concentrations at the three tiles. Pink faded boxes in panel (a) indicate 

corn years. Gray triangles at the top axis indicate the timing of N and potash fertilizer applications. Tile discharge measured 
at Tile B is shown for comparison with the concentration data.
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agronomic recommendations of adding 224 kg ha −1 potash (90 kg Cl ha −1) every 2–4 years (Illinois Agronomy 
Handbook, 2014). Furthermore, at shorter time scales, the Cl concentrations fluctuated considerably in response 
to flow events. Combined, these patterns depict a diluting system, where legacy stores of Cl undergo a gradual 
reduction due to continued flushing by Cl-less precipitation water. Indeed, long-term observations of wet depo-
sition at a nearby National Atmospheric Deposition Program site (Bonville, Illinois; site ID IL11) confirmed 
negligible Cl content in rainwater (<0.1 mg L −1) during the study period (NADP, 2023).

3.3.  Nitrate Export Regime Categorization

To characterize 𝐴𝐴 NO3
− export regime, the measured 𝐴𝐴 NO3

− concentrations were pooled from all three tiles and then 
compared to the corresponding tile discharge. For this analysis, we classified the 𝐴𝐴 NO3

− and discharge data by 
crop year (i.e., water year with corn or soybean being cultivated), and further divided the corn data into growing 
and nongrowing seasons based on the timing of spring pre-plant N fertilizer application. Therefore, the NGS of 
corn spans from the dormant period of a water year until the spring fertilizer application. This classification by 
crop season is operationally defined and aims to examine the management controls on 𝐴𝐴 NO3

− export regimes. 
All concentration and discharge data for each crop season were log-transformed, and the linear slope (b) of 
the log-log regression of concentration and discharge was used to categorize 𝐴𝐴 NO3

− export regime into flushing 
(b > 0), dilution (b < 0), and those showing either chemostatic or non-linear chemodynamic (b ≈ 0) patterns 
(Godsey et  al.,  2009; Rose & Karwan,  2021). Chemostatic and non-chemodynamic patterns were differenti-
ated based on the ratio of the coefficients of variation of concentration and discharge (CVC/CVQ), with CVC/
CVQ < 0.5 indicating chemostatic behavior and CVC/CVQ ≥ 0.5 indicating non-linear chemodynamic behavior 
(Musolff et al., 2015; Rose & Karwan, 2021; Thompson et al., 2011). Additionally, following Basu et al. (2010), 
a linear relationship between tile discharge and 𝐴𝐴 NO3

− load—the product of discharge and 𝐴𝐴 NO3
− concentration—

was also used to detect chemostatic behavior.

3.4.  Nitrate Isotopic Analysis

Water samples collected during 2021 and 2022 water years (n = 246) were measured for 𝐴𝐴 NO3
− isotopes using the 

denitrifier method (Weigand et al., 2016; Yu & Elliott, 2018). Briefly, denitrifying bacteria lacking the nitrous 
oxide (N2O) reductase enzyme (Pseudomonas chlororaphos ssp. aureofaciens) are used to convert 60 nmol of 

𝐴𝐴 NO3
− into gaseous N2O. The N2O is then purified in a series of chemical traps, cryofocused, and finally analyzed 

for m/z 44, 45, and 46 on a continuous flow isotope ratio mass spectrometer (Elementar Isoprime precisION, 
Germany). International 𝐴𝐴 NO3

− reference materials USGS34 and USGS35 and an internal working standard gravi-
metrically prepared from USGS32 and USGS34 were used to calibrate the isotope measurements. The long-term 
precision for δ 15N and δ 18O determinations are ±0.1‰ and ±0.2‰, respectively.

3.5.  Water Age Modeling

To estimate storage and the water age distribution of tile discharge, we simulated the transport of Cl using a 
modification of the open source tran-SAS model (Benettin & Bertuzzo, 2018b). The core of the model is to solve 
Equation 1 using the age-ranked storage and SAS functions (Equations 2–4). Detailed numerical implementa-
tion of the tran-SAS model can be found in Benettin and Bertuzzo (2018b). Below we describe the main model 
assumptions and modifications that are necessary to adapt the model at the tile-drain scale.

3.5.1.  Boundary Conditions and Fluxes

We consider the water storage that contributes to the tile discharge and Cl mixing as a single control volume 
(Figure 1b). The upper boundary of the control volume is delimited by the soil surface. The subsurface lateral 
boundaries are defined by the midpoints between the study tiles and their adjacent tiles, consistent with the esti-
mation of tile drainage areas. Flow across the lateral boundaries is neglected. This is a reasonable assumption 
given the flat topography and the high drainage density of this site that are expected to reduce hydraulic head 
gradients perpendicular to the lateral boundaries. We define an arbitrary lower boundary for the control volume, 
below which water can no longer connect to the tile drain. By this definition, the control volume can enclose a 
variable volume of the saturated groundwater below the tile depth, where hydraulic head differences may drive 
water to enter the tile drain radially from below. Based on the defined control volume, infiltrating precipitation 
water can leave the volume as ET to the atmosphere, flow into the tile drain (Q), deep percolation past the lower 
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boundary, and groundwater exfiltration toward the ditch (Figure 1b). We ignored surface runoff in this study, as 
previous studies in this region suggested its minor importance compared to tile discharge (e.g., <10%) (Guan 
et al., 2011).

The combined precipitation and snowfall rates (denoted by J) and Q were used directly as inputs to the SAS 
model. However, quantification of the deep percolation and groundwater exfiltration fluxes is difficult because 
it requires detailed groundwater measurements. Without this information at hand, we lumped the two fluxes into 
a single flux (denoted by R) and resorted to a simple approach to estimate its average magnitude. Specifically, 
we compared the ratio of Q to J measured at the study site to the long-term runoff ratio of the UER watershed 
and attributed the difference to R. During the 8-year study period, the average Q-to-J ratios ranged between 0.27 
and 0.30 for the three study tiles; the 30-year (1993–2022) average runoff ratio of the UER watershed is 0.34 
(USGS, 2023). Therefore, the annual average R was estimated to be 4%–7% of the annual J, or 13%–26% of the 
annual Q, for the three tiles. The average R-to-Q ratio estimated this way agrees well with the finding by Van der 
Velde, Rozemeijer, et al. (2010), who showed via field-scale measurements that tile discharge contributed about 
80% of the total discharge (i.e., the sum of overland flow, tile discharge, and groundwater exfiltration) from a 
lowland tile-drained field in the Netherland. To further derive a daily time series of R, we linearly scaled R with 
Q, so that R and Q exhibit the same temporal pattern. The rationale behind this scaling is that the flux intensities 
of all flow paths are closely related and ultimately controlled by groundwater table variations in lowland systems 
(van der Velde et al., 2009). It should be noted that by making R a unidirectional flux exiting the control volume, 
we necessarily ignored all related processes such as capillary rise and water infiltration from the ditch. Though 
a drastic simplification, this is a pragmatic approach that allowed us to estimate reasonable water age of Q using 
a parsimonious model.

We used the FAO approach (Allen et al., 2005) to estimate daily actual ET from the potential ET values that 
were estimated using the weather station data and the Penman-Monteith equation. The FAO approach uses infor-
mation on crop planting date, crop growth stages, and maximum rooting depth to estimate daily ET values. The 
model also includes a correction factor to account for crop physiologic stress resulting from soil water deficits. 
Crop planting dates and growth stages in the FAO method reflected actual dates and measurements at the site. 
A correction factor was applied to the modeled daily ET values to close the hydrologic balance over the 8-year 
study period (i.e., J = ET + Q + R).

3.5.2.  SAS Model Specification

Each of the outfluxes (i.e., ET, Q, and R) was assigned a SAS function to assess its impact on the storage 
age balance. We selected power law functions to parameterize the SAS functions because they are simple to 
use, yet flexible in modeling a wide range of age selection behaviors (Benettin & Bertuzzo, 2018b; Benettin 
et al., 2017). When using power-law SAS function, the exponent k of the function controls the affinity of an 
outflow for relatively younger or older water in storage. Specifically, k < 1 (k > 1) indicates that the outflow 
preferentially selects young (old) water available in the storage, where the lower (higher) the value of k, the 
higher the preference. In the case where k  =  1, the released waters are sampled uniformly from the stor-
age irrespective of their ages. We defined the power-law SAS functions of ET and R fluxes using a single, 
time-invariant parameter k (kET and kR, respectively). Initial model tests revealed that the model results were 
not sensitive to variations of kR over a wide range, possibly due to the small magnitude of R compared to other 
fluxes. Therefore, to reduce the number of model parameters, we fixed kR at 1 (i.e., uniform selection) for 
following model runs.

