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Abstract

We study a non-local optimal control problem involving a linear, bond-based peridy-
namics model. In addition to existence and uniqueness of solutions to our problem,
we investigate their behavior as the horizon parameter §, which controls the degree
of nonlocality, approaches zero. We then study a finite element-based discretization
of this problem, its convergence, and the so-called asymptotic compatibility as the
discretization parameter 4 and the horizon parameter § tend to zero simultaneously.
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1 Introduction

This paper focuses on an optimal control problem with a system of constraint equations
derived from peridynamics (PD), which is a contemporary non-local model in solid
mechanics, [58, 60]. PD models do not assume the differentiability (even in the weak
sense) of pertinent forces acting on a body nor of the resulting displacement vector
fields, unlike their local counterparts in continuum mechanics. This feature of PD
models makes them attractive to analyze certain physical phenomena with inherent
discontinuities, such as the formation of cracks in solids, see [61-63] for computational

B Abner J. Salgado
asalgad] @utk.edu
https://sites.google.com/utk.edu/abnersg/

Tadele Mengesha
mengesha@utk.edu
https://sites.google.com/utk.edu/tadelemengesha/

Joshua M. Siktar
jsiktar@vols.utk.edu
https://joshuasiktarcomputationalarchive.weebly.com/

Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA

@ Springer



70 Page2of43 Applied Mathematics & Optimization (2023) 88:70

verification and [39, 40] for analytical demonstration of emergence of fracture patterns
from the PD model without prescription. In this work, we will focus on the bond-based
PD model, where particles in a solid are assumed to expend long distance forces on
other particles within a certain radius. With this in mind, we will consider the problem
of linearly deforming a [possibly heterogeneous] elastic solid occupying a domain
2 C R” to achieve a desired deformation state by applying a certain external force.
The deformation field given by v(x) := x + u(x), where u is the displacement, and
the external force g are related via the linearized bond-based PD model [25, 43, 59]
given by

Lou(x) :=/]R f(slul(x. ). y. )dy = (), x € .

where the vector-valued pairwise force density function fs along the bond joining
material points x and y, and the scalar linearized strain field s[u] associated with the
displacement u are given by

fo (s[u]Cx, ), y, x) = 2A(x, y)ks(|x — yDs[u](x, y)

y—Xx
lx —yl

In the above, 2A(x,y) = m serves as the symmetric material coefficient for

some bounded function a. The function ks is the interaction kernel that is radial and
describes the force strength between material points. The parameter § > 0, in the
definition of Ls, is called the horizon and measures the degree of non-locality, i.e., the
radius within which the interaction forces are considered. We assume that ks(r) = 0
if » > §; additional assumptions on the family {ks}s~0 will be given later.

To quantify the desirability of a displacement state u subject to the the external
force g, which will be our control, we introduce an objective functional 7 (u, g). This
functional will be taken to be a sum of two parts: one measures, say, the mismatch of
the displacement state u and the desired displacement field, say u4,s, and the other
penalizes the control g and serves as a regularizer. We will delay the exact form of the
objective functional until the next section, but the optimal control problem of interest
in the paper can now be stated as

{min{l(u, &) | (u, 8) € Xaa X Zaa}, 11

Lsu = g inQ,

where the admissible set X4 X Z,4 will be specified in the next section. As described
above, the state equation, codified by the operator L, will be a strongly coupled linear
system of integral equations. The definition of Lsu requires the knowledge of the state
u outside of the domain €2, up to a boundary layer of thickness §. Thus, we close
the state equation in (1.1) by assigning u to be a fixed displacement field ¢ in the
boundary layer which we call the nonlocal Dirichlet boundary condition.
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In this work, we prove the well-posedness of (1.1) for a more general class of objec-
tive functionals and a broader class of interaction kernels ks that include fractional-type
kernels. We also study the behavior of the optimal pair (u, g) as a function of the
horizon §. In fact, we demonstrate that in the vanishing horizon limit § — 0% the
integral equation-based optimal control problem (1.1) converges, in a certain sense,
to a differential-equation-based optimal control problem. Well-posedness as well as
vanishing nonlocality limit for the state equations have been studied in [43, 49, 57,
68]. In addition, we consider the numerical approximation of solutions to (1.1) via the
first-order optimality conditions. The discrete problem will involve two parameters:
the discretization parameter /4 and the horizon §. We will show that we have conver-
gence, not only when £ tends to zero, but that we also have asymptotic compatibility
(see [65]), in the sense that the limit is unique regardless of the path we use to let
h— 0" and§ — 0F.

While literature on optimal control problems is immense, we cite some works
that are related to the current study. The papers [1, 9, 10] study the finite element
approximation of fractional or other nonlocal equations. The optimal control problem
when the state equation is a scalar fractional or non-local equation is studied in [2—4,
14, 19, 20, 28, 48]. In particular, [20, 28] present some numerical simulations which
illustrate the effect of nonlocality. For our approach of using the first-order optimality
conditions in order to approximate the continuous problem with the corresponding
discrete problems, we refer the reader to [2, 16, 17, 19, 52] for more on this subject
matter. To the best of our knowledge the optimal control problem for a strongly coupled
system of nonlocal equations of peridynamic-type has not been studied in the literature;
the current work makes a contribution in that direction.

We also mention that while the present work focuses on the basic linear bond-based
peridynamic model, similar analysis can be done on the more general linearized state-
based peridynamics [60] as well as other nonlinear convex models, like those studied
in [45]. Most importantly, since fracture simulation is one of the major application
areas of peridynamic, we are interested in analyzing a nonlinear PD model of evolu-
tion of fracture actively controlled either by external force or prescribed volumetric
displacement. We are particularly keen to implement the ideas in the theory of optimal
control of fracture propagation governed by regularized phase-field fracture models
[50, 51] to that of the nonlocal quasistatic fracture evolution that is developed in [7, 23]
where mathematical analysis and numerical examples are presented to demonstrate
a displacement controlled evolution of fracture. For a comparative review of peridy-
namics and phase-field fracture models, see [24]. These and other related issues will
be addressed in future work.

We now outline the contents of the rest of the paper. First, Sect. 2 states the problems
to be studied, with all notation made precise. Section 3 highlights some structural
properties of the function space of interest such as compact embedding. The framework
from which the well-posedness of our local and non-local optimal control problems
can be deduced is carried over in Sect. 4. The remaining sections study the relationship
between our problems as § and & change: Sect. 5 considers I'-convergence results as
8 — 07T; Sect. 6 features finite element analyses for the local and non-local problems
as h — 0T; and Sect. 7 proves the asymptotic compatibility of limits as § and & both
tend to O.
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2 Problem Formulation
2.1 Notation and Assumptions

Let us begin by introducing some notation; first, by A < B we mean that there is a
nonessential constant ¢, such that A < ¢B. In addition, A ~ B means A < B < A.
We assume throughout the paper that 2 C R” is an open, bounded domain with a
Lipschitz boundary, and denote 25 := QU {x € R" | dist(x, ) < §}, where § > 0 is
the horizon parameter. By volumetric boundary we mean the boundary layer Qs \ 2
surrounding €2. For any r > 0 and xo € R”, we denote the ball centered at xo with
radius r by B, (xg). Next we provide assumptions on our kernels which are adopted
from [11, 48].

Assumption 2.1 (Kernel assumptions) We assume that {ks}s~o is a family of radial,
non-negative, kernels in L' (R") supported in Bs(0) such that

/ ks(EDdE = 1,
! 2.1)

lim ks(|EDdé =0, foralle > 0.
8=0% JR\Be(0)

The above two conditions say that the family of L' functions {ks}s~0 converges to
the Dirac measure §¢ in the sense of measures. We also assume that for each § > 0,
ks(r)r—21is non-increasing in r.

Given any radial function k € LY(RM), supported on the unit ball B;(0), and with
Ikl 1 ey = 1, the family ks(|§]) = 67"k ‘g—‘ satisfies (2.1); for other nontriv-

ial kernels satisfying the above conditions see [11]. To properly define our function
spaces and norms, we introduce some additional notation. First, given u : Q5 — R”
measurable, we let Du represent the projected difference defined as

Dux, ) i= ) —u(y)) - ==
lx — yl

This quantity is the trace of (u(x) — u(y)) ® Ii :; . Notice then that the linearized
Du(x,y)

[x—yI

strain field s[u](x, y) is given by s[u](x,y) =
vector-valued nonlocal operator L is given by

. Using these notations, the

Du(x,y) x—y
lx —yI? |x =yl

Loutx) = /Q Ax, ks (1 — y)) dy. 22)
S
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whenever it makes sense. To identify the bilinear form Bs(u, v) associated with this
operator, we first notice that for u, v € C2°(€2; R"), we may write

e veox = [ [ ot e - T ;

/ f e, kil = y1) Dute. ) X =9 (oydydx

=y Ix = |
+f/ ...dydx.
e Jas\e

The first term in the right hand side can be rewritten, applying Fubini’s Theorem and
making use of the symmetry of 2 as well as the domain of integration, as

-v(x)dydx

/ /Ql(x Wks(lx = yI) X Dutx, |y2) |x m v(x)dydx

=3 // 2(x, y)ks(|x — yD (2.3)
QxQ
Du(x, y) Dv(x,y)dydx.

lx =yl |x =yl

The second term can also be rewritten as, by dividing it into two halves and after
interchanging the integrals in one,

/ GRS Dute ) X 23 ydydx
Q5\Q lx —yl© |x = |
D
/ [ et =y 2 I vy
Q\Q X —yI° |x — |
f le(x ks — y) 22D T2V ay,
Q\Q lx —yI° |x |
Du(x,y) x—

We now subtract % Jo '/QE\Q Ax, y)ks(x —y]) o Ixfil -v(y)dydx from the first

term and add it to the second one, after interchanging the integrals, to obtain that

f / ACr, ks (x — YD ED X2y
Q5\Q

ey
—f/ ACx, yks (1 — y) 2L DV 4oy 04
Q25\Q lx =yl |x =yl

+= / f%l(x Wks (i — ypy 24 Do)
Qs5\Q x =yl |x—vy
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We now combine (2.3) and (2.4) to conclude that

Du(x,y) Dv(x,y)
lx =yl |x =yl

1
/ Lou() - vldx = 5 / / ACx, y)ks(x — ) dxdy
Q Ds

=: Bs(u, v),

where Ds = (2 x Q5) U (25 x Q) (see [29, Proposition A.5] for the scalar case).
The latter defines a bilinear form and we understand the strongly coupled system of
nonlocal equations for the state u, Lsu = g, in the weak sense as the Euler-Lagrange
equation for the corresponding quadratic potential energy

1 Du(x, y) |
—/f m(x,y)k5(|x—y|)‘M
2 /o, X —yl

defined on an appropriate space of functions with a displacement field on the nonlocal
boundary. Recall that 2(x, y) = 2(y, x) and that there are positive constants @,y
and ay,qy such that a,,i, < a(x) < apqy for all x € Q5. With these assumptions on
2 and for g € L?(Q; R"), the energy in (2.5) is finite for u : Q5 — R” measurable
such that

dxdy — / g(x) - u(x)dx 2.5)
Q

ulg € LA R"), and ff ks(lx — y |)‘ dxdy<oo.

