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POINTWISE GRADIENT ESTIMATE OF THE RITZ PROJECTION*
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Abstract. Let Q@ C R™ be a convex polytope (n < 3). The Ritz projection is the best approxi-
mation, in the W&’Q-norm, to a given function in a finite element space. When such finite element
spaces are constructed on the basis of quasiuniform triangulations, we show a pointwise estimate on
the Ritz projection. Namely, the gradient at any point in € is controlled by the Hardy—Littlewood
maximal function of the gradient of the original function at the same point. From this estimate, the
stability of the Ritz projection on a wide range of spaces that are of interest in the analysis of PDEs
immediately follows. Among those are weighted spaces, Orlicz spaces, and Lorentz spaces.
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1. Introduction. To approximate solutions of partial differential equations
(PDEs), in particular, those that are second order and elliptic, the finite element
method has emerged as the method of choice. A finite element scheme is nothing
but a Galerkin approximation with a particular choice of finite dimensional subspace
(piecewise polynomials subject to a triangulation of the domain) and a particular
basis. It is fair to say that the study of the properties of finite element schemes for
second order linear elliptic second order equations in an energy setting has reached a
state of maturity. In short, the Ritz projection, which is the best approximation in
the WO1 2_norm (see section 2 for notation), possesses optimal approximation proper-
ties when these are measured in the energy norm, which usually is a norm equivalent
to the Wh2-norm. This reduces the numerical analysis of a finite element scheme
to a question of approximation theory, and this is usually resolved by constructing a
suitable interpolant.

On the other hand, the study of the properties of the Ritz projection in nonenergy
norms has been the subject of intensive study with many classical results, recent
progress, and still some open questions. We refer the reader to the introductions of
[15] and [7] for some historical accounts. It is fair to say that the development of
this subject is obscured by technicalities, and it is far from settled. Nevertheless,
apart from the intrinsic interest such estimates may present, these become important
when dealing, for instance, with nonlinear or coupled problems, or even when in a
linear problem the data is sufficiently rough that the functional setting that provides
well-posedness is no longer the energy one (see, for instance, [10]), or when the energy
norm is not equivalent to the usual Wh2-norm (see [22]).
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The purpose of this work is to make a contribution in this direction. In this work
we concentrate on the Ritz projection subject to homogeneous Dirichlet boundary
values. Homogeneity is merely a matter of convenience. It might be possible to
consider Neumann boundary conditions, see [31] for results in this direction. In fact
one would only need suitable Green’s function estimates. Treating mixed boundary
values, however, is difficult in this context since the regularity corresponds to the one
of a slit domain. For such domains the needed estimates of the Green’s functions are
not valid. We show that, over quasiuniform meshes, the gradient of the Ritz projection
at any point in the domain is controlled by the Hardy-Littlewood maximal operator
of the gradient of the original function at the same point. This pointwise estimate not
only immediately implies stability of the Ritz projection in any function space where
the maximal operator is bounded butalso elucidates the action of the Ritz projection,
i.e., finite element approximation. It is a sort of averaging procedure.

Our presentation is organized as follows. In section 2 we introduce notation.
The statement of our main result, Theorem 3.1, is presented in section 3. Here we
also collect a list of corollaries. Some of these recover known results, whereas others
are truly new and may find application in the finite element approximation of, for
instance, nonlinear elliptic problems with nonstandard growth conditions [8]. The
proof of our main result is the content of section 4. For clarity, this proof is split into
several steps that comprise the bulk of this section.

2. Notation and preliminaries. We begin by introducing some notation and
specifying the framework under which we shall operate. The relation A < B means
that there is a constant ¢ for which A < ¢B. The value of this constant may change
at each occurrence. More importantly, this constant does not depend on A, B, or
discretization parameters. A=~ B means that A < B and B < A.