Following Benettin et al. (2017), we considered two different model configurations to specify the SAS function of 
Q. The first model (Model 1) is a simpler model with a fixed power-law exponent kQ. The second model (Model 
2) attempts to assess the possible time variance of kQ in response to storage variations. In this case, kQ is made 
time-variant between two endmembers, kQdry and kQwet, based on a normalized wetness index (wi; wi ∈ [0,1]) of 
the system. Therefore, kQ(t) = kQwet + (1 − wi(t))/(kQdry − kQwet) (Benettin et al., 2017), and kQdry and kQwet are  the 
values of kQ under the driest and wettest conditions, respectively. In practice, wi(t) can be set proportional to 
the storage variations that are directly computed from a water mass balance using the daily hydrologic fluxes. 
However, uncertainties in the ET and R fluxes prevent accurate estimation of these variations, especially at short 
time scales. We therefore estimated wi using the dynamical system approach proposed by Kirchner (2009) by 
assuming that Q is itself the best gauge of the storage and, by extension, wi. Detailed description on the estimation 
of wi is provided in Text S1 in Supporting Information S1.
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3.5.3.  Chloride Simulation

The specified SAS model was coupled to Equation 8 to simulate Cl concen-
trations in Q. Most previous studies that utilized Cl for water age estimation 
relied on the temporal fluctuations of Cl in precipitation and the subsequent 
dampening of these fluctuations in streamflow (e.g., Kirchner et al. (2010) 
and Harman  (2015)). In these studies, Cl exchange between water parcels 
was restricted to preserve distinct input signals, although it is known that 
Cl in different water parcels can mix in the soil through diffusion (Porter 
et al., 1960). In our case, precipitation contained negligible Cl content, and 
soil water within the control volume was enriched in Cl due to legacy ferti-
lizer input. Therefore, the strong concentration gradient in Cl between a 

newly arriving water parcel and older water parcels in its surroundings may promote Cl mixing through diffusive 
transport. Moreover, it has been shown that selective Cl uptake by ET can cause an enrichment of Cl concentra-
tion in storage (i.e., evapoconcentration), resulting in apparent Cl imbalances between input and output fluxes 
(Hrachowitz et  al.,  2015). In this study, inclusion of the evapoconcentration effect is supported by previous 
studies reporting low Cl content in corn and soybean grains (<0.04%) (Batal et al., 2011) and negligible crop Cl 
accumulation compared to river Cl export in the UER watershed (David et al., 2016). The evapoconcentration 
effect is also evident from the measured Cl concentration data, where concentration spikes were often observed 
near the peak GS with enhanced ET rates (Figure 2b). Therefore, to be consistent among the three study tiles and 
to reduce the number of parameters, we assumed that ET does not remove Cl from the storage.

The combined effect of Cl diffusive mixing and evapoconcentration were modeled using a Lagrangian approach 
that tracks the fate of individual water parcels as they transit through the system while aging (Queloz et al., 2015). 
To account for Cl diffusion, we adopted the method of Van der Velde, De Rooij, et al. (2010) and Van Der Velde 
et al. (2012), which employs an effective diffusion constant (KCl) to describe the rate of Cl redistribution from older to 
younger water parcels through diffusion. In practice, this process is modeled by using a first-order kinetic equation to 
simulate the tendency of all water parcels to approach a system-wide equilibrium Cl concentration (Ceq), determined 
by the overall Cl availability within the storage (Van der Velde, De Rooij, et al., 2010; van der Velde et al., 2012). 
A similar approach has been used to model the mass transfer of 𝐴𝐴 NO3

− between a mobile and immobile phase in soil 
(Botter et al., 2005; Rinaldo & Marani, 1987). Therefore, assuming that a pulse of water enters the system at time ti, 
the evolution of its Cl concentration driven by the Cl diffusion and evapoconcentration processes can be described as:

𝑑𝑑𝑑𝑑(𝑇𝑇 𝑇 𝑇𝑇 + 𝑡𝑡𝑖𝑖)

𝑑𝑑𝑑𝑑
= 𝐾𝐾Cl

(

𝐶𝐶eq(𝑇𝑇 + 𝑡𝑡𝑖𝑖) − 𝐶𝐶(𝑇𝑇 𝑇 𝑇𝑇 + 𝑡𝑡𝑖𝑖)
)

+
𝐸𝐸𝐸𝐸 (𝑇𝑇 + 𝑡𝑡𝑖𝑖)𝑝𝑝ET(𝑇𝑇 𝑇 𝑇𝑇 + 𝑡𝑡𝑖𝑖)

𝑆𝑆(𝑇𝑇 + 𝑡𝑡𝑖𝑖)𝑝𝑝𝑆𝑆 (𝑇𝑇 𝑇 𝑇𝑇 + 𝑡𝑡𝑖𝑖)
𝐶𝐶(𝑇𝑇 𝑇 𝑇𝑇 + 𝑡𝑡𝑖𝑖)� (12)

At each time step, Ceq is calculated from a Cl mass balance, which updates the total Cl mass in the storage by 
accounting for Cl loss through Q and R (Botter et al., 2005). While ET reduces the storage, it does not change 
the total Cl mass due to the evapoconcentration effect. Equation 12 was used to update CS(T, t) in Equation 8 
at each time step to provide the required corrections for simulating CQ(t). Moreover, a sensitivity analysis was 
conducted  to quantify how the parameterizations of Cl diffusion and evapoconcentration affect the modeled 
storage and water selection behaviors.

3.5.4.  Model Calibration and Evaluation

The initial total water storage, S0, is required for the age and Cl mass balance calculations and is kept as a cali-
bration parameter. This results in four calibration parameters for Model 1 (kQ, kET, KCl, S0) and five for Model 
2 (kQdry, kQwet, kET, KCl, S0). Plausible uniform parameter ranges for all the parameters were estimated from the 
literature (Benettin et al., 2017; Van der Velde, De Rooij, et al., 2010) and field experience (Andino et al., 2020) 
and are given in Table 1. For each model, 10 6 simulations were run for each tile by randomly selecting parameter 
sets from the uniform prior ranges. The performance of the model was evaluated for the period of 2015–2020 
water years using the Nash-Sutcliff Efficiency (NSE) and its logarithmic version (NSElog) of the simulated Cl 
concentrations. Given the characteristic trend in the Cl data, we used the whole time series from this period and 
did not divide the data into a calibration and validation period. Data collected during the 2021 and 2022 water 
years were not included in the calibration due to the complexity resulting from the potash application in 2021.

To minimize the impact of unknown initial conditions, the hydrologic fluxes from the calibration period were 
repeated twice to provide a spin-up period of 10 years. The water storage was initialized as a single age-ranked 

Symbol Definition Range

kQ/kQdry/kQwet SAS parameter for Q 0.1–5 a

kET SAS parameter for ET 0.1–10 a

KCl Diffusion rate (d −1) 0.001–0.5 a

S0 Initial storage (mm) 200–2000

 aParameter values are drawn from log-transformed ranges.

Table 1 
Summary of the Calibration Parameters
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storage with a prescribed high Cl concentration (i.e., 100 mg L −1) at the beginning of the spin-up. After the 
spin-up period, the Cl concentrations were linearly scaled across the entire age-ranked storage so that the aver-
age Cl concentration in the storage equaled the 90th percentile of Cl concentrations measured in the 2015 water 
year. This value ranged from 11.5 to 14.3 mg L −1 for the three tiles. Additionally, the initial Ceq was calculated 
using the total Cl mass and the storage at the beginning of the calibration period. Daily time steps and an explicit 
Euler scheme were used to run the model for the spin-up period (Benettin & Bertuzzo, 2018b). The time step 
was reduced to 12 hr for the calibration period and the simulated Cl concentrations were extracted at the end of 
each day.

Results from initial model calibrations suggest that the use of NSE and NSElog was not able to effectively identify 
behavioral parameter sets. This is because any parameter sets that could reproduce the general dilution trend in 
the Cl data would receive high NSE and NSElog values, even though they performed poorly in simulating the 
transient Cl variability at short time scales. To address this issue, we adopted a sequential method by including 
a third performance measure based on the Kling-Gupta Efficiency (KGE) criterion (Kling et al., 2012). Specif-
ically, we first calculated the first-time derivative of the Cl time series (∆Cl) to remove the long-term dilution 
trend. The model's capability in simulating the short-term Cl fluctuations was then assessed using the KGE of 
simulated ∆Cl. Thus, in the first step of the model evaluation, the parameter sets giving NSE and NSElog values 
higher than 0.8 were retained. In the second step, the retained parameter sets were ranked by decreasing KGE, and 
the top-ranked 100 sets were designated behavioral and used to compute water age distributions.

