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Abstract

We study a non-local optimal control problem involving a linear, bond-based peridy-

namics model. In addition to existence and uniqueness of solutions to our problem,

we investigate their behavior as the horizon parameter δ, which controls the degree

of nonlocality, approaches zero. We then study a finite element-based discretization

of this problem, its convergence, and the so-called asymptotic compatibility as the

discretization parameter h and the horizon parameter δ tend to zero simultaneously.

Keywords Peridynamics · Optimal control · Asymptotic compatibility · Integral

equations · Non-local systems · Bond-based model
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1 Introduction

This paper focuses on an optimal control problem with a system of constraint equations

derived from peridynamics (PD), which is a contemporary non-local model in solid

mechanics, [58, 60]. PD models do not assume the differentiability (even in the weak

sense) of pertinent forces acting on a body nor of the resulting displacement vector

fields, unlike their local counterparts in continuum mechanics. This feature of PD

models makes them attractive to analyze certain physical phenomena with inherent

discontinuities, such as the formation of cracks in solids, see [61–63] for computational
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verification and [39, 40] for analytical demonstration of emergence of fracture patterns

from the PD model without prescription. In this work, we will focus on the bond-based

PD model, where particles in a solid are assumed to expend long distance forces on

other particles within a certain radius. With this in mind, we will consider the problem

of linearly deforming a [possibly heterogeneous] elastic solid occupying a domain

� ⊂ R
n to achieve a desired deformation state by applying a certain external force.

The deformation field given by v(x) := x + u(x), where u is the displacement, and

the external force g are related via the linearized bond-based PD model [25, 43, 59]

given by

Lδu(x) :=
∫

Rn

fδ(s[u](x, y), y, x)dy = g(x), x ∈ �,

where the vector-valued pairwise force density function fδ along the bond joining

material points x and y, and the scalar linearized strain field s[u] associated with the

displacement u are given by

s[u](x, y) =
u(x) − u(y)

|x − y|
·

x − y

|x − y|
;

fδ(s[u](x, y), y, x) = A(x, y)kδ(|x − y|)s[u](x, y)
y − x

|x − y|
.

In the above, A(x, y) = a(x)+a(y)
2

serves as the symmetric material coefficient for

some bounded function a. The function kδ is the interaction kernel that is radial and

describes the force strength between material points. The parameter δ > 0, in the

definition of Lδ , is called the horizon and measures the degree of non-locality, i.e., the

radius within which the interaction forces are considered. We assume that kδ(r) = 0

if r ≥ δ; additional assumptions on the family {kδ}δ>0 will be given later.

To quantify the desirability of a displacement state u subject to the the external

force g, which will be our control, we introduce an objective functional I (u, g). This

functional will be taken to be a sum of two parts: one measures, say, the mismatch of

the displacement state u and the desired displacement field, say udes , and the other

penalizes the control g and serves as a regularizer. We will delay the exact form of the

objective functional until the next section, but the optimal control problem of interest

in the paper can now be stated as

{
min{I (u, g) | (u, g) ∈ Xad × Zad},
Lδu = g in �,

(1.1)

where the admissible set Xad × Zad will be specified in the next section. As described

above, the state equation, codified by the operator Lδ , will be a strongly coupled linear

system of integral equations. The definition of Lδu requires the knowledge of the state

u outside of the domain �, up to a boundary layer of thickness δ. Thus, we close

the state equation in (1.1) by assigning u to be a fixed displacement field u0 in the

boundary layer which we call the nonlocal Dirichlet boundary condition.
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In this work, we prove the well-posedness of (1.1) for a more general class of objec-

tive functionals and a broader class of interaction kernels kδ that include fractional-type

kernels. We also study the behavior of the optimal pair (u, g) as a function of the

horizon δ. In fact, we demonstrate that in the vanishing horizon limit δ → 0+ the

integral equation-based optimal control problem (1.1) converges, in a certain sense,

to a differential-equation-based optimal control problem. Well-posedness as well as

vanishing nonlocality limit for the state equations have been studied in [43, 49, 57,

68]. In addition, we consider the numerical approximation of solutions to (1.1) via the

first-order optimality conditions. The discrete problem will involve two parameters:

the discretization parameter h and the horizon δ. We will show that we have conver-

gence, not only when h tends to zero, but that we also have asymptotic compatibility

(see [65]), in the sense that the limit is unique regardless of the path we use to let

h → 0+ and δ → 0+.

While literature on optimal control problems is immense, we cite some works

that are related to the current study. The papers [1, 9, 10] study the finite element

approximation of fractional or other nonlocal equations. The optimal control problem

when the state equation is a scalar fractional or non-local equation is studied in [2–4,

14, 19, 20, 28, 48]. In particular, [20, 28] present some numerical simulations which

illustrate the effect of nonlocality. For our approach of using the first-order optimality

conditions in order to approximate the continuous problem with the corresponding

discrete problems, we refer the reader to [2, 16, 17, 19, 52] for more on this subject

matter. To the best of our knowledge the optimal control problem for a strongly coupled

system of nonlocal equations of peridynamic-type has not been studied in the literature;

the current work makes a contribution in that direction.

We also mention that while the present work focuses on the basic linear bond-based

peridynamic model, similar analysis can be done on the more general linearized state-

based peridynamics [60] as well as other nonlinear convex models, like those studied

in [45]. Most importantly, since fracture simulation is one of the major application

areas of peridynamic, we are interested in analyzing a nonlinear PD model of evolu-

tion of fracture actively controlled either by external force or prescribed volumetric

displacement. We are particularly keen to implement the ideas in the theory of optimal

control of fracture propagation governed by regularized phase-field fracture models

[50, 51] to that of the nonlocal quasistatic fracture evolution that is developed in [7, 23]

where mathematical analysis and numerical examples are presented to demonstrate

a displacement controlled evolution of fracture. For a comparative review of peridy-

namics and phase-field fracture models, see [24]. These and other related issues will

be addressed in future work.

We now outline the contents of the rest of the paper. First, Sect. 2 states the problems

to be studied, with all notation made precise. Section 3 highlights some structural

properties of the function space of interest such as compact embedding. The framework

from which the well-posedness of our local and non-local optimal control problems

can be deduced is carried over in Sect. 4. The remaining sections study the relationship

between our problems as δ and h change: Sect. 5 considers Ŵ-convergence results as

δ → 0+; Sect. 6 features finite element analyses for the local and non-local problems

as h → 0+; and Sect. 7 proves the asymptotic compatibility of limits as δ and h both

tend to 0.
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2 Problem Formulation

2.1 Notation and Assumptions

Let us begin by introducing some notation; first, by A � B we mean that there is a

nonessential constant c, such that A ≤ cB. In addition, A ∼ B means A � B � A.

We assume throughout the paper that � ⊂ R
n is an open, bounded domain with a

Lipschitz boundary, and denote �δ := �∪{x ∈ R
n | dist(x,�) < δ}, where δ > 0 is

the horizon parameter. By volumetric boundary we mean the boundary layer �δ \ �

surrounding �. For any r > 0 and x0 ∈ R
n , we denote the ball centered at x0 with

radius r by Br (x0). Next we provide assumptions on our kernels which are adopted

from [11, 48].

Assumption 2.1 (Kernel assumptions) We assume that {kδ}δ>0 is a family of radial,

non-negative, kernels in L1(Rn) supported in Bδ(0) such that

∫

Rn

kδ(|ξ |)dξ = 1,

lim
δ→0+

∫

Rn\Bǫ(0)

kδ(|ξ |)dξ = 0, for all ǫ > 0.

(2.1)

The above two conditions say that the family of L1 functions {kδ}δ>0 converges to

the Dirac measure δ0 in the sense of measures. We also assume that for each δ > 0,

kδ(r)r−2 is non-increasing in r .

Given any radial function k ∈ L1(Rn), supported on the unit ball B1(0), and with

‖k‖L1(Rn) = 1, the family kδ(|ξ |) = δ−nk

(
|ξ |
δ

)
satisfies (2.1); for other nontriv-

ial kernels satisfying the above conditions see [11]. To properly define our function

spaces and norms, we introduce some additional notation. First, given u : �δ → R
n

measurable, we let Du represent the projected difference defined as

Du(x, y) := (u(x) − u(y)) ·
(x − y)

|x − y|
.

This quantity is the trace of (u(x) − u(y)) ⊗ x−y
|x−y| . Notice then that the linearized

strain field s[u](x, y) is given by s[u](x, y) = Du(x,y)
|x−y| . Using these notations, the

vector-valued nonlocal operator Lδ is given by

Lδu(x) =
∫

�δ

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|2
x − y

|x − y|
dy, (2.2)
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whenever it makes sense. To identify the bilinear form Bδ(u, v) associated with this

operator, we first notice that for u, v ∈ C∞
c (�; R

n), we may write

∫

�

Lδu(x) · v(x)dx =
∫

�

∫

�δ

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|2
x − y

|x − y|
· v(x)dydx

=
∫

�

∫

�

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|2
x − y

|x − y|
· v(x)dydx

+
∫

�

∫

�δ\�
. . . dydx .

The first term in the right hand side can be rewritten, applying Fubini’s Theorem and

making use of the symmetry of A as well as the domain of integration, as

∫

�

∫

�

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|2
x − y

|x − y|
· v(x)dydx

=
1

2

∫∫

�×�

A(x, y)kδ(|x − y|)

Du(x, y)

|x − y|
Dv(x, y)

|x − y|
dydx .

(2.3)

The second term can also be rewritten as, by dividing it into two halves and after

interchanging the integrals in one,

∫

�

∫

�δ\�
A(x, y)kδ(|x − y|)

Du(x, y)

|x − y|2
x − y

|x − y|
· v(x)dydx

=
1

2

∫

�

∫

�δ\�
A(x, y)kδ(|x − y|)

Du(x, y)

|x − y|2
x − y

|x − y|
· v(x)dydx

+
1

2

∫

�δ\�

∫

�

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|2
x − y

|x − y|
· v(x)dxdy.

We now subtract 1
2

∫
�

∫
�δ\� A(x, y)kδ(|x − y|) Du(x,y)

|x−y|2
x−y
|x−y| ·v(y)dydx from the first

term and add it to the second one, after interchanging the integrals, to obtain that

∫

�

∫

�δ\�
A(x, y)kδ(|x − y|)

Du(x, y)

|x − y|2
x − y

|x − y|
· v(x)dydx

=
1

2

∫

�

∫

�δ\�
A(x, y)kδ(|x − y|)

Du(x, y)

|x − y|
Dv(x, y)

|x − y|
dydx

+
1

2

∫

�δ\�

∫

�

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|
Dv(x, y)

|x − y|
dxdy.

(2.4)
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We now combine (2.3) and (2.4) to conclude that

∫

�

Lδu(x) · v(x)dx =
1

2

∫∫

Dδ

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|
Dv(x, y)

|x − y|
dxdy

=: Bδ(u, v),

where Dδ = (� × �δ) ∪ (�δ × �) (see [29, Proposition A.5] for the scalar case).

The latter defines a bilinear form and we understand the strongly coupled system of

nonlocal equations for the state u, Lδu = g, in the weak sense as the Euler-Lagrange

equation for the corresponding quadratic potential energy

1

2

∫∫

Dδ

A(x, y)kδ(|x − y|)
∣∣∣∣

Du(x, y)

|x − y|

∣∣∣∣
2

dxdy −
∫

�

g(x) · u(x)dx (2.5)

defined on an appropriate space of functions with a displacement field on the nonlocal

boundary. Recall that A(x, y) = A(y, x) and that there are positive constants amin

and amax such that amin ≤ a(x) ≤ amax for all x ∈ �δ . With these assumptions on

A and for g ∈ L2(�; R
n), the energy in (2.5) is finite for u : �δ → R

n measurable

such that

u|� ∈ L2(�; R
n), and

∫∫

Dδ

kδ(|x − y|)
∣∣∣∣

Du(x, y)

|y − x |

∣∣∣∣
2

dxdy < ∞.

We denote this space of functions by X(�δ; R
n); i. e.

X(�δ; R
n) =

{
u : �δ → R

n

∣∣∣∣ u|� ∈ L2(�; R
n),

∫∫

Dδ

kδ(|x − y|)
∣∣∣∣

Du(x, y)

|y − x |

∣∣∣∣
2

dxdy < ∞
}

.