Throughout our work,  C R, n < 3, is a bounded convex polytope. While
convexity is essential for our arguments, the dimensional restriction is merely an
artifact of our methods. Given z € R", we denote its Euclidean norm by |z|. By
B(z,r) we denote the open ball with center z € R™ and radius r > 0. For a measurable
set E C R™ we denote by |E| its Lebesgue measure. L°({)) denotes the collection of
functions @ — R that are measurable. For p € [1,00] and k € N we denote by LP(12)
and W¥P(Q), respectively, the usual Lebesgue and Sobolev spaces. The subspace of
W¥P(Q) that consists of functions vanishing on the boundary is denoted by W(f P(Q).
We immediately notice that, whenever w € Wg?(€2), its extension to R\ Q by zero,
denoted by 1w, is such that 1w € W*P?(R"). For this reason, whenever necessary, we
shall make this extension by zero without explicit mention or change of notation. By
Li .(R™) we denote the space of locally integrable functions. For f € L°(R") the
(centered) Hardy-Littlewood maximal operator M of f is

1

(2.1) M@ =sp e [ iy

for all x € R™. With this notation M[f] readily extends to vector valued functions.
If X is a normed space, we shall denote by || - | x its norm. If this norm comes
from an inner product, this will be denoted by (-,-)x. We shall make no distinction
between scalar and vector valued functions or their spaces, as this will be clear from
the context. For a € (0,1] we let C%%(Q) denote the space of Holder continuous
functions with seminorm

() = F(y)

(2:2) |flgo.a@) = sup |z —y|o

z,yeQ
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and norm || f{| co.o ) = 1fl= (@) + [flco.0 @

Let T = {7n}r>0 be a quasiuniform family of conforming triangulations of  in
the sense of Ciarlet [3, p. 124] where, for h > 0, the triangulation 7}, has mesh size h.
For k € N we denote by

5116(771) = {wh S C(ﬁ) SWhT € P, VT € 77,}

the Lagrange space of degree k, where P is the space of polynomials of degree at
most k. We set Vi, = LL(T) N1 W' (Q) and immediately observe that V;, € Wy ™ (Q).
The Ritz projection Ry, : Wy'' () — Vj, is defined by

(2.3) (VRowu, Vonr) ) = (Vu,Vén) 2y Von € Vi,

We comment that this mapping is the orthogonal projections onto V}, with respect
to the WO1 ’Q(Q)-seminorm. The following local error estimate for Rj can be found
in [7, Theorem 1]. In fact, it holds for more general families of triangulations than
quasiuniform ones.

PROPOSITION 2.1 (local error estimate). Let w € Wy ™(Q) and T be a qua-
siuniform family of triangulations of a polytype Q). Let z € Q and h > 0. Define
D = QN By(z) with d > koh, where ko is sufficiently large. We have, for every
wp € Vh;

IV (w = Rpw) (2)| S IV (w —wp)|| o (py +d™Hlw = wh]| oo ()
+d” 27w = Ryw| 12 (D),

where the implicit constant is independent of w, h, and z.

Proof. As mentioned before, this is essentially [7, Theorem 1]. However, in that
result, as stated, the point z is where [|V(w — Rpw)|| (@) is attained. One merely
needs to examine the proof to see that this point may be arbitrary. ]

3. Statement of the main result and corollaries. We are now in position
to state the main result of our work.

THEOREM 3.1 (pointwise estimate). Let Q@ C R™, for n € {2,3}, be a convex
polytope and T ={Tp}r>0 be a family of conforming and quasiuniform triangulations
of Q. For every u € Wol’l(ﬂ) and almost every z € Q0 we have

3.1 [VRyu(z)| S M[Vu](2),

where the implicit constant is independent of z, u, and h and depends on T only
through its shape regularity constants.

Before we embark on the proof of this result, we immediately mention that it
implies the stability of the Ritz projection in any space where the Hardy-Littlewood
maximal operator is bounded. For the sake of completeness we present a far from
exhaustive list of examples: (weighted) LP spaces (see section 3.3), Lorentz spaces
(see sections 3.1 and 3.4); Orlicz spaces (see section 3.2) and (weighted) variable
exponent spaces (see section 3.5).

3.1. Lorentz spaces. Let u be a measure on 2, p € [1,00), and ¢ € [1,00]. The
Lorentz spaces are defined as

L7, Q) = { f € L%(1, ) < | fl| Lo 02y < 00},
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where
o0 dar\ '/
q/ tquf(t)"/p> , < oo,
(3.2) | fllzrauo) = ( 0 t
suptuf(t)l/p, q =00,
>0
and

pp(t) =p({zeQ:[f(x)]>1})

is the distribution function of f. We recall that, for p € [1,00), LPP(u, Q) = LP(u, Q)
with equivalence of norms [12, Proposition 1.4.5]. Finally, if u is the Lebesgue mea-
sure, we simply denote these spaces by LP9(£2).

