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PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE
CFT ON THE TORUS

PROMIT GHOSAL, GUILLAUME REMY, XIN SUN, AND YI SUN

ABSTRACT. Virasoro conformal blocks are a family of important func-
tions defined as power series via the Virasoro algebra. They are a funda-
mental input to the conformal bootstrap program for 2D conformal field
theory (CFT) and are closely related to four dimensional supersymmet-
ric gauge theory through the Alday-Gaiotto-Tachikawa correspondence.
The present work provides a probabilistic construction of the 1-point
toric Virasoro conformal block for central change greater than 25. More
precisely, we construct an analytic function using a probabilistic tool
called Gaussian multiplicative chaos (GMC) and prove that its power se-
ries expansion coincides with the 1-point toric Virasoro conformal block.
The range (25,00) of central charges corresponds to Liouville CFT, an
important CFT originating from 2D quantum gravity and bosonic string
theory. Our work reveals a new integrable structure underlying GMC
and opens the door to the study of non-perturbative properties of Vira-
soro conformal blocks such as their analytic continuation and modular
symmetry. Our proof combines an analysis of GMC with tools from CFT
such as Belavin-Polyakov-Zamolodchikov differential equations, opera-
tor product expansions, and Dotsenko-Fateev type integrals.

1. INTRODUCTION

A conformal field theory (CFT) is a way to construct random functions
on Riemannian manifolds that transform covariantly under conformal (i.e.
angle preserving) mappings. Since the seminal work of Belavin-Polyakov-
Zamolodchikov [BPZ84], two dimensional (2D) CFT has grown into one
of the most prominent branches of theoretical physics, with applications
to 2D statistical physics and string theory, as well as far reaching conse-
quences in mathematics; see e.g. [DFMS97]. The paper [BPZ84] introduced
a schematic program called the conformal bootstrap to exactly solve correla-
tion functions of a given 2D CFT in terms of its 3-point sphere correlation
functions and certain power series called conformal blocks. These confor-
mal blocks are completely specified by the Virasoro algebra that encodes the
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infinitesimal local conformal symmetries, and they only depend on the spe-
cific CFT through a single parameter called the central charge. Outside of
CFT, conformal blocks are related to Nekrasov partition functions in gauge
theory via the Alday-Gaiotto-Tachikawa correspondence [AGT10], solutions
to Painlevé-type equations [GIL12], and quantum Teichmiiller theory and
representation of quantum groups [PT99, PT01, TV15], among other things.

In this paper, we initiate a probabilistic approach to study the conformal
blocks appearing in the conformal bootstrap for an important 2D CFT called
Liouville conformal field theory (LCFT). LCFT arose from Polyakov’s
work on 2D quantum gravity and bosonic string theory [Pol81]; it was rig-
orously constructed from the path integral formalism of quantum field the-
ory on the sphere in [DKRV16] and on other surfaces in [DRV16, HRV18,
GRV19]. The construction is via Gaussian multiplicative chaos (GMC),
a random measure defined by exponentiating the Gaussian free field (see e.g.
[RV14, Berl7]). LCFT depends on a coupling constant v € (0,2) which is
in bijection with the central charge c via

2 Y, 2

(1.1) c=1+4+6Q° € (25,00), where @ = 5T
The present work gives a GMC representation of the conformal blocks with
central charge ¢ € (25, 00) for a torus with one marked point. Given 7 in the
upper half plane, let T, be the flat torus with modular parameter 7. The 1-
point toric correlation function of LCFT, rigorously constructed in [DRV16],
has the form (e*?(©))_ where (---), is the average over the random field ¢
for LCFT on T, and « is called the vertex insertion weight.

The conformal bootstrap gives rise to a conjectural modular bootstrap
equation expressing (e*?(0)) via the 1-point toric conformal block Fpla):

Here, ¢ = €™, n(q) is the Dedekind eta function, and C, (a1, as,as3) is
the Liouville 3-point sphere correlation function. It has an exact expression
called the DOZZ formula which was first proposed in [DO94, ZZ96] and
proved in [KRV20]. The conformal block F p(q) is a g-power series defined
via the Virasoro algebra in [BPZ84]. Recently, the conformal bootstrap for
LCFT was rigorously carried out for the sphere in [GKRV20] and for general
closed surfaces (including the torus) in [GKRV21].

In this paper, we use GMC to construct a function of ¢ analytic around
0 whose series expansion is given by /2 p(Q).

1.1. Summary of results. To state our results, we first review two ways
to characterize the 1-point toric conformal block ]{‘;‘7 p(q) as a formal g-series
with parameters ~, P, «: Zamolodchikov’s recursion and the Alday-Gaiotto-
Tachikawa (AGT) correspondence. From its original definition via the Vira-
soro algebra [BPZ84], it was shown in [Zam84, Zam87, HJS10] that 7= p(q),
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as a formal g-series, is the unique solution to Zamolodchikov’s recursion

o

R o 1 _
13 FEp@= Y @migmae® e () gt
m,n

n,m=1

where R ,,, »,(a) and Py, ,, are explicit constants defined in (2.20) and (2.21).
See [Pog09, FL10, HJS10, CCY19] for more background on this recursion.
The AGT correspondence [AGT10] specialized to .7-:‘?‘7 p(q), which is proven

in [FL10], asserts that as two formal power series we have

(1.4) Fopla) = (¢ Bn(0)) e

Here, 22 5(q) is given by

27 p(9)-

(L5) Z2p(q) =1

o
(s, P a)(Q — Eyj(s, P) — a)
DD I7 17 & 7
k=1 Yi,Y2 Young dlagramm] 1s€Y; U S P)(Q Ew(S,P))
[Y1]+|Y2|=

where E;j(s,P) is an explicit product given by (2.18). We also note that
q_len(q) =T122,(1 — ¢®") has an explicit g-series expansion. The function
Zji p(q) is the instanton part of the Nekrasov partition function of the four-
dimensional SU(2) supersymmetric gauge theory. See e.g. [Nek03, NOOG,
Negl6, CO12] for more background on the Nekrasov partition function and
the AGT correspondence in general.