We also introduce the corresponding space of functions having a zero nonlocal bound-

ary condition as

X0(�δ; R
n) =

{
u ∈ X(�δ; R

n)

∣∣∣∣ u = 0 on �δ \ �

}
.

It is not difficult to show that the spaces X(�δ; R
n) and X0(�δ; R

n) are normed spaces

with the norm

‖u‖X(�δ;Rn) :=
(
‖u‖2

L2(�;Rn)
+ [u]2

X(�δ;Rn)

) 1
2

(2.6)

where [u]2
X(�δ;Rn)

:=
∫∫

Dδ
kδ(|x − y|)

∣∣∣ Du(x,y)
|y−x |

∣∣∣
2

dxdy. Notice that the form Bδ :
X(�δ; R

n) × X(�δ; R
n) → R is a well defined continuous bilinear form.
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One objective of this work is to make connections between the non-local opti-

mal control problem and a local control problem as δ → 0+. As we will show, the

corresponding bilinear form of interest is

B0(u, v) :=
1

n(n + 2)

∫

�

a(x)(2〈Sym(∇u(x)), Sym(∇v(x))〉F

+ div(u(x)) div(v(x)))dx, (2.7)

where 〈·, ·〉F is the Fröbenius inner product on matrices:

〈A, B〉F :=
n∑

i=1

n∑

j=1

ai, j bi, j , ∀A, B ∈ R
n×n .

It turns out that the appropriate energy space for the resulting local problem is the

classical space

H1
0 (�; R

n) := {u ∈ L2(�; R
n) | ∇u ∈ L2(�; R

n×n), u = 0 on ∂�}, (2.8)

with the natural norm

‖u‖H1(�;Rn) :=
(
‖u‖2

L2(�;Rn)
+ [u]2

H1(�;Rn)

) 1
2
, (2.9)

and corresponding semi-norm

[u]H1(�;Rn) := ‖∇u‖L2(�;Rn×n). (2.10)

Now, to state the optimal control problem of interest precisely, we define the perti-

nent objective functional. As we mentioned earlier the functional will be taken to be the

sum of two terms. The first is a quality functional Q : Xad ⊂ X(�δ; R
n) → [0,∞),

that assigns a certain value Q(u) to each admissible displacement field depending on

certain criteria. For example, given a desired displacement state udes , we may want a

state u that matches udes as closely as possible. In this case we wish to choose u that

keeps the mismatch between u and udes to the minimum. The mismatch may be defined

as a weighted squared error
∫
�

γ (x)|u(x) − udes(x)|2dx for some 0 ≤ γ ∈ L∞(�).

Notice that by choosing γ appropriately, we may seek to match the desired state only

on a portion of the domain. More generally, we would want the quality functional to

have the form

Q(u) =
∫

�

F(x, u(x))dx,

where the integrand F : � × R
n → R possesses the following properties:

(1) For all v ∈ R
n the mapping x �→ F(x, v) is measurable;

(2) For all x ∈ � the mapping v �→ F(x, v) is continuous and convex;
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(3) There exist constant c1 > 0 and l ∈ L1(�) for which

|F(x, v)| ≤ c1|v|2 + l(x) (2.11)

for all x ∈ � and all v ∈ R
n .

The second part of the objective functional is a cost functional associated with

the external force. We seek a forcing term g whose associated displacement has the

desired quality while keeping the cost as minimal as possible. Typically, we take this

cost functional, C(g), to be a weighted L2-norm of g of the form

C(g) =
∫

�

Ŵ(x)|g(x)|2dx,

for some 0 < Ŵ ∈ L1(�). To that end, we take the admissible control space to be Zad,

a nonempty, closed, convex, and bounded subset of L2(�; R
n), and it takes the form

Zad = {z ∈ L2(�; R
n) | a(x) � z � b(x)} (2.12)

for some a, b ∈ L∞(�; R
n), where a � b means [a]i ≤ [b]i for all i ∈ {1, 2, . . . , n}.

Without loss of generality, we shall assume that 0 ∈ Zad.

In summary, the objective function we will be working with is of the form

I (u, g) :=
∫

�

F(x, u(x))dx +
∫

�

Ŵ(x)|g(x)|2dx (2.13)

under the above assumptions on F and Ŵ.

2.2 Problem Set Up

Now that we have specified the different function spaces as well as bilinear forms

of interest, we are now ready to precisely pose the optimal control problems. The

first one is the optimal control problem of the coupled system of nonlocal equations.

Given a boundary data u0 ∈ X(�δ; R
n), the problem is finding a pair (uδ, gδ) ∈

X(�δ; R
n) × Zad such that

I (uδ, gδ) = min I (uδ, gδ), (2.14)

where the minimization is over pairs (uδ, gδ) ∈ X(�δ; R
n) × Zad that satisfy

uδ − u0 ∈ X0(�δ; R
n), and Bδ(uδ, v) = 〈gδ, v〉, for all v ∈ X0(�δ; R

n).(2.15)

Here we use the notation 〈·, ·〉 for the L2-inner product. We remark that without loss of

generality we may assume that u0 = 0 in the above formulation. Indeed, if uδ solves

(2.15) and we set eδ := uδ − u0, then eδ ∈ X0(�δ; R
n) and

Bδ(eδ, v) = 〈gδ, v〉 + Bδ(u0, v), for all v ∈ X0(�δ; R
n). (2.16)
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After noting that the mapv → Bδ(u0, v) is a bounded linear functional on X0(�δ; R
n),

the right hand side of (2.16) can be viewed to define a duality pairing between

X0(�δ; R
n) and its dual. The objective functional as a function of (eδ, gδ) will still

have the form of (2.13) with integrand F̃(x, e) = F(x, e + u0(x)). Notice that F̃ has

the exact same properties as F .

With this simplification at hand, we summarize the problem as follows.

Problem 2.2 (Non-local continuous problem) Find a pair (uδ, gδ) ∈ X0(�δ; R
n)×Zad

such that

I (uδ, gδ) = min I (uδ, gδ) (2.17)

where the minimization is over pairs (uδ, gδ) ∈ X0(�δ; R
n) × Zad that satisfy

Bδ(uδ, v) = 〈gδ, v〉, for all v ∈ X0(�δ; R
n). (2.18)

The effective admissible class of pairs for this nonlocal optimal control problem is

A
δ = {(w, f ) ∈ X0(�δ; R

n) × Zad|Bδ(w, v)

= 〈 f , v〉, for all v ∈ X0(�δ; R
n}. (2.19)

We are also interested in the behavior of the above nonlocal optimal control problem

in the limit of vanishing nonlocality as quantified by δ which turns out to be a local

problem.

Problem 2.3 (Local continuous problem) Find a pair (u, g) ∈ H1
0 (�; R

n)× Zad such

that

I (u, g) = min I (u, g), (2.20)

where the minimization is over pairs (u, g) ∈ H1
0 (�; R

n) × Zad that satisfy

B0(u, v) = 〈g, v〉, ∀v ∈ H1
0 (�; R

n). (2.21)

As before, the effective admissible class of pairs for the control problem is

A
loc := {(w, f ) ∈ H1

0 (�; R
n) × Zad|B0(w, v) = 〈 f , v〉 ∀ v ∈ H1

0 (�; R
n)}.
(2.22)

We now introduce notation for our finite element scheme and discretized problems.

We let {Th}h>0 be a family of conforming and simplicial triangulations of �, which

for simplicity we assume are quasiuniform. The mesh size will be parametrized by

h > 0. We let

Xh := {wh ∈ C0(�; R
n) | wh |T ∈ P1(T ; R

n) ∀T ∈ Th, wh = 0 on ∂�},
(2.23)
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and immediately observe that Xh ⊂ H1
0 (�; R

n). In addition, we see that elements

of Xh can be trivially extended by zero to �δ . The collection of such extensions in

denoted by Xδ,h , and we notice that Xh ⊂ X0(�δ; R
n). We equip Xh with the norm

(2.9), whereas Xδ,h is given the norm (2.6). Next, by Zh we denote the piecewise

constant functions with respect to our mesh, i.e.,

Zh := {zh ∈ L∞(�; R
n) | zh |T ∈ P0(T ; R

n) ∀T ∈ Th}. (2.24)

Here and henceforth, we denote the space of vector-valued polynomials of degree

m ≥ 0 as

Pm(T ; R
n)

:=





∑

α∈N
n
0 :

∑n
i=1 αi ≤m

vαx
α1

1 · · · xαn
n

∣∣∣∣ vα ∈ R
n, x = (x1, . . . , xn)⊺ ∈ T



 .

(2.25)

We will use Xδ,h and Xh , as appropriate, to discretize the state space, and Zh to dis-

cretize the control space. Now we may state our non-local and local discrete problems.

Problem 2.4 (Non-local discrete problem) Find a pair (uδ,h, gδ,h) ∈ Xδ,h × Zh such

that

I (uδ,h, gδ,h) = min I (uδ,h, gδ,h) (2.26)

where the minimization is over pairs (uδ,h, gδ,h) ∈ Xδ,h × Zh that satisfy

Bδ(uδ,h, vδ,h) = 〈gδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h . (2.27)

The effective admissible class of pairs for the above nonlocal discrete problem is

A
δ
h := {(wδ,h, fδ,h) ∈ Xδ,h × Zh, wδ,h | Bδ(wδ,h, vδ,h)

= 〈 fδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h } (2.28)

Finally we state the local discrete optimal control problem.

Problem 2.5 (Local discrete problem) Find a pair (uh, gh) ∈ Xh × Zh such that

I (uh, gh) = min I (uh, gh), (2.29)

where the minimization is over pairs (uh, gh) ∈ Xh × Zh that satisfy

B0(uh, vh) = 〈gh, vh〉 ∀vh ∈ Xh . (2.30)
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The effective admissible class of pairs for this local problem is

A
loc
h := {(wh, fh) ∈ Xh × Zh | B0(wh, vh) = 〈 fh, vh〉, ∀vh ∈ Xh}. (2.31)

Note that in each problem, the state equation governs the relationship between the

force [control] and the displacement [state] that must take place in any admissible

solution.

3 Properties of Function Spaces

In this section we state and prove some structural properties of the function spaces

X(�δ; R
n) and X0(�δ; R

n) defined in the previous section. We begin noting that the

function spaces are separable Hilbert spaces with the following inner product defined

for u, v ∈ X(�δ; R
n):

[[u, v]] := 〈u, v〉 + [u, v]X ,

where [u, v]X =
∫∫

Dδ
kδ(|x − y|) Du(x,y)

|x−y|
Dv(x,y)
|x−y| dydx . It is obvious that [u, u]X =

[u]2
X , and that, under the working assumptions on A, we have that amin

2
[u]2

X ≤ Bδ(u, u)

≤ amax

2
[u]2

X . Moreover, for u ∈ X0(�δ; R
n), we have

[u]2
X(�δ;Rn) =

∫∫

Dδ

kδ(|x − y|)
∣∣∣∣

Du(x, y)

|x − y|

∣∣∣∣
2

dydx

which we also use as a seminorm. It then follows from [47] that if ũ is the zero

extension of u to R
n then there exists a constant C = C(δ) > 0 such that, for any

open set B containing �δ , we have

[̃u]X(B;Rn) ≤ C‖u‖X(�δ;Rn). (3.1)

In particular, the constant is independent of B, and we may select B := R
n , where we

define

X(Rn; R
n) =

{
u ∈ L2(Rn; R

n)

∣∣∣∣
∫∫

R2n

kδ(|x − y|)
Du(x, y)

|x − y|
dydx < ∞

}
.

We now seek to demonstrate a continuous embedding result for Sobolev spaces into

the space X(�δ; R
n). To accomplish this, we need a quantitative version of continuity

in the L2-norm; a local, scalar-valued analogue is discussed and proven in [11].

Lemma 3.1 (Quantitative L2-continuity) For any ξ ∈ R
n \ {0}, and all v ∈

H1(Rn; R
n) we have

∫

Rn

∣∣∣∣(v(y + ξ) − v(y)) ·
ξ

|ξ |

∣∣∣∣
2

dy ≤ |ξ |2‖ Sym(∇v)‖2
L2(Rn;Rn×n)

. (3.2)
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Proof We first prove the desired claim in the special case where v ∈ C∞(Rn; R
n).