We denote this space of functions by X (25; R"); i. e.

X(Qs: RY = {u Qs — R" | ulg € L2(2; R"),

2
// k3(|x—y|)‘M‘ dxdy < ooy .
Ds |y_x|

We also introduce the corresponding space of functions having a zero nonlocal bound-
ary condition as

Xo(Qs; R") = {u € X(Q5; R")

u:OonQ,;\Q}.

Itis not difficult to show that the spaces X (2s; R") and X¢(Q2s; R”") are normed spaces
with the norm

1
2
llxieszn = (N2 gz + 10 pmm) 2.6)

2
where [u]i(QS;R,,) = fst ks(jx — y|) ‘%‘ dxdy. Notice that the form By :

X(R25; R") x X(R2s; R") — R is a well defined continuous bilinear form.
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One objective of this work is to make connections between the non-local opti-
mal control problem and a local control problem as § — 0F. As we will show, the
corresponding bilinear form of interest is

1
Bo(u,v) := —/ a(x)(2(Sym(Vu(x)), Sym(Vv(x)))
nn+2) Jo
4+ div(u(x)) div(v(x)))dx, 2.7
where (-, )  is the Frobenius inner product on matrices:
n n
(A,B)p == Y Y aijbij. VA BeR"™.

i=1 j=1

It turns out that the appropriate energy space for the resulting local problem is the
classical space

Hi (R = {ue L2 (;R") | Vu € L2 R™™), u = 00on R}, (2.8)

with the natural norm

2
il gy = (112 2y + 01 gy ) 2.9)
and corresponding semi-norm
[u]Hl(Q;R”) = ”VMHLZ(Q;R”X")- (210)

Now, to state the optimal control problem of interest precisely, we define the perti-
nent objective functional. As we mentioned earlier the functional will be taken to be the
sum of two terms. The first is a quality functional Q : X,q C X(R2s; R") — [0, 00),
that assigns a certain value Q(u) to each admissible displacement field depending on
certain criteria. For example, given a desired displacement state u .5, we may want a
state u that matches ug,s as closely as possible. In this case we wish to choose u that
keeps the mismatch between u and u 4, to the minimum. The mismatch may be defined
as a weighted squared error fQ Y () |u(x) — uges (x)|2dx for some 0 < y € L®(Q).
Notice that by choosing y appropriately, we may seek to match the desired state only
on a portion of the domain. More generally, we would want the quality functional to
have the form

0w) = / F(x, u(x)dx,
Q

where the integrand F : Q© x R"” — R possesses the following properties:

(1) For all v € R" the mapping x — F(x, v) is measurable;
(2) For all x € Q2 the mapping v — F(x, v) is continuous and convex;
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(3) There exist constant ¢; > 0 and [ € L'() for which
|F(x,v)| < clvl* +1(x) (2.11)

forall x € Q and all v € R".

The second part of the objective functional is a cost functional associated with
the external force. We seek a forcing term g whose associated displacement has the
desired quality while keeping the cost as minimal as possible. Typically, we take this
cost functional, C(g), to be a weighted L?%-norm of g of the form

C(g) = /Q I'(x)|g(x)|%dx.

forsome0 < T ¢ L! (£2). To that end, we take the admissible control space to be Z,q,
a nonempty, closed, convex, and bounded subset of Lz(Q; R™), and it takes the form

Zaa = {z € L2 R") | a(x) < z < b(x)} (2.12)
for some a, b € L°(Q; R"), where a < b means [a]; < [b]; foralli € {1,2,...,n}.

Without loss of generality, we shall assume that 0 € Zyq.
In summary, the objective function we will be working with is of the form

I(u,g) = / F(x,u(x))dx +/ l"(x)|g(x)|2dx (2.13)
Q Q
under the above assumptions on F and I'.

2.2 Problem Set Up

Now that we have specified the different function spaces as well as bilinear forms
of interest, we are now ready to precisely pose the optimal control problems. The
first one is the optimal control problem of the coupled system of nonlocal equations.
Given a boundary data ug € X(S2s; R"), the problem is finding a pair (us, g5) €
X (R25; R") x Z,q such that

I(us, g5) = min I (us, gs), (2.14)

where the minimization is over pairs (us, gs) € X (25; R") X Z,q that satisfy
us —ug € Xo(Rs; R"), and Bs(us, v) = {gs,v), forall v € Xo(Qs; R*)2.15)
Here we use the notation (-, -) for the L2-inner product. We remark that without loss of
generality we may assume that #¢p = 0 in the above formulation. Indeed, if us solves

(2.15) and we set e := us — ug, then es € Xo(Q2s; R") and

Bs(es, v) = {(gs,v) + Bs(ug, v), forall v € Xo(R25; R"). (2.16)
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After noting that the map v — Bj(ug, v) is abounded linear functional on X (2s; R"),
the right hand side of (2.16) can be viewed to define a duality pairing between
Xo(2s; R™) and its dual. The objective functional as a function of (es, gs) will still
have the form of (2.13) with integrand F(x,e) = F(x, e+ up(x)). Notice that F has
the exact same properties as F.

With this simplification at hand, we summarize the problem as follows.

Problem 2.2 (Non-local continuous problem) Find a pair (us, gs) € Xo(R25; R") X Zyg
such that

I(us, gs) = min I (us, &s) (2.17)
where the minimization is over pairs (us, gs) € Xo(2s; R") x Z,q that satisfy
Bs(us, v) = (gs,v), forall v € Xo(Qs; R™). (2.18)
The effective admissible class of pairs for this nonlocal optimal control problem is

A% = {(w, ) € Xo(S25: R") X Zyq| Bs(w, v)

= (f,v), forall ve Xo(Qs; R"}. (2.19)

We are also interested in the behavior of the above nonlocal optimal control problem
in the limit of vanishing nonlocality as quantified by § which turns out to be a local
problem.

Problem 2.3 (Local continuous problem) Find a pair (u, g) € HO1 (2; R™) X Z,q such
that

I(u,g) = minl(u,g), (2.20)
where the minimization is over pairs (u, g) € HO1 (2; R™) x Z,q that satisfy
Bo(u,v) = (g,v), Vuve Hj(RY. (2.21)
As before, the effective admissible class of pairs for the control problem is

A = {(w, f) € Hy (2 R") x Zaa|Bo(w, v) = (f,v) Vve Hy(QRM.
(2.22)

We now introduce notation for our finite element scheme and discretized problems.
We let {7, }~0 be a family of conforming and simplicial triangulations of €2, which
for simplicity we assume are quasiuniform. The mesh size will be parametrized by
h > 0. We let

X, = {wp € CORY) | wplr € PI(T; R VT € T, wy, = 0on 9y,
(2.23)
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and immediately observe that X, C H(} (©2; R™). In addition, we see that elements
of X, can be trivially extended by zero to €25. The collection of such extensions in
denoted by X; 5, and we notice that X, C Xo(Q2s; R"). We equip X}, with the norm
(2.9), whereas X5, is given the norm (2.6). Next, by Z; we denote the piecewise
constant functions with respect to our mesh, i.e.,

Zp = {zn € L2 R") | zplr € Po(T; R") VT € ). (2.24)

Here and henceforth, we denote the space of vector-valued polynomials of degree
m >0 as

P (T; R"™)
= Z VX xi vy R, x = (x1, ..., x)T €T
aeNy Y ai<m

(2.25)

We will use X5 5, and X}, as appropriate, to discretize the state space, and Zj, to dis-
cretize the control space. Now we may state our non-local and local discrete problems.

Problem 2.4 (Non-local discrete problem) Find a pair (us 1, g5.n) € Xs.n X Zp such
that

I(us ), gs.n) = min I (usp, &s,h) (2.26)
where the minimization is over pairs (us ,, 85.n) € Xs5.n X Zj, that satisfy
Bs(us p, vsn) = (8s.hs Vs,n)  Vush € Xs . (2.27)
The effective admissible class of pairs for the above nonlocal discrete problem is

A5 = {(wsns fs.n) € Xsp X Zn, s, | Bs(ws p, vs,)
= (fs.n-vs,n) Yush € X} (2.28)

Finally we state the local discrete optimal control problem.

Problem 2.5 (Local discrete problem) Find a pair (uy, gn) € X), x Zj, such that
I(up, gn) = min I (up, gn), (2.29)
where the minimization is over pairs (up, gn) € X;, X Zj, that satisfy

Bo(up, ve) = (gn,vn) Yup € Xj. (2.30)
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The effective admissible class of pairs for this local problem is
AR = {(wh, f1) € Xn x Zn | Bo(wp, v) = (fu.vn). Yon € Xp}. 2.31)
Note that in each problem, the state equation governs the relationship between the

force [control] and the displacement [state] that must take place in any admissible
solution.

3 Properties of Function Spaces

In this section we state and prove some structural properties of the function spaces
X (R25; R™") and Xo(25; R") defined in the previous section. We begin noting that the
function spaces are separable Hilbert spaces with the following inner product defined
foru, v € X(Q2s; R"):

[[u, v]] := (u, v) + [u, v]x,

where [u, v]lx = ffDa ks(|x — y|)D‘z(_x;f) Dlz(_x;f)dydx. It is obvious that [u, u]x =

[u]%, and that, under the working assumptions on 21, we have that cuin [ul} < Bs(u, u)
< fm [u]3 . Moreover, for u € Xo(Qs; R"), we have

;. f / ks(lx — y |>‘

which we also use as a seminorm. It then follows from [47] that if @ is the zero
extension of u to R” then there exists a constant C = C(§) > 0 such that, for any
open set B containing €25, we have

dydx

[lxB:ry < Cllullx@s:rr- 3.1

In particular, the constant is independent of B, and we may select B := R", where we

define
Du(x,
/f ks (1 — ) 225 gy < oo}.
o =

We now seek to demonstrate a continuous embedding result for Sobolev spaces into
the space X (25; R™). To accomplish this, we need a quantitative version of continuity
in the L2-norm; a local, scalar-valued analogue is discussed and proven in [11].