We may now state our main result. Here we only give a concise foretaste
of the relevant constructions; a fully rigorous version of all definitions will
be given in Section 2. For v € (0,2) and for purely imaginary 7 € iR~q, Let
Y;(x) be the Gaussian field on [0, 1] with covariance

E[Y;(2)Y;(y)] = —2log |0 (z — y)| + 2log |g5n(q)],

where O, (z) is the Jacobi theta function (Appendix A). Consider the GMC
measure 2’7 (*)dz, which is a random measure on [0,1] defined through
regularization (Definition 2.3). For a € (—%,Q), q = €7 € (0,1), and
P € R, we define the probabilistic 1-point toric conformal block by

</ ‘9 az’Y eﬂ—fmee%Yq—(I) dl’)

where z3 p(g) is an explicit function of «,~, P,q from Definition 2.4 and

2

(1L6) G2 plg) =

«
ZWP

Remark 2.7. Our main result Theorem 1.1 below shows that (1.6) gives a
probabilistic construction of F p(q) which is non-perturbative, in contrast
to Zamolodchikov’s recursion, the AGT correspondence, and its original
definition via the Virasoro algebra.



4 PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS

Theorem 1.1. For v € (0,2), a € (—%,Q), and P € R, the probabilistic
conformal block Qj‘/ip(q) admits an analytic extension on a compler neigh-
borhood of ¢ = 0, whose q-series expansion around ¢ = 0 agrees with ]-",?’P(q)
defined in (1.4). In particular, the conformal block ]:jip(q) has a positive
radius of convergence. Moreover, when o € [0,Q), the analytic extension of

% p(q) exists on an open set containing {z € C: |2| < 33U [0,1), which
implies the radius of convergence of ]:%P(q) s at least %

The range (—%,Q) for « is the range in which the 1-point correlation

function (e®?(®))_ in (1.2) has a GMC expression from the path integral
formalism of LCFT [DRV16]. Although our probabilistic construction of
conformal blocks also relies on GMC, we are not aware of a natural path
integral interpretation. From this perspective, our Theorem 1.1 reveals a
new integrable structure underlying GMC.

In light of the AGT correspondence, Theorem 1.1 proves that the Nekrasov
partition function (1.5) is analytic in ¢, resolving a special case of a conjec-
ture in[FML18]'. As a corollary of the conformal bootstrap, it was shown
in [GKRV20, GKRV21] that F7 p(q) has convergence radius 1 for almost
every real P. Our work gives a complementary understanding of conformal
blocks by making tractable important analytic properties such as the modu-
lar transformations and complex analyticity in the parameter P € C, which
seem out of reach from the methods of [GKRV20, GKRV21]. See Section
1.3 for more discussion.

1.2. Summary of method. The key steps for proving Theorem 1.1 are:

1. We show by Cameron-Martin’s theorem that the GMC expression
for g,‘;i p(q) has the desired analytic properties in ¢ prescribed by
Theorem 1.1.

2. We then characterize the series coefficients of G p(¢) in terms of
shift equations, which are difference equations in « with step size 2y
for x € {3, %} inspired by shift equations in [Tes95] proposed for the
DOZZ formula. To prove series coefficients of G p(q) satisfy shift
equations, we generalize the strategy of [KRV20] based on the BPZ
equation and operator product expansion (OPE). Our setting differs
from [KRV20] in two important ways. First, instead of reducing to
a hypergeometric equation, our BPZ equation is the PDE

(1.7) (auu — 1 (I + Dplu) + 2i7rx287)w;l(u, 9) =0

where 97 (u, ¢) is a deformation of gf;‘vp(q), Ly = X; — ¢ and g is the

Weierstrass’s elliptic function. As a result, we must apply separation

More precisely, their conjecture was stated for the 4-point spherical conformal block.
In light of [FLNOO09, Pog09, HJS10], the 1-point toric conformal block is a special case of
the 4-point spherical conformal block under a parameter change.



PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS 5

(1.8)

of variables to (1.7) to obtain a system of inhomogeneous hyperge-
ometric equations from which we show the g¢-series coefficients of

< p(q) solve the shift equations (6.3). These equations are analo-
gous to shift equations in [Tes95, KRV20] that uniquely specify the
DOZZ formula, but they are coupled and inhomogeneous. Second,
the OPE for x = % requires the reflection argument first performed
in [KRV20] but adapted to the intricate boundary setup in [RZ20b].

. To complete the proof we need to verify that the g-series coefficients

of F5 p(q) satisfy the same shift equations (6.3). This challenge is

new to our setting, as in [KRV20] it follows easily from the explicit

form of the DOZZ formula. We first prove that 7 p(q) = G5 p(q) as

formal g-series when N := —% € N. In this case the GMC expression
< p(q) equals the integral

N

NN 9 N N
</ ) H 0, (z; —x;)| T H@T(a:i)_%empmindazi.
0 1<i<j<N

i=1 =1

We prove that this integral as a formal g¢-series satisfies Zamolod-
chikov’s recursion (1.3) thus agrees with the conformal block 7' 1(g).
The integral (1.8) is a Dotsenko-Fateev integral [DF84, DF85] and
was proposed as a representation of the 1-point toric conformal block
in [FLNOOQ9]. To our best knowledge, prior to our work this repre-
sentation was not established mathematically.