Fix ξ ∈ R
n \ {0}. Then by the Chain Rule, the Mean-Value Theorem for integrals, and

the Cauchy-Schwarz Inequality, we have

∫

Rn

∣∣∣∣(v(y + ξ) − v(y)) ·
ξ

|ξ |

∣∣∣∣
2

dy =
1

|ξ |2

∫

Rn

∣∣∣∣
∫ 1

0

∇v(y + tξ)ξ · ξdt

∣∣∣∣
2

dy

≤
1

|ξ |2

∫

Rn

∫ 1

0

| Sym(∇v(y + tξ))ξ · ξ |2dtdy ≤ |ξ |2‖ Sym(∇v)‖2
L2(Rn;Rn×n)

,

(3.3)

where in the last step we have used invariance of the L2-norm under transla-

tions, demonstrating the inequality for v ∈ C∞(Rn; R
n). The general case for

v ∈ H1(Rn; R
n) follows by density. ⊓⊔

The estimate of Lemma 3.1 will now be used to prove a continuous embedding

result.

Lemma 3.2 (Continuous embedding) For all δ > 0, we have

X(�δ;Rn) � |v|H1(�;Rn), ∀v ∈ H1
0 (�; R

n). (3.4)

That is, H1
0 (�; R

n) →֒ X0(�δ; R
n), and the constant is independent of δ.

Proof Since ∂� is Lipschitz, for any v ∈ H1
0 (�; R

n) its extension by zero outside of

� is in H1
0 (Rn, R

n) vanishing almost everywhere outside of �. Now for any δ > 0,

we have

2
X(�δ;Rn) =

∫∫

�δ×�δ

kδ(|x − y|)
∣∣∣∣

Dv(x, y)

|x − y|

∣∣∣∣
2

dydx

≤
∫

Bδ(0)

kδ(|ξ |)
|ξ |2

∫

Rn

∣∣∣∣(v(y + ξ) − v(y)) ·
ξ

|ξ |

∣∣∣∣
2

dydξ,

(3.5)

where we have used that supp(kδ) ⊂ Bδ(0). Now our expression is in a form on which

we can use Lemma 3.1 on the inner integral to conclude that

∫

Bδ(0)

kδ(|ξ |)
|ξ |2

∫

Rn

∣∣∣∣(v(y + ξ) − v(y)) ·
ξ

|ξ |

∣∣∣∣
2

dydξ

≤ ‖ Sym(∇v)‖2
L2(Rn;Rn×n)

≤ ‖∇v‖2
L2(�;Rn×n)

, (3.6)

which completes the proof. ⊓⊔

Next we show that compactly supported smooth functions are dense in X0(�δ; R
n).
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Lemma 3.3 (Density) The set

{
v ∈ X(Rn; R

n)

∣∣∣∣ ∃R > 0 : supp(v) ⊂ BR(0)

}

is dense in X(Rn; R
n).

Proof Let ϕ ∈ C
0,1
0 (Rn) be such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B1(0), supp(ϕ) ⊂ B2(0),

and ‖∇ϕ‖L∞(Rn;Rn) ≤ 1. For R > 0 define ϕR(x) = ϕ(x/R) and ψR := 1 − ϕR .

Let u ∈ X(Rn; R
n), and we claim that

lim
R→∞

[u − uϕR]2
X(�δ;Rn) = 0. (3.7)

To this end, we compute

2
X(�δ;Rn) =

∫∫

R2n

|D(uψR)(x, y)|2
kδ(|x − y|)
|x − y|2

dxdy

�

∫∫

R2n

|ψR(x) − ψR(y)|2
∣∣∣∣u(x) ·

x − y

|x − y|

∣∣∣∣
2

kδ(|x − y|)
|x − y|2

dxdy

+
∫∫

R2n

ψR(y)2

∣∣∣∣(u(x) − u(y)) ·
x − y

|x − y|

∣∣∣∣
2

kδ(|x − y|)
|x − y|2

dxdy.

(3.8)

By the Dominated Convergence Theorem we deduce

lim
R→∞

∫∫

R2n

ψR(y)2

∣∣∣∣(u(x) − u(y)) ·
x − y

|x − y|

∣∣∣∣
2

kδ(|x − y|)
|x − y|2

dxdy = 0. (3.9)

Now, to handle the first integral in (3.8) we define

K R(x) :=
∫

Rn

|ψR(x) − ψR(y)|2
kδ(|x − y|)
|x − y|2

dy. (3.10)

By using the conditions on kδ and the Lipschitz continuity of ψ , the sequence |K R(x)|
is uniformly bounded in R and in x . Further, K R(x) → 0 pointwise on R

n as R → ∞,

so we may, once again, use the Dominated Convergence Theorem to conclude that

lim
R→∞

∫

Rn

|u(x)|2 K R(x)dx = 0, (3.11)

proving (3.7). Finally, with one more application of the Dominated Convergence The-

orem, we see that

lim
R→∞

‖u − uϕR‖2
L2(Rn;Rn)

= lim
R→∞

‖uψR‖2
L2(Rn;Rn)

= 0, (3.12)

and this lets us complete the proof, with {uϕR}∞R=1 as our approximating family of

functions in X(Rn; R
n) with bounded support. ⊓⊔

123



70 Page 14 of 43 Applied Mathematics & Optimization (2023) 88 :70

The following result is analogous to [34, Proposition 4.1] and [57, Lemma 5.2].

Lemma 3.4 (Mollification) Let u ∈ X(Rn; R
n) be a vector field that vanishes outside

a compact subset of R
n . For ǫ > 0 denote by ηǫ a standard mollifier, and uǫ = u ∗ηǫ .

Then, for ǫ sufficiently small, we have uǫ ∈ X(Rn; R
n). Moreover,

lim
ǫ→0+

[u − uǫ]2
X(�δ;Rn) = 0. (3.13)

Proof Let K ⊂ R
n be a compact set so that supp(u) ⊂ K . Then uǫ ∈ C∞

0 (Rn; R
n) is

supported in Kǫ := {x ∈ R
n, dist(x, K ) ≤ ǫ} for any ǫ > 0. Since the mollifier ηǫ is

even, we may use Hölder’s Inequality, Jensen’s Inequality, and the identity

∫

Rn

(ηǫ ∗ ηǫ)(z)dz =
(∫

Rn

ηǫ(z)dz

)2

= 1 (3.14)

to obtain the estimate

2
X(�δ;Rn) =

∫∫∫∫

R4n

ηǫ(z)ηǫ(z
′)Du(x − z, y − z)

Du(x − z′, y − z′)
kδ(|x − y|)
|x − y|2

dz′dzdxdy

=
∫∫∫∫

R4n

ηǫ(z)ηǫ(z
′)Du(x + z′ − z, y + z′ − z)

Du(x, y)
kδ(|x − y|)
|x − y|2

dz′dzdxdy

=
∫∫∫∫

R4n

ηǫ(z − z′)ηǫ(z
′)Du(x + z, y + z)

Du(x, y)
kδ(|x − y|)
|x − y|2

dz′dzdxdy

=
∫∫

R2n

kδ(|x − y|)
|x − y|2

∫

Rn

(ηǫ ∗ ηǫ)(z)Du(x, y)Du(x + z, y + z)dzdxdy

≤ [u]X(�δ;Rn)

(∫∫

R2n

(∫

Rn

(ηǫ ∗ ηǫ)(z)|Du(x + z, y + z)|dz

)2

kδ(|x − y|)
|x − y|2

dxdy

) 1
2

≤ [u]X(�δ;Rn)

(∫

Rn

(ηǫ ∗ ηǫ)(z)

∫∫

R2n

|Du(x + z, y + z)|2
kδ(|x − y|)
|x − y|2

dxdydz

) 1
2

= [u]2
X(�δ;Rn)

(3.15)

123



Applied Mathematics & Optimization (2023) 88 :70 Page 15 of 43 70

which holds for all ǫ > 0. As a consequence, uǫ ∈ X(Rn; R
n) for all ǫ > 0. To

proceed further, we define the maps U , Uǫ : R
n × R

n → R as

U (x, y) = Du(x, y)

√
kδ(|x − y|)
|x − y|2

Uǫ(x, y) = Duǫ(x, y)

√
kδ(|x − y|)
|x − y|2

,

(3.16)

and these definitions in turn imply that

[u − uǫ]2
X(�δ;Rn) =

∫∫

R2n

|D(u − uǫ)(x, y)|2
kδ(|x − y|)
|x − y|2

dxdy

= ‖U − Uǫ‖2
L2(Rn×Rn)

. (3.17)

The proof will be complete once we show that Uǫ → U in L2(Rn × R
n) as ǫ → 0+.

As is standard for mollifiers, uǫ → u strongly in L2(Rn; R
n), and a.e. pointwise in

R
n , both as ǫ → 0+. Thus by Fatou’s Lemma, we get the convergence

lim
ǫ→0+

‖Uǫ‖L2(Rn×Rn) ≥ ‖U‖L2(Rn×Rn), (3.18)

while the reverse inequality follows from sending ǫ → 0+ in (3.15). This combined

with showing Uǫ⇀U in L2(Rn × R
n) is enough to show the strong convergence

in L2(Rn × R
n) that we seek, so we focus on proving this weak convergence. Let

V ∈ L2(Rn × R
n) be arbitrary and define the function

V j (x, y) :=
{

V (x, y), |x |, |y| ≤ j, |x − y| ≥ 1
j

0, otherwise.
(3.19)

With this definition in mind, the Dominated Convergence Theorem tells us that V j →
V in L2(Rn × R

n) as j → ∞. We define h
j
1, h

j
2 : R

n → R
n such that

h
j
1(x) :=

∫

Rn

√
kδ(|x − y|)
|x − y|2

V j (x, y)
x − y

|x − y|
dy;

h
j
2(y) :=

∫

Rn

√
kδ(|x − y|)
|x − y|2

V j (x, y)
x − y

|x − y|
dx .

(3.20)

Since
√

kδ(|x−y|)
|x−y|2 ≤ 1 + kδ(|x−y|)

|x−y|2 for all x, y ∈ R
n , we can see that these functions

have bounded support, and thus belong to L2(Rn; R
n) for all j ∈ N

+. Then due to
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the a.e. convergence uǫ → u, we have

lim
ǫ→0+

∫∫

R2n

Uǫ(x, y)V j (x, y)dxdy

= lim
ǫ→0+

∫∫

R2n

[uǫ(x) − uǫ(y)]
√

kδ(|x − y|)
|x − y|2

· V j (x, y)dxdy

= lim
ǫ→0+

(∫

Rn

uǫ(x) · h
j
1(x)dx −

∫

Rn

uǫ(y) · h
j
2(y)dy

)

=
∫

Rn

u(x) · h
j
1(x)dx −

∫

Rn

u(y) · h
j
2(y)dy

=
∫∫

R2n

Du(x, y)

√
kδ(|x − y|)
|x − y|2

V j (x, y)dxdy

=
∫∫

R2n

U (x, y)V j (x, y)dxdy,

(3.21)

which holds for all j ∈ N
+. Taking a limit supremum in ǫ, the convergence in (3.21),

and applying Hölder inequality gives

lim sup
ǫ→0+

∣∣∣∣
∫∫

R2n

(Uǫ − U )(x, y)V (x, y)dxdy

∣∣∣∣

= lim sup
ǫ→0+

∣∣∣∣
∫∫

R2n

(Uǫ − U )(x, y)(V − V j )(x, y)dxdy

∣∣∣∣

≤ lim sup
ǫ→0+

‖Uǫ − U‖L2(Rn×Rn)‖V − V j‖L2(Rn×Rn)

≤ 2‖U‖L2(Rn×Rn)‖V − V j‖L2(Rn×Rn) ,

(3.22)

which holds for all j ∈ N
+. Finally, due to V j → V in L2(Rn × R

n), we obtain the

limit

lim
ǫ→0+

∫∫

R2n

(Uǫ − U )(x, y)V (x, y)dxdy = 0, (3.23)

and from this it follows that Uǫ⇀U in L2(Rn × R
n), completing the proof. ⊓⊔

We can now combine Lemma 3.3 and Lemma 3.4 to immediately obtain the density

of C∞
0 (Rn; R

n) in X(Rn; R
n), which we state below as a corollary, see [35, Remark

4.2] and [29] for the scalar case.

Corollary 3.5 (Density) The space C∞
0 (Rn; R

n) is dense in X(Rn; R
n).

For well-posedness of the state system (specifically, for stability) we shall need

a nonlocal Poincaré-type inequality. In addition, to understand the behavior of our
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system in the limit as δ → 0+, it is essential that the constant in this inequality is

independent of δ. The following result was proven in [43], but various versions of this

inequality are proved in [5, 6, 13, 25–27, 30, 44, 53, 54].