4.  Results
4.1.  Model Performance and Parameter Identification

Frequency distributions of the behavioral parameter sets are shown in Figure 3 for Tile B, and in Figures S3 
and S4 in Supporting Information S1 for Tiles A and C, respectively. The corresponding behavioral parameter 
ranges are reported in Tables S1 and S2 in Supporting Information S1. The initial water storage S0 and the SAS 
parameters of Q were clearly identified under both model configurations. In general, S0 ranges between 800 and 

Figure 3.  (a–d) Behavioral parameter distributions of Model 1 and Model 2 for Tile B. The distributions are smoothed using a normal kernel distribution. The optimal 
parameter values corresponding to the highest Kling-Gupta Efficiency (KGE) values for the detrended Cl concentration (KGEdiff) are indicated by triangles at the top 
axis. (e, f) Probability distributions of the mean value of Nash-Sutcliff Efficiency (NSE) and NSElog (NSEmean) and KGEdiff for the behavioral simulations.
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1,200 mm for the three tiles, regardless of the model configuration (Figure 3d, Figures S3d and S4d in Supporting 
Information S1). For Model 2, a prominent inverse storage effect was revealed by the behavioral distributions of 
kQwet and kQdry, where kQwet is significantly lower than the paired kQdry, and the values of kQdry are relatively close 
to a uniform selection scheme (Figure 3a, Figures S3a and S4a in Supporting Information S1). On the other hand, 
when kQ is not allowed to vary, the behavioral distributions of kQ consistently fall in between the values of kQwet 
and kQdry and reflect a clear preference for the younger stored water (Figure 3a, Figures S3a and S4a in Support-
ing Information S1). The behavioral KCl generally ranges between 0.01 and 0.2 days −1 based on both models 
(Figure 3c, Figures S3c, S4c, and Table S2 in Supporting Information S1), suggesting that it takes 5–100 days for 
a water parcel to reach the equilibrium concentration dictated by the Cl mass balance. Finally, the parameter kET 
of Model 1 was relatively well constrained and indicates that ET has a high affinity for the younger stored water 
(Figure 3b, Figures S3b and S4b in Supporting Information S1). In contrast, the values of kET based on Model 2 
span a large fraction of the prior range, suggesting large parameter uncertainty, although values lower than 1 were 
more likely to yield a better model performance (Figure 3b, Figures S3b and S4b in Supporting Information S1). 
A closer look into the relationships between the model parameters revealed a significant negative correlation 
between kQ and kET in Model 1 (Table S3 in Supporting Information S1) and between kQwet and kET in Model 2 
(Table S4 in Supporting Information S1). Additionally, there is a significant positive correlation between kET 
and KCl in both models (Tables S3 and S4 in Supporting Information S1). Therefore, it is the combination of 
these parameters that determines the simulated Cl transport dynamics, rather than the values of the individual 
parameters.

The simulated Cl concentrations and ΔCl are compared to the measured data in Figure 4, Figures S5 and S6 
in Supporting Information S1 for the three tiles. Although both models are excellent in reproducing the salient 
dilution trend in the Cl data, the marked short-term Cl responses are better captured by the behavioral simulations 
of Model 2. This is supported by an increase in the KGE value from 0.33–0.47 to 0.43–0.60 across the three tiles 
(Figure 3f, Figures S3f and S4f in Supporting Information S1). Interestingly, although kET was poorly identified 
for Model 2, the envelope of simulated Cl concentrations based on the behavioral parameter distributions of 
Model 2 is narrower than that derived based on Model 1, indicating a tradeoff between model error and parameter 
identifiability (Rodriguez & Klaus, 2019).

4.2.  Tile Discharge Age Distributions

The median age of Q is shown in Figure 5 for Tile B, along with the time series of J, ET, Q, and wi. We used 
median age (i.e., the age which is not exceeded by 50% of the water particles), instead of mean age, because it is 
less sensitive to uncertainties in the older water fractions. There are marked differences between the median age 

Figure 4.  Simulations of the Cl concentrations and the detrended Cl concentrations (∆Cl) based on (a) Model 1 and (b) Model 2 compared to measured data (black 
dots) for Tile B. Red lines indicate simulations based on the optimal parameter sets. Gray bands indicate the envelope of the behavioral simulations.
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estimated by using the two models. For the fixed kQ, the median age varies relatively little around a mean value, 
although this mean value varies from about 50 to 230 days among the behavioral paraments sets (Figure 5c). In 
contrast, for the storage-dependent case (i.e., Model 2), the median age spans a wide range of 3 days to more than 
800 days and is highly responsive to variations in Q (Figure 5c). More specifically, the median age decreases 
approximately exponentially with increasing rates of Q, indicating increasing young-water dominance during 
high flow events (Figure S7 in Supporting Information S1). This inverse relationship between the median age and 
Q is a direct product of the inverse storage effect and is expected since Q was used to derive wi (see Text S1 in 
Supporting Information S1). Where kQ is stationary (i.e., kQwet = kQdry), however, the median age does not have an 
appreciable relationship with Q (Figure S7 in Supporting Information S1).

The daily age distributions of Q were weighted by Q and averaged to obtain the marginal age distribution for the 
three tiles. The marginal distribution represents the long-term average behavior of the system and is therefore a useful 
metric to characterize system properties (Benettin et al., 2017). The marginal distributions generated from the optimal 
behavioral parameter sets (i.e., the sets leading to the highest KGE values; Figure 3, Tables S1 and S2 in Supporting 
Information S1) are shown in Figure 6. For each tile, adopting the storage-dependent kQ results in a larger propor-
tion of young water compared to the fixed kQ scenario. Based on Model 2, the marginal distributions predict that, 
on average, 29%–34% of Q was younger than 10 days for the three tiles, while 45%–50% was older than 100 days. 
Model 2 also predicts that 69%–76% of Q measured at the three tiles was younger than 1 year and 13%–20% older 
than 2 years. Finally, based on Model 2, the median age of Q was, on average, 81, 104, 66 days for Tiles A, B, and C, 
respectively. These results are generally consistent with the 45 days reported by Danesh-Yazdi et al. (2016) for soil 

Figure 5.  Daily variations in key hydrologic fluxes and median tile discharge age of Tile B. (a) Precipitation and 
evapotranspiration fluxes. (b) Tile discharge and the normalized wetness index (wi) of Tile B. (c) Median age of tile discharge 
derived based on Model 1. Black line indicates simulation based on the optimal parameter set. Gray bands indicate the 
envelope of the behavioral simulations. (d) Same as (c), but based on Model 2. The optimal simulation based on Model 1 is 
also shown in panel (d) to aid comparison between the two models.
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root zone discharge of a tile-drained watershed in southern Minnesota using a 
conceptual SAS modeling approach.

4.3.  Nitrate Export Regime and the Relationship Between 𝑨𝑨 NO𝟑𝟑
− Export 

and Water Age

The estimated b value of the log-log regression of 𝐴𝐴 NO3
− concentration and 

tile discharge is essentially zero (i.e., |b| < 0.05) for all three crop seasons 
(Figure 7a). Moreover, the relationship between tile discharge and daily 𝐴𝐴 NO3

− 
load is significantly linear (p < 0.01, ordinary linear regression; Figure 7b), 
suggesting that the variance of 𝐴𝐴 NO3

− export was dominated by the variance 
of discharge. These results indicate a persistent chemostasis in 𝐴𝐴 NO3

− export 
over time. However, the slope of the discharge-load relationship is higher for 
the corn GS compared to the soybean year and the NGS of corn (Figure 7b), 
highlighting the impact of fertilizer input on tile 𝐴𝐴 NO3

− loads. Additionally, 
although lower than the threshold value for nonlinear chemodynamic export 
(i.e., 0.5), the calculated CVC/CVQ value is higher in the corn GS (0.37) 
compared to the other two seasons (0.27 and 0.28; Figure 7a).