We finally remove the constraint N := —% € N using the analyticity
in 7. More precisely, fixing o < 0 and viewing (6.3) as equations
in v, for N := =& € N we have F7'p(q) = G5 p(q). Thus (6.3) for
X = 3 holds for series coefficients of F2p(q). The explicit form for
series coefficients of F2 p(q) from the AGT correspondence shows
they are rational in v and invariant under the exchange 3 < %
This allows us to analytically extend in « and prove that the series
coefficients of Fp(q) satisfy (6.3) for all v and both values of x.

Now the uniqueness of the solution to (6.3) gives F2 p(q) = G5 p(q).

We now situate these steps in the paper. In Section 2, we prove the
analytic continuation property of the probabilistic conformal block Qf;" plq)
prescribed by Theorem 1.1. In Section 3, we define deformed versions of
g% p(q), characterize their analytic properties, and prove the BPZ equa-

tions (1.7). In Section 4, we perform separation of variables for deformed
probabilistic conformal blocks and derive from the BPZ equations a system
of coupled inhomogenous hypergeometric equations. In Section 5, we state
operator product expansions for deformed conformal blocks and perform an-
alytic continuation in «. In Section 6, we prove two shift equations on series
coefficients of G p(q) and prove Theorem 1.1 as outlined above.

1.3. Outlook. We now outline two directions of future work.
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Modular transformations for conformal blocks. Set ¢ = €™ and
G=e " Verlinde [Ver88] and Moore-Seiberg [MS89] conjectured that

i
2

2 2
(1.9) 3 Fop(d) = /R My o(P, P')g'% F2 1 (g)dP’

for a certain explicit modular kernel My o(P, P"). Namely, the modular
group PSLy(Z) acts linearly on the span of {qP2/2]-'37P(q) : P € R}. The
explicit formula for M., (P, P") was derived by Ponsot and Teschner [PT99]
under the assumption that there exists a kernel M., (P, P’) satisfying (1.9).
However, the equation (1.9) itself is still open as a mathematical question.

In work in progress, we plan to prove (1.9) for a € [0,Q) based on our
probabilistic construction of F3 p(q). More precisely, we will use the BPZ
equation, GMC techniques, and the explicit form of the modular kernel

2 /2

to show QPTQ,?’P(Q) = Jg Mr.a(P, P’z % pi(q)dP’ for q € (0,1), where

= p(q) is the GMC in Theorem 1.1. We can then use the PSLy(Z) action
to analytically continue G2 p(q) to the unit disk. This means F3 p(q) has
convergence radius 1 in this range of o and (1.9) holds. Once proved, (1.9)
also allows us to view the conformal block as a meromorphic function in
P € C, as the right hand side of (1.9) is meromorphic in P with explicit
poles provided by the meromorphic function M., (P, P’).

4-point spherical conformal blocks. As discussed in Section 1.2, the
GMC expression of F3 p(q) is a Dotsenko-Fateev type integral when —% eN.
Such an integral representation is available under certain specializations of
parameters for more general conformal blocks, including the 4-point spheri-
cal case; see [MMS10, DV09]. This allows us to propose a GMC expression
for 4-point spherical conformal blocks and hence an analog of Theorem 1.1,
which we hope to prove in future work. Moreover, similar to (1.9), there is a
linear transformation on the span of 4-point spherical conformal blocks called
the fusion transformation which is responsible for the crossing symmetry of
the conformal bootstrap for the 4-point sphere; see [GKRV20, Eq (1.16)].
We also hope to establish the fusion transformation and use it to study the
analytic continuation of conformal blocks. As a long term goal, we hope to
extend our GMC framework to conformal blocks on a genus-g surface with
n points and to explore their symmetries predicted in [Ver88, MS89, PT99].
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2. PROBABILISTIC CONSTRUCTION OF THE CONFORMAL BLOCK

The main purpose of this section is to give the precise definition of the
probabilistic conformal block g,‘;i p(q) based on GMC, and prove its analytic
continuation properties prescribed by Theorem 1.1. We also reduce The-
orem 1.1 to a variant Theorem 2.11 whose proof occupies the rest of the
paper. We will use the following notations. Let C be the complex plane. If
K Cc U Cc Cand U is open, we say that U is a complex neighborhood of K.
Let N be the set of positive integers and Ny = NU {0}. Let H be the upper
half plane and D be the unit disk. For 7 € H, let ¢ = ¢(7) = €I™™ € D so
that 7 € iR~ implies ¢ € (0,1). We recall the Jacobi theta function ©, and
the Dedekind eta function 7 from Appendix A. Throughout Sections 2—=6.1,
we view 7 € (0,2) as a fixed parameter and set Q = 3 + % as in (1.1).

2.1. Definition of Gaussian multiplicative chaos. We begin by intro-
ducing Gaussian multiplicative chaos (GMC), the probabilistic object which
enables our construction. Let {ap}n>1, {bn}n>1, {@nmtnm>1, {bnmtnm>1
be sequences of i.i.d. standard real Gaussians. For 7 € H, we define the
Gaussian fields Y, Y, and F; on [0, 1] as follows:

(2.1) Yi(x) :=Yy(z) + Fr(x);
2
(2.2) Yoo(z) := — ( an cos(2mna) + by, sin(2mnx) );
] )
g .
(2.3) F.(z):=2 nél N (anvm cos(2mnz) + by m sm(27mx)>.