Proposition 3.6 (Nonlocal Poincaré) There exists a δ0 > 0 and a constant C(δ0) > 0

such that for all δ ∈ (0, δ0] and u ∈ X0(�δ; R
n), we have

‖u‖2
L2(�;Rn)

≤ C(δ0)

∫

�δ

∫

�δ

kδ(|x − y|)
|Du(x, y)|2

|x − y|2
dxdy. (3.24)

With the aid of above Poincaré-type inequality we may apply Lax-Milgram to

deduce the unique solvability of the state equations of the nonlocal optimal control

problem stated in the previous section. We summarize this with the following corollary.

Corollary 3.7 (Well-posedness of state equation) The state equations (2.18), (2.21),

(2.27), and (2.30) are uniquely solvable in their corresponding energy spaces.

From standard linear theory, we know that the solution operator of the state

equations is linear and continuous. One important fact we need to demonstrate the

solvability of optimal control problems is the compactness of this solution operator.

While for the discrete problems this question is trivial, for the continuous problems

it needs a resolution. The compactness of the solution operator is related to the com-

pactness of the image space which, for (2.18), is X0(�δ; R
n); whereas for (2.21) is

H1
0 (�; R

n). The compactness of the latter in L2(�; R
n) is standard.

Below we build a framework needed to ultimately prove the compact embedding

of X0(�δ; R
n) into L2(�δ; R

n). This is much akin to the compact embedding results

for fractional Sobolev spaces; see, for instance, [21, 22]. This will largely be based

on the results of [35], see also [31], which we extend to vector-valued functions using

a weaker norm that only involves a projected difference quotient. To this end we

introduce a definition.

Definition 3.8 (Local compactness) If E is a normed vector space, we call a continuous

linear operator T : E → L2(Rn; R
n) locally compact if the operator RK T : E →

L2(Rn; R
n) defined via the truncation function RK u := 1K u is a compact operator

for every compact subset K ⊂ R
n .

The following proposition demonstrates that it suffices to show X(Rn; R
n) ⊂

L2(Rn; R
n) is a locally compact embedding.

Proposition 3.9 (Compactness) If X(Rn; R
n) ⊂ L2(Rn; R

n) is a locally compact

embedding, then for every bounded and open � ⊂ R
n , and every δ > 0, the embedding

of X0(�δ; R
n) ⊂ L2(�; R

n) is compact.

Proof As we remarked earlier, for every u ∈ X0(�δ; R
n), its extension by zero out-

side of �δ belongs to X(Rn; R
n). Moreover, [u]X(�δ;Rn) = [u]X(Rn;Rn). Now if the

inclusion i : X(Rn; R
n) ⊂ L2(Rn; R

n) is locally compact, then in Definition 3.8, we

can set K := � to conclude that RK i : X(Rn; R
n) → L2(�; R

n) is compact. The

result now follows easily. ⊓⊔
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We now prove the local compact embedding of X(Rn; R
n) in the remaining portion

of this section. We follow the argument in [35].

Lemma 3.10 (Convolution) Suppose W ∈ L1(Rn; R
n×n) is a matrix-valued function

with L1-entries. Then the corresponding convolution operator TW : L2(Rn; R
n) →

L2(Rn; R
n) defined via

[TW u(x)]i = [(W ∗ u)(x)]i :=
∫

Rn

[W (x − y)]i,· · u(y)dy

=
n∑

j=1

∫

Rn

[W (x − y)]i, j [u(y)] j dy (3.25)

for each i ∈ {1, 2, . . . , n} is locally compact.

Proof The proof follows from [35, Lemma 3.1] after noting that for i = 1, 2, . . . , n,

[TW u]i is a finite sum of convolution operators which are locally compact. ⊓⊔

Theorem 3.11 (Local compactness) Fix δ > 0. Suppose that the function ξ �→
kδ(|ξ |)
|ξ |2 /∈ L1(Rn), then the space X(Rn; R

n) is locally compactly embedded in

L2(Rn; R
n).

Proof For τ > 0, let jτ (ξ) := kδ(|ξ |)
|ξ |2 1Rn\Bτ (0)(ξ). Then jτ ∈ L1(Rn) and by the

assumptions on kδ , we have that ‖ jτ‖L1(Rn) → ∞ as τ → 0. We now introduce the

matrix-valued function

Jτ (ξ) := cn

jτ (ξ)

‖ jτ‖L1(Rn)

ξ ⊗ ξ

|ξ |2
. (3.26)

where cn is a normalizing constant that depends only on n so that

∫

Rn

Jτ (ξ)dξ = In, the identity matrix. (3.27)

Let u ∈ X(Rn; R
n), and we claim that

‖u − T jτ u‖L2(Rn;Rn) ≤
(

1

‖ jτ‖L1(Rn)

) 1
2

[u]X(Rn;Rn). (3.28)

We prove this via a direct calculation: rewrite u − T jτ u as

u(x) − T jτ (u)(x) =
∫

Rn

Jτ (ξ)(u(x) − u(x + ξ))dξ. (3.29)
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Now, we calculate the L2(Rn; R
n)-norm, and estimate it with the Cauchy-Schwarz

Inequality and the pointwise inequality jτ (ξ) ≤ kδ(|ξ |)
|ξ |2 :

‖u − T jτ u‖2
L2(Rn;Rn)

=
∫

Rn

∣∣∣∣∣

∫

Rn

jτ (ξ)

‖ jτ‖L1(Rn)

(
(u(x) − u(x + ξ)) ·

ξ

|ξ |

)
ξ

|ξ |
dξ

∣∣∣∣∣

2

dx

≤
1

‖ jτ‖L1(Rn)

∫∫

R2n

jτ (ξ)

∣∣∣∣(u(x) − u(x + ξ)) ·
ξ

|ξ |

∣∣∣∣
2

dξdx

≤
1

‖ jτ‖L1(Rn)

[u]2
X(Rn;Rn).

(3.30)

Taking square roots in (3.30) immediately yields (3.28).

Now let M ⊂ X(Rn; R
n) be a bounded set, and K ⊂ R

n be compact; our proof

will be complete once we show that RK (M) ⊂ L2(Rn; R
n) is relatively compact. To

this end, let C := supu∈M ‖u‖X(Rn;Rn) and ǫ > 0. Since ξ �→ kδ(|ξ |)
|ξ |2 /∈ L1(Rn), we

may take τ > 0 to be sufficiently small so that ‖ jτ‖L1(Rn) ≥ C2

ǫ2 . By Lemma 3.10,

the set M̃ := [RK T jτ ](M) is relatively compact in L2(Rn; R
n). Thus we may use the

estimate (3.28) to obtain, for any u ∈ M ,

‖RK u − [RK T jτ ]u‖L2(Rn;Rn) ≤ ‖u − T jτ u‖L2(Rn;Rn) ≤ (3.31)

(
1

‖ jτ‖L1(Rn)

) 1
2

[u]X(Rn;Rn) ≤
ǫ‖u‖X(Rn;Rn)

C
≤ ǫ. (3.32)

From this we conclude that RK (M) is contained within an ǫ-neighborhood of M̃ , and

which is relatively compact in L2(Rn; R
n) (since jτ ∈ L1(Rn)). Thus, RK (M) is

totally bounded in L2(Rn; R
n), which is a sufficient condition for the local compact

embedding to hold. ⊓⊔

Remark 3.12 Set j0(ξ) = kδ(|ξ |)
|ξ |2 . We make two remarks. First, the assumption j0 /∈

L1(Rn) cannot be waived. Indeed, otherwise, we have X(Rn; R
n) = L2(Rn; R

n)

with the norm estimate that [u]2
X(Rn;Rn)

≤ 4‖ j0‖L1‖u‖2
L2(Rn;Rn)

. Second, a similar

type of compactness result, with a proof that uses a different approach (see [12]), is

also established in [43] under the assumption on the kernel kδ that

lim
̺→0

̺2

∫
B̺(0)

kδ(|ξ |)dξ
= 0. (3.33)
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On the one hand, if kδ satisfies (3.33), then j0 /∈ L1(Rn). Otherwise, by continuity of

the integral,

lim
̺→0

∫

B̺(0)

kδ(|ξ)

|ξ |2
dξ = 0, (3.34)

from which it follows that lim̺→0
̺2∫

B̺(0) kδ(|ξ |)dξ
= ∞, contradicting (3.33). As such

(3.33) is a more restrictive assumption on kδ. On the other hand, there are kernels

with the property that j0 /∈ L1(Rn) that fail to satisfy (3.33). For example, the ker-

nel kδ(|ξ |) = 1
|ξ |n−2 χ[−δ,δ](|ξ |) has the property that lim̺→0

̺2∫
B̺(0) kδ(|ξ |)dξ

> 0, yet

j0(ξ) = 1
|ξ |n χ[−δ,δ](|ξ |), so that j0 /∈ L1(Rn).

4 Well-Posedness: State System andMinimization

In this section we show existence and uniqueness of solutions for each one of the

optimal control problems introduced in Sect. 2. The approach we use is a reduced

formulation where the constrained optimization is reformulated as an unconstrained

optimization of the control via the solution operator of the state equation. To facilitate

that we begin by proving an abstract well-posedness result that appears in some form

in [33, 67]; we provide a proof for the sake of completeness.

Theorem 4.1 (Well-posedness) Let (Y , ‖·‖Y )be a real Banach space with L2(�; R
n) ⊂

Y ∗. Suppose also that S : L2(�; R
n) → Y is a compact operator, and G : Y → R is

lower semi-continuous. For a given λ ≥ 0 and Zad a nonempty, closed, bounded, and

convex subset of L2(�; R
n), define j : Zad → R by

j(g) := G(Sg) +
λ

2

∫

�

Ŵ(x)|g(x)|2dx, (4.1)

for some positive Ŵ ∈ L1(�). Then, the optimization problem

min
g∈Zad

j(g) (4.2)

has a solution g̃. Furthermore, if λ > 0, S is linear, and G is convex, then (4.2) has a

unique minimizer. Alternatively, if λ = 0 and G is strictly convex on its domain (with

S still being linear), then the minimizer is unique.

Proof We use the direct method of calculus of variations to show that (4.2) has a

solution. First, we note that j is bounded from below. Indeed, since the second term

is nonnegative for all g, it suffices to demonstrate that the first term is bounded from

below. To that end, assume otherwise. Then there exists a sequence {wm}∞m=1 ⊂ Zad

such that

G(Swm) < −m (4.3)
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for all m ∈ N. However, Zad is a closed, bounded, convex subset of a Hilbert space,

and, by [67, Theorem 2.11], it is weakly sequentially compact. It follows that some

sub-sequence {wmk
}∞k=1 of {wm}∞n=1 converges weakly to some w ∈ Zad. Since S

is a compact operator, Swmk
→ Sw as k → ∞ strongly in Y . Since G is lower

semi-continuous, we have

G(Sw) ≤ lim inf
k→∞

G(Swmk
) = −∞, (4.4)

which poses a contradiction, since G does not assume the value −∞.

We henceforth denote j0 := infg∈Zad j(g), and the remainder of the existence part of

the proof is comprised of finding g̃ ∈ Zad such that j(g̃) = j0. To this end, we identify

a sequence {gm}∞m=1 ⊂ Zad such that limm→∞ j(gm) = j0 as m → ∞. Recalling

again [67, Theorem 2.11] we obtain that some sub-sequence {gmk
}∞k=1 of {gm}∞m=1

converges weakly in L2(�; R
n) to some g̃ ∈ Zad. Moreover, since |

√
Ŵ(x)gm(x)| ≤

|
√

Ŵ(x)b(x)| for all m, the sequence {
√

Ŵ gm} is uniformly bounded in L2(�; R
n)

as well. From this we may choose the sub-sequence {gmk
}∞k=1 so that {

√
Ŵ gmk

}∞k=1

converges weakly in L2(�; R
n). By a density argument, it is easy to show that the

weak limit has to be
√

Ŵ g̃. Since S is compact and G is lower semi-continuous, we

have the inequality chain

j(g̃) = G(Sg̃) +
λ

2

∫

�

Ŵ(x)|g̃(x)|2dx

≤ lim inf
k→∞

G(Sgmk
) +

λ

2

∫

�

Ŵ(x)|g̃(x)|2dx

≤ lim inf
k→∞

G(Sgmk
) + lim inf

k→∞

λ

2

∫

�

Ŵ(x)|gmk
|2dx

≤ lim inf
k→∞

(
G(Sgmk

) +
λ

2

∫

�

Ŵ(x)|gmk
|2dx

)
≤ lim

k→∞
j(gmk

) = j0.