COROLLARY 3.2 (Lorentz stability). In the setting of Theorem 3.1 assume, in
addition, that p € (1,00) and q € (1,00], or that p=1 and ¢ =o00. Then we have
IV Rrullpra@) S IVl Lra),

where the implicit constant is independent of w and h. In particular, for p € (1,00],
we have

IVEhul[r ) S VUl Lro)-

Proof. Consider first the case p = 1 and ¢ = co. Owing to, for instance, [12,
Theorem 2.1.6] we have M : L1 — L1:°° boundedly.
For p > 1 it suffices to invoke [17, Theorems A, section 5.2]. d

We comment that the boundedness of the Ritz projection in WP spaces has
already been presented in [23, 15, 7]. Thus, the case p € (1,00) of Corollary 3.2
can also be obtained by the Marcinkiewicz interpolation theorem as presented in [2,
Theorem 5.3.2].

3.2. Orlicz spaces. Another new result is stability in Orlicz spaces. We say
that ¢: (0,00) — (0,00) is an Orlicz function if it is nonnegative and increasing and

»(0+) =lim p(t) =0, p(o0) = lim p(t) = co.

t0 t—00
If ¢ is an Orlicz function and, in addition, it is convex and satisfies

im 28 it o,
tlo t t—o0 ()

then we say that it is an N-function.
For an N-function ¢, we define its corresponding Orlicz space as

L2(Q) = {f € L2 : [|f | () < o0},

Ifll e (o) Zigf(’) {/Qw (/l\f(x)|) dz < 1}.

We refer the reader to [18] for further properties of such spaces.
Given an N-function ¢, we say that ¢ € Vs if there exists a > 1 such that

1
p(t) < 2—90(at) vt > 0.
a
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COROLLARY 3.3 (Orlicz stability). In the setting of Theorem 3.1 let ¢ € V.
Then

IVRpullpe o) S Vullpe @),

where the implicit constant is independent of u and h.

Proof. According to [17, Theorem 1.2.1(v)], if ¢ € V3, then the maximal function
is bounded on L¥(£2). Apply Theorem 3.1 to conclude. 0

Remark 3.4 (Simonenko indices). Given an N-function ¢ define

hy(A) =sup P (M)

, > 0.
>0 ¢(t)

The upper and lower Simonenko indices of ¢ are, respectively,

_ . loghu (V) _loghy (M)
— ljm =¥/ +— ] o e\
Pe =310 logh ’ Pe =I5 log A

We comment that ¢ € Vo implies p; > 1 so that the condition in Corollary 3.3 is
consistent with the results of Corollary 3.2.

On the other hand, we say that an N-function is power-like if p$ < 00. According
to [26] (see also [16]), the space L?(2) is an intermediate space between LP()) and
L(Q) provided the Simonenko indices satisfy

1<p<p, <p} <q< oo

Thus, in the case of ¢ € V, and power-like, the results of Corollary 3.3 could be
obtained by interpolation. Since, however, we are not assuming p$ < 00, this is truly
a new result.

3.3. Muckenhoupt weighted spaces. Next we extend the results of [10] to
the optimal range of indices. We recall that a function 0 < w € Li (Q) is called a
weight. For p € [1,00) we say that a weight w belongs to the Muckenhoupt class A, if

o (i ) i )

1/ o
sup (= w(x)dx) o 2o, p—1,
Q <|Q| Q @)

[w]a, =

where the supremum is over all cubes Q C € with sides parallel to the coordinate
axes. Weighted Lebesgue spaces are defined, for p € (1,00) and w € Ay, as

LP(w, ) = {f € L) : || Il Lr(w.) <0},
1/p
£l r(w,0) = [/Qlf(x)lpw(w)dx} .