The series (2.2) converges almost surely in the Sobolev space H *([0, 1]) with
s > 05 see [Dub09, Section 4.2]. The series (2.3) converges almost surely in
the uniform topology thanks to the term ¢, hence F; is continuous on
[0,1]. Note that by construction, F and Y, are independent.

Both Y and Y, are examples of log-correlated fields, whose covariance
kernels have a logarithmic singularity along the diagonal. Although Y,
is not pointwise defined, we use the intuitive notation E[Y(z)Ys(y)] to
represent its covariance kernel. Namely, for appropriate test functions f1, fo

1 rl
/0/0d:z:dyfl(:E)fz(y)E[yoo(x)Yoo(y)]:

e[( [ anwre) ([ aneraw)]

See Appendix B for more background on log-correlated fields.
Lemma 2.1. Let 7 € iR~g. The covariance kernels of Yoo and Y, are:
(2.4) E[Yoo (2)Yoo (y)] = —2log [2sin(m(z — y))],

(2.5) E[Y,(2)Yr(y)] = —2log|O-(z —y)| + 2log |¢"/*n(q) -
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Furthermore, with probability 1 for each x € [0,1] the g-power series in (2.3)
defining F;(x) is convergent for |q| < 1. Finally for T € iR<,
(2.6)

E[F ()] =4 3

n,m>1

Proof. For (2.4), notice that E[Yoo(2)Yo(y)] equals

2nm
q

—= —4log g~ 2n(q)| for each = € [0, 1].

E[Y;(2)Yao (y)] = Z%cos(%rn(iv —y)) = —2log|2sin(r(z — y))|.

n>1

For (2.5), notice that

2nm

E[Y (2)Yr(y)] = EYao (@) Yoo ()] + D cos(2mn(z — y))

n,m>1
= —2log |0,(z — y)| + 2log \ql/Gn(q)!-

In the last equality we have used the formulas for ©, and 7 recalled in
Appendix A.1. Finally the last two assertions on F, are immediate from
the definition (2.3). O

Remark 2.2. The identity (2.5) does not hold if 7 ¢ iR~ (. Indeed, E[Y;(x)Y;(y)]
is analytic in 7 € H while the right hand side of (2.5) is not.

We now introduce the Gaussian Multiplicative Chaos (GMC) measures

e2Y@dy and e2Y7@dz on [0,1] for v € (0,2) and 7 € iR(. Because

the fields Yo (z) and Y;(z) are generalized functions that are not pointwise
defined, we use the following regularization procedure. For N € N, define

N
2
Yoo n(z) = Z \/;<an cos(2mnz) + by, sin(27ma:)),
n=1

Yren() = Yaon(x) +2 )

n,m=1

Definition 2.3 (GMC). For v € (0,2) and 7 € iR~(, we define

Ap,m €OS(2NZ) + by, Sin(27m:1:)) .

v

=y = Jim 3 Voo (@)= EYoe (@) g
—00

eV (@) gy = ]\;im egyf’N(x)_gE[YT’N(I)Z}daz.
—00

Here the convergence is in probability under the weak topology of measures
on [0,1]. We use e2¥~@)dz and 2”7 dz as convenient abuse of notation
for the random measures obtained by this limiting procedure.

In Definition 2.3 v € (0, 2) is required for the regularization procedure to
give non-trivial limits. Note that due to our normalization, the measures
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e3Y @) dr and e3F @) g3 Yoo (@)

and Lemma 2.1, we have

dz do not coincide. Instead, by Definition 2.3

(2.7) ez (@) gy = e_éE[Ff(O)Z]e%FT(m)e%YO"(””)da: for 7 € iR~ .

Although e3Y"(*) gz makes sense for all 7 € H, we restricted to 7 € iRy
because this is the range relevant to the definition of the probabilistic con-
formal block below. For more background on GMC see [RV14, Berl7] and
our Appendix B.

2.2. Definition and analyticity of G2 p(q). We are ready to define the
probabilistic conformal block G p(q).

Definition 2.4. For «a € (—%,Q), 7 € iR+, ¢ = €™ € (0,1), and P € R,
we define the probabilistic 1-point toric conformal block Q,?’P(q) by

(28)  G2p(q) = == ( / 0.(x agfew’mee%YT(m)dx>
Zﬁ{ (g

where the normalization Zf;i p(q) is given by

22

1oy a® 241y
(2.9) Z%p(q) =gzl T2 D xp(g)* T

1 —_a
</ (2 sin(ﬂa:))_;empxngw(x)da:> W] .
0

Note that by Lemma B.2, for «, ¢, P as in Definition 2.4 we have

1 _o
(2.10) E [(/ |@T($)|—‘?empxegyf(x)dx> w] e
0

The following proposition shows that G p(q) has the desired analytic
continuation property prescribed by Theorem 1.1.

x E

Proposition 2.5. For v € (0,2), a € (—%, Q), and P € R, the probabilistic
conformal block Q,?’P(q) admits an analytic extension on a complex neighbor-
hood of ¢ = 0. Moreover, when « € [0,Q), the analytic extension of Q,?’P(q)

erists on an open set containing {z € C: || < £} U0, 1).