(4.5)

Since g̃ ∈ Zad, it follows that j(g̃) = j0, and we have found a minimizer. The proof of

uniqueness under the given additional conditions is standard since j will automatically

become strictly convex. ⊓⊔

Corollary 4.2 (Existence and uniqueness) Problems 2.2, 2.4, 2.3, and 2.5 are all well-

posed. That is, the objective functional has a [unique] minimizing pair, which in turn

solves the corresponding state equation.

Proof The well-posedness of the state equation of each problem follows from the

Lax-Milgram lemma as done in Corollary 3.7. Notice that in all cases, the solution

space Y is compactly embedded into L2(�; R
n). For the local problems, the embed-

ding H1
0 (�; R

n) ⋐ L2(�; R
n) is standard, while for the non-local problems we

invoke Theorem 3.11 and Proposition 3.9. We thus have that the solution mapping

S : L2(�; R
n) → Y is compact, and then we may write the reduced cost functionals
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for our problems abstractly as

j(g) :=
∫

�

F(x, Sg(x))dx +
λ

2

∫

�

Ŵ(x)|g(x)|2dx . (4.6)

Note that this functional satisfies all the conditions of Theorem 4.1, which guarantees

existence and uniqueness of a minimizer. ⊓⊔

Remark 4.3 We would like to mention that the well posedness of the state equation

does not depend on the particular form of the material coefficients and as such the

result can be established for any A that is symmetric, bounded from above and below

by positive numbers. However, for what we plan to do in the sequel, a Ŵ-convergence

analysis, the particular format we are using, i.e., A(x, y) = 1
2
(a(x) + a(y)) will

be essential to work with coefficients that are merely bounded. Other forms of the

coefficient such as A(x, y) =
√

a(x)a(y) could also be considered but the argument

requires some sort of continuity assumption on a. We do not pursue the latter in this

paper.

5 Analysis in Vanishing Horizon Parameter

Having shown that, for every horizon δ ≥ 0, the nonlocal optimal control problem

2.2 has a unique solution (uδ, gδ), we now study the behavior of the pair as δ → 0.

Notice that uδ minimizes the potential energy functional

Wδ(u) := Bδ(u, u) −
∫

�

gδ(x) · u(x)dx (5.1)

over X0(�δ; R
n). We begin with the following convergence result.

Lemma 5.1 (Compactness of solutions of the control problem) Let {(uδ, gδ)}δ>0 be the

family of optimal state-control pairs solving 2.2. There exists a (u, g) ∈ H1
0 (�; R

n)×
Zad such that, up to a sub-sequence, gδ⇀g in L2(�; R

n) and uδ → u strongly in

L2(�; R
n) as δ → 0+.

Proof Theorem 4.1 gives existence and uniqueness of optimal pairs that minimize the

energy Wδ defined in (5.1). Moreover, since 0 is an admissible control, we have that

Wδ(uδ) ≤ 0, and so, after rearranging we get

Bδ(uδ, uδ) ≤
∫

�

gδ(x) · uδ(x)dx . (5.2)

The Cauchy-Schwarz Inequality, in conjunction with the nonlocal Poincaré inequality

(3.24) and the Triangle inequality, gives us

[uδ]2
X(�δ;Rn) � ‖gδ‖L2(�;Rn)‖uδ‖L2(�;Rn) � ‖gδ‖L2(�;Rn)[uδ]X(�δ;Rn). (5.3)
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Notice that the constant in this estimate, owing to (3.24), is independent of δ. Further-

more, since {gδ}δ>0 ⊂ Zad, it is norm bounded (and therefore has a weak limit, up to

a sub-sequence), and as a consequence

sup
δ>0

[uδ]X(�δ;Rn) ≤ C . (5.4)

Now since uδ ∈ X0(�δ; R
n), after extending by zero to �1 (with δ = 1) we have that

sup
δ>0

∫

�1

∫

�1

kδ(|x − y|)
|x − y|2

|Duδ(x, y)|2dydx = sup
δ>0

[uδ]2
X(�δ;Rn) ≤ C .

From this, we may use [45, Proposition 4.2] or [41, Theorem 2.5] to conclude that the

{uδ}δ>0 is precompact in L2(�; R
n) and converges strongly in L2(�; R

n) to some

u ∈ H1
0 (�; R

n) (up to a sub-sequence). ⊓⊔

The main question we would like to address in the remaining is whether the limiting

pair (u, g) solves a corresponding limiting optimal problem. The limiting behav-

ior of the minimizers is closely related to the variational convergence of the above

parametrized energy functionals. The main tool we shall use is Ŵ-convergence (see

[12, 15, 18, 55] for more on properties of Ŵ-convergence; [6, 8, 45, 46, 55] for exam-

ples of proofs of Ŵ-convergence for other peridynamics models. For convenience, we

recall its definition here.

Definition 5.2 (Ŵ-convergence) We say that the sequence Eδ : L2(�; R
n) → R ∪

{+∞} Ŵ-converges strongly in L2(�; R
n) to E0 : L2(�; R

n) → R∪{+∞} (denoted

Eδ
Ŵ−→ E0) if the following properties hold:

GC1 The liminf property: Assume uδ → u strongly in L2(�; R
n). Then we have the

Fatou-type inequality

E0(u) ≤ lim inf
δ→0+

Eδ(uδ). (5.5)

GC2 Recovery sequence property: For each u ∈ L2(�; R
n), there exists a sequence

{uδ}δ>0 where uδ → u strongly in L2(�; R
n) and

lim sup
δ→0+

Eδ(uδ) ≤ E0(u). (5.6)

5.1 Vanishing Horizon Parameter for Continuous Problem

We will be working on the extended linear peridynamic energy functional we now

define. Let Eδ : L2(�δ; R
n) → [0,∞] denote the energy

Eδ(u) :=
∫∫

Dδ

A(x, y)
kδ(|x − y|
|x − y|2

)|Du(x, y)|2dxdy, for u ∈ X(�δ; R
n)

(5.7)
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and +∞ otherwise. Similarly, define a limiting energy E0 : L2(�; R
n) → [0,∞] by

E0(u) :=
1

n(n + 2)

∫

�

a(x)(2‖ Sym(∇u(x))‖2
F

+ div(u(x))2)dx for u ∈ H1(�; R
n), (5.8)

and +∞ otherwise. Note that since, for all δ > 0, our energy Eδ is quadratic we have

|Eδ(u) − Eδ(v)| ≤ Eδ(u + v)
1
2 Eδ(u − v)

1
2 (5.9)

for all u, v ∈ X(�δ; R
n).

Lemma 5.3 (Nonlocal to local) Suppose that A ⋐ � and w ∈ C2(A, R
n). Then we

have that

lim
δ→0+

∫

A

∫

�

A(x, y)
kδ(|x − y|)
|x − y|2

|Dw(x, y)|2dydx

=
1

n(n + 2)

∫

A

a(x)(2‖ Sym(∇w(x))‖2
F + div(w(x))2)dx .

The proof of this can be found in [25, 43, 45] in some form or another.

We now state the result on the variational convergence of the parameterized energies

Eδ .

Theorem 5.4 (Eδ
Ŵ−→ E0) Let Eδ and E0 be defined in (5.7) and (5.8), respectively.

We have Eδ
Ŵ−→ E0 in the sense of in Definition 5.2.

Proof We verify each of the conditions that comprise this definition.

Proof of GC1: Let u ∈ L2(�; R
n) be arbitrary, and {uδ}δ>0 ⊂ L2(�; R

n) be

such that uδ → u strongly in L2(�; R
n); we may assume without loss of generality

that lim infδ→0+ Eδ(uδ) < ∞. That is, up to a sub-sequence we may assume that

Eδ(uδ) < ∞ and using the positive lower bound on the coefficient A we have that

sup
δ>0

∫

�

∫

�

kδ(|x − y|)
|x − y|2

|Duδ(x, y)|2dxdy < ∞. (5.10)

Arguing in the same way as in the proof of [41, Theorem 2.5] (and using that kδ(r)r−2

is non-increasing), we then have u ∈ H1(�; R
n), and that uδ → u strongly in

L2(�; R
n).

From here we will look to find a variant of [45, Equation 37], largely repeating the

lower semi-continuity part of the proof of [46, Theorem 4.4]. We first assume that

A is the constant function A ≡ 1 and prove that for any A ⋐ � open, we have the
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inequality

1

n(n + 2)

∫

A

2‖ Sym(∇u(x))‖2
F + div(u(x))2dx

≤ lim inf
δ→0+

∫

A

∫

�δ

kδ(|x − y|)
|x − y|2

|Duδ(x, y)|2dxdy. (5.11)

Let 0 < ǫ < dist(A, ∂�), and let η ∈ C∞
0 (B1(0)) be a smooth cutoff function. Define

ηǫ(z) := ǫ−nη
(

z
ǫ

)
, and define wǫ,δ := ηǫ ∗ uδ on A, which is in C2( Ā; R

n). Via a

direct calculation coupled with application of Jensen’s inequality, we have

∫

A

∫

�

kδ(|x − y|)
|x − y|2

|Dwǫ,δ(x, y)|2dxdy

≤
∫

�

∫

�δ

kδ(|x − y|)
|x − y|2

|Duδ(x, y)|2dxdy. (5.12)

Our next step will be to send δ → 0+, leaving ǫ > 0 fixed for now. The right hand

side of (5.12) is bounded by lim infδ→0+ Eδ(uδ) (with A ≡ 1). We compute the limit

of the left hand side. Set wǫ := ηǫ ∗ u. Then we observe that wǫ,δ → wǫ as δ → 0+

in C1(A; R
n) due to uδ → u in L2(�; R

n) (where ǫ > 0 is taken to be fixed for now).

We use this and Lemma 5.3 to obtain that

1

n(n + 2)

∫

A

(2‖ Sym(∇wǫ(x))‖2
F + div(wǫ(x))2dx

= lim
δ→0+

∫

A

∫

�

kδ(|x − y|)
|x − y|2

|Dwǫ,δ(x, y)|2dxdy. (5.13)

The desired inequality (5.11) now follows from taking the limit in ǫ in (5.13) and

combining it with (5.12).

Next we assume that a is a simple function a =
∑m

i=1 aiχDi
for Di ⊂ �δ .

Then applying (5.11) for each i = 1, . . . , m over Di ∩ A and summing it over

i ∈ {1, 2, . . . , m} we have

1

n(n + 2)

∫

A

a(x)
(

2‖ Sym(∇u(x))‖2
F + div(u(x))2

)
dx

≤
m∑

i=1

lim inf
δ→0+

∫

(Di ∩A)ǫ

ai

∫

�δ

kδ(|x − y|)
|x − y|2

|Duδ(x, y)|2dxdy

≤ lim inf
δ→0+

∫

�

a(x)

∫

�δ

kδ(|x − y|)
|x − y|2

|Duδ(x, y)|2dxdy,

where we use the sub-additivity lim inf aτ + lim inf bτ ≤ lim inf(aτ + bτ ) and the

notation (Di ∩ A)ǫ = Di ∩ A+Bǫ(0). Finally, the case of general positive a ∈ L∞(�),

we select an increasing sequence of step functions {s j }∞j=1, 0 ≤ s j ≤ s j+1 ≤ a

that converges to a uniformly. The result then follows from direct application of the

Monotone Convergence Theorem.
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Proof of GC2: Let u ∈ L2(�; R
n). We may assume that u ∈ H1(�; R

n). For the

recovery sequence, we take uδ := ũ ∈ H1(Rn, R
n), which is the extension of u to R

n

with compact support say in �1 (with δ = 1). Take a sequence {v j }∞j=1 ⊂ C2(�1; R
n)

such that v j → ũ in H1(�1; R
n) as j → ∞. then using (5.9), we see that for a C > 0

sup
δ>0

|Eδ(ũ) − Eδ(v j )| ≤ C‖∇u − ∇v j‖L2(�;Rn×n)‖∇u‖L2(�;Rn×n).

That means, Eδ(v j ) → Eδ(ũ) as j → ∞, uniformly in δ. Using the same proof as

Lemma 5.3, we see that for each j = 1, 2, . . . ,

lim
δ→0

Eδ(v j ) = B0(v j , v j ).