XR";R") = {u e L* (R R")

Lemma 3.1 (Quantitative L’-continuity) For any € € R" \ {0}, and all v €
HYR"; R") we have

J.

2

(0(y +£) — v(y)) - é| dy = ERISYMOVO) s gy (BD)
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Proof We first prove the desired claim in the special case where v € C*°(R"; R").
Fix £ € R"\ {0}. Then by the Chain Rule, the Mean-Value Theorem for integrals, and
the Cauchy-Schwarz Inequality, we have
§
ly+& —vy) -+

2
/Rn ] dy:#/n

1 1
< @/R/O | Sym(Vo(y + 16)§ - &[*dtdy < €17 Sym(Vo)1 71 g oeny
(3.3)

2

1
/ Voly +18) - £di| dy
0

where in the last step we have used invariance of the LZ-norm under transla-
tions, demonstrating the inequality for v € C°°(R";R"). The general case for
v e H'(R"; R") follows by density. O

The estimate of Lemma 3.1 will now be used to prove a continuous embedding
result.

Lemma 3.2 (Continuous embedding) For all § > 0, we have
x@rn S lgiqmny, Yo e Hy(RY). (3.4)

That is, HO1 (2; R") — Xo(R25; R™), and the constant is independent of 4.

Proof Since 0<2 is Lipschitz, for any v € HOl (£2; R™) its extension by zero outside of
Qisin H& (R", R™) vanishing almost everywhere outside of 2. Now for any § > 0,

we have
Duv(x, y)
2
- ks(lx — y) ‘—
X (@R //gg lx =yl

S/ ks(1&])
B &7 Jre

where we have used that supp(ks) C Bs(0). Now our expression is in a form on which
we can use Lemma 3.1 on the inner integral to conclude that

2
dydx

, (3.5)

(WO +8) — () - | dyde,

1€

ks (18D AN
Wy +8) —v(y) - —| dydg
./B,;(O) 12 Jrn €]
< 1 SYm(YV) 12 g gy < IV0I2 20 - (3.6)
which completes the proof. O

Next we show that compactly supported smooth functions are dense in X (€2s; R").
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Lemma 3.3 (Density) The set

{v e X(R™"; R")

AR > 0 : supp(v) C BR(O)}

is dense in X (R"; R™).

Proof Let ¢ € Cy' (R") be such that 0 < ¢ < 1, ¢ = 1 in B;(0), supp(¢) C B2(0),
and | Vo|| Lo @®n;rry < 1. For R > 0 define g (x) = ¢(x/R) and Yrg := 1 — @p.
Letu € X(R"; R"), and we claim that

dim [ — uprly(@yrm = 0- (3.7)
To this end, we compute
(Ix = yD
Y@smn) // |D(uyrr)(x, y)lz—‘sI 2 dxdy
ks(lx — yI)
S ff Wr() = YR [u(x) - ‘ 2 = W axdy (3.8)
R2" =l Vi
x ks(lx — yD)
+ / VRGN | (W) = u(y)) - ‘ D~ I  dxdy.
R2" =yl [x =yl
By the Dominated Convergence Theorem we deduce
X — ks(lx —yD
hm // YR | (x) —u(y)) - y|' ‘Slx_yé dxdy = 0. (3.9)

Now, to handle the first integral in (3.8) we define

k _
Kr(x) := / I’ﬁR(X)—lﬁR(y)lza(lx—yz')dy- (3.10)
Rn lx — yl

By using the conditions on ks and the Lipschitz continuity of v, the sequence |K g (x)|
is uniformly bounded in R and in x. Further, Kz (x) — 0 pointwise on R” as R — oo,
so we may, once again, use the Dominated Convergence Theorem to conclude that

lim f lu@)PKg(x)dx = 0, (3.11)
R—o00 Rn

proving (3.7). Finally, with one more application of the Dominated Convergence The-
orem, we see that

. 2 _ 1 2 —
Rh—)moo llu — M(pR”LZ(]Rn;Rn) = Rh—>moo ”uwR”LZ(Rn;Rn) =0, (3.12)
and this lets us complete the proof, with {u@g}%._, as our approximating family of
functions in X (R”; R") with bounded support. O
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The following result is analogous to [34, Proposition 4.1] and [57, Lemma 5.2].

Lemma 3.4 (Mollification) Let u € X (R"; R™) be a vector field that vanishes outside
a compact subset of R". For € > 0 denote by n. a standard mollifier, and u¢ = u * ne.
Then, for € sufficiently small, we have u, € X (R"; R"). Moreover,

lim [ — uel g, = 0. (3.13)

e—0

Proof Let K C R" be a compact set so that supp(#) C K. Then u, € C°(R"; R") is
supported in K, := {x € R", dist(x, K) < €} for any € > 0. Since the mollifier 7 is
even, we may use Holder’s Inequality, Jensen’s Inequality, and the identity

2
/ (e * ne)(2)dz = </ m(z)dz) =1 (3.14)
R~ R

to obtain the estimate

gf(Qa;R") = ////R4 Ne(ne(Z)Du(x —z,y —2)

ks (lx —
Du(x — 7',y — z’)%dz/dzdxdy
X =y

ff// Ne(@ne(@)Du(x +z7' —z,y+7 —2)
R4n

ks (lx —
Du(x, y)a(lx—lyzl)dz/dzdxdy
-y

//f/ ne(z — 2 e (@)Du(x +z,y + 2)
R4n

k _
Du(x, y)a(lx—l);l)dz/dzdxdy

(3.15)

ks(lx — yI)
- (ne * 1e)(z)Du(x, y)Du(x + z, y + z)dzdxdy
Rz |x =yl

2
< [ulx(asrm) (//}Rzn </R (Me * ) (@) Du(x +2z,y + z)Idz)

1
ks(lx — b
s(lx yl)dxdy)

lx — y|?

< [ulx(qs:rm

1
(/ (ne*ne)(Z)// Dux + 2,y + >|2dedydz)z

= [T} ()
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which holds for all € > 0. As a consequence, u, € X(R"; R") for all ¢ > 0. To
proceed further, we define the maps U, U : R" x R" — R as

ks(lx = yI) Ud(x.y) = Duc(x.) ks(lx = yI)

Ix — yI? Ix —yI?
(3.16)

Ux,y) = Du(x,y)

and these definitions in turn imply that

ks(|x — y|)
) 2
_ TN = D - L) —d d
[ — uely(osmm //RZ" 1Dl = ue)(x, ) lx — y|? e
= ||U - UGH%Z(R"XRVL). (3.17)

The proof will be complete once we show that U, — U in L>(R" x R") as € — 0.
As is standard for mollifiers, uc — u strongly in LZ(R”; R"), and a.e. pointwise in
R”", both as € — 0%. Thus by Fatou’s Lemma, we get the convergence

EE)I})L 1Uell L2 xrry = U p2@n xrrys (3.18)

while the reverse inequality follows from sending € — 0 in (3.15). This combined
with showing U.—U in L*>(R" x R") is enough to show the strong convergence
in LZ(R" x R") that we seek, so we focus on proving this weak convergence. Let
V e L>(R" x R") be arbitrary and define the function

V(x,)’)a|x|»|)’| SJ,|X—)’| Z

1
J 3.19
0, otherwise. ( )

Vj(-xv )’) = {

With this definition in mind, the Dominated Convergence Theorem tells us that V; —
Vin L2(R" x R") as j — co. We define 1!, hj R"” — R" such that

W (x) = ka(lx yl) _y|dy;
' (3.20)
W@y = ka(lx yl) _;dx.

Since W <1+ % for all x, y € R", we can see that these functions

have bounded support, and thus belong to L>(R"; R") for all j € N*. Then due to

@ Springer



70 Page 16 0f43 Applied Mathematics & Optimization (2023) 88:70

the a.e. convergence u, — u, we have

lim // Ue(x, y)Vj(x, y)dxdy
2n

e—0t

= lim [te(x) —uc(y)]

e—0t J Jr2n

k _
S s
lx — y|?

— lim (/ ue(x)-h'{(x)dx—/ ue(y)-hé(y)dy> (3.21)
R~ R~

e—07t

/ u(x) - (x)dx — / u(y) - Wl (y)dy
R”

// Du(x, ko (lx = );l)V-(x,y)dxdy
R2n lx — ¥l

f/ Ux, y)Vj(x, y)dxdy,
RZn

which holds for all j € NT. Taking a limit supremum in €, the convergence in (3.21),
and applying Holder inequality gives

timsup| [ <U€—U)<x,y)v<x,y>dxdy‘
e—0t R2"
= limsu U —U)(x, V = V), y)dxd
m sup f/( = UMV = V)@, ) y‘ 322
< lim sup ||U€ — U”LZ(R"XR”)”V — Vj”Lz(R”XR”)

e—07t

IA

2||U||L2(R” XR”)”V - Vj”LZ(R"XR") 5

which holds for all j € N*. Finally, due to V; — V in L%>(R" x R™), we obtain the
limit

lim // Ue —U)(x,»)V(x,y)dxdy = 0, (3.23)
e—0* J Jr2n
and from this it follows that U.—U in L?(R" x R"), completing the proof. O

We can now combine Lemma 3.3 and Lemma 3.4 to immediately obtain the density
of Cgo R*; R™) in X (R"; R™), which we state below as a corollary, see [35, Remark
4.2] and [29] for the scalar case.

Corollary 3.5 (Density) The space Cg°(R"; R") is dense in X (R"; R").
For well-posedness of the state system (specifically, for stability) we shall need

a nonlocal Poincaré-type inequality. In addition, to understand the behavior of our
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system in the limit as § — O, it is essential that the constant in this inequality is
independent of §. The following result was proven in [43], but various versions of this
inequality are proved in [5, 6, 13, 25-27, 30, 44, 53, 54].

Proposition 3.6 (Nonlocal Poincaré) There exists a 5o > 0 and a constant C(59) > 0
such that for all § € (0, o] and u € Xo(R25; R"), we have

12000y = C(60) f f k(e — y ) 2AEIE s
] Qs J Qs |x _)’|

With the aid of above Poincaré-type inequality we may apply Lax-Milgram to
deduce the unique solvability of the state equations of the nonlocal optimal control
problem stated in the previous section. We summarize this with the following corollary.

Corollary 3.7 (Well-posedness of state equation) The state equations (2.18), (2.21),
(2.27), and (2.30) are uniquely solvable in their corresponding energy spaces.