Before proving Proposition 2.5, we introduce a variant of Q,?’ p(gq) which
is more convenient. For o € (—%, Q), ¢ € (0,1), and P € R, define

(211) A7 p(a) = g T0TTT ) sgp(q) T TR el

! -2 myPzr 1Y (z) —5
x E [(/ |0 (z)| 2 e ez dm) } .
0

Here we use the notation .Af]y p(a) instead of AS p(g) because in later sections
we mostly view A?h p(a@) as a function of a with ¢,v, P being parameters.



10 PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS

Lemma 2.6. Fiz v € (0,2) and P € R. The following hold:

(a) For o € (—%,Q), the function q — A?%P(a) admits an analytic
extension on a complex neighborhood of ¢ = 0. Moreover, when
a € [0,Q), the analytic extension exists on an open set containing
{zeC:|z] < 3}U[0,1).

(b) There exists an open set in C? containing {(c, q) : o € (—%, Q) and q =
0} on which (o, q) A‘fhp(oz) admits an analytic extension. As a
consequence, for o € (—%,Q), consider { Ay pn(a)tn>0 defined by

(2.12) A‘fﬁp(a) = Z.A%pm(oz)q", for |q| sufficiently small.
Then for n € Ng, a — A, pn(a) can be analytically extended to a
complex neighborhood of (—%, Q).

We postpone the proof of Lemma 2.6 to Section 2.5 and proceed to derive
Proposition 2.5 from it. Define normalized versions of Ai pand A, p, by

Al p(a) N Ay polc)
v,P v,Pn
—_— d Ay pn = 7
Aoeol) 4 el = @)

Proof of Proposition 2.5 given Lemma 2.6. Eq (2.11), (2.12), and (2.13) give

(213) A p(a) =

2

L(yqaes @ - —1a T
(2.14) Z2 p(q) = g (T T Uy (g)" 2 A, pola),

013 Gpla) = () "

A pla).

1-a(Q—-3)
Lemma A.2 yields that (q_ﬁn(q)) ’

lg| < 1. Using (2.15) and Lemma 2.6 (a), we get Proposition 2.5. O

is a convergent power series for

Remark 2.7. In Proposition 6.2 we will give an explicit formula for A, p (),
which by (2.14) yields an explicit formula for Z7 p(q) in Definition 2.4.

2.3. Nekrasov partition function and Zamolodchikov’s recursion.
We now define the 1-point toric conformal block in physics via the AGT
correspondence. The corresponding Nekrasov partition function is the for-
mal g-series

(2.16) O plq) =14 2, pnla)g®™,

where

(2.17)
_ Eij(s, P )(Q = By (s, P) = a)
Zo@= > I B (5. P)(@ — By 5 P)

(Y1,Y2) Young diagrams %,j=1s€Y;
[Y1|+|Y2|=n




PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS 11

for

iP— JHy,(s) + 2(Wy,(s) +1)  i=1,j=2
(2.18)  Eij(s,P) = =3 Hy;(s) + 2(W;(s) + 1) i=3j

—iP — 3 Hy,(s) + 2(W;(s) +1) i=2,j=1.
Here, we draw a Young diagram Y for a partition A in the first quadrant with
unit squares so the top right corner of each square has positive coordinates.

In (2.18), for a unit square s with top right corner (,7), we define Hy (s) =
A; —d and Vy(s) = A; — j, where \" is the transposed partition to A.

Definition 2.8. The 1-point toric conformal block is the formal g-series
1 [
(2.19) F plq) = [q~2n(q)] ™97 2) 25 p(g).

Recall from Lemma A.2 that for each § € R, [q_%n(q))]ﬁ is a power series
in g convergent for |gq| < 1. So the right side of (2.19) indeed is a power
series. We will not use the precise expression (2.17) for Z2 5(g) beyond the
fact that Z, p(c) is a rational function in P, @, c.

We now review the Zamolodchikov’s recursion characterizing 7 p(q). Let

(2.20) Ry () :

for Sy = {(G,1) € Z2 | 1 —-m < j < m,1l—-n <1< n,(jl) ¢

s =

{(0,0), (m,n)}} and
(2.21) P = = L m

Proposition 2.9 (Zamolodchikov’s recursion). The formal g-series F2 p(q)
defined by (2.19) satisfies

oo

Ry mn(@) 1
(2.22) Te@ =Y M Frp (@) a7
n,m=1 m,n

Proposition 2.9 is a concrete identity in terms of the rational functions
Z., pr(a) defined in (2.17). This is proven rigorously in an elementary way
in [FL10, Section 2], although overall [FL10] is a theoretical physics paper.
The fact that 7' p(g) from Definition 2.8 agrees with the original definition
in [BPZ84] via the Virasoro algebra was also proven in [FL10, Negl6].

Remark 2.10. We parameterize the conformal block using P and « because
these are convenient coordinates for our GMC expressions. In mathematical
physics, it is more common to represent it as a function of conformal dimen-
sion Ay = §(Q — §) corresponding to momentum o and the intermediate
dimension A = %(Q2 + P?) corresponding to momentum @ + iP.
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2.4. A one-step reduction. Recall .,I?Y’P(oz) in (2.13) which by (2.12) in

Proposition 2.5 can be viewed as a g-series with coefficients .,Z% pn(a). We
now reduce Theorem 1.1 to a statement on Ai p(a) whose proof occupies
the remainder of this paper.

Theorem 2.11. For v € (0,2), a € (—%,Q), and P € R, we have
(2.23) 2 p(q) = A? p(a)

as formal q-series. Namely, Z., pn(a) = j%p,n(oz) foralln > 1.