Taking the limit in j now we have that

lim
δ→0

Eδ(ũ) = lim
δ→0

lim
j→∞

Eδ(v j ) = lim
j→∞

lim
δ→0

Eδ(v j )

= lim
j→∞

B0(v j , v j ) = B0(u, u) = E0(u),

where in the second equality we used the uniform convergence in δ. ⊓⊔

Remark 5.5 We may follow the above approach as well as [12, Remark 1.7] to conclude

that the family of energies {Wδ}δ>0, defined in (5.1) (finite on X0(�; R
n)), also Ŵ-

converges in the strong L2-topology to

W0(u) = B0(u, u) −
∫

�

g(x) · u(x)dx

where gδ⇀g weakly in L2(�; R
n) as δ → 0+. With Ŵ-convergence at hand, we

recall that [18, Corollary 7.20] states if {uδ}δ>0 is a family of minimizers for {Wδ}δ>0

over L2(�; R
n), and u is a limit point of this family, then u is a minimizer of W0

on L2(�; R
n) (see also [15, Theorem 2.1]). By our previous results, this implies

u ∈ H1
0 (�; R

n), and moreover

W0(u) = lim
δ→0+

Wδ(uδ). (5.14)

Remark 5.6 The particular local model obtained in this work is precisely the classi-

cal linearized elasticity model corresponding to Navier-Lamé parameters λ = µ =
1

n(n+2)
a. This limited range of the parameters is a result of the usage of the bond-based

model of PD where only pairwise interactions are allowed. To recover the linearized

elasticity models for arbitrary parameter, one must start from the state-based PD model

where in addition to pairwise interaction, the collective deformation of a neighbor-

hood of a point is accounted. See [25, 45, 60] for more information on this generalized

model.

Finally, we identify what conditions to impose to identify the solution to the local

optimal control problem via a limiting process.
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Theorem 5.7 (Convergence) Suppose {(uδ, gδ)}δ>0 ∈ Aδ is the family of solutions to

the nonlocal continuous Problem 2.2. Then, there exists (u, g) ∈ Aloc such that, up

to a non-relabeled sub-sequence, uδ → u in L2(�; R
n) and gδ⇀g in L2(�; R

n).

Moreover, (u, g) solves the local optimal control Problem 2.3.

Proof Lemma 5.1 gives the existence of such pair (u, g) ∈ Aloc. We now need to

show that this pair minimizes the reduced objective functional in Problem 2.3. Let

(v, f ) ∈ Aloc be arbitrary, and consider, for δ > 0 the sequence (vδ, f ) ∈ Aδ , i.e., of

solutions to the nonlocal boundary value problem (2.18). We can repeat our argument

from Lemma 5.1 with gδ = g = f , and see that vδ → v strongly in L2(�; R
n). Then,

by the Dominated Convergence Theorem, we have that

I (v, f ) =
∫

�

F(x, v(x))dx +
λ

2

∫

�

Ŵ(x)| f (x)|2dx

= lim
δ→0+

(∫

�

F(x, vδ(x))dx +
λ

2

∫

�

Ŵ(x)| f (x)|2dx

)

= lim
δ→0+

I (vδ, f ).

(5.15)

Now we observe that limδ→0+ I (vδ, f ) ≥ limδ→0+ I (uδ, gδ) since {(uδ, gδ)}δ>0

was chosen as the minimizers for the objective functional (2.13). Next, notice that

limδ→0+ I (uδ, gδ) ≥ I (u, g) due to Fatou’s Lemma, where we recall that strong

L2(�; R
n) convergence of uδ → u implies a.e. convergence in �. In summary, the

inequality chain

I (v, f ) = lim
δ→0+

I (vδ, f ) ≥ lim
δ→0+

I (uδ, gδ) ≥ I (u, g) (5.16)

concludes the proof. ⊓⊔

5.2 Vanishing Horizon Parameter for Discrete Problem

In order to establish the asymptotic compatibility in Sect. 7, one must also consider

the Ŵ-convergence of the discrete problem. The course of proof is similar to that

of Ŵ-convergence for the continuous problem, but one can use the fact that Xh ⊂
W

1,∞
0 (�; R

n) ⊂ H1
0 (�; R

n) to avoid the use of mollifiers. For these reasons, we

merely state the results.

Proposition 5.8 (Ŵ-convergence of discrete problems) We have that Wδ
Ŵ−→ W0 in the

family of spaces {Xδ,h}δ>0 in the strong L2(�; R
n) topology.

We also present the discrete analogue to to Theorem 5.7.

Theorem 5.9 (Discrete convergence) Suppose {(uδ,h, gδ,h}δ>0 ∈ Aδ
h is the family of

solutions to the non-local discrete problem 2.4. Then, there is (uh, gh) ∈ Aloc
h such

that uδ,h → uh in L2(�; R
n) and gδ,h⇀gh in L2(�; R

n). Moreover, (uh, gh) solves

the local discrete optimal control Problem 2.5.
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6 First Order Optimality and Discretization

Let us now turn our attention to first-order optimality conditions, which are the gateway

to discretizing the nonlocal optimal control problem. From here onward, we assume

that our integrand F (first introduced in (2.13)) is continuously Gâteaux-differentiable

in the second argument. The first Gâteaux derivative will be denoted as Fu . We will

also denote by Sδ the solution operator corresponding to the state system (2.18), and

by S∗
δ the adjoint of Sδ in the L2-sense. Due to Corollary 4.2, the operator Sδ is well

defined. Using the reduced objective functional (4.6), we recall that [67, Lemma 2.21]

shows the first order necessary condition

〈 j ′(gδ), γz − gδ〉 ≥ 0 ∀γz ∈ Zad, (6.1)

where j ′ represents the derivative of j in some appropriate sense. This functional

has two terms that need to be differentiated: for the first term, we use the Fréchet

differentiability of F and the Chain Rule; the derivative of the second term comes

from the Fréchet derivative of ‖ · ‖2

L2
Ŵ(�;Rn)

(the weighted Ŵ norm). See [19, Lemma

3.5] for a similar calculation corresponding to the fractional Laplacian. Inequality

(6.1) can now be rewritten as

〈 j ′(gδ), γz − gδ〉 =
〈
S∗
δ Fu(·, Sδgδ(·)) + λŴ gδ, γz − gδ

〉
≥ 0 ∀γz ∈ Zad.(6.2)

It is standard to introduce a new notation to rewrite the above as the system

〈pδ + λŴ gδ, γz − gδ〉 ≥ 0, ∀γz ∈ Zad

pδ = S∗
δ Fu(·, uδ)

uδ = Sδgδ.

(6.3)

Note that Sδ is a self-adjoint operator, so S∗
δ Fu(·, uδ) = Sδ Fu(·, uδ), and so pδ ∈

X0(�δ; R
n). Furthermore, as a consequence of these conditions, in the event that

Ŵ = 1, we obtain gδ is the L2-projection of the adjoint pδ onto the control space Zad,

i.e.

gδ(x) = −
1

λ
PZad(pδ(x)), (6.4)

where PE denotes the L2-projection onto the set E . Notice that, owing to the

assumption that the objective functional is strictly convex, these first order necessary

conditions are also sufficient. We summarize the result as follows.

Proposition 6.1 (Optimality conditions) For every δ > 0, the pair (uδ, gδ) ∈
X0(�δ; R

n) × Zad is a solution to Problem 2.2 if and only if (6.3) holds.
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6.1 Error Analysis for Nonlocal Problems

With the aid of the optimality system, we are able to perform an error analysis, which

we now begin. From here on we assume, for simplicity, that Ŵ ≡ 1 and that F(x, v) =
1
2
|v|2. With this at hand, the optimality conditions for the non-local discrete problem

read:

〈pδ,h + λgδ,h, γh − gδ,h〉 ≥ 0, ∀γh ∈ Zad ∩ Zh

pδ,h = S∗
δ,huδ,h,

uδ,h = Sδ,h gδ,h,

(6.5)

recalling that Zh is defined in (2.24); also, Sδ,h is the discrete solution operator asso-

ciated with the discrete state equation (2.27), and S∗
δ,h is its discrete L2 adjoint.

Note that Sδ,h is a self-adjoint operator, so S∗
δ,h Fu(·, uδ,h) = Sδ,h Fu(·, uδ,h). Also

as with the non-local continuous optimality conditions, it follows that gδ,h(x) =
− 1

λ
PZad(�0 pδ,h(x)), where �0 : L2(�; R

n) → Zh denotes the L2-projection onto

Zh .

To ease the error analysis, define the intermediary functions ûδ, p̂δ ∈ X0(�δ; R
n)

such that

Bδ(ûδ, vδ) = 〈gδ,h, vδ〉 ∀vδ ∈ X0(�δ; R
n); (6.6)

Bδ(vδ, p̂δ) = 〈vδ, uδ,h〉 ∀vδ ∈ X0(�δ; R
n). (6.7)

The existence and uniqueness of these functions follows from the Lax-Milgram Theo-

rem. More importantly, we observe that the optimal discrete state and adjoint variables

are nothing but the Galerkin approximations to ûδ, p̂δ , respectively. From this we

immediately obtain, using Céa’s Lemma, that

‖ûδ − uδ,h‖X(�δ;Rn) � inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(�δ;Rn),

‖ p̂δ − pδ,h‖X(�δ;Rn) � inf
qδ,h∈Xδ,h

‖ p̂δ − qδ,h‖X(�δ;Rn).
(6.8)

We now prove error estimates for the state and adjoint.

Theorem 6.2 (State and adjoint error estimates) Suppose that (uδ,h, gδ,h) is the solu-

tion to Problem 2.4; pδ,h solves the discrete adjoint equation in (6.5) given uδ,h;

(uδ, gδ) is the solution to Problem 2.2; and pδ solves the continuous adjoint equation

in (6.3) corresponding to the state uδ . Then we have these error estimates for the

states, and the adjoints:

‖uδ − uδ,h‖X(�δ;Rn) � inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(�δ;Rn) + ‖gδ − gδ,h‖L2(�;Rn);

(6.9)
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‖pδ − pδ,h‖X(�δ;Rn) � inf
vδ,h∈Xδ,h

‖ p̂δ − vδ,h‖X(�δ;Rn) + inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(�δ;Rn)

+‖gδ − gδ,h‖L2(�;Rn). (6.10)

Proof We begin by proving (6.9). Substitute vδ := uδ − ûδ in (2.18) and (6.6), and

subtract those two equations to obtain

Bδ(uδ − ûδ, uδ − ûδ) = 〈gδ − gδ,h, uδ − ûδ〉. (6.11)

Using the definition of A, Hölder’s inequality, and (3.6) gives

‖uδ − ûδ‖X(�δ;Rn) � ‖gδ − gδ,h‖L2(�;Rn). (6.12)

This, combined with (6.8) then yields the result. The proof of (6.10) uses the same

procedure, and is thus omitted. ⊓⊔

At this stage we must observe that the infima in (6.9) and (6.10) tend to zero as

h → 0+. This is because of density; if a rate of convergence in these terms is desired,

then further regularity of ûδ and p̂δ must be studied. For some kernels this could be

done, for instance, by exploiting that uδ,h belongs to a space that is strictly smaller than

the dual of X0(�δ; R
n); see, for instance, [1, 32, 56]. Due to the generality we place

on our kernel, we do not pursue this. It remains to estimate the difference between

continuous and discrete controls, which will now be our focus.

While in general our controls only belong to L2(�; R
n), in the event we have

additional regularity, we can quantify our forthcoming estimates even more. Indeed,

in the local case, the projection formula g(x) = − 1
λ
PZad(p(x)) combined with the

fact that p ∈ H1
0 (�; R

n) imply further regularity on the control (namely, that g ∈
H1(�; R

n)). The following lemma provides a sufficient condition on the kernel for

this to also be the case for nonlocal problems.

In the following result, we require s �= 1
2

to be able to use the Hardy-type inequality

[42, Theorem 2.3]. This is essentially a technicality.

Lemma 6.3 (Regularity of control for fractional-type kernels) Suppose that in the

definition of Zad , given in (2.12), the functions a and b are constants. Suppose also

that, in addition to the contents of Assumption 2.1, we have that

kδ(|ξ |)
|ξ |2

∼
1

|ξ |n+2s
(6.13)

holds for all ξ ∈ Bδ(0), for some s �= 1
2

. Then, necessarily, gδ ∈ H s(�; R
n).