COROLLARY 3.5 (weighted stability). Under the assumptions of Theorem 3.1 let
p€(1,00) and w e A,. Then,

IVRyull e (w,0) S VUl Lrw,9),

where the implicit constant is independent of u and h.
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Proof. 1t suffices to recall that, provided w € A, the Hardy-Littlewood maximal
operator is bounded on weighted spaces; see [12, Theorem 7.1.9(b)]. ]

As we mentioned above, this result generalizes [10, Corollary 3.3], where such an
estimate is obtained, but with w € Ay, /2, a strictly smaller class.

3.4. Weighted Lorentz spaces. Let w be a weight. Here we are concerned
with weighted Lorentz spaces LP*%(w,(Q); i.e., the measure in (3.2) is p =wdz.

COROLLARY 3.6 (weighted stability). In the setting of Theorem 3.1 let p € (1,00),
g€ (1,00], and we A,. Then

IV Ryull Lraw.0) S IVullLeaw0),
where the implicit constant is independent of u and h.

Proof. According to [17, Theorem 5.2.1], given the range of exponents, we have
that M : LP9(w, Q) — LP9(w, Q) boundedly if w € A,. 0

3.5. Weighted variable exponent spaces. As a final application we mention
weighted variable exponent spaces. A variable exponent is p € L°(Q) such that p(Q2) C
[1,00]. Given a variable exponent and a weight 0 < w € LL () we define weighted
variable exponent Lebesgue spaces as

L2 = { £ € LA ]300y < 50}

. 1 p(z)
11 ) (@ = inf {/Q ‘)\f(x)w(x) dz < 1} .

We refer the reader to [6, 9] for an extensive treatise on these spaces.
Given a variable exponent p, we say that p € P°8(Q) if

‘ L L ! Va,y €
- ~ z,y )
p(x)  p(y)| "~ logle+1/lz —yl)
and, there is po, > 1 such that
1 1 1
— — ‘ S—— Ve
p(x)  poo| ™ log(e+1/|z])

If p is a variable exponent, then p’ is its Holder conjugate, that is, the variable exponent
that satisfies
1 1

——+

p(z)  p(2)
for almost every = € 2. We say that the weight w satisfies the generalized Mucken-
houpt condition, denoted by w € A, if

Ixell Lz @ Ixell e o) # 1€

for every cube @ with sides parallel to the coordinate axes. Here x¢ is the character-
istic function of Q.

Remark 3.7 (A versus A,). If p(z) =p € (1,00) for all z € Q, then it is known
that

1100y = [ @@ do =1 felzr @) = 1

Thus, we see that w € A is equivalent to p=wP € A,,.
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COROLLARY 3.8 (variable exponent stability). Under the assumptions of Theo-
rem 3.1 let p € P8(Q) with essinf,cap(x) > 1, and w € A. Then

IVRrull 1oy oy S VUl 120 0y

where the implicit constant is independent of u and h.

Proof. Under the given assumptions the Hardy-Littlewood maximal operator is
bounded on Lﬁ(')(ﬂ); see [4], [9, Theorem 4.3.8], and [9, Theorem 5.8.6]. d

3.6. Other extensions and variations. As we mentioned after Theorem 3.1,
the list we have provided is not exhaustive. For instance, under certain conditions,
one can also assert the boundedness in Orlicz—Musielak spaces [5].

On the other hand, there are some spaces where the stability remains open. No-
table examples are H!(€2), the atomic Hardy space, and L'(Q).

4. Proof of the main result. We now focus on the proof of Theorem 3.1. The
technique that we shall follow will be a combination of weighted norm inequalities, as
in [23], and local estimates, as presented in [7]. We shall also rely on some estimates
on the Green’s function that hold, for n € {2,3}, in convex polytopes.

PROPOSITION 4.1 (Green’s function estimates). Let @ CR™, with n € {2,3}, be a
convez polytope and G : Q2 x Q — R be the Green’s function associated to this domain.
Then, for everyi€{1,...,n},

1

|azlG($»§)|§W Vl‘,féﬁ.

In addition, there is o € (0,1], depending only on the inner angles of Q, such that, for
every 1,5 €{1,...,n} and all z,y,£ € Q, we have

|z —yl*

}a:u,aﬁj G(gj’ 5) - ayiafj G(y, 5)

Sle =g 4y — gt

| Sle =& +ly =&

Proof. The first bound can be found in [14, Theorem 3.3(iv)] for n > 3 and [11,
Proposition 1 (9)] for n = 2.