To investigate the relationship between 𝐴𝐴 NO3
− export and water age, we 

defined a median age anomaly as the difference between the median age of 
tile discharge and the discharge-weighted mean median age using the optimal 
parameter set of Model 2 for each tile. Because this metric accounts for the 
difference in the mean median age among the three tiles, it can be directly 
combined and compared to 𝐴𝐴 NO3

− concentrations and daily 𝐴𝐴 NO3
− loads for 

the three tiles. While no clear correlation is found between the median age 
anomaly and 𝐴𝐴 NO3

− concentration measured during the soybean year and the corn NGS (Figure 7c), 𝐴𝐴 NO3
− concen-

trations measured during the corn GS are negatively correlated with the median age anomalies (p < 0.01, ordinary 
linear regression; Figure 7c), suggesting that higher 𝐴𝐴 NO3

− concentrations in tile discharge were associated with 
the release of younger stored water during this period. The relationship between the median age anomaly and 

𝐴𝐴 NO3
− load is consistent among the three tiles and exhibits a similar exponential pattern, where the 𝐴𝐴 NO3

− load 
decreases exponentially with increasing median age anomaly. This exponential relationship is a direct product of 
the linear relationship between daily 𝐴𝐴 NO3

− load and tile discharge (i.e., chemostasis; Figure 7b) and the inverse 
relationship between the median age and discharge (i.e., the inverse storage effect; Figures S7d–S7f in Supporting 
Information S1).

4.4.  Nitrate Isotope Dynamics

Nitrate isotope measurements revealed unique temporal patterns in the δ 15N and δ 18O values of tile drainage 
𝐴𝐴 NO3

− (Figure 8, Figures S8 and S9 in Supporting Information S1). During the NGS of corn, the δ 15N and δ 18O 
values ranged from 5–10‰ to 4–8‰, respectively, both showing a steady decline of 4–5‰. Following the 
pre-plant and side-dress N applications, low δ 15N and δ 18O values (e.g., −5‰ and −1‰, respectively) were 
observed concurrently with a dramatic increase in 𝐴𝐴 NO3

− concentrations (Figure 8, Figures S8 and S9 in Support-
ing Information S1). Measured δ 15N values of potential N sources for tile drainage 𝐴𝐴 NO3

− (i.e., fertilizer and soil 
organic N) were consistently close to or higher than 0‰ (not shown), suggesting that the low δ 15N values of 𝐴𝐴 NO3

− 
resulted from the nitrification of surface-applied ammoniacal fertilizers (detailed discussion on the fertilizer and 
soil isotope data will be presented in a future publication). However, this period of low δ 15N and δ 18O values was 
relatively short-lived, as they rapidly increased with decreasing tile discharge toward the end of the GS (Figure 8, 
Figures S8 and S9 in Supporting Information  S1). The δ 15N and δ 18O values measured during the soybean 
year are similar to those measured near the end of the corn season (Figure 8, Figures S8 and S9 in Supporting 
Information S1). Compared to 𝐴𝐴 NO3

− concentrations, the measured δ 15N and δ 18O values were much more respon-
sive to changes in tile discharge, especially during the soybean year and the NGS of corn, with marked declines 
coinciding with high flow events (Figure 8, Figures S8 and S9 in Supporting Information S1).

Comparing the δ 15N and δ 18O values of 𝐴𝐴 NO3
− revealed prominent denitrification trends in the dual isotope space 

(Figures 9a, 9c, and 9e). The slopes of the denitrification lines are close to or lower than 1, ranging from 0.5 to 

Figure 6.  Marginal age distribution of tile discharge based on the optimal 
parameter sets of Model 1 and Model 2 for the three study tiles. Note that 
water ages higher than 3,650 days (i.e., 10 years) are grouped into the 3650-
day category.
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Figure 7.  Relationships between (a) tile discharge and 𝐴𝐴 NO3
− concentration, (b) tile discharge and daily 𝐴𝐴 NO3

− load, (c) 
median age anomaly and 𝐴𝐴 NO3

− concentration, and (d) median age anomaly and daily 𝐴𝐴 NO3
− load. These relationships are 

examined for three crop seasons: corn growing season, corn nongrowing season, and soybean year. The estimated b and 
CVC/CVQ values for categorizing 𝐴𝐴 NO3

− export regime are shown in panel (a). Regression lines and equations for statistically 
significant relationships are also provided in panels (b–d).

Figure 8.  Temporal dynamics of 𝐴𝐴 NO3
− concentrations and isotopes measured at Tile B during the 2021 and 2022 water 

years. Daily tile discharge rates are shown in the bottom to aid interpretation. Dashed orange arrows denote the timing of 
spring pre-plant and side-dress N fertilizer applications.
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1.1 across different tiles and different crop and growing phases. To further investigate how this denitrification 
imprint varies with water age, we compared δ 18O values of 𝐴𝐴 NO3

− with the median age of tile discharge that was 
simulated using the optimal parameter set of each tile for the 2021 and 2022 water years (Figures 9b, 9d, and 9f). 
In this case, a higher δ 18O value indicates a larger extent to which the 𝐴𝐴 NO3

− in tile discharge has undergone 
denitrification. The δ 18O of 𝐴𝐴 NO3

− is significantly and positively correlated with the median age estimated based 
on Model 2 for all three tiles (p < 0.01, Pearson's r; Figures 9b, 9d, and 9f). Importantly, the temporal variability 
of δ 18O closely resembles the flashy responses inherent in the median age of tile discharge, especially during 
the corn year. Conversely, the δ 18O of 𝐴𝐴 NO3

− and the median age estimated based on Model 1 either lack corre-
lation (Figures 9d and 9f) or exhibit a negative correlation due to counteracting variations at the seasonal scale 
(Figure 9b). Due to the strong correlations between the two isotopes (Figures 9a, 9c, and 9e), substituting δ 18O 
values of 𝐴𝐴 NO3

− with δ 15N values does not alter the results of this correlation analysis with water age.

5.  Discussion
5.1.  How Does the Age of Tile Discharge Vary With Hydroclimatic Conditions and Reflect Activation of 
Distinct Flow Paths?

Although the mean median age does not differ significantly between Model 1 and Model 2 (Figure 6), imple-
menting the storage-dependent kQ leads to a unique water age dynamic that is characteristic of an inverse storage 
effect (Harman, 2015). A definitive identification of the inverse storage effect is challenging in our case due to the 
salient trend in the Cl data as well as the uncertainties in the boundary conditions and input fluxes (e.g., R) which 
may have compromised the model calibration and evaluation process. For example, although Model 2 consistently 

Figure 9.  (a, c, and e) Relationships between δ 15N and δ 18O values of 𝐴𝐴 NO3
− during the corn growing season, corn 

nongrowing season, and soybean year. Solid lines represent statistically significant regression lines between δ 15N and δ 18O 
values of 𝐴𝐴 NO3

− . (b, d, and f) Comparisons between the δ 18O of 𝐴𝐴 NO3
− and the median age estimated based on Model 1 and 

Model 2. The Pearson's correlation coefficient for each comparison is also shown.
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has higher KGE values than Model 1, the increase is only modest (i.e., by 0.1–0.15 unit) given that Model 2 is 
more complex, and the parameter kET is more uncertain when kQ is allowed to vary. This, along with the signif-
icant correlations between the model parameters (Tables S3 and S4 in Supporting Information S1), underscores 
the difficulty in overcoming the equifinality for both parameter identification and model selection (Beven, 2006), 
even for parsimonious models with only 4–5 parameters. However, while the measured 𝐴𝐴 NO3

− concentrations were 
largely insensitive to variations in the modeled water age (Figure 7c), the temporal dynamics of 𝐴𝐴 NO3

− isotopes 
can only be mechanistically explained by the inverse storage effect (Figures 9b, 9d, and 9f). Specifically, the posi-
tive correlation between 𝐴𝐴 NO3

− isotopes and water age depicts a coupled water and 𝐴𝐴 NO3
− transport, where young 

water integrates short flow paths that transmit 𝐴𝐴 NO3
− from nitrification-dominated surface soil layers. In contrast, 

aged water typically originates from deeper subsurface layers in which anoxic conditions and longer contact 
times between 𝐴𝐴 NO3

− , organic carbon, and microbes enhance 𝐴𝐴 NO3
− denitrification. This distinct and consistent 

correlation between 𝐴𝐴 NO3
− isotopes and water age estimated based on Model 2 provides strong evidence that the 

revealed inverse storage effect is not a result of model overparameterization and overfitting but reflects intrinsic 
water mixing and selection mechanisms at the tile-drain scale. The unique strength of 𝐴𝐴 NO3

− isotopes in this case 
results from their inherent sensitivity to biogeochemical 𝐴𝐴 NO3

− transformation processes, the net effects of which 
are often too subtle to discern by 𝐴𝐴 NO3

− concentration measurements. Therefore, the main relevance of this work is 
the use of 𝐴𝐴 NO3

− isotopes, a biogeochemical tracer, to corroborate water mixing and selection behaviors simulated 
by SAS functions. It complements the emerging tenet that advancing the knowledge of water age dynamics leads 
to a better understanding of reactive solute transport (Hrachowitz et al., 2016) by demonstrating that the latter 
can also benefit the former. More discussion on the utility of 𝐴𝐴 NO3

− isotopes in modeling reactive 𝐴𝐴 NO3
− transport 

is presented in Section 5.3.