Proof We introduce some notation specifically for this proof. As seen in [47], we

denote by ‖u‖H s (�;Rn) the fractional Sobolev norm on vector fields, and denote by
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H s(�; R
n) the space of vector fields with finite fractional Sobolev norm. It has been

shown in [47, Theorem 1.1] that the space

χ s(�; R
n) :=

{
u ∈ L2(�; R

n)

∣∣∣∣
∫

�

∫

�

|Du(x, y)|2

|x − y|n+2s
dydx < ∞

}

coincides with H s(�; R
n) with comparable norms. Now since pδ ∈ X0(�δ; R

n) and

kδ satisfies (6.13), via direct calculation we have that pδ ∈ χ s(�; R
n), and so it is in

H s(�; R
n). To finish the proof, we recall the component-wise, pointwise formula

PZad(pδ) = max{a, min{pδ, b}}, (6.14)

proven in [67, Theorem 2.28], where we use the assumption that the boxing functions

in Zad are constants. It is now clear that PZad(pδ) is in H s(�; R
n) from directly

estimating the max-min expression. Moreover, ‖PZad(pδ)‖H s (�;Rn) � ‖pδ‖H s (�;Rn).

The conclusion for gδ follows from the formula (6.4). ⊓⊔

Remark 6.4 An alternative to estimating ‖gδ‖H s (�;Rn) directly is to use interpolation

theory; see [38, Chapter 16] and [64, Chapter 25]. To see this, it suffices to recall that

the H s(�; R
n) space is an intermediate space between H1(�; R

n) and L2(�; R
n).

Having shown that it is possible for the control to lie in a smoother space than

L2(�; R
n), we can proceed with the error analysis. Again, due to the generality of the

kernel we are not very explicit in this. Instead, we introduce ω : R+ → R+ for which

limh→0+ ω(h) = 0. This is such that, if w ∈ PZad X0(�δ; R
n), then

‖�0w − w‖L2(�;Rn) ≤ ω(h), (6.15)

where �0 : L2(�; R
n) → Zh denotes the L2-projection onto Zh . Clearly, ω depends

on the spatial dimension n, on the embedding number (or Gelfand width) of the

embedding X0(�δ; R
n) ⊂ L2(�δ; R

n), and on the properties of PZad . In the setting

of Lemma 6.3 a proper rate of approximation can be established.

Lemma 6.5 (Approximation with smoothness) Assume that kδ satisfies (6.13) on Bδ(0)

for some s �= 1
2

, then

‖�0w − w‖L2(�;Rn) � hs‖w‖X(�δ;Rn), ∀ w ∈ X0(�δ; R
n). (6.16)

Proof The proof repeats that of the Fractional Poincaré Inequality [27, Lemma 7.1]

in the vector-valued setting, to obtain the estimate

‖�0w − w‖L2(T ;Rn) � hs[w]H s (T ;Rn). (6.17)

for each T ∈ Th . Since our mesh is quasi-uniform, from (6.17) we may deduce, via

a localization argument, that

‖�0w − w‖L2(�;Rn) � hs[w]H s (�;Rn). (6.18)
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Then invoke [47, Theorem 1.1] to estimate [w]H s(�;Rn) in terms of the X(�δ; R
n)

norm. ⊓⊔

We can now obtain an error estimate for the control. In the following result the idea

is that, once further regularity of the state/adjoint is known (which can be done for

more specific kernels), and a bound on ω like the one in Lemma 6.5 is obtained, the

right hand side in the estimate below can be bounded by a power of h.

Theorem 6.6 (Convergence of controls) Assume that gδ is the optimal control associ-

ated with Problem 2.2, and gδ,h is the discrete optimal control associated with Problem

2.4. Then we have the estimate

‖gδ − gδ,h‖2
L2(�;Rn)

� ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn)

)2

+
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn)

)2

. (6.19)

Proof We follow a grosso modo the argument used to prove [19, Theorem 4.7]. We

let qδ,h ∈ Xδ,h be the Galerkin approximation to pδ , i.e., the solution of

Bδ(vδ,h, qδ,h) = 〈uδ, vδ,h〉 ∀vδ,h ∈ Xδ,h . (6.20)

Similarly, Uδ,h ∈ Xδ,h is the Galerkin approximation to uδ:

Bδ(Uδ,h, vδ,h) = 〈gδ, vδ,h〉 ∀vδ,h ∈ Xδ,h . (6.21)

Finally, rδ,h ∈ Xδ,h solves

Bδ(vδ,h, rδ,h) = 〈Uδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h . (6.22)

Set γz := gδ,h in (6.3) and γh := �0g in (6.5). Adding the ensuing inequalities we

obtain

λ‖gδ − gδ,h‖2
L2(�;Rn)

≤ I1 + I2, (6.23)

where I1 := 〈pδ − pδ,h, gδ,h − gδ〉 and I2 := 〈pδ,h + λgδ,h,�0gδ − gδ〉. Now, we

write I1 as

I1 = 〈pδ − qδ,h, gδ,h − gδ〉 + 〈qδ,h − rδ,h, gδ,h − gδ〉 + 〈rδ,h − pδ,h, gδ,h − gδ〉
=: I1,1 + I1,2 + I1,3.

(6.24)

We now claim that I1,3 ≤ 0. Indeed, recall that pδ,h denotes the optimal adjoint state

for the discrete problem, and hence it satisfies

Bδ(vδ,h, pδ,h) = 〈uδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h . (6.25)

123



Applied Mathematics & Optimization (2023) 88 :70 Page 33 of 43 70

Subtracting (6.22) and (6.25) yields

Bδ(vδ,h, rδ,h − pδ,h) = 〈Uδ,h − uδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h, (6.26)

while subtracting (6.21) and (2.27) shows us that Uδ,h − uδ,h solves

Bδ(Uδ,h − uδ,h, vδ,h) = 〈gδ − gδ,h, vδ,h〉 ∀vδ,h ∈ Xδ,h . (6.27)

Set vδ,h := rδ,h − pδ,h in (6.27) to obtain

Bδ(Uδ,h − uδ,h, rδ,h − pδ,h) = 〈gδ − gδ,h, rδ,h − pδ,h〉. (6.28)

Similarly, in (6.26), we set vδ,h := Uδ,h − uδ,h and obtain

Bδ(Uδ,h − uδ,h, rδ,h − pδ,h) = ‖Uδ,h − uδ,h‖2
L2(�;Rn)

. (6.29)

Since the left-hand sides of (6.28) and (6.29) are identical, it follows that I1,3 ≤ 0.

By using Cauchy-Schwarz and Céa’s lemma repeatedly, we also obtain the following

estimates for I1,1 and I1,2:

I1,1 � ‖gδ,h − gδ‖L2(�;Rn) inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn); (6.30)

I1,2 � ‖gδ,h − gδ‖L2(�;Rn) inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn). (6.31)

Combine (6.30) and (6.31), along with the fact that I1,3 ≤ 0, to see that

I1 � ‖gδ,h − gδ‖L2(�;Rn)(
inf

vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn)

)
. (6.32)

Finally, by two applications of Young’s Inequality,

I1 ≤
λ

3
‖gδ,h − gδ‖2

L2(�;Rn)
+ C

(
inf

vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn)

)2

+ C

(
inf

vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn)

)2

,

(6.33)

for some constant C > 0 independent of δ and h. Let us now turn our attention to

estimating I2 = 〈ph + λgδ,h,�0gδ − gδ〉. We write it as

〈pδ,h + λgδ,h,�0gδ − gδ〉 = 〈pδ + λgδ,�0gδ − gδ〉 + λ〈gδ,h − gδ, �0gδ − gδ〉+
〈pδ,h − rδ,h,�0gδ − gδ〉 + 〈rδ,h − qδ,h,�0gδ − gδ〉 + 〈qδ,h − pδ,�0gδ − gδ〉 =:
I2,1 + I2,2 + I2,3 + I2,4 + I2,5,

(6.34)
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and in turn look to control each I2,k , k = 1, . . . , 5. Starting with I2,1, we write it as

〈pδ + λgδ,�0gδ − gδ〉 = 〈pδ + λgδ − �0(pδ + λgδ),�0gδ − gδ〉. (6.35)

Since gδ ∈ PZad X(�; R
n) and pδ|� ∈ X(�; R

n), we use (6.15) and Cauchy-Schwarz

to obtain

I2,1 � ω(h)2. (6.36)

As for I2,2, we again utilize Cauchy-Schwarz and (6.15):

I2,2 = λ〈gδ,h − gδ,�0gδ − gδ〉 ≤ λ‖gδ,h − gδ‖L2(�;Rn)‖�0gδ − gδ‖L2(�;Rn) ≤

λω(h)‖gδ,h − gδ‖L2(�;Rn) ≤
λ

3
‖gδ,h − gδ‖2

L2(�;Rn)
+ ω(h)2, (6.37)

for some constant C > 0.

To handle I2,3 we subtract (6.22) from (6.25), set vδ,h := pδ,h − rδ,h in the result,

and obtain

[pδ,h − rδ,h]X(�δ;Rn) ≤ C‖uδ,h − Uδ,h‖L2(�;Rn). (6.38)

Applying (6.15) with w := pδ,h − rδ,h , and combining the result with (6.38) gives

‖pδ,h − rδ,h − �0(pδ,h − rδ,h)‖L2(�;Rn) ≤ ω(h)‖uδ,h − Uδ,h‖L2(�;Rn) (6.39)

I2,3 ≤ ω(h)‖uδ,h − Uδ,h‖L2(�;Rn), (6.40)

Use Young’s Inequality and Céa’s Lemma on (6.40) to obtain

I2,3 � ω(h)2 +
(

inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn)

)2

. (6.41)

To control I2,4, we use Cauchy-Schwarz and (6.15):

I2,4 ≤ ‖rδ,h − qδ,h‖L2(�;Rn)‖�0gδ − gδ‖L2(�;Rn) ≤ ω(h)‖rδ,h − qδ,h‖L2(�;Rn).

(6.42)

Then by a standard Céa’s lemma argument,

I2,4 ≤ ω(h) inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn). (6.43)

Finally, for I2,5 we use (6.15) and Céa’s lemma again to obtain

I2,5 ≤ ω(h) inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn). (6.44)
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After using Young’s Inequality, and combining the estimates for I1 and I2, we conclude

λ

3
‖gδ − gδ,h‖2

L2(�;Rn)
� ω(h)2 +

(
inf

vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn)

)2

+
(

inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn)

)2

, (6.45)

from which (6.19) immediately follows. ⊓⊔

We combine and summarize the state and adjoint error estimates as follows.

Corollary 6.7 (Error estimates) In the setting of Theorems 6.2 and 6.6,

‖uδ − uδ,h‖X(�δ;Rn) � ω(h) + inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(�δ;Rn)

+ inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn) + inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn); (6.46)

‖pδ − pδ,h‖X(�δ;Rn) � ω(h) + inf
vδ,h∈Xδ,h

‖ p̂δ − vδ,h‖X(�δ;Rn)

+ inf
vδ,h∈Xδ,h

‖ûδ − vδ,h‖X(�δ;Rn) + inf
vδ,h∈Xδ,h

[uδ − vδ,h]X(�δ;Rn)

+ inf
vδ,h∈Xδ,h

[pδ − vδ,h]X(�δ;Rn). (6.47)

Furthermore, if the conditions of Lemma 6.5 are satisfied, then ω(h) ∼ hs .