From standard linear theory, we know that the solution operator of the state
equations is linear and continuous. One important fact we need to demonstrate the
solvability of optimal control problems is the compactness of this solution operator.
While for the discrete problems this question is trivial, for the continuous problems
it needs a resolution. The compactness of the solution operator is related to the com-
pactness of the image space which, for (2.18), is X(€2s; R"); whereas for (2.21) is
HO1 (2; R™). The compactness of the latter in L2(§2; R™) is standard.

Below we build a framework needed to ultimately prove the compact embedding
of Xo(S2s; R") into L2(S2s; R™). This is much akin to the compact embedding results
for fractional Sobolev spaces; see, for instance, [21, 22]. This will largely be based
on the results of [35], see also [31], which we extend to vector-valued functions using
a weaker norm that only involves a projected difference quotient. To this end we
introduce a definition.

Definition 3.8 (Local compactness) If E is anormed vector space, we call a continuous
linear operator 7 : E — L*(R"; R") locally compact if the operator Rg T : E —
L*(R"; R") defined via the truncation function Rgu := 1 xu is a compact operator
for every compact subset K C R”.

The following proposition demonstrates that it suffices to show X(R"; R") C
L2(R"; R") is a locally compact embedding.

Proposition 3.9 (Compactness) If X (R"; R") c L>(R™;R") is a locally compact
embedding, then for every bounded and open 2 C R", and every § > 0, the embedding
of Xo(Qs: R") € L2(Q; R") is compact.

Proof As we remarked earlier, for every u € Xo(25; R"), its extension by zero out-
side of Qs belongs to X (R"; R"). Moreover, [u]x(q;:r") = [#]x @& k). Now if the
inclusion i : X (R"; R") ¢ L>(R"; R") is locally compact, then in Definition 3.8, we
can set K := Q to conclude that Rgi : X (R"; R") — L%(Q;R") is compact. The
result now follows easily. O
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We now prove the local compact embedding of X (R”; R") in the remaining portion
of this section. We follow the argument in [35].

Lemma 3.10 (Convolution) Suppose W € L' (R": R"*") is a matrix-valued function
with L'-entries. Then the corresponding convolution operator Ty : L*(R"; R") —
L2(R"; R") defined via

[Twu()]: = [(W ) ()]s = f [W(x — ;.. - u(y)dy

n

n
=Y [ We =l tudy (3.25)
j=17"F
foreachi € {1,2,...,n}is locally compact.
Proof The proof follows from [35, Lemma 3.1] after noting that fori = 1,2, ...,n,
[Twu]; is a finite sum of convolution operators which are locally compact. m]

Theorem 3.11 (Local compactness) Fix § > 0. Suppose that the function & +—

% ¢ L'(R™), then the space X(R";R") is locally compactly embedded in

L2(R™; R™).

Proof For t > 0, let j; (&) := k“‘gé')]lw\gf(o)(é). Then j, € L'(R") and by the

assumptions on ks, we have that || jz || ,1(gey — 00 as T — 0. We now introduce the
matrix-valued function

&) §®%&
T (€) =y —— 2 (3.26)
el ey 1]
where ¢, is a normalizing constant that depends only on n so that
/ J:(§)dé = T,, the identity matrix. (3.27)
Rn
Let u € X(R"; R"), and we claim that
1
1 2
||Lt — T]r u ”LZ(R”;R”) < _— [M]X(R”;R”) . (328)
||]r||Ll(]Rn)
We prove this via a direct calculation: rewrite u — T, u as
u(x) = Tj (u)(x) = / Je(§)(u(x) —u(x + §))ds. (3.29)
Rn
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Now, we calculate the Lz(R”; R™)-norm, and estimate it with the Cauchy-Schwarz

Inequality and the pointwise inequality j; (§) < %:

2
llu — ij”"LZ(R”;]R")

2
Jo®) £\ &
- ) . S Sae| g
/n /R AP <(”(x) SRRl |s|>|5| 5' ¥

! £ 2 (3.30)
< —[/ Je ) |(u(x) —ulx +8§)) - —| dédx

||]r||L1(]R") 2n
1

1€
N ||jr||Ll(Rn)

2
[u]X(R”;]R")'

Taking square roots in (3.30) immediately yields (3.28).
Now let M C X(R"; R") be a bounded set, and K C R” be compact; our proof
will be complete once we show that Rx (M) C L2(R"; R") is relatively compact. To

this end, let C := sup,cj llull x@®».rry and € > 0. Since & +— % ¢ L'(R"), we

may take T > 0 to be sufficiently small so that || jz || 1 (ge) > 5—22 By Lemma 3.10,
the set M := [Rg T}, 1(M) is relatively compact in L2(R"; R"™). Thus we may use the
estimate (3.28) to obtain, for any u € M,

”RKM - [RKTjT]“”LQ(R";R") < ||I/l — Tjru||L2(R";R”) < (331)
Ly el x@rimn)
- [ulx®rgrry < —————— < €. (3.32)
e ll 21 ey C

From this we conclude that Rx (M) is contained within an e-neighborhood of M ,and
which is relatively compact in L2(R"; R") (since j; € L'(R")). Thus, Rx (M) is
totally bounded in L%(R"; R"), which is a sufficient condition for the local compact
embedding to hold. O

Remark 3.12 Set jo(§) = % We make two remarks. First, the assumption jo ¢
LY(R") cannot be waived. Indeed, otherwise, we have X(R"; R") = LZ(R"; R")
with the norm estimate that [“]g((R";R") < 4|l joll 1 ||u||%2(Rn;Rn). Second, a similar
type of compactness result, with a proof that uses a different approach (see [12]), is
also established in [43] under the assumption on the kernel ks that

Q2

Iim — =0 3.33
020 [ o ko (& dE 39
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On the one hand, if ks satisfies (3.33), then jj ¢ LY(R™). Otherwise, by continuity of
the integral,

limf ka(lg)dg =0, (3.34)
0—0

B0 &I

2

. . 0
from which it follows that lim,_.¢ —fggm) T (EDVE
(3.33) is a more restrictive assumption on ks. On the other hand, there are kernels

with the property that jo ¢ L'(R") that fail to satisfy (3.33). For example, the ker-
_ 1 - o
nel ks(|&]) = e X1—s,51(1€]) has the property that lim, ¢ Tou o ks TEDGE > 0, yet

Jo§) = Zm xi-5.81(1§ D), so that jo ¢ L' (R™).

= 00, contradicting (3.33). As such

4 Well-Posedness: State System and Minimization

In this section we show existence and uniqueness of solutions for each one of the
optimal control problems introduced in Sect. 2. The approach we use is a reduced
formulation where the constrained optimization is reformulated as an unconstrained
optimization of the control via the solution operator of the state equation. To facilitate
that we begin by proving an abstract well-posedness result that appears in some form
in [33, 67]; we provide a proof for the sake of completeness.

Theorem 4.1 (Well-posedness) Let (Y, ||-|ly) be a real Banach space with L*>($2; R") C
Y*. Suppose also that S : L>(Q2; R") — Y is a compact operator, and G : Y — R is
lower semi-continuous. For a given A > 0 and Z,4 a nonempty, closed, bounded, and
convex subset of L*(S2; R"), define j : Zag — R by

A
i@ = GSo) +5 /Q C(0)lg () P, @.1)

for some positive T € LY (). Then, the optimization problem

min j () 42)
8€Zad

has a solution g. Furthermore, if . > 0, S is linear, and G is convex, then (4.2) has a
unique minimizer. Alternatively, if .. = 0 and G is strictly convex on its domain (with
S still being linear), then the minimizer is unique.

Proof We use the direct method of calculus of variations to show that (4.2) has a
solution. First, we note that j is bounded from below. Indeed, since the second term
is nonnegative for all g, it suffices to demonstrate that the first term is bounded from
below. To that end, assume otherwise. Then there exists a sequence {w;,}5_| C Zag
such that

G(Swy) < —m 4.3)
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for all m € N. However, Z,q is a closed, bounded, convex subset of a Hilbert space,
and, by [67, Theorem 2.11], it is weakly sequentially compact. It follows that some
sub-sequence {wy, }go; of {wn},—, converges weakly to some w € Zyq. Since S
is a compact operator, Swy,, — Sw as k — oo strongly in Y. Since G is lower
semi-continuous, we have

G(SW) < liminf G(Swy,) = —oo, (4.4)
—00

which poses a contradiction, since G does not assume the value —oo.

We henceforth denote jo := inf,cz,, j(g),and the remainder of the existence part of
the proof is comprised of finding g € Z,q4 such that j(g) = jo. To this end, we identify
a sequence {gn},_ | C Zaq such that limy, . j(gm) = jo as m — oo. Recalling
again [67, Theorem 2.11] we obtain that some sub-sequence {g, }7>; of {gn}o;
converges weakly in L?(2: R") to some g € Zaq. Moreover, since |\/F (x)gmx)| <
[v/T (x)b(x)]| for all m, the sequence (VT gm} is uniformly bounded in L2(S; RY)
as well. From this we may choose the sub-sequence {g,;, };2; so that (VT mi iy
converges weakly in L?($2; R"). By a density argument, it is easy to show that the
weak limit has to be /T g. Since S is compact and G is lower semi-continuous, we
have the inequality chain

~ A -
j® =66+ /Q T(x)]g(x)*dx

IA

A
lim inf G(Sgm,) + / (0|30 2dx
k— 00 2 Q (45)

IA

A
lim inf G (Sgy, ) + liminf = f L (x)|gm, |*dx
k—o00 k—oo 2 Jo

IA

.. A .. .
lim inf (G(ngk)—f-—/ F(x)lgmklzdx) < lim j(gm) = Jjo-
k—o00 2 Jo k— o0

Since g € Z,q, it follows that j(g) = jo, and we have found a minimizer. The proof of
uniqueness under the given additional conditions is standard since j will automatically
become strictly convex. O

Corollary 4.2 (Existence and uniqueness) Problems 2.2, 2.4, 2.3, and 2.5 are all well-
posed. That is, the objective functional has a [unique] minimizing pair, which in turn
solves the corresponding state equation.