In the case n = 3, the Holder estimates on the first and mixed derivatives can
be found in [15, formula (1.4)]. When n =2 [10, Lemma 2.1] presents a proof of the
estimate for the mixed derivative. The estimate on the first derivative follows the
same proof presented in [15]. 0

Notice that the Holder estimates on derivatives of GG are the only instances where
our dimensional restriction plays a role. As soon as the estimates in Proposition 4.1
are valid for more dimensions, the proof of Theorem 3.1 follows verbatim.

4.1. Approximation of identity. The technique of weighted norms [20, 21]
relies on the construction of a regularized distance function and its properties. Here
we rephrase some of the properties of such a function that may help elucidate the
reason for its use. For K,~ >0 to be chosen we define 7 : R® — R by

n+

(4.1) wl(x)zcl(\x|2+K2) 2,
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where ¢; is such that fR,L ¢1(z)dx =1. Now, for e >0 and z € Q, we define

_nty _nty
pe(z)=e"p1(zfe)=cre " (|z/e? + K?) 2 =ci€ (2> + K*¢*) 2,

Pe,2(T) = pe(z — T).
Notice that the family {¢}eso is an approximation of the identity.

LEMMA 4.2 (convolution estimate). For every e >0, z € Q, and f € L°(Q) we
have

ez fllLr @) = (e x[f]) (2) S M[f](2),

where the constant is independent of €, z, and f. Here, f is extended by zero outside
of Q.

Proof. Since the function ¢; is radial and decreasing, it suffices to invoke Theorem
2.2 of section 2.2 in [27]; see also [12, Theorem 2.1.10]. d

4.2. Regularized Green’s function. To establish our main estimate we shall
rely on a pointwise representation. We fix h > 0 and let z € Q) be such that z € T for
some T € T;,. Owing to shape regularity, see [19, formula (12)], [28, Lemma 2.2] and
[25]; there is a function d, € C§°(T') such that

/5Z(x)P(m)dx:P(z) VP ePy, D™, ||pee () Sh™"™, meN,.
T

Fix [ € {1,...,n}. The regularized Green’s function is g, € W, *(Q) such that
(4.2) (Vg:, V) p2() = (62, 00) 2y Yo € W2 (Q).

Owing to the fact that the right-hand side in (4.2) is compactly supported in
), we can, using Proposition 4.1, obtain some Hdélder regularity for g,. This is the
content of the following result.

PROPOSITION 4.3 (estimates on g.). Let z €T € Ty, and g. solve (4.2). Then, for
every it €{1,...,n} and all z,y ¢ T, x #y, we have

|0ig- () — 0ig-(y)| e e
<max (|lz — & ¢ — gy,
‘x_y|a ~ 567}5(| §| +|y g‘ )
where the exponent « € (0,1] is the same as in Proposition 4.1. Moreover,
IVg:llpoe oy ShT".

Proof. We begin by using the pointwise representation of g, in terms of the
Green’s function GG, and the fact that §, is supported on 7" to obtain

019:(a) = Dig-(1) =~ [ (0G(2.6) = 0,,6(0.£) 25.(6) .
We now invoke Proposition 4.1 to obtain
<su

|6zgz(m) - aigz (y)| P ‘a&a:viG(x>§) - aﬁzain(:%g)
|z —yl|~ T ¢er |z —yl®
< _ ¢l—n—a _ ¢l-n—a
Nrglea%(lw ¢l +ly =€),

|
H(SZHLl(T)
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as claimed.
To obtain the second estimate we observe that ¢, is supported on T and use its
scaling properties to assert that, for any ¢ € {1,...,n}, we have

19192 (x)| = \ [ 0.6 006.(0 ds| < [o-gntag g,

All estimates have been proved. ]

4.3. Step 1: Pointwise representation. We now begin with the proof of
Theorem 3.1 per se. Owing to the properties of d, we have that

O Rpu(z) = (02, O Rpu) 2 (0) = (Vg VRyU) 12(0) = (VRRG:, VU) L2 ()
= (02, 01u) 12() + (V(Rrg: — 92), Vu) L2(0),

where we used (4.2) and the definition of the Ritz projection (2.3). From the definition
of §, it follows immediately that

|<5Za 3ZU>L2(Q)} S M[Vul(z).