The positive diagnosis of an inverse storage effect provides useful insights into how flow paths contributing to tile 
discharge are rearranged and repartitioned under different hydroclimatic conditions. In fine-textured soils with 
high root density conditions, the inverse storage effect may be explained by an extensive network of vertically 
oriented preferential flow paths (i.e., macropores associated with root channels, earthworm burrows, desiccation 
cracks), combined with a threshold-driven interaction between the preferential flow paths and the soil matrix. 
Specifically, when antecedent soil moisture is low, precipitation water infiltrates the soil matrix, and only a 
small amount of event water and mobilized soil matrix water reaches the tile drain via preferential flows (Cain 
et al., 2022; Williams et al., 2016). Once a moisture threshold is reached and further exceeded within upper soil 
layers, progressively more preferential flows are initiated at near saturated surface soil layers, which subsequently 
bypass the lower soil matrix due to a reduced matrix-macropore interaction under high soil moisture conditions 
(Hrachowitz et al., 2013; Klaus et al., 2013). The preferential recharge at the upper part of the saturated zone may, 
therefore, activate lateral short flow paths toward the tile drain (Jiang & Somers, 2009), leading to an increased 
probability of relatively young water being selected for tile discharge. Conversely, during recession periods, 
the groundwater table continuously subsides, and the network of preferential flow paths shrinks. As a result, a 
large portion of younger stored water is retained in the unsaturated zone, where the flow regime is dominated by 
percolation again. The downward displacement of soil matrix water increases the relative contribution of deep 
and long flow paths that remain connected with the tile drain. This results in declining probability that water with 
relatively young age is selected for discharge. Therefore, the age dynamics of tile discharge are modulated by a 
storage-dependent interplay between slow percolation and fast recharge through preferential flows. This mecha-
nism explains the dynamical system analysis that revealed a threshold-like storage dependence of tile discharge 
at our study tiles (Figure S2 and see Text S1 in Supporting Information S1). It is also consistent with conclusions 
drawn from other tile drainage studies conducted in the Midwestern U.S., where large contributions of event 
water in tile discharge (e.g., up to 80%) underscore the prevalence of preferential flow paths in densely cropped 
tile-drained systems (Stone & Wilson, 2006; Vidon & Cuadra, 2010; Williams et al., 2016).

The total storage was estimated to be about 1,000 mm for the three tiles (Figure 3d). Assuming an average porosity 
of 0.4 for silty loam Mollisol (Franzmeier, 1991), this storage would require a soil depth of at least 2.5 m, which 
corresponds to the entire above-tile soils plus an additional 1 m of soils below the tile drain. This implies that 
water stored below the tile drain is involved in water and solute mixing during discharge generation. One way to 
reconcile this apparently large mixing volume with the high affinity of tile discharge for young water is to exam-
ine the age-ranked storage that contributes to tile discharge. Based on the optimal parameter sets of Model 2, the 
median and 80th percentile of the age-ranked storage that was tapped to generate tile discharge were 120–154 mm 
and 444–518 mm, respectively, for the three tiles. If we assume that the residence time, and thus ranked age of 
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water, generally increases with soil depth (Asano & Uchida, 2012), these age-ranked storage volumes indicate 
that 50% and 80% of tile discharge originated from the first 0.4 and 1.2 m of the soil profile. Thus, the age of 
tile discharge is better explained by the amount of hydrologically connected storage than by the total storage. 
On  the other hand, however, there is substantial storage below the tile drain (i.e., on the order of 400–600 mm) 
that provides a small contribution to tile discharge, yet produces the oldest water that constitutes the upper end 
of the marginal age distribution (e.g., >2 years) (Figure 6). This below-tile storage, therefore, represents a legacy 
store that retains long memory of past water and solute inputs due to a slow turnover rate (Woo & Kumar, 2019). 
Taken together, even though flow paths are vertically oriented at the tile-drain scale, the tile drain system can be 
viewed as a microcosm of a sloping watershed, where main flow paths vary between shallow and deep subsurface 
as different storage compartments become hydrologically connected to or disconnected from streams.

It is important to note that the estimated total storage and water age distributions are conditioned on the esti-
mated R fluxes and the implemented modeling schemes for Cl diffusion and evapoconcentration. An informal 
sensitivity analysis showed that varying the R fluxes over the range of 50%–150% of their original values (with 
corresponding changes in the ET fluxes to close the water balance) had a negligible influence on the estimated 
storage and water age statistics. Further justification of the R fluxes (e.g., for its temporal variations) is difficult 
due to the lack of direct measurements. On the other hand, excluding Cl diffusion or allowing ET to remove Cl 
from storage had a significant impact on the estimated total storage. Taking Tile B as an example, if we do not 
consider Cl diffusion in the SAS modeling (i.e., KCl = 0 days −1), S0 becomes poorly identified (behavioral range: 
356–1986 mm), and the optimal value (540 mm) is lower than that estimated based on Model 2 (883 mm) (Figure 
S10 in Supporting Information S1). Furthermore, if we split the total ET into evaporation and transpiration fluxes 
and allow transpiration to remove Cl from storage, the range of behavioral S0 shifts upward to 1,657–2,497 mm 
(Figure S11 in Supporting Information S1). This revealed high sensitivity in estimating the total storage stems 
from the limited information content of Cl for tracing old water, as well as the lack of direct tracer measurements 
for ET, which are indeed a structural problem in SAS-based transport modeling (Benettin et al., 2022) (more 
details about the sensitivity analysis results are provided in Text S2 in Supporting Information S1). However, 
regardless of the parameterizations of Cl diffusion and evapoconcentration, the fundamental age selection behav-
ior of tile discharge (i.e., the young water preference and inverse storage effect) is robust across different modeling 
scenarios (Figures S10 and S11 in Supporting Information S1). Moreover, the mean median age of tile discharge 
can be constrained into a narrow range (74–104 days for Tile B; Figure S12 in Supporting Information S1), 
despite the uncertainties in estimating the total storage and the water selection behavior of ET (see Text S2 in 
Supporting Information S1). These results, together with the consistency of age selection behaviors revealed 
among the three tiles, provide a degree of confidence in our estimated water age.

5.2.  How Does Tile 𝑨𝑨 NO𝟑𝟑
− Export Respond to Variations in Tile Water Age?

Combining water age modeling with 𝐴𝐴 NO3
− isotope measurements provides an opportunity to unravel dominant 

hydrological and biogeochemical mechanisms that control 𝐴𝐴 NO3
− export at the tile-drain scale. Despite the large 

and often vigorous variations in tile water age, 𝐴𝐴 NO3
− concentrations remained largely stable during both the 

soybean year and the NGS of corn (Figures 2a and 7a). On the other hand, the measured 𝐴𝐴 NO3
− isotopes were 

positively correlated with water age (Figure 9), implying a relative dominance of nitrification over denitrifica-
tion and thus a surface origin of 𝐴𝐴 NO3

− when tile discharge is high. These somewhat paradoxical findings can 
be partially reconciled by a large mixing volume as generally suggested by the SAS modeling, which damp-
ens concentration variations relative to tile discharge (Basu et al., 2010). Moreover, the observed 𝐴𝐴 NO3

− export 
regime and isotope dynamics may also indicate a relatively homogeneous distribution of 𝐴𝐴 NO3

− across the soil 
profile. Specifically, while 𝐴𝐴 NO3

− concentrations might be higher in younger stored water due to relatively fast 
mineralization and nitrification rates in shallow soil layers, the contrast in 𝐴𝐴 NO3

− concentration between shallow 
and deep soil horizons was not substantial enough to induce significant deviations from chemostasis. Indeed, 
using numerical simulations, Musolff et al. (2017) demonstrated that chemostasis can result from the absence of 
strong solute attenuation along a defined flow path. The inferred relative homogeneity in 𝐴𝐴 NO3

− distribution thus 
implies that denitrification was not sufficiently rapid to deplete 𝐴𝐴 NO3

− in the older stored water. As a result, 𝐴𝐴 NO3
− 

concentrations in tile discharge remained largely stable, despite the variable mixing of younger and older water 
during tile discharge generation.