Proof of Theorem 1.1 given Theorem 2.11. For v € (0,2), a € (——,Q), and

P € R, by Theorem 2.11, (2.15) and (2.19), we have 7' (q) = G5 p(q) as
formal g-series. Combined with Proposition 2.5, we obtain Theorem 1.1. O

2.5. Analyticity: proof of Lemma 2.6. The following lemma based on
Cameron-Martin’s theorem is the starting point of our proof.

Lemma 2.12. We have .A?Y’P(a) = [q_ﬁn(q)]o‘(Q_%)_Qeia%p.fl‘fﬁp(a) where

1 _a
Agyp(a) = [e%FT(O) </ e%FT(x)@ Sin(ﬂx))—ayﬂewﬁ/Pxe%yoo(m)dx> w]
’ 0

and where Yoo is as in (2.2) and F; is as in (2.3).

Proof. First note that since Y, = Y, + F- with Y, and F; independent, by
combining equations (2.4) and (2.5) one can write:
0

Or ()|~ F = (4"/°n())~F (2sin(ra)) /2D (O,

By using this formula and Cameron-Martin’s Theorem B.3 one obtains:

1 —_«
E [(/ I@T(x)|_%empxe%yf(w)dx> W]
0

o2

a” 1
— (q1/67](Q)) 2 e_%]E[FT(O)Z]E [e%FT(O) </ (2 Sin(ﬂx))—a'y/2eﬂypxe%)’7—(m)dx>
0

Next by using equation (2.7) and then (2.6) the previous line becomes:

22

] |

'y7P(a)‘

o2

a_2 o] a 5 a27 ~
(/@) * 5 - SEP O 41 (o) = (a%n(@) * (@ 2n(a) ="
Then by the following simplification

o2

L —« _270‘ o 7_706 — iOé T 5 _ azfa
g2 s (g) 2 x o/ (ql/Gn(q)) LV ()

= o/ () (@)

we deduce the claim of the lemma. O

By Lemma A.2 we can analytically extend [q_%n(q)]o‘@_%)_2 to q € D.
Thus by Lemma 2.12 we can reduce Lemma 2.6 (a) to the following.
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Lemma 2.13. Lemma 2.6 (a) holds with /lfhp(a) in place of .A?Y’P(a).

To prove Lemma 2.13, first notice that by equation (2.2) one has:

(2.24)
ElanYoo ()] = \/gcos(%m:n) and E[8,Yo(2)] = \/%sin(%mx).

Recall (2.3) that Fr(v) =23, .5 % (@p,m cos(2mnx) + by sin(2mna)),
where ay, m, by, m are i.i.d standard Gaussians. By (2.24),

(2.25) =2 Z "™ (Bl Yoo ()] + bpmE[bn Yoo (2)]).

m,n=1

Applying Cameron-Martin’s theorem (Theorem B.3) to Y, while condition-
ing on {am, n,bmn}, we obtain

1
fl‘f{ pla) = E[e%FT(O) (/ sin(mz)~ 7 ™ F?
’ 0

A Vo) g Bt 477 o Blon Yo Bl Yo () 5 }

1 o
(2.26) ZE[egFT(O)Q(Q)(/ sin(mc)_‘”mempxe%yw(x)da:)_?]7
0

where

(227) Q(Q) = €Xp <\/_ Z q an ;man + by, mbn)

m,n=1
00 (e} 9 00 (e} 9
- Z ( Z qnmam,n> - Z ( Z qnmbm,n) >
n=1 m=1 n=1 m=1

Although fl?y p(a) is originally only defined for ¢ € (0,1), the function
ezl T(O)Q(q) contains all the ¢ dependence and is almost surely an analytic

function defined for |¢| < 1. We now record a basic fact on the analyticity
of expectations.

Lemma 2.14. Let f(-) be a random analytic function on a planar domain
D. Suppose for each compact K C D we have max,cx E[|f(2)|] < co. Then
E[f(-)] is analytic on D. Moreover, IEH;lz—nnf(z)H < oo and jz—nnE[f(z)] =
E[-L- f(2)] for each z € D and n € N.

dz™
Proof. Consider Ko = {z : |z — 29| < r} C D for some zo € D and r > 0.
Let My = max.ek, E[|f(2)|]] < oco. Since Cglz—nnf(zo) = g= 958K0 w)(w —
20) """ Ldw, we have E[‘jz—nnf(zo)u < n!Myr~"™. Therefore, by Fubini’s The-
orem, if |z — 2| < r then E[f(2)] = > 07, T},E[jznnf(zo)](z — zp)". Varying
zo and r, we conclude. O
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In light of Lemma 2.14, for each a € (—%,Q) and open set U C D, the

function ¢ — flg/ p(a) admits an analytic extension on U if we have, for
every compact K C U:

1 —_a
(2.28) sup E{ GZFT(O)Q(Q)‘ </ sin(ﬂx)‘a’Y/ze”Pwe%Yoo(r)dx) 'v} < o,
0

qeK

We will use Holder’s inequality to prove (2.28). The key is the moment
bounds for Q(¢) summarized in the following lemma.