On the other hand, we estimate the second term as

[(V(Rug: = 92), V| < lon=Vullps oy || en: ¥ (Ruge =) -

Owing to Lemma 4.2,
len.=Vull 1) S M[Vu](2).

Thus, if we define

4.3 Gn =su H 71ZVR z—z‘ ,
(4.3) h Zeg en..V(Bryg Q)LW(Q)

we see that the heart of the matter is to provide a uniform, in h, estimate for this
quantity.
In summary, the rest of the proof consists in showing the following result.

PROPOSITION 4.4 (uniform estimate). In the setting of Theorem 3.1 there are
K > kg and v € (0,«) such that, if @y is defined as in (4.1), we have

ghgl,

where the constant is independent of h > 0, and G;, was defined in (4.3). Here ko is
as in Proposition 2.1, and « is as in Proposition 4.1.

4.4. Step 2: Dyadic decomposition. Fix z € ). Define, for j € Ny, d; =
29 Kh. We decompose the domain €2 into the following annuli:

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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(4.4) Bj={reQ:[z—z[<d;}, Aj=B;\Bj,
' Al =Bj41\ Bj-s, AT =Bji2\ Bja,

with the convention that, for j <0, B; =0. For S C Q we also define
Nu(S) = {T € Th:5NT #0}.

The use of this dyadic decomposition lies in the fact that on each annulus the regu-
larized distance function ¢y, , is almost constant.

LEMMA 4.5 (distance estimates). Assume that K >2. For all j >0 we have
Pn,z(x) = hVd; "7 Vo e Aj,
and
dist (Aj,Nh(Q \ Aj*)) ~dj,
where the implicit constants are independent of h. As a consequence, for j > 3 we
have

|ng|cowa(A;f—+) S d;n*a’

where a € (0,1] is as in Proposition 4.1.

Proof. The estimate on ¢y, , follows by definition. The estimate on the distance
between A and N}, (2\ AT™T) does so as well.

On the other hand, if j >3, z,y € AT", and £ € T, then |z — ¢, |y — & ~ d;. We
can then refine the estimate of Proposition 4.3 to conclude

‘8292(‘%) - 8ng(y>| Sd_fnfa-
[z —yl* !

4.5. Step 3: Reduction to interpolation and duality. Now fix some z € Q2
and define

Gh,= = H<p;,1zV(Rhgz - 9:)
Let j € Ny now be such that

gh,z = HSO;}ZV(QZ - Rhgz)

’Lw(ﬂ)'

’Lw(Aj) '
Using the distance estimates of Lemma 4.5, we can also assert that
Gn,: S h_'ydjn-’_‘y IV(g-— Rth)HLOO(Aj) :

Now choose K > kg, where kg was introduced in Proposition 2.1. Then we have
diam A; = d; > koh, so that with a simple covering argument we may obtain that

Gh.e Sh77d ||V (g2 — Rug:) s (a,)
(45) 5 h_ﬁyd'jn-‘r’y (”V(gz - thz)HLOO(A]Jr) + dj_1||gz - thzHL‘X’(AjJr)
_n_4
+di ? lg. - Rhgzlle(Af)) =1+1I+ I,

where II,, is, for instance, the so-called Scott—Zhang interpolant [24], or any other
interpolant satisfying local stability and approximation properties. The first two
terms will be handled using interpolation estimates, whereas the last one is controlled
by duality.
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4.6. Step 4: Bound of I + II via interpolation estimates. It is our goal
now to bound I+ II using the approximation properties of II;, and the regularity of
g-. This regularity, however, depends on the distance between Aj+ and z. If j > 3,
then we can invoke the estimate in Lemma 4.5 to see that

lg= — thzHLoo(Ai*) + h[|V(g: — thz)HLoo(Aj*) S h1+“|ng|Co,a(Ai++)
1+ 3—n—«
<h dj .
As a consequence, since 0 < vy < a,

" 14 . B\ h I+a—y
- n+y o Jj—n—o @ Jj—n—o—
THILSh7d™ (R d" ™ + AT, )3 (dj> " (dj>

1 1

< Ko— + Klta—v"

If, on the other hand, j < 3, we use the second bound of Proposition 4.3 to obtain

(4.6)

ng - thz||L°°(Ai+) + hHV(gz - HhQZ)”LO@(A?’) < h”VQZHL‘X’(Q) < Rl
In this case then we get

T+ ISR d Y (" 4 d R ) Sh 7 dy ™Y + b dg

(47) < gnty +Kn+’y*1.