6.2 Error Analysis for Local Problems

The analogue of (6.3) for the local problem is

〈p + λg, γ − g〉 ≥ 0, ∀γ ∈ Zad

p = S∗u,

u = Sg,

(6.48)

where by S : Zad → H1
0 (�; R

n) we denote the solution operator to problem 2.21. In

a similar manner, the analogue to (6.5) for the local discrete problem is

〈ph + λgh, γh − gh〉 ≥ 0, ∀γh ∈ Zad ∩ Zh

ph = S∗
h uh = Shuh

uh = Sh gh,

(6.49)
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where Sh : Zh → Xh denotes the discrete solution operator. The analogue of (6.4) for

the local discrete problem is

gh(x) = −
1

λ
PZad(�0 ph(x)). (6.50)

Define the intermediary functions û, p̂ ∈ H1
0 (�δ; R

n) such that

B0(̂u, v) = 〈gh, v〉 ∀v ∈ H1
0 (�; R

n); (6.51)

B0(v, p̂) = 〈v, ûh〉 ∀v ∈ H1
0 (�; R

n). (6.52)

Again, these functions exist and are uniquely defined thanks to Lax-Milgram. Much

like for the non-local problem, we have state and control error estimates as h → 0+,

and the proofs are virtually identical to those already presented. However, for the local

problem, since g ∈ H1(�; R
n) we may employ the estimate

‖�0w − w‖L2(�;Rn) ≤ h[w]H1(�;Rn) (6.53)

in place of (6.15). We may also prove, in the same manner as in Sect. 6.1, error estimates

for the discrete state, adjoint, and control. In particular, suppose (u, g) denotes the

solution to Problem 2.3, while (uh, gh) denotes the solution to the discrete Problem

2.5. Assume also that p denotes the solution to the adjoint problem (6.49), while ph

solves the discrete adjoint problem 6.49. If we further denote g as the optimal control

for Problem 2.3, and gh as the discrete optimal control for Problem 2.5, then we have

the estimates

‖u − uh‖H1(�;Rn) � inf
vh∈Xh

[̂u − vh]H1(�;Rn) + ‖g − gh‖L2(�;Rn); (6.54)

‖p − ph‖H1(�;Rn) � inf
vh∈Xh

[ p̂ − vh]H1(�;Rn)

+ inf
vh∈Xh

[̂u − vh]H1(�;Rn) + ‖g − gh‖L2(�;Rn); (6.55)

‖g − gh‖L2(�;Rn) � h + inf
vh∈Xh

[p − vh]H1(�;Rn) + inf
vh∈Xh

[u − vh]H1(�;Rn).

(6.56)

It then follows that uh → u and ph → p in H1(�; R
n) as h → 0+.

7 Asymptotic Compatibility

In [65] the concept of asymptotically compatible schemes for parameter-dependent

linear problems was introduced. The goal of asymptotic compatibility is to guarantee

that we reach the same local, continuous solution regardless of whether we send δ

and h to 0 separately (in either order) or simultaneously. This broad idea has been

implemented extensively in several problems, see [13, 36, 37, 66]. Our main goal in

this section is to extend this notion to nonlocal optimal control problems, and to show
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(uδ,h, gδ,h () uh, gh)

(uδ, gδ () u, g)

h→0
+

k→∞

δ→0
+

h→0
+

δ→0
+

Fig. 1 Commutative diagram associated with Definition 7.1

that our ensuing numerical schemes are indeed asymptotically compatible. We first

provide a definition of asymptotic compatibility of a scheme to the optimal control

problems that slightly extends [65, Definition 2.8].

Definition 7.1 (Asymptotic compatibility) We say that the family of solutions {(uδ,h,

gδ,h)}h>0,δ>0 to Problem 2.4 is asymptotically compatible in δ, h > 0 if for any

sequences {δk}∞k=1, {hk}∞k=1 with δk, hk → 0, we have that uδk ,hk
→ u strongly in

L2(�; R
n) and gδk ,hk

⇀g weakly in L2(�; R
n). Here (u, g) ∈ H1

0 (�; R
n) × Zad

denotes the optimal solution for Problem (2.3).

The idea behind asymptotic compatibility can be summarized by saying that the

diagram in Fig. 1 commutes. The asymptotic compatibility theory for linear problems

developed in [65] hinges on several structural properties for the operators at hand.

Since they will be also useful in our setting, we quickly verify them here as well. We

also henceforth assume that the design coefficient A is Lipschitz continuous, as it is

necessary to invoke the results needed for the next proposition.

For each δ > 0, define Aδ : X0(�δ; R
n) → X0(�δ; R

n)∗ as the bounded, invert-

ible, linear operator such that

〈Aδu, v〉X0(�δ;Rn)∗,X0(�δ;Rn) = Bδ(u, v) ∀u, v ∈ X0(�δ; R
n). (7.1)

Similarly define A0 : H1
0 (�; R

n) → H−1(�; R
n) as the bounded, invertible, linear

operator such that

〈A0u, v〉H−1(�;Rn),H1
0 (�;Rn) = B0(u, v) ∀u, v ∈ H1

0 (�; R
n). (7.2)

Proposition 7.2 (Asymptotic structural properties) The following hold:

AC1 The family of spaces {Xδ,h}δ>0,h>0 is asymptotically dense in H1
0 (�; R

n). That

is, given a v ∈ H1
0 (�; R

n), and some sequences hk, δk → 0, we can find a

sequence vk ∈ Xδk ,hk
such that vk → v strongly in H1(�; R

n) as k → ∞.

AC2 For any sequences {δk}∞k=1, {hk}∞k=1 with δk, hk → 0 and the family of solutions

{(uδk ,hk
, gδ,hk

)} to Problem 2.4, there exists a C > 0 so that ‖uδk ,hk
‖X(�δk

;Rn) ≤
C uniformly in k ∈ N

+.
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AC3 For each u ∈ C∞
0 (�; R

n) and δ ≥ 0, we have that Aδu ∈ L2(�; R
n).

AC4 For each u ∈ C∞
0 (�; R

n), we have that limδ→0+ ‖Aδu − A0u‖X0(�δ;Rn)∗ =
0.

Proof The fact that finite element spaces of continuous piecewise linear functions

are asymptotically dense in H1
0 (�; R

n) is well-known, thus verifying AC1. For any

k ∈ N, the bound stated in AC2 follows from a standard a priori estimate and the fact

that Zad is bounded in L2(�; R
n). AC3 and AC4 are addressed in [44, Theorem 3],

[65, Lemma 4.2], and [43, Proposition 3.1]); for completeness we briefly sketch the

proofs. For AC3, notice that for u ∈ C∞
0 (�; R

n), one can easily check that

Aδu(x) =
∫

�δ

A(x, y)kδ(|x − y|)
Du(x, y)

|x − y|2
x − y

|x − y|
dy.

As a consequence, using Taylor’s theorem, and symmetry of A, we have

‖Aδu‖L∞(�;Rn) ≤ C(δ)‖∇u‖L∞(�;Rn×n).

In particular, we may repeat the proof of Lemma 5.3 omitting the outer integral,

utilizing Taylor Expansions and the Dominated Convergence Theorem due to the

regularity of u. This is effectively localizing steps of our proof of Ŵ-convergence

(Theorem 5.4). ⊓⊔

The structural conditions given above guarantee the asymptotic compatibility for

linear problems. Our extension regarding the asymptotic compatibility of our schemes

in the setting of optimal control problems is the content of the next result.

Theorem 7.3 (Asymptotic compatibility) The solution to Problem 2.4 is asymptoti-

cally compatible in δ, h > 0, in the sense of Definition 7.1.

Proof In this proof we denote {(uk, gk)}∞k=1 := (uδk ,hk
, gδk ,hk

)∞k=1, which is the

sequence of pairs solving Problem 2.4. We also let {pk}∞k=1 := {pδk ,hk
}∞k=1 denote

the sequence of solutions to the adjoint problem included in (6.5). We consider an

arbitrary, non-relabeled sub-sequence of the triples {(uk, gk, pk)}∞k=1, and show that it

has a further sub-sequence which always converges to the same limit point. Moreover,

this limit solves (6.48) and, since this uniquely characterizes the solution to Problem

2.3, asymptotic compatibility will follow.

Since {gk}∞k=1 ⊂ Zad, this sequence is bounded in L2(�; R
n), and there exists a

sub-sequence and a function g∗ so that gk⇀g∗ weakly in L2(�; R
n). Meanwhile,

due to item AC2 of Proposition 7.2, the sequence {uk}∞k=1 is uniformly bounded,

and upon taking a further, non-relabeled, sub-sequence, there exists a limit point

u∗ ∈ H1
0 (�; R

n) so that uk → u∗ strongly in L2(�; R
n). Since {(uk, gk)}∞k=1 are

pairs satisfying Problem 2.4, we have for all vk ∈ Xδk ,hk
that

Bδk
(uk, vk) = 〈gk, vk〉. (7.3)
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Let ϕ ∈ C∞
0 (�; R

n) be arbitrary, and denote by Ik the Lagrange nodal interpolant with

respect to the mesh of size hk . If wk := Ikϕ ∈ Xδk ,hk
, then wk → ϕ in W 1,∞(�; R

n)

as k → ∞. This convergence is sufficiently strong to ensure

lim
k→∞

〈gk, wk〉 = 〈g∗, ϕ〉. (7.4)

Now, utilizing the definition (7.1), we write

Bδk
(uk, wk) = 〈Aδk

uk, wk〉X0(�δk
;Rn)∗,X0(�δk

;Rn)

= 〈Aδk
ϕ, uk〉X0(�δk

;Rn)∗,X0(�δk
;Rn)

+ 〈Aδk
(wk − ϕ), uk〉X0(�δk

;Rn)∗,X0(�δk
;Rn)

=: Ik + I Ik .

(7.5)

Due to item AC3 of Proposition 7.2, necessarily Aδk
ϕ ∈ L2(�; R

n), and by item

AC4, we have that Aδk
ϕ → A0ϕ strongly in X0(�δk

; R
n)∗. Due to this and uk → u∗

strongly in L2(�; R
n), the term Ik behaves as follows:

lim
k→∞

〈Aδk
ϕ, uk〉X0(�δk

;Rn)∗,X0(�δk
;Rn) = 〈A0ϕ, u∗〉H−1(�;Rn),H1

0 (�;Rn). (7.6)

As for I Ik , we may use the definition (7.2) and that uk is the solution to (2.18), along

with Hölder to deduce

I Ik = Bδk
(uk, wk − ϕ) � ‖uk‖X(�δk

;Rn)‖wk − ϕ‖X(�δk
;Rn). (7.7)

Due to item AC2 the first factor is uniformly bounded in k, whereas the second factor

is controlled up to a constant (uniform in k) by ‖wk − ϕ‖H1(�;Rn), due to Lemma

3.2. This factor is further bounded from above by ‖wk − ϕ‖W 1,∞(�;Rn), and then the

convergence of wk → ϕ in W 1,∞(�; R
n) tells us that I Ik → 0 as k → ∞. The result

is that

B0(u∗, ϕ) = 〈g∗, ϕ〉 (7.8)

for all ϕ ∈ C∞
0 (�; R

n); by density, we may then extend (7.8) to all ϕ ∈ H1
0 (�; R

n).

Repeating the analysis just used for the sequence of states {uk}∞k=1, we identify a

p∗ ∈ H1
0 (�; R

n) so that pk → p∗ strongly in L2(�; R
n), and

B0(ϕ, p∗) = 〈u∗, ϕ〉 (7.9)

for all ϕ ∈ H1
0 (�; R

n). Now, we link the states, controls and adjoints, beginning as

follows: due to (6.1), for each k we have that

Bδk
(pk, vk) = 〈uk, vk〉 (7.10)
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for all vk ∈ Xδk ,hk
, and the identity

gk(x) = −
1

λ
PZad(�0 pk(x)). (7.11)

The next step is to show that �0 pk → p∗ strongly in L2(�; R
n). By the Triangle

Inequality and the stability of �0, we estimate

‖�0 pk − p∗‖L2(�;Rn) ≤ ‖pk − p∗‖L2(�;Rn) + ‖�0 p∗ − p∗‖L2(�;Rn). (7.12)

Since pk → p∗ strongly in L2(�; R
n), the first term in (7.12) decays to 0 as k → ∞,

while the second term vanishes due to (6.15).

Now, due to the convergence �0 pk → p∗ strongly in L2(�; R
n) and the projection

mapping being Lipschitz, we have that − 1
λ
PZad(�0 pk(x)) → − 1

λ
PZad(p∗(x)); this

coupled with the weak convergence gk⇀g∗ in L2(�; R
n) lets us conclude

g∗(x) = −
1

λ
PZad(p∗(x)). (7.13)

Since (7.8), (7.9), and (7.13) all hold, and solutions to the local continuous opti-

mality conditions (6.48) are necessarily unique, we have that g∗ = g; p∗ = p; and

u∗ = u. Finally, notice that this limit point (u, g, p) ∈ H1
0 (�; R

n)×Zad× H1
0 (�; R

n)

is independent of the original sub-sequence chosen, which means the entire sequence

{(uk, gk, pk)}∞k=1 converges to (u, g, p) in the L2(�; R
n)× L2

wk(�; R
n)× L2(�; R

n)

topology, completing the proof. ⊓⊔
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