Based on the above discussion for the soybean year and NGS of corn, one might expect that tile 𝐴𝐴 NO3
− export would 

exhibit a flushing pattern following N fertilizer applications due to a substantial increase in 𝐴𝐴 NO3
− concentration 
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in near-surface soil horizons. Indeed, the very low 𝐴𝐴 NO3
− isotope values observed during this critical period indi-

cate the rapid movement of fertilizer-derived 𝐴𝐴 NO3
− to the tile drains (Figure 8, Figures S8 and S9 in Supporting 

Information S1). Moreover, the significant, albeit weak, inverse correlation between 𝐴𝐴 NO3
− concentrations and 

the median age anomalies of tile discharge is also in line with a flushing export regime in conceptual terms 
(Figure 7c). However, 𝐴𝐴 NO3

− export regime remained chemostatic during the GS of corn (Figures 7a and 7b). 
The absence of flushing export during this period may be explained by two reasons. First, 𝐴𝐴 NO3

− derived from 
fertilizer nitrification might quickly migrate to greater soil depths via preferential flows, which consequently 
dampened the vertical contrast in 𝐴𝐴 NO3

− concentration. Previous studies have shown that solute exchange fluxes 
between penetrated soil macropore water and the surrounding matrix water are dominantly unidirectional, from 
macropores to the soil matrix (Woo & Kumar, 2019). The rapid downward migration of fertilizer-derived 𝐴𝐴 NO3

− 
via  preferential flows could therefore lead to localized 𝐴𝐴 NO3

− “hotspots” along the soil profile, giving rise to a 
more scattered concentration-discharge relationship and thus the higher CVC/CVQ value observed during this 
period (Figure 7a). The second explanation for the lack of 𝐴𝐴 NO3

− flushing is the relatively low frequency of our 
sample collection (i.e., weekly), which might have missed “hot moments” of 𝐴𝐴 NO3

− export following N fertilizer 
applications. Recent studies utilizing high-frequency measurements at the tile-drain scale have demonstrated 
substantial hysteretic and non-chemostatic patterns in event-based 𝐴𝐴 NO3

− export (Liu et al., 2020). Future studies 
that adopt high sampling frequencies for both concentration and isotope measurements are warranted to better 
characterize the 𝐴𝐴 NO3

− export regime and its relationship with water age. In sum, by coupling water age modeling 
with 𝐴𝐴 NO3

− isotopic analysis, we are able to differentiate between the relevant biogeochemical and hydrological 
processes that control 𝐴𝐴 NO3

− transport, which helps to delineate 𝐴𝐴 NO3
− export dynamics at the tile-drain scale.

5.3.  What Added Value Can 𝑨𝑨 NO𝟑𝟑
− Isotope Measurements Provide in Terms of Modeling Coupled Water 

and 𝑨𝑨 NO𝟑𝟑
− Transport?

We have shown that 𝐴𝐴 NO3
− isotopes contain unique biogeochemical imprints, which in our case are useful to test 

competing hypotheses regarding water mixing and selection behaviors. To further explore the utility of 𝐴𝐴 NO3
− 

isotopes for modeling 𝐴𝐴 NO3
− transport under transient conditions, we modified a simple water age-based 𝐴𝐴 NO3

− 
transport model previously proposed by van der Velde et al. (2012) by embedding isotope simulation into the 
model. In this simple model, 𝐴𝐴 NO3

− concentration (CNO3) in discharge is simulated by a convolution of time-variant 
water age distributions (i.e., pQ(T,t)) with a constant relation between water age and 𝐴𝐴 NO3

− concentration that is 
collectively determined by 𝐴𝐴 NO3

− diffusive mixing and denitrification:

𝐶𝐶NO3(𝑡𝑡) = ∫
∞

0

𝐶𝐶eq

(

1 − 𝑒𝑒
−𝑘𝑘𝑑𝑑𝑇𝑇

)

𝑒𝑒
−𝑘𝑘𝑛𝑛𝑇𝑇 𝑝𝑝𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇)𝑑𝑑𝑑𝑑� (13)

In Equation 13, kd is the effective diffusion constant of 𝐴𝐴 NO3
− , kn is the first order rate constant of denitrification, 

and Ceq is the effective equilibrium 𝐴𝐴 NO3
− concentration resulting from all 𝐴𝐴 NO3

− source and sink processes in the 
soil, analogous to the Ceq used for modeling diffusive Cl mixing in the SAS model. Therefore, in this model, an 
infiltrating water parcel progressively approaches the effective equilibrium concentration due to mixing with 
surrounding waters, whereas, at the same time, the longer time it travels within the system, the more denitrifica-
tion it experiences that reduces its 𝐴𝐴 NO3

− concentration (van der Velde et al., 2012).

Here, we adopted this modeling scheme to simulate not only CNO3 but also the concentrations of the O isotope 
species of 𝐴𝐴 NO3

− (i.e., the 𝐴𝐴 NO3
− isotopologues) (Equations 14 and 15).

16
𝐶𝐶NO3(𝑡𝑡) = ∫

∞

0

16
𝐶𝐶eq

(

1 − 𝑒𝑒
−𝑘𝑘𝑑𝑑𝑇𝑇

)

𝑒𝑒
−
16
𝑘𝑘𝑛𝑛𝑇𝑇 𝑝𝑝𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇)𝑑𝑑𝑑𝑑� (14)

18
𝐶𝐶NO3(𝑡𝑡) = ∫

∞

0

18
𝐶𝐶eq

(

1 − 𝑒𝑒
−𝑘𝑘𝑑𝑑𝑇𝑇

)

𝑒𝑒
−
18
𝑘𝑘𝑛𝑛𝑇𝑇 𝑝𝑝𝑄𝑄(𝑇𝑇 𝑇 𝑇𝑇)𝑑𝑑𝑑𝑑� (15)

18
𝛼𝛼𝑛𝑛 =

16
𝑘𝑘𝑛𝑛∕

18
𝑘𝑘𝑛𝑛 →

18
𝑘𝑘𝑛𝑛 =

16
𝑘𝑘𝑛𝑛∕

(

18
𝜀𝜀𝑛𝑛∕1000 + 1

)

= 𝑘𝑘𝑛𝑛∕
(

18
𝜀𝜀𝑛𝑛∕1000 + 1

)

� (16)

In Equations 14 and 15,  16CNO3 and  18CNO3 are the concentrations of the major 𝐴𝐴 NO3
− isotopologue N 16O 16O 16O 

and the singly  18O-substituted isotopologue N 18O 16O 16O, respectively. Correspondingly,  16Ceq and  18Ceq denote 
the equilibrium concentrations of N 16O 16O 16O and N 18O 16O 16O in the soil. The first-order rate constant of 
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denitrification for N 18O 16O 16O ( 18kn) was modeled by linking the rate constant for N 16O 16O 16O ( 16kn) with the 
kinetic O isotope fractionation factor,  18αn, or equivalently the isotope effect,  18εn (Equation 16). Note that by 
convention,  16kn = kn. As such, denitrification not only reduces the bulk concentration of 𝐴𝐴 NO3

− but also simul-
taneously increases  18CNO3 relative to  16CNO3 (and thus δ 18O) due to the kinetic isotope effect that results in a 
lower  18kn than  16kn. This link between concentration, reaction kinetics, and kinetic isotope effect provides an 
important new dimension to constrain the coupled variations in 𝐴𝐴 NO3

− concentration and isotopes driven by deni-
trification. Although δ 15N values of 𝐴𝐴 NO3

− also contain valuable information, our focus here is on the δ 18O of 
𝐴𝐴 NO3

− . This approach helps us avoid complications related to potential changes in 𝐴𝐴 NO3
− sources (such as fertilizer 

vs. soil organic N) and the subsequent variations in the δ 15N of the N substrates used for 𝐴𝐴 NO3
− production. We 

omitted the kinetic isotope effect for 𝐴𝐴 NO3
− diffusion because it is negligible compared to  18εn (e.g., <1‰) (Mnich 

& Houlton, 2016).