Gathering (4.6) and (4.7), we arrive at

(4.8) I+1II <max { Kiﬂ + K1+1a7'y JKMY 4+ K’L+'y—1} .

4.7. Step 5: Bound of IIT by duality. We bound III by duality. Define
(4.9) 8 = {ve G (Q): o]l e < 1. supp(v) C AT}
so that

192 = Bngzllp2(ary = sup (9= — Rngz,0)12()-
) 0#vES;

Fix v € §j and let w, € W, *(Q) solve
(4.10) —Aw, =wv, in w, =0, on 0N.
Then, by Galerkin orthogonality,

(92 = Bngz,v) r2(0) = (V(9: — Rng:), Vwy) 12(0)
= <v(gz - Rhgz)v V(wv - thv)>L2(Q)
= <<p}:’1zv(gz - Rhgz)a <ph,zv(wv - thv)>L2(Q)-

An application of Holder’s inequality then allows us to conclude that

-1
111 < h ’yde K sug ||(ph7ZV(’LUU — H}va)HLl(Q)gh.
VES;

Notice that if, in this last estimate, the term that is multiplying G, is sufficiently
small, then it could be absorbed on the left-hand side in (4.5). This possibility is
explored in the following result.
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LEMMA 4.6 (duality bound). Let S; be defined as in (4.9) and v € (0,a). There
s a constant, independent of j, z, and h, such that

oy oyl 1 !
h=7d2 LV (wy — T, <o = ,
P sup L= Doy <€ (5 + o)

where w, € W2 (Q) is the solution to (4.10) and a is as in Proposition 4.1.

Proof. Let v € S be arbitrary. Using Lemma 4.5 and scaling, we have

31 2
TR on eV (wo = Twn) [ ary S 29 (wo = ) [ ag ey
<d |V (wy — thv)||L2(Ai++)
h 1 L
< d—j\wv\wz-,%sz) S ?HU”U(Q) < K’

where, since € is convex, we used a regularity estimate on w,,.
To control the norm in ©\ A" observe that, owing to the estimates of Proposi-
tion 4.1, for every i € {1,...,n} we have for every z,y € Q\ Afr that

e el < [ G GOl ag

< _ ¢|—n—a+l _ ¢|lmn—a+1 d
S max (jv —¢| +1y —¢] ) /A MEGIES

i 2 l—q T ’
gdl n—o d]2 ||’UHL2(A;¢—)§d] 2’
where we used the second distance estimate of Lemma 4.5. This shows that

l—a—2
Vwslcoe,@apty S 2

To shorten notation let e,, = w, — Hpw,. We use that ||on .||L1@) =1 and the
recently obtained regularity estimate to proceed as follows:

— %-1-7—1 — %-&-7—1
h dj ||<Ph,zvew||L1(Q\Ai++)§h dj ||vew||Loc(Q\Ai++)

no _a_nl a=
<h a2 hed; 2:<h> <!

)

We combine both bounds to conclude. O

With Lemma 4.6 at hand we conclude that

1 1
<[ =4 —_
(4.11) I < (K + Ka_y)Qh.
4.8. Step 6: Final step. Gathering all the estimates. With the aid of (4.8)
and (4.11), estimate (4.5) reduces to

1
Koa— + Kltoa—

1 1
Gh» S max{ JK™ K”J”l} + ( + > Gh,zs

K Ko

provided K > ko, where ko is defined as in Proposition 2.1; and v € (0,«), with «
as in Proposition 4.1. Notice the hidden constant here is independent of z. Since
Gh =sup,cq Gn,-, we can now, if necessary, choose an even bigger K to conclude the
proof of Proposition 4.4 and, as a consequence, that of Theorem 3.1.
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