Proof The well-posedness of the state equation of each problem follows from the
Lax-Milgram lemma as done in Corollary 3.7. Notice that in all cases, the solution
space Y is compactly embedded into L?($2; R"). For the local problems, the embed-
ding Hj (2; R") € L*(Q;R") is standard, while for the non-local problems we
invoke Theorem 3.11 and Proposition 3.9. We thus have that the solution mapping
S: LZ(Q; R"™) — Y is compact, and then we may write the reduced cost functionals

@ Springer



70 Page22o0f43 Applied Mathematics & Optimization (2023) 88:70

for our problems abstractly as

A
J(@) = /F(x,Sg(X))dX+§/ I (x)|g(x)[*dx. (4.6)
Q Q

Note that this functional satisfies all the conditions of Theorem 4.1, which guarantees
existence and uniqueness of a minimizer. O

Remark 4.3 We would like to mention that the well posedness of the state equation
does not depend on the particular form of the material coefficients and as such the
result can be established for any 2l that is symmetric, bounded from above and below
by positive numbers. However, for what we plan to do in the sequel, a I"-convergence
analysis, the particular format we are using, i.e., A(x,y) = %(a(x) + a(y)) will
be essential to work with coefficients that are merely bounded. Other forms of the
coefficient such as 2A(x, y) = /a(x)a(y) could also be considered but the argument
requires some sort of continuity assumption on a. We do not pursue the latter in this

paper.
5 Analysis in Vanishing Horizon Parameter
Having shown that, for every horizon § > 0, the nonlocal optimal control problem

2.2 has a unique solution (us, g5), we now study the behavior of the pair as § — 0.
Notice that us minimizes the potential energy functional

Ws(u) := Bs(u,u) — /Qgg(x)w(x)dx 5.1

over Xo(€2s; R™). We begin with the following convergence result.

Lemma 5.1 (Compactness of solutions of the control problem) Let {(us, g5)}s~0 be the
family of optimal state-control pairs solving 2.2. There exists a (i, g) € H(} (2; R") x
Zaq such that, up to a sub-sequence, gs—3g in L*>(S; R") and us — u strongly in
L2*(S: R as 8 — 0.

Proof Theorem 4.1 gives existence and uniqueness of optimal pairs that minimize the

energy W;s defined in (5.1). Moreover, since 0 is an admissible control, we have that
Ws(us) < 0, and so, after rearranging we get

Bs(us, us) = L%(X)-%(X)dx- (5.2)

The Cauchy-Schwarz Inequality, in conjunction with the nonlocal Poincaré inequality
(3.24) and the Triangle inequality, gives us

[T51%@prny S 18502 51l 20w S 18511200 6] x(05Em . (5.3)
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Notice that the constant in this estimate, owing to (3.24), is independent of §. Further-
more, since {gs}s=0 C Zad, it is norm bounded (and therefore has a weak limit, up to
a sub-sequence), and as a consequence

supluslx(osrny < C. (5.4)

§>0

Now since us € X(S2s; R"), after extending by zero to 2| (with § = 1) we have that

ks(lx — y) B
Sup/ / ——— 5 |Dus(x, }’)|2dydx = Sup[ug]g((QS;Rn) < C.
§>0JQ; JQ |‘x_ | §>0

From this, we may use [45, Proposition 4.2] or [41, Theorem 2.5] to conclude that the
{us}s=o is precompact in L2(Q; R") and converges strongly in L2($2; R™) to some
ue H(} (£2; R™) (up to a sub-sequence). O

The main question we would like to address in the remaining is whether the limiting
pair (u, g) solves a corresponding limiting optimal problem. The limiting behav-
ior of the minimizers is closely related to the variational convergence of the above
parametrized energy functionals. The main tool we shall use is I"-convergence (see
[12, 15, 18, 55] for more on properties of I"-convergence; [6, 8, 45, 46, 55] for exam-
ples of proofs of I"-convergence for other peridynamics models. For convenience, we
recall its definition here.

Definition 5.2 (I"-convergence) We say that the sequence Es : L2(Q;R") > RU
{+00} I'-converges strongly in L>(2; R") to Eq : L2(Q; R") — RU {400} (denoted

Es LN E)y) if the following properties hold:

GC1 The liminf property: Assume us — u strongly in L2(2; R"). Then we have the
Fatou-type inequality

Eo(u) < liminf Es(ug). (5.5)
§—0t

GC2 Recovery sequence property: For each u € L?(Q2; R"), there exists a sequence
{us}s~o where us — u strongly in L?*(Q2; R") and

limsup Es(us) < Eo(u). (5.6)

§—0F

5.1 Vanishing Horizon Parameter for Continuous Problem

We will be working on the extended linear peridynamic energy functional we now
define. Let Es : Lz(Qg; R™) — [0, oo] denote the energy

Es(u) : // A(x, 5(| |2|)|Du(x y)|2dxdy, foru € X(Qg; R™)
5.7
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and 400 otherwise. Similarly, define a limiting energy Eq : L?(S2; R") — [0, 0oo] by

b 2
Eo(u) = n(n+2)/9a(X)(2” Sym(Vu(x))|lr

+div(u(x))?)dx foru € H'(Q; R"), (5.8)

and 400 otherwise. Note that since, for all § > 0, our energy Ejs is quadratic we have

|Es(u) — Es(v)| < Es(u+ )2 Es(u —v)2 (5.9)

forall u, v € X(Q5; R™).

Lemma 5.3 (Nonlocal to local) Suppose that A € 2 and w € C2(A, R"). Then we
have that

lim//Ql( k‘S('X |y2|)|Dw(x,y)|2dydx

§—0t

_ . ,
- n(n+2)/Aa(x)(2ll Sym(Vw(x)) |7 + div(w(x))*)dx.

The proof of this can be found in [25, 43, 45] in some form or another.
We now state the result on the variational convergence of the parameterized energies
Es.

Theorem 5.4 (E; LN Eo) Let Es and Eq be defined in (5.7) and (5.8), respectively.
We have Es LN Ey in the sense of in Definition 5.2.

Proof We verify each of the conditions that comprise this definition.

Proof of GC1: Let u € L*(2; R") be arbitrary, and {us}s-0 C L*(2; R") be
such that us — u strongly in L?(; R"); we may assume without loss of generality
that lim infs_, g+ E5(us) < oo. That is, up to a sub-sequence we may assume that
Es(us) < oo and using the positive lower bound on the coefficient 2l we have that

k
sup// s(lx = >;|)|Du5(x,y)|2dxdy < o0. (5.10)
§>0 lx — yl

Arguing in the same way as in the proof of [41, Theorem 2.5] (and using that ks (r)r —2
is non-increasing), we then have u € H 1(Q; R™), and that us — u strongly in
L2(: R™).

From here we will look to find a variant of [45, Equation 37], largely repeating the
lower semi-continuity part of the proof of [46, Theorem 4.4]. We first assume that
2 is the constant function 2 = 1 and prove that for any A € 2 open, we have the
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inequality
1
nnt2) / 2| Sym(Vu(x)) |7 + div(u(x))*dx

k
gnminff/ B =30 s e ) Pddy. (5.11)
Qs

§—07t |x — |2

Let0 < € < dist(A, 0Q2),and letn € Cgo(Bl (0)) be a smooth cutoff function. Define
Ne(z) :== € "n (é) and define we s := e * us on A, which is in C2(A; R"). Via a
direct calculation coupled with application of Jensen’s inequality, we have

// X =D by s, y)2dxdy

lx —y|?
k
// G y2|)|Du5(x,y)|2dxdy. (5.12)
Qs |x_ |

Our next step will be to send § — 0T, leaving € > 0 fixed for now. The right hand
side of (5.12) is bounded by lim infgs_, o+ Es(ugs) (with 2 = 1). We compute the limit
of the left hand side. Set w, := 1. * u. Then we observe that we s — we as § — ot
in C1(A; R") due to us — u in L2(Q2; R™) (where € > 0 is taken to be fixed for now).
We use this and Lemma 5.3 to obtain that

m/@ll Sym(Vuwe (x)[|7 + div(we (x))*dx

ks(|x — y))
m [ [ SR Dwestr, Py, (5.13)
3—>0+ [x — vyl

The desired inequality (5.11) now follows from taking the limit in € in (5.13) and
combining it with (5.12).

Next we assume that a is a simple function a = Zf"zl a;xp; for D; C Q5.
Then applying (5.11) for each i = 1,...,m over D; N A and summing it over
i ef{l,2,...,m} we have

1 2 . 2
m/Aa(x) (2|| Sym(Vu(x)||3 + div(u(x)) )dx

k —
liminf / o / S =D pygx, y)2dxdy
Dind).  Jas X —

k _
< liminf / a(x) mx—);D|Du5(x,y)|2dxdy,
+ Ja Qs |lx—Yl

where we use the sub-additivity lim inf a; + liminf b; < liminf(a; + b;) and the
notation (D; NA)s = D; NA+ B (0). Finally, the case of general positive a € L*° (),
we select an increasing sequence of step functions {s j};?ozl, 0<sj <sjy1 <a
that converges to a uniformly. The result then follows from direct application of the
Monotone Convergence Theorem.
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Proof of GC2: Let u € L?(2; R"). We may assume that u € H'(2; R"). For the
recovery sequence, we take us :=u € H L(R", R™), which is the extension of u to R”
with compact support say in 21 (with § = 1). Take a sequence {v; }?O:] C C3(Q; RM)
suchthatv; — & in H'(Q;R") as j — oo. then using (5.9), we see that fora C > 0

sup |E5(IZ) — E(S(v])| <C|Vu — VU]'”LZ(Q;Rnxn)||VM||L2(Q;Rn><n).
>0

That means, Es(v;) — Es(it) as j — oo, uniformly in 8. Using the same proof as
Lemma 5.3, we see that foreach j = 1,2, ...,

SILH})E(S(UJ') = Bo(vj, vj).
Taking the limit in j now we have that
lim Es(u) = lim lim Es(v;) = lim lim Es(v;
5 8(t) 511})/'520 5(v)) jLn;OBER) 5(v))

= lim Bo(vj, vj) = Bo(u, u) = Eo(u),
J—>00

where in the second equality we used the uniform convergence in 4. O

Remark 5.5 We may follow the above approach as well as [12, Remark 1.7] to conclude
that the family of energies {Ws}s~0, defined in (5.1) (finite on Xo(£2; R")), also I'-
converges in the strong L?-topology to

Wo(u) = Bo(u, u) — /Q§(x) -u(x)dx

where gs—g weakly in Lz(Q; R*) as § — 0F. With ['-convergence at hand, we
recall that [18, Corollary 7.20] states if {us}5~0 is a family of minimizers for {Ws}s~0
over L2(2; R"), and % is a limit point of this family, then u is a minimizer of Wy
on L?(£2; R") (see also [15, Theorem 2.1]). By our previous results, this implies
ue H& (2; R™), and moreover

Wou) = 32% Wi (us). (5.14)

Remark 5.6 The particular local model obtained in this work is precisely the classi-
cal linearized elasticity model corresponding to Navier-Lamé parameters A = u =
m a. This limited range of the parameters is a result of the usage of the bond-based
model of PD where only pairwise interactions are allowed. To recover the linearized
elasticity models for arbitrary parameter, one must start from the state-based PD model
where in addition to pairwise interaction, the collective deformation of a neighbor-
hood of a point is accounted. See [25, 45, 60] for more information on this generalized

model.