Lemma 2.15. Firstly, we have MAaX|, 1 e 9] E[|Q(q)|P] < oco. Moreover,
there exists an open neighborhood U of [0,1) such that

(2.29) lim sup max E[|Q(q)|P] < oo for each compact K C U.
p—1t qgeK

Finally, for each M > 1 there exists epr > 0, such that
(2.30) ma E[|Q(q)[] < o0.

lal<enr, p€[1 M)
Proof. Using the i.i.d Gaussians (an)n>1, (@n,m)n,m>1 in (2.27), we define:

N

A (q p = E H \/_Z nman,mane_ Zfri}l»mg:l qnm1+nm2am17nam27n

Then we can write E[|Q(q)|P] as

E[lQ(a)]

(q
(o]
114
n=1
Here we uses that (an)n>1, (@nm)nm>1, (bn)n>1, and (bpm)nm>1, are in-
dependent and identically distributed. We now compute

An(q p) ) |:e\/§ Z$:1 pRC(qnm)anvma” 6_ Z’IOYCL)l,’”’LQ:l pRe(qnml +nmo )amlynam27n:|
)
) [eryfl,mz:l(p2RO(q"’”1)R0(q"’”2)—pRO(q"ml“””))aml,namg,n]

9

) [ern"l,mz:l ((p*—p)Re(g"™1)Re(¢"™2)+pIm(¢"™1) Im(q"™2) ) am, ,namz,n]

where in the second line we computed the expectation over a,. Define now
the Gaussian random variables

o) o0
X, = Z Re(¢"")anm and Y, = Z Im(¢""™)an,m.
m=1

m=1

2 2
m,n=1 q""™ (an,man+bn,mbn)— Zozl (Z;Lozl q"mam,n) - 20:1(2221 qnmbm,n)

|

m o m m
‘ \/_Zm n— qn" (an man+bn mbn) Zn 1 mq,mg=1 q"" 1t 2(am1,nam2,n+bm1,nbm2,n)

]
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Then (X,,,Y,) is a bivariate Gaussian with covariance matrix [}; ES: ] for

R, = Z Re(¢"™)?, S, = Z Re(¢""™)Im(¢"™), and T, = Z Im(q"™)2.
m=1 m=1

m=1

d /R Tn—52
We find that (X,,,Y,) = (VR.Z, jﬁnz + YR W), where Z,W are
independent standard Gaussians. In these terms, we have that

o (] a0 [7))

S2  pSuy/BaTn-52
(p* —p)Rn + pp= BN

An(g,p) =E [e(pz—mxﬁﬂ’ff ] =E

with the matrix

2.31 M, = R
(2.31) " pSn\/RnTn—S2 pRnTn—si
R, Ry

Notice that:
Tr(Mn) = (p2 - p)Rn +pT, and det(Mn) = p2(p - 1)(RnTn - S’?L)

This implies that Tr(M,,) > 0 and det(M,,) > 0. We now prove our first
bound on E[|Q(q)|P]. Let A; and A2 be the two eigenvalues of M,,. Let W
and W5 be two independent standard Gaussians. When Tr(M,,) < %, we
have

1
2.32 An(g,p) = E[MWVITA2Wi] = ’
(2.32) (¢,p) = E[ ) V1 —=2Tr(M,) +4det(M,)

(q, ) and det(M,,) > 0, we have

Since E[|Q(q)"] = [T~

1 An
. 1
(2.33) H when Tr(M,) < = for all n.
n—l 2

My)
Since R,, > 0 and
_ . 2nm __ ’q‘2n
(2.34) Ry+Ty=> g™ = T g
m=1
for p € [1,1.2] and |g| < 5 we have
2 p’laf*"

(2.35) Tr(My) < (p” — 2p)Rp + p(Rn + T5,) < P < 0.48.
For Cj small enough such that = < e~ for 2 € [0,0.48], by (2.33) we
have E[|Q(q)[P] < e~ C02Xn= 1Tr(M”) Therefore (2.35) then yields that
(2.36) iTr( Z P ‘q’2n <1 for pe[l,1.2] and |¢| < 1

— 1— g ’ 2

Therefore E[|Q(q)[P] < e_c‘) <1for pe[1,1.2] and |g| < % as desired.
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To prove (2.29), let f(q) = >, T, which is continuous in ¢ € D. Since
T, =0 for ¢ € [0,1), we have f(q) =0 for g € [0,1). Therefore, there exists
a neighborhood U of [0,1) such that f(q) € [0,0.1] for each ¢ € U. Since

_ 2n
% + £(q),

for each compact K C U, limsup,,_,;+ maxe i, nen Tr(M,) < 0.1. Since

(p* +p)lag|*™”
1— ‘q’2n ?

Tr(M,) < (* = p)(Rn + T0,) + (2p — p*) Ty, <

(2.37) Tr(M,) < (0* + p)(Ry, + Tp,) =

we get (2.29) for this choice of U.

It remains to prove the last bound. For each M > 1, we can find ¢ €
(0,0.1) such that Tr(M,,) < 0.1 for |¢| < € and p € [1, M]. Now by (2.37), we
have maxy<. > 2 Tr(M,) < oo hence maxg <. pep,m) E[Q(q)[P] < oco. O

Proof of Lemma 2.13. Tt suffices to prove (2.28), By Holder inequality, for
p1,p2,p3 € (1,00) with - + - + - = 1 we have

1 o
(2.38) E [ e%FT(O)Q(q)‘ </ Sin(wx)_m/QemPl’e%Yw(x)dx) 7}
0

_ap3

1 1
< B[O TR 0P | ( [ sinr) e @)
0

By the finiteness of exponential moments of Gaussian random variables, we

1
p1lel \FT(O)\} p1

have E |e 2 < oo for all |g] < 1 and p; € (1,00). By Item 1

of Lemma B.2, the third expectation in the last line is finite if and only if
—% < ,;ig A %(Q — «). This holds true

4 4
(2.39)  for p3 > 1if a € [0,Q); and for p3 € (1, _a_’y) ifae (—;,0).