To simulate the coupled 𝐴𝐴 NO3
− concentration and isotope dynamics using Equations  13–15, we first calcu-

lated  16CNO3 and  18CNO3 using the measured 𝐴𝐴 NO3
− concentrations and δ 18O values at each sampling point (see 

Appendix  A for details of this isotopologue calculation). Moreover, we used water age distributions derived 
from the optimal parameter sets of Model 2 for pQ(T, t) in Equations 13–15 and set kd to be equal to the optimal 
Cl diffusion constant (i.e., KCl). Therefore, given two independent constraints (i.e., CNO3 and δ 18O), if we know 
the δ 18O of 𝐴𝐴 NO3

− under equilibrium and the kinetic isotope effect for denitrification ( 18εn), the system of Equa-
tions 13–15 can be inverted to solve for the two unknown parameters Ceq and kn. For this proof-of-concept case, 
we assumed that Ceq is constant and that the δ 18O of 𝐴𝐴 NO3

− under equilibrium is 0‰, which can be subsequently 
used to calculate  16Ceq and  18Ceq for any given Ceq (see Appendix A). This assumption essentially states that if 
there is no denitrification, the δ 18O of 𝐴𝐴 NO3

− in tile discharge should reflect the isotopic signature of nitrification. 
The δ 18O value we assigned for nitrification-produced 𝐴𝐴 NO3

− (i.e., 0‰) falls within the range of the lowest δ 18O 
values observed across the three tiles (i.e., −1.2 to 2.2‰) (Figure 9) and is consistent with results from previ-
ous studies based on nitrifier pure cultures (Buchwald & Casciotti, 2010). Furthermore,  18εn was assumed to be 
15‰, a value within the range obtained from laboratory soil incubations (e.g., 5–25‰ (Denk et al., 2017)) and 
commonly used to interpret 𝐴𝐴 NO3

− isotopes measured at the watershed scale (Fang et al., 2015). Since Ceq was 
assumed to be constant during the simulation period, we applied the isotopologue-specific 𝐴𝐴 NO3

− transport model 
only to the 2022 soybean year, during which Ceq was presumably much less variable compared to corn years. 
The unknown parameters Ceq and kn were then determined using a nonlinear optimization algorithm based on the 
Levenberg-Marquardt method.

Since similar results were obtained for all three tiles, we will focus our discussion on the model simulation for 
Tile B. The simple 𝐴𝐴 NO3

− transport model did not simulate 𝐴𝐴 NO3
− concentrations well, particularly during the GS 

of soybean (i.e., starting from late April 2022), where the model largely underestimated 𝐴𝐴 NO3
− concentrations 

in tile discharge (Figure 10a). This poor simulation may be simply explained by a time-variant Ceq even during 
soybean years due to continuous soil N cycling and soybean N uptake, which was not modeled in our case. 
However, despite the poor simulation of 𝐴𝐴 NO3

− concentrations, the δ 18O of 𝐴𝐴 NO3
− was well reproduced by the 

simple transport model (Figure 10b). This is supported by a KGE value of 0.68 for the simulated δ 18O values. 
Particularly encouraging is that the simple transport model was able to reproduce the dominant mode of variations 
in the δ 18O values between high- and low-flow conditions, which arise from distinct tile water ages due to the 
inverse storage effect (Figure 10b). Based on this simulation, Ceq and kn were estimated to be 22.4 mg N L −1 and 

Figure 10.  Results from the isotopologue-specific 𝐴𝐴 NO3
− transport model. (a) Measured and modeled 𝐴𝐴 NO3

− concentrations during the 2022 water year. Daily tile 
discharge rates were shown in the bottom to aid interpretation. (b) Measured and modeled δ 18O of 𝐴𝐴 NO3

− during the 2022 water year. The median water age derived 
using the optimal parameter set of Model 2 was also shown to aid interpretation.
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0.0018 days −1, respectively. The estimated kn corresponds to a denitrification timescale of about 550 days. Given 
that the flow-weighted median water age for the simulation period was 134 days, this inferred denitrification 
timescale suggests that 𝐴𝐴 NO3

− export from the tile-drain system was dominated by transport (Kumar et al., 2020). 
It is important to note that the results from this modeling exercise are qualitative, as they are contingent to the 
assumed isotopic signatures for nitrification (0‰) and the isotope effect for denitrification (15‰). However, 
the fact that the observed δ 18O values can be well reproduced by the commonly employed isotopic signature 
and isotope effect derived from laboratory measurements reinforces the inherent sensitivity of 𝐴𝐴 NO3

− isotopes to 
nitrification and denitrification. It also lends support to our interpretation that the observed chemostasis in 𝐴𝐴 NO3

− 
export may be attributed to limited denitrification relative to 𝐴𝐴 NO3

− transport and therefore a relatively homoge-
neous distribution of 𝐴𝐴 NO3

− .

Therefore, through this simple modeling exercise, we outlined a possible way to couple 𝐴𝐴 NO3
− isotopes with 

time-variant water age distributions, providing a proof-of-concept for its potential to unravel 𝐴𝐴 NO3
− transport 

behaviors under transient conditions. In particular, the concise representation of flow path variations and water 
mixing by time-variant water age allows for the robust incorporation of important 𝐴𝐴 NO3

− isotope fractionations 
to constrain the reactive transport of 𝐴𝐴 NO3

− . A wide array of N cycling processes has been characterized for their 
isotope effects (Denk et al., 2017; Yu & Elliott, 2021). Incorporating these isotope effects into models of coupled 
soil moisture dynamics and N cycling (e.g., Porporato et al. (2003) and D’Odorico et al. (2003)) may provide 
important new insights to better understand water-N interactions. In this sense, the O isotopic systematics of 
nitrification is particularly important because it provides a direct link between the δ 18O of water, a commonly 
used water age tracer, and that of 𝐴𝐴 NO3

− . If the O source contribution and the relevant isotope effects controlling 
the δ 18O of 𝐴𝐴 NO3

− can be well understood and modeled at the watershed scale, the δ 18O of 𝐴𝐴 NO3
− may be used as a 

“biogeochemical clock” to tag 𝐴𝐴 NO3
− in individual water parcels for quantification of its reactive timescale. Future 

benchmark studies are needed to investigate the effects of varying isotope composition of reaction substrates 
(e.g., δ 18O of water), heterogeneity in isotope effects, and their variable expressions on modeling 𝐴𝐴 NO3

− isotopes 
at the watershed scale.

6.  Implications
The revealed young water preference and inverse storage effect at the tile-drain scale have important implications 
for modeling and managing water and N fluxes in intensively tile-drained agricultural watersheds. Most previous 
studies investigating the inverse storage effect have been conducted in small headwater watersheds (Benettin 
et al., 2017; Harman, 2015; Rodriguez et al., 2018). Although it remains largely unknown how water mixing and 
selection behaviors vary across spatial scales, extensive landscape modifications in tile-drained mesoscale water-
sheds in the Midwestern U.S. have been shown to create a homogenized system that responds to hydroclimatic 
forcings in a highly predictable way (Basu et al., 2011; Danesh-Yazdi et al., 2016). Moreover, at watershed scales, 
tile drains are themselves a preferential flow path that bypasses complex dispersion in the subsurface, resulting in 
water and solute delivery to the streams faster than they might naturally move within the soil matrix. Therefore, 
a strong young water preference and inverse storage effect is expected to be the norm in intensively tile-drained 
agricultural watersheds and should be used as a signature to test process representation in watershed-scale models.

From a management perspective, many on-farm agricultural practices influence subsurface drainage and nutri-
ent losses to tile drains. For example, implementing no-till or reduced tillage on tile-drained fields has been 
shown to increase the likelihood of preferential flow to subsurface tile drains (Cullum, 2009). Tillage practices 
disrupt the continuity of macropore network, resulting in more torturous flow pathways for solute transport 
compared  to no-tillage. While this tillage effect on phosphorus loss has been increasingly recognized and investi-
gated (Williams et al., 2016), less attention has been paid to the increased risk of 𝐴𝐴 NO3

− loss via preferential flow 
paths. This study indicates that surface-applied fertilizer N (including those incorporated or knifed into surface 
soil) is particularly prone to loss via preferential flows initiated in near-surface soil layers. As understanding the 
effects of agricultural management practices and changing climate on nutrient loadings in tile-drained landscapes 
is intensifying as a priority across the Midwestern U.S. (Danalatos et al., 2022), more research is needed to better 
understand the effects of tillage practices specifically and soil physical conditions in general on 𝐴𝐴 NO3

− export from 
tile-drained fields.