Finally, we identify what conditions to impose to identify the solution to the local
optimal control problem via a limiting process.
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Theorem 5.7 (Convergence) Suppose {(its, g5)}s=0 € A° is the family of solutions to
the nonlocal continuous Problem 2.2. Then, there exists (u,g) € Aloc such that, up
to a non-relabeled sub-sequence, s — @ in L*>(S:; R") and g5—3 in L*(2; R™).
Moreover, (i, g) solves the local optimal control Problem 2.3.

Proof Lemma 5.1 gives the existence of such pair (#,g) € A"°. We now need to
show that this pair minimizes the reduced objective functional in Problem 2.3. Let
(v, f) € Al° be arbitrary, and consider, for § > 0 the sequence (vs, f) € A%, i.e., of
solutions to the nonlocal boundary value problem (2.18). We can repeat our argument
from Lemma 5.1 with g5 = g = f, and see that vs — v strongly in LZ(Q; R™). Then,
by the Dominated Convergence Theorem, we have that

I(v, f)

/F(x,v(x))dx—i—&/ )| f(x)>dx
Q 2 Jg

lim (/ F(x, v(;(x))dx—i—&/ l"(x)lf(x)|2dx> (5.15)
Q 2 Ja

§—07t

lim 1(vs, f).
§—0t

Now we observe that lims_,o+ I (vs, f) > limg_ o+ I(us, g5) since {(us, gs)}s5>0
was chosen as the minimizers for the objective functional (2.13). Next, notice that
lims_ g+ I(us,gs) > I(u,g) due to Fatou’s Lemma, where we recall that strong
L*(2; R™) convergence of ity — u implies a.e. convergence in 2. In summary, the
inequality chain

I(v, f) = lim I(vs, f) > lim I(us,gs) > 1(u,g) (5.16)
§—0t §—>0t
concludes the proof. O

5.2 Vanishing Horizon Parameter for Discrete Problem

In order to establish the asymptotic compatibility in Sect. 7, one must also consider
the T'-convergence of the discrete problem. The course of proof is similar to that
of I'-convergence for the continuous problem, but one can use the fact that X; C
Wé QRN C HO1 (2; R™) to avoid the use of mollifiers. For these reasons, we
merely state the results.

Proposition 5.8 (I"-convergence of discrete problems) We have that Ws E) Wo in the
Sfamily of spaces { X5 p}s=0 in the strong L2(Q; R™) topology.

We also present the discrete analogue to to Theorem 5.7.

Theorem 5.9 (Discrete convergence) Suppose {(i5 1, 85.h}5>0 € Afl is the family of
solutions to the non-local discrete problem 2.4. Then, there is (uy, gn) € AZ’C such
that us , — uy, in Lz(Q; R™) and g5 n,—gn in Lz(Q; R™). Moreover, (uy,, gr,) solves

the local discrete optimal control Problem 2.5.
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6 First Order Optimality and Discretization

Letus now turn our attention to first-order optimality conditions, which are the gateway
to discretizing the nonlocal optimal control problem. From here onward, we assume
that our integrand F (first introduced in (2.13)) is continuously Gateaux-differentiable
in the second argument. The first Gateaux derivative will be denoted as F,,. We will
also denote by Ss the solution operator corresponding to the state system (2.18), and
by S the adjoint of Sy in the L?-sense. Due to Corollary 4.2, the operator Sj is well
defined. Using the reduced objective functional (4.6), we recall that [67, Lemma 2.21]
shows the first order necessary condition

(/'(88),v: —8) = 0 Vy: € Zu, (6.1)

where j’ represents the derivative of j in some appropriate sense. This functional
has two terms that need to be differentiated: for the first term, we use the Fréchet
differentiability of F and the Chain Rule; the derivative of the second term comes
from the Fréchet derivative of || - ||i2 (@R (the weighted I" norm). See [19, Lemma
3.5] for a similar calculation corresrponding to the fractional Laplacian. Inequality
(6.1) can now be rewritten as

G @) v =T = (SSFC ST + AT T e =) = 0 Yy € Zu(62)
It is standard to introduce a new notation to rewrite the above as the system

(Ps +AU'gs,v: —8s5) = 0, Vy; € Zug

ps = Sy Fu(-, us) (6.3)
us = S58s-
Note that Ss is a self-adjoint operator, so S;Fu(-, us) = SsF,(-,us), and so ps €

X0(2s; R™). Furthermore, as a consequence of these conditions, in the event that
' = 1, we obtain g; is the L2-projection of the adjoint 75 onto the control space Zq,
i.e.

1
8s(x) = — XPZad (Ps(x)), (6.4)

where Pr denotes the LZ-projection onto the set E. Notice that, owing to the
assumption that the objective functional is strictly convex, these first order necessary
conditions are also sufficient. We summarize the result as follows.

Proposition 6.1 (Optimality conditions) For every § > 0, the pair (us,gs) €
X0(Q2s; R") x Z,q is a solution to Problem 2.2 if and only if (6.3) holds.
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6.1 Error Analysis for Nonlocal Problems

With the aid of the optimality system, we are able to perform an error analysis, which
we now begin. From here on we assume, for simplicity, that I' = 1 and that F (x, v) =
%|v|2. With this at hand, the optimality conditions for the non-local discrete problem
read:

(Do, + A8, vn — 8n) = 0, Yy € ZygNZy
S35 nits s (6.5)

= S5.185.h>

<

8,h

us

=
|

recalling that Zj, is defined in (2.24); also, S5 5, is the discrete solution operator asso-
ciated with the discrete state equation (2.27), and Sy, is its discrete L? adjoint.
Note that S; 5 is a self-adjoint operator, so S;hFu(~, usn) = Ss.nFu(-,usp). Also
as with the non-local continuous optimality conditions, it follows that gs ,(x) =
—%Pzad(nopa,h(x)), where Ig : L?(Q; R") — Z; denotes the L?-projection onto
Zy.

To ease the error analysis, define the intermediary functions ir3, ps € Xo(Qs; R")
such that

Bs(its, vs) = (85,1, vs) Vs € Xo(Q2s5; R™); (6.6)

Bs(vs, ps) = (vs,usn) Yus € Xo(S2s; R™). (6.7

The existence and uniqueness of these functions follows from the Lax-Milgram Theo-
rem. More importantly, we observe that the optimal discrete state and adjoint variables
are nothing but the Galerkin approximations to i3, ps, respectively. From this we
immediately obtain, using Céa’s Lemma, that

lits — us pllxsry S inf  |liag — vs nllx@s:r),
vs.hn€Xs.h

PO . I (6.8)
105 — Ponllxsrny S inf  [1ps — gs.nll x(Qs:R)-
qs.h€Xs.h

We now prove error estimates for the state and adjoint.

Theorem 6.2 (State and adjoint error estimates) Suppose that (us , gs.1) is the solu-
tion to Problem 2.4; psj, solves the discrete adjoint equation in (6.5) given us j;
(us, g5) is the solution to Problem 2.2; and ps solves the continuous adjoint equation
in (6.3) corresponding to the state us. Then we have these error estimates for the
states, and the adjoints:

s —usnllxyrny S inf iy — vs.nllx(@sre) + 185 — 8.0l L2(@:Rn)S
vs,n€X5,n

(6.9)
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175 — Ponllxsrny S inf  [Ips — vsnllx(srr) +  inf
vs.n€X5.1 vs.h€X

llits — vs.nll x(2s:R)
h Jh 8,h

+18s — gs.nll L2 rm)- (6.10)

Proof We begin by proving (6.9). Substitute vs := us — its in (2.18) and (6.6), and
subtract those two equations to obtain

Bs(us — iy, us — its) = (85 — 8o.h, Us — Us)- (6.11)
Using the definition of 2, Holder’s inequality, and (3.6) gives

s — sl x(25rny S 185 — 8onll L2 mn)- (6.12)

This, combined with (6.8) then yields the result. The proof of (6.10) uses the same
procedure, and is thus omitted. O

At this stage we must observe that the infima in (6.9) and (6.10) tend to zero as
h — 0. This is because of density; if a rate of convergence in these terms is desired,
then further regularity of it and ps must be studied. For some kernels this could be
done, for instance, by exploiting that is ; belongs to a space that is strictly smaller than
the dual of X¢(2s; R"); see, for instance, [1, 32, 56]. Due to the generality we place
on our kernel, we do not pursue this. It remains to estimate the difference between
continuous and discrete controls, which will now be our focus.

While in general our controls only belong to L?(2; R"), in the event we have
additional regularity, we can quantify our forthcoming estimates even more. Indeed,
in the local case, the projection formula g(x) = —%Pzad (p(x)) combined with the
fact that p € HO1 (€2; R™) imply further regularity on the control (namely, that g €
H'(2; R™)). The following lemma provides a sufficient condition on the kernel for
this to also be the case for nonlocal problems.

In the following result, we require s # % to be able to use the Hardy-type inequality
[42, Theorem 2.3]. This is essentially a technicality.

Lemma 6.3 (Regularity of control for fractional-type kernels) Suppose that in the
definition of Z,q, given in (2.12), the functions a and b are constants. Suppose also
that, in addition to the contents of Assumption 2.1, we have that

ks(e) 1

6.13
1§12 |& |2 (@19

holds for all ¢ € B;s(0), for some s #* % Then, necessarily, gs € H®(2; R").

Proof We introduce some notation specifically for this proof. As seen in [47], we
denote by ||ull gs(o:r) the fractional Sobolev norm on vector fields, and denote by
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H*(2; R™) the space of vector fields with finite fractional Sobolev norm. It has been
shown in [47, Theorem 1.1] that the space

|Du(x, y)|?

xS (G RY) = {u e L*(; RM) ‘ /Q S F—TET dydx < oo}

coincides with H*(£2; R") with comparable norms. Now since ps € Xo(25; R") and
ks satisfies (6.13), via direct calculation we have that ps € x*(2; R"), and so it is in
H*(2; R™). To finish the proof, we recall the component-wise, pointwise formula

Pz, (Ps) = max{a, min{pg, b}}, (6.14)

proven in [67, Theorem 2.28], where we use the assumption that the boxing functions
in Z,q are constants. It is now clear that Pz, (ps) is in H*(2; R") from directly
estimating the max-min expression. Moreover, [Pz, (ps) |l us@:rny S 125l Hs (:r -
The conclusion for gs follows from the formula (6.4). m]

Remark 6.4 An alternative to estimating ||gs|| s (@R directly is to use interpolation
theory; see [38, Chapter 16] and [64, Chapter 25]. To see this, it suffices to recall that
the H*(Q; R") space is an intermediate space between H'!(2; R”) and L%(Q2; R").