We now divide the proof into two cases.

Case 1: a € [0,Q). In this case, we need to prove (2.28) for both
U={€C:|q < %} and U being a small enough complex neigh-
borhood of [0,1). By Lemma 2.15, for both choices of U, we have that
limsup,, 1+ max,ex E[|Q(q)[P?] < oo for each compact K C U. Therefore
we can find ps € (1,00) close to 1 and p; € (1,00), and p3 € (1,00) such that
p% + p% + pls = 1. This gives (2.28) for both choices of U hence Lemma 2.13
for a € [0, Q).

Case 2: a € (—%, 0). In this case, we need to prove (2.28) for ¢ in a neigh-
borhood U of 0. In light of (2.39), set pa = ﬁ > 1 so that Z%—l—(—ozl—'y) =1

By Lemma 2.15 for some ¢ = e95, > 0 we have max|g| <., p,e[1,25,] El|Q(q)[P?] <
0o. By the GMC moment bound (B.4) in Lemma B.2, there exists p; > 1,
p2 € [1,2ps] close to pa, and p3 > 1 close to —% such that (2.28) holds for

U = {lq| < e2p,}. This gives Lemma 2.13 for a € (—%,O). O

1
:|p3
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Proof of Lemma 2.6. Since Lemma 2.6 (a) follows from Lemma 2.13, it re-
mains to prove Lemma 2.6 (b). The analyticity in « can be treated by the
well-established argument first done in the bulk case in [KRV20] and ex-
tended to the boundary case in [RZ20b]. We start by mapping everything
to the half plane which is the setting of [RZ20b]. Let Xy be the Gaussian
field on H with covariance given by (B.2). Let ¥(z) = —i% be the confor-
mal map from I to the upper-half plane H. Let ¢(x) = 1 (e?>™®) = tan(mx)
for z € [0,1/2) U (1/2,1]. Then Xp o ¢ equals in law with Y,,. We assume
that Yoo = Xg o ¢ by enlarging the sample space of Y,,. Then the mea-
sure |(¢L(y))]e2X#®) dy on R is the pushforward of the measure e2¥>®)dz
under ¢. By performing this change of variable we have

L _
e2109(q) </ sin(mz)_aw/zempxegYMm)dm) ]

22

Al () =E

0
(2.40) =E egFf“”Q(Q)( !y\‘a;fl(y)egXH(y)dy> 7]
R

where in the last expectation ez Fr(0) Q(q) and Xy are conditionally indepen-
dent given Yao, and f1 : R — (0,00) is such that the measure |y|~ 2 f1(y)dy
is the pushforward of Sin(7r:17)_%e”P Tdx under ¢. We can check that fi is
bounded and continuous. We now repeat the steps of [RZ20b, Lemma 5.8] to
show that this last expectation is analytic in a. Let R, = R\ (—e~"/2,e77/2)
where r > 0. Let Xp,,(0) be the radial part of Xp(0) obtained by taking
the mean of Xp(0) over the upper-half circles of radius e~ /2 centered at 0,
and let X ,(0) = Xg,(0) — Xp,0(0). Consider the quantity:

£ = E | e3Xumr 0~ S EXe (075 50) g (g) ( fl(y)e;XH(y)dy>_;] :
R,

By applying Cameron-Martin’s theorem (Theorem B.3) to ezXur(0) in the
above display, we arrive at:

-

We know that E[ X, (0)Xm(y)] — —log|y| as r — +o00. Therefore the large
r limit of the quantity in the above display recovers the right hand side of
(2.40). Now we will choose o complex and write a = a + ib. We want to
show that there exists a neighborhood V' of (—%, Q@) in C such that for all
compact sets contained in V', &, converges uniformly over the compact set.
Record that X,.+(0) — X,(0) is a Brownian motion in ¢t > 0. By applying

2Q

E Fu(y)eFXa@ ‘?E[XH,T(mXH(y)}dy)

R,

2 Xm,(0)

Theorem B.3 to the real part of the insertion, namely e , and by

upper bounding the imaginary part one gets, for some ¢ > 0

i1 = &| S ce VB |25 - 2000
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where Z, := 270 Q(q) er \y]_%fl(y)e%XH(y)dy. Set now W, := Z,1 —
Z,.. We want to estimate

E[|(Z, + W)™ — 27 < B[, < (2, + W)~ — 27907
+ E[l‘WHZf’(ZT’ + WT’)_OC/’Y - Z;a/’y ]7
where € > 0 will be fixed at the end. Then for some constant ¢ > 0,
E[Ljiw, < (Zr + Wi) ™07 — Z791)] < || s1[10p1]E[|(1 W) Zy + uW, | Re@1] < e
ue|0,

For the other term, we use the Holder inequality with A > 1 such that

A 2 4 4
wiRe(=5) <s(Q—a)A -z, and 0 <m < 5. For some c, d >0

Elljw,scl(Z + Wy) ™7 = Z701|] < cP((W,| > €)3 < ce SE[|W,|™]3
1

where in the last step 6 € R is defined by the last equality and we have used
the multifractal scaling property of the GMC, see e.g. [BP21, Section 3.6] or
[RV14, Section 4]. We can choose a suitable m such that § > 0. Now take

N ) _ 6 / .
e=e with 7 = 5. Then for some ¢, > 0:

< ce ZE

05 Fr(0) Q(q) ‘m

/ =% fi(y)e =W ay
Rr+1\Rr

)

1
2 2.2 \ %
o Yya Y<m 2]
< C,E_% (e_g((1+2_2)m_2)> = Cle_