By combining water age modeling with 𝐴𝐴 NO3
− isotope analysis, this study provides evidence for the same-season 

loss of fertilizer N via tile drainage. In addition, labeled  15N tracer studies have consistently demonstrate that in 
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the Midwestern U.S. less than 40% of fertilizer N applied is recovered by the corn crop in the same year (Gardner 
& Drinkwater, 2009). While these different fates of fertilizer N (i.e., direct leaching and crop uptake) are well 
recognized by the N biogeochemistry research community, how to explicitly trace the fates of fertilizer N in 
watershed-scale models remains unexplored. This is mainly due to the lack of suitable tracer data at relevant 
scales, as well as to the commonly used “well-mixed” assumption when modeling soil N pools. As different sink 
pathways of fertilizer N represent vastly different residence timescales of N in a watershed, an advanced modeling 
approach that differentiates the fates and recycling pathways of fertilizer N at the watershed scale is vital in terms 
of quantifying the biogeochemical N legacy effect (Van Meter et al., 2018) and the long-term sustainability of 
agricultural watersheds. To that end, integrating 𝐴𝐴 NO3

− isotope biogeochemistry with water age theory represents 
a promising avenue for future research to better model the source and sink strengths of N in hydrologic systems.

7.  Conclusions
In this study, we combined SAS functions with 𝐴𝐴 NO3

− isotope analysis to investigate storage, water mixing, and 
𝐴𝐴 NO3

− export regimes in a tile-drained corn-soybean rotation field. The calibration and evaluation of the SAS 
functions were based on a unique Cl data set measured at tile drain outlets that enables the modeling of both long-
term storage variations and the transient variability of flow path activation during and between flow events. The 
SAS models were able to reproduce to a high goodness of fit the observed Cl dilution trend and revealed a strong 
young water preference during tile discharge generation. The use of a time-variant SAS function for tile discharge 
that follows the storage variations of the system was able to provide improved model performances in simulat-
ing short-term fluctuations in the Cl data set. More importantly, this time-variant parameterization generated 
unique water age dynamics that mechanically explain the observed variations in 𝐴𝐴 NO3

− isotopes. Such linkages 
between water age and 𝐴𝐴 NO3

− isotope dynamics highlight the promising potential of multi-tracer measurements 
to quantify coupled water and reactive solute transport in hydrologic systems. The revealed young water prefer-
ence and inverse storage effect suggest a storage-dependent flow path activation mechanism, where rapid water 
and solute transport to tile drains is mediated by the activation of vertical preferential flow paths at near-surface 
soil horizons. Combining water age estimates with 𝐴𝐴 NO3

− isotope analysis was able to delineate a clear picture of 
𝐴𝐴 NO3

− export at the tile-drain scale. The revealed chemostatic 𝐴𝐴 NO3
− export regime and isotope dynamics suggest 

a lack of strong vertical contrast in 𝐴𝐴 NO3
− concentration across the soil profile during the soybean year and the 

NGS of corn. The observed 𝐴𝐴 NO3
− isotope variations following N fertilizer applications provide strong evidence 

for the direct loss of fertilizer-derived 𝐴𝐴 NO3
− to the tile drains, which increased the variability of 𝐴𝐴 NO3

− export 
during the GS of corn. However, further characterization of the 𝐴𝐴 NO3

− export regime following fertilizer appli-
cations requires spatially extensive and high-frequency measurements to capture important “hot spots” and “hot 
moments” behaviors of tile 𝐴𝐴 NO3

− loss. For the first time, 𝐴𝐴 NO3
− isotopes were embedded into a water age-based 

transport model to assess their utility in constraining transient reactive 𝐴𝐴 NO3
− transport. The results confirm the 

potential of 𝐴𝐴 NO3
− isotopes to summarize the nonlinear interactions between hydrological and biogeochemical 

processes that control reactive 𝐴𝐴 NO3
− transport. Further integration of water age modeling and 𝐴𝐴 NO3

− isotope 
biogeochemistry is expected to significantly improve the knowledge and modeling of 𝐴𝐴 NO3

− source and sink 
dynamics in complex hydrologic systems.

Appendix A:  Calculation of 𝑨𝑨 NO𝟑𝟑
− Isotopologue Concentrations

Here we present the calculation procedure of 𝐴𝐴 NO3
− isotopologue concentrations for the proposed 𝐴𝐴 NO3

− trans-
port modeling. Given the three stable isotopes of O (i.e.,  16O,  17O, and  18O), the molar concentrations of 𝐴𝐴 NO3

− 
isotopologues are related to the total concentration of 𝐴𝐴 NO3

− ( totalC), which is directly measured, by Equation A1.

totalC = 16C + 17C + 18C� (A1)

where  16C,  17C, and  18C are the molar concentrations of 𝐴𝐴 NO3
− isotopologues N 16O 16O 16O, N 17O 16O 16O, and 

N 18O 16O 16O, respectively. We ignored the concentrations of multiply substituted isotopologues (e.g., N 18O 18O 16O) 
in Equation A1 due to their minute abundances. The atomic concentrations of the three O isotopes in 𝐴𝐴 NO3

− can 
also be related to  totalC by accounting for the molar ratio between the 𝐴𝐴 NO3

− molecule and the O atom (i.e., 1 mol 
of 𝐴𝐴 NO3

− contains 3 mol of O atoms) (Equation A2).

[
total

O] = 3 ×
total

C = [
16
O] + [

17
O] + [

18
O]� (A2)
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Recall the definition of δ 18O-𝐴𝐴 NO3
− :

𝛿𝛿
18
O =

(

[
18
O]∕[

16
O]

18𝑅𝑅VSMOW

− 1

)

× 1000� (A3)

where  18RVSMOW refers to the ratio of  18O and  16O in the reference, Vienna standard mean ocean water 
(VSMOW).  18RVSMOW = 0.0020052. Similarly, the δ 17O of 𝐴𝐴 NO3

− is defined using the delta notation as:

𝛿𝛿
17
O =

(

[
17
O]∕[

16
O]

17𝑅𝑅VSMOW

− 1

)

× 1000� (A4)

where  17RVSMOW = 0.0003799. Although in this study we did not measure δ 17O, the δ 17O of biologically produced 
𝐴𝐴 NO3

− (e.g., in contrast to photochemically produced 𝐴𝐴 NO3
− such as atmospheric 𝐴𝐴 NO3

− ) is linked with the δ 18O of 
𝐴𝐴 NO3

− through the mass-dependent fractionation law (Yu & Elliott, 2018):

𝛿𝛿
17
O = 0.52 × 𝛿𝛿

18
O� (A5)

Equations A2–A5 can be combined and rearranged to solve for [ 17O] and [ 18O] using measured  totalC and δ 18O:

[
17
O] =

3 ×
total

C ×

(

0.52×𝛿𝛿
18
O

1000
+ 1

)

17
𝑅𝑅VSMOW

1 +

(

0.52×𝛿𝛿
18
O

1000
+ 1

)

17𝑅𝑅VSMOW +

(

𝛿𝛿18O

1000
+ 1

)

18𝑅𝑅VSMOW

� (A6)

[
18
O] =

3 ×
total

C ×

(

𝛿𝛿
18
O

1000
+ 1

)

18
𝑅𝑅VSMOW

1 +

(

0.52×𝛿𝛿
18
O

1000
+ 1

)

17𝑅𝑅VSMOW +

(

𝛿𝛿18O

1000
+ 1

)

18𝑅𝑅VSMOW

� (A7)

Because N 17O 16O 16O and N 18O 16O 16O are both singly substituted isotopologues, the atomic concentration of 
substituted O isotopes is equal to their molecular concentration:

17C = [17O]� (A8)

18C = [18O]� (A9)

Equations A1, A8, and A9 can then be combined to determine  16C. This outlined procedure can be reversed to 
calculate  totalC and δ 18O from simulated  16C and  18C. A Matlab file for implementing the outlined procedure is 
available via Yu (2023b).

Data Availability Statement
The trans-SAS model code used for water age modeling is obtained from Benettin and Bertuzzo (2018a). Limited 
modification (i.e., Equation 12) and numerical operation of the trans-SAS model code are fully described in 
Section 3.5.3 of the present paper. The input climate, hydrological, and tracer data for running the SAS model 
and the model output for reproducing the presented results are available at Yu (2023a). The 𝐴𝐴 NO3

− isotopologue 
transport model described in Section 5.3 are available at Yu (2023b).
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