Having shown that it is possible for the control to lie in a smoother space than
L%(2; R™), we can proceed with the error analysis. Again, due to the generality of the
kernel we are not very explicit in this. Instead, we introduce w : Ry — R for which
lim;,_, g+ w(h) = 0. This is such that, if w € Pz, Xo(Qs; R"), then

[Tlow — wll2@rny = @(h), (6.15)
where Ig : L?(Q; R") — Z;, denotes the L?-projection onto Z;,. Clearly, » depends
on the spatial dimension n, on the embedding number (or Gelfand width) of the

embedding Xo(Q2s; R*") C L?(S2s5: R™), and on the properties of Pz ,. In the setting
of Lemma 6.3 a proper rate of approximation can be established.

Lemma 6.5 (Approximation with smoothness) Assume that ks satisfies (6.13) on Bs(0)
for some s #~ %, then

IMow —wll2q@rny < A lwlix@srny,  Yw e Xo(Rs; R (6.16)

Proof The proof repeats that of the Fractional Poincaré Inequality [27, Lemma 7.1]
in the vector-valued setting, to obtain the estimate

Tlow — w||L2(T;Rn) S hs[w]HS(T;R")- (6.17)

for each T € .7},. Since our mesh is quasi-uniform, from (6.17) we may deduce, via
a localization argument, that

||How — w”LZ(Q;Rn) f/ hS[U)]HS(Q;Rn). (6.18)
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Then invoke [47, Theorem 1.1] to estimate [w]gs(q:rr) in terms of the X (25; R™)
norm. O

We can now obtain an error estimate for the control. In the following result the idea
is that, once further regularity of the state/adjoint is known (which can be done for
more specific kernels), and a bound on w like the one in Lemma 6.5 is obtained, the
right hand side in the estimate below can be bounded by a power of 4.

Theorem 6.6 (Convergence of controls) Assume that gs is the optimal control associ-
ated with Problem 2.2, and g5 }, is the discrete optimal control associated with Problem
2.4. Then we have the estimate

2
— — 2 2 . —
Igs — 8snlli2qpm S @M+ (va,hllel)f(&h[ua - U&,h]X(Qg;R”))
2
+< inf [m— v5,h]X(Q,§;R”)> . (619)
Vs, h€Xs.h

Proof We follow a grosso modo the argument used to prove [19, Theorem 4.7]. We
let gs.n € Xs.5 be the Galerkin approximation to pg, i.e., the solution of

Bs(vs,n, gs.n) = (us,vs.n)  Vvsn € Xsn- (6.20)
Similarly, Us j, € X5 is the Galerkin approximation to us:

Bs(Us,h, vs,n) = (&s.vs,n)  Yush € Xsh- (6.21)
Finally, rs , € X5 » solves

Bs(vs,nyrs,n) = (Us,h, vs,n)  VYusn € Xsn- (6.22)

Set y; := gs.5 1n (6.3) and y;, := Ilpg in (6.5). Adding the ensuing inequalities we
obtain

Mg = Bonlliaqupny < N1+ Dy (6.23)

where 11 := (ps — Ps.n» 8s.n — 8s) and I := (ps.n + Ags.h, [logs — g5)- Now, we
write /] as

I = (Ps — qs,n. 85,0 — 85) +{qs.n — Ts.n> 88, — &) + (rs,n — Ps.n> 8. — &5)
s ha+ha+ 13

(6.24)

We now claim that /; 3 < 0. Indeed, recall that p;_, denotes the optimal adjoint state
for the discrete problem, and hence it satisfies

Bs(vs,n, Psn) = (Usn,vsn)  Yvsn € Xsp. (6.25)
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Subtracting (6.22) and (6.25) yields

Bs(vs,p.rs,n — Do) = (Usn —usn, vsn)  Yusn € X5, (6.26)

while subtracting (6.21) and (2.27) shows us that Us , — us,;, solves

Bs(Us,n — us n,vs,n) = (85 — &.h> Vs,n)  Ys.h € X5 e (6.27)

Set vs p 1= rs.n — ps.i in (6.27) to obtain

Bs(Us.n — s ns7s,n — Ds.n) = (85 — &8.h> 's,h — Ds.h)- (6.28)

Similarly, in (6.26), we set vs j := Us , — us,, and obtain

Bs(Us,n — us n, rs,n — Ps.n) = IlUsp — Ms,hlliz(Q;Rn)- (6.29)

Since the left-hand sides of (6.28) and (6.29) are identical, it follows that /; 3 < 0.
By using Cauchy-Schwarz and Céa’s lemma repeatedly, we also obtain the following
estimates for /1 1 and I :

I S 18 — 8l qrn " ,ilel;gh[% — Vs nlx (@R (6.30)

Lo S 18n —8ll2rey  inf (U5 — vs nlx(s:Rn)- (6.31)
vs,h €X5.h
Combine (6.30) and (6.31), along with the fact that /1 3 < 0, to see that

I S lgsan — 8sll2rm

( inf  [us —vsnlxsry + inf  [ps — vé,h]X(Qg;]R")) . (6.32)

vs.h€Xs.h vs.h€Xs,h

Finally, by two applications of Young’s Inequality,

2
by
I < = —gl? 4+ C| inf [uz—v
1= 3||88,h 8sl2qurny T <U8‘hex&h[a s.hx (R ))

5 (6.33)
+C( inf  [ps — vs.nlxsrn) | »

vs.n€Xs n

for some constant C > 0 independent of § and 4. Let us now turn our attention to
estimating 1o = (pn + Ags.1, [1ogs — gs). We write it as

(Ps.n + Ags.n> Tlogs — 85) = (ps + A8s, Iogs — &s) + A(gs,n — 85> Tlogs — 8s)+
(Ps.n — rs.ns Togs — 8s) + (rs.n — gs.ns Togs — 8s) + (gs.n — Ps, [ogs — &) =:
hi+ho+ b3+ ha+t s,

(6.34)
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and in turn look to control each I x, k = 1, ..., 5. Starting with > |, we write it as
(ps + 285, llogs — 85) = (ps +2gs — lo(ps + 285), [logs — gs). (6.35)

Since g5 € Pz, X(2; R") and ps|lo € X (£2; R"), we use (6.15) and Cauchy-Schwarz
to obtain

Ly < o)’ (6.36)
As for I 5, we again utilize Cauchy-Schwarz and (6.15):
Lo = Ags,n — 85, ogs — &) = Ags.n — 8sllr2:rm T08s — &5l 12 (@irny =
oW Z5w — Bl 2 < %um — S22y + @M, (6.37)
for some constant C > 0.

To handle I» 3 we subtract (6.22) from (6.25), set vs.j := Ps.;, — rs,» in the result,
and obtain

[Ps.n — rs.nlxsrry < Cllusn — Usnllp2(q:re)- (6.38)
Applying (6.15) with w := ps ; — rs.n, and combining the result with (6.38) gives

IPs.n —rs,n — Ho(ps.n — rsm)llp2irny = @Wllus,n — Us nll2(qrry (6.39)
L3 < oMllusy — Usnll2q:rey, (6.40)

Use Young’s Inequality and Céa’s Lemma on (6.40) to obtain

2
L3 S w(h)2+< inf [%—Ua,h]x@s;w)> . (6.41)

vs.hn€Xs.h

To control I 4, we use Cauchy-Schwarz and (6.15):

bha < rsp— 6]8,h||L2(Q;Rn)||HO§ - g_5||L2(Q;R”) < oM |rs.n — C]a,h”LZ(Q;Rn)-

(6.42)
Then by a standard Céa’s lemma argument,
ha4 < wh) Ua,hilelf(a‘h[ﬁ — Vs, nlx(Qs:R) - (6.43)
Finally, for I 5 we use (6.15) and Céa’s lemma again to obtain
hs < wh) inf [ps—vsnlx@sRrn- (6.44)

vs.n€Xs.n
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After using Young’s Inequality, and combining the estimates for /1 and I, we conclude

)\' 2
3% — Bl my S w(h)2+< inf [%—Ua,h]X(Qg;Rﬂ)>

Vs, n€Xs,n
2
+ < inf [ps— UzS,h]X(Qg;R”)) , (6.45)
Vs, h€Xs.h
from which (6.19) immediately follows. ]

We combine and summarize the state and adjoint error estimates as follows.

Corollary 6.7 (Error estimates) In the setting of Theorems 6.2 and 6.6,

s —usnllxsry S @)+ inf  [lids — vspllx (@R

vs,h€Xs,n
+ inf (@5 — vsalx@yrny +  inf  [Ps — vsalx(srn);  (6.46)
vs,h€Xs,h vs,h€Xs,h

175 — Ponllxsrny S @)+ inf  [|ps — vs nllx(s:R)
vs h€X5.h

+ inf  |lias — vsallx(esrny +  inf (W5 — vs plx(es R
Vs, h€Xs vs.h€Xs,h

+ inf  [ps — vsnlx(sR)- (6.47)

vs.n€Xs.n
Furthermore, if the conditions of Lemma 6.5 are satisfied, then w (h) ~ h*.

6.2 Error Analysis for Local Problems

The analogue of (6.3) for the local problem is

(p+rg.y—¢ =20, VyeZy
P = S*u, (6.48)
= Sg.

where by S : Zyq — H& (£2; R™) we denote the solution operator to problem 2.21. In
a similar manner, the analogue to (6.5) for the local discrete problem is

(Ph+2gn,vn—28n) = 0, Yypn e ZuNZy
P = Spup = Spuy (6.49)
up, = Spgh,
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where Sy, : Z;, — X, denotes the discrete solution operator. The analogue of (6.4) for
the local discrete problem is

1
gn(x) = — XPZM (Hopn(x)). (6.50)

Define the intermediary functions u, p € H& (R25; R™) such that

Bo(@,v) = (g, v) Yve Hj(Q;R"Y); (6.51)
Bo(v, p) = (v,ily) Vv e HJ (2 RY). (6.52)

Again, these functions exist and are uniquely defined thanks to Lax-Milgram. Much
like for the non-local problem, we have state and control error estimates as i — ot,
and the proofs are virtually identical to those already presented. However, for the local
problem, since g € H'(Q2; R"”) we may employ the estimate

||H()w - w”LZ(Q;Rn) < h[w]Hl(Q;]R") (653)

in place of (6.15). We may also prove, in the same manner as in Sect. 6.1, error estimates
for the discrete state, adjoint, and control. In particular, suppose (i, g) denotes the
solution to Problem 2.3, while (u7,, g,) denotes the solution to the discrete Problem
2.5. Assume also that p denotes the solution to the adjoint problem (6.49), while pj,
solves the discrete adjoint problem 6.49. If we further denote g as the optimal control
for Problem 2.3, and gy, as the discrete optimal control for Problem 2.5, then we have
the estimates

1% —unll g @rny < Uig( [ — vl g @.rny + 18 — 8hll 2(@irn)3 (6.54)
h h
-7 oy <oinf [p—v Rn
17 = Pull g @irny S vhexh[P AV
+ inf [@ — vnlg@rn) + 118 — 81l 2R3 (6.55)
vpeXy

2—gn wy S h+ inf [p—v ny + inf [u — v Ry -
g —gnllL2:rny S vhexh[l’ w1 (@R v;,eXh[ nlE QR

(6.56)

It then follows that i1, — u and pj, — pin H'(€; R") as h — 07.

7 Asymptotic Compatibility

In [65] the concept of asymptotically compatible schemes for parameter-dependent
linear problems was introduced. The goal of asymptotic compatibility is to guarantee
that we reach the same local, continuous solution regardless of whether we send §
and h to O separately (in either order) or simultaneously. This broad idea has been
implemented extensively in several problems, see [13, 36, 37, 66]. Our main goal in
this section is to extend this notion to nonlocal optimal control problems, and to show
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5§—0+
(s, Is.1) < (Un,gn)
h—0t k=00 h—0t
A §—071 A .

< (ﬂvg)

(us, gs)

Fig.1 Commutative diagram associated with Definition 7.1

that our ensuing numerical schemes are indeed asymptotically compatible. We first
provide a definition of asymptotic compatibility of a scheme to the optimal control
problems that slightly extends [65, Definition 2.8].

Definition 7.1 (Asymptotic compatibility) We say that the family of solutions {(us 1,
25.1)}n>0,6>0 to Problem 2.4 is asymptotically compatible in §, 7 > 0 if for any
sequences (8¢}, (k) with 8k, by — 0, we have that us, 5, — u strongly in
L*(Q; R") and g5, 4, —2 weakly in L*(Q; R"). Here (#,8) € H) (2 R") x Zy
denotes the optimal solution for Problem (2.3).

The idea behind asymptotic compatibility can be summarized by saying that the
diagram in Fig. 1 commutes. The asymptotic compatibility theory for linear problems
developed in [65] hinges on several structural properties for the operators at hand.
Since they will be also useful in our setting, we quickly verify them here as well. We
also henceforth assume that the design coefficient 2 is Lipschitz continuous, as it is
necessary to invoke the results needed for the next proposition.

For each § > 0, define As : Xo(Qs; R") — X0(R2s; R™* as the bounded, invert-
ible, linear operator such that

(Asu, V) xo(@s:RM* Xo(2s: R = Bs(u,v)  Vu,v e Xo(Q2s; R"). (7.1)

Similarly define Ay : H(} (Q;R"Y - H -1 (2; R™) as the bounded, invertible, linear
operator such that

(Ao, V) -1 re) 1 @rey = Bo(w,v) Vu,v e Hy(R".  (72)

Proposition 7.2 (Asymptotic structural properties) The following hold:

AC1 The family of spaces {Xs.n}5>0.n>0 is asymptotically dense in HO1 (2; R™). That
is, given a v € H(} (2; R™), and some sequences hy, 8y — 0, we can find a
sequence vi € X, p, such that v — v strongly in HY(Q; RY) as k — oo.

AC2 Forany sequences {8 }72 |, {hi )z, with 8, hy — 0 and the family of solutions
{ (s, 1y » 85,10, )) to Problem 2.4, there existsa C > 0 so that ||m||x(§25k;[@n) <
C uniformly in k € N*.
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AC3 Foreachu € C°(2; R") and § > 0, we have that Asu € L2(Q; R").
AC4 For eachu € C3°(2; R"), we have that lims_, o+ || Asu — Aou|| xo(4:R1)* =
0.

Proof The fact that finite element spaces of continuous piecewise linear functions
are asymptotically dense in Hé (2; R™) is well-known, thus verifying AC1. For any
k € N, the bound stated in AC2 follows from a standard a priori estimate and the fact
that Z,q is bounded in L2(Q; R™). AC3 and AC4 are addressed in [44, Theorem 3],
[65, Lemma 4.2], and [43, Proposition 3.1]); for completeness we briefly sketch the
proofs. For AC3, notice that for u € Cgo (£2; R™), one can easily check that

Du(x,y) x —y
2 Y-
lx —y|= [x — y

Asu(x) = / A(x, y)ks(|x — y))
Qs

As a consequence, using Taylor’s theorem, and symmetry of 2, we have
|Asull Loo(@irmy < C(O)IVull Loo(q:rrxny.

In particular, we may repeat the proof of Lemma 5.3 omitting the outer integral,
utilizing Taylor Expansions and the Dominated Convergence Theorem due to the
regularity of u. This is effectively localizing steps of our proof of I'-convergence
(Theorem 5.4). O

The structural conditions given above guarantee the asymptotic compatibility for
linear problems. Our extension regarding the asymptotic compatibility of our schemes
in the setting of optimal control problems is the content of the next result.

Theorem 7.3 (Asymptotic compatibility) The solution to Problem 2.4 is asymptoti-
cally compatible in §, h > 0, in the sense of Definition 7.1.

Proof In this proof we denote {(ux, g)lpe, = (s hy» 8.k )feq» Which is the
sequence of pairs solving Problem 2.4. We also let {pi}p2, = {Psc.ni)ie; denote
the sequence of solutions to the adjoint problem included in (6.5). We consider an
arbitrary, non-relabeled sub-sequence of the triples {(ux, gx, Px)};= . and show that it
has a further sub-sequence which always converges to the same limit point. Moreover,
this limit solves (6.48) and, since this uniquely characterizes the solution to Problem
2.3, asymptotic compatibility will follow.

Since {g_k},fil C Zag, this sequence is bounded in L2(Q; R™), and there exists a
sub-sequence and a function g, so that gx— g, weakly in L?(Q; R"). Meanwhile,
due to item AC2 of Proposition 7.2, the sequence {uy}72 ; is uniformly bounded,
and upon taking a further, non-relabeled, sub-sequence, there exists a limit point
Uy € H(} (2; R™) so that uxy — u, strongly in L2($2; R™). Since {(ug, g0}, are
pairs satisfying Problem 2.4, we have for all vy € X;, 5, that

By, (i, vi) = (8« vi)- (1.3)
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Letg € C3°(2; R") be arbitrary, and denote by /i the Lagrange nodal interpolant with
respect to the mesh of size . If wy := Ixp € Xs; p,, then wy — ¢ in Whoeo(Q: RY)
as k — oo. This convergence is sufficiently strong to ensure

lim (gg, wi) = (g, ¢). (7.4)
k— 00
Now, utilizing the definition (7.1), we write

By (i, wi) = (As Uk, Wk) Xo(Qs,:RM*, Xo(R5,:R")
= (A§9, Uk) Xo(Q5, R, X0 (2, ;R (71.5)
+ {As (Wi — @), Uie) X095, R")*, X025 ;R

=: Iy + 1.

Due to item AC3 of Proposition 7.2, necessarily As ¢ € L*($; R™), and by item
AC4, we have that As, ¢ — Apg strongly in X¢(2s,; R")*. Due to this and ux — u
strongly in LZ(2; R"), the term I; behaves as follows:

lim (Asz‘P» M_k)X()(Ql;k;R")*,Xo(ﬂgk;R”) = <A0€07 u*)H_l(Q‘R") HI(Q'R")' (76)
k— 00 5 » Hy (345

As for I I, we may use the definition (7.2) and that uy is the solution to (2.18), along
with Holder to deduce

Iy = Bs (g, wk — @) S il xes, ;) lwe — @llx s, :7)- (7.7
Due to item AC2 the first factor is uniformly bounded in k, whereas the second factor
is controlled up to a constant (uniform in k) by [|[wx — ¢|l g1 (), due to Lemma

3.2. This factor is further bounded from above by ||wi — ¢|ly1.00(q.rn), and then the

convergence of wy — ¢ in WLoo(Q: R") tells us that /I, — 0 as k — oo. The result
is that

Bo(ux, ¢) = (8x. ¢) (7.8)
forall ¢ € Cgo (2; R™); by density, we may then extend (7.8) to all ¢ € H(} (2; R™).
Repeating the analysis just used for the sequence of states {uy}7 ;, we identify a

P« € HJ (S R") so that py — py strongly in L?(€2; R"), and

Bo(@. ps) = (ux. ¢) (1.9)

for all ¢ € HO1 (€2; R™). Now, we link the states, controls and adjoints, beginning as
follows: due to (6.1), for each k we have that

By, (pr, vi) = (ux, v) (7.10)
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for all v € Xs, 5, , and the identity

1
gk(x) = —XPZM(HOW(X))- (7.11)

The next step is to show that [Topy — py strongly in L2(2; R"). By the Triangle
Inequality and the stability of Ty, we estimate

IMopk — Pxllr2@reny = 1Pk — Pxllr2;rey + ITops — Pxll2(qrmy- (7.12)

Since px — ps« strongly in L2($2; R™), the first term in (7.12) decays to 0 as k — oo,
while the second term vanishes due to (6.15).

Now, due to the convergence ITopg — ps strongly in L>(£2; R”) and the projection
mapping being Lipschitz, we have that —%Pzad(ﬂoﬁ(x)) — —%]P’Zad (p«(x)); this
coupled with the weak convergence gr— g in L>(2; R") lets us conclude

1
g+(x) = —XIP’zad(p*(X))- (7.13)

Since (7.8), (7.9), and (7.13) all hold, and solutions to the local continuous opti-
mality conditions (6.48) are necessarily unique, we have that g, = g; p, = p; and
u, = u. Finally, notice that this limit point («, g, p) € HO1 (2; R™) X Zyq X H& (2; R™)
is independent of the original sub-sequence chosen, which means the entire sequence
{(k. gk, Pr)}32 | converges to (i, g, p) inthe L?(Q; R") x L2, (@ R") x L2(Q; R")
topology, completing the proof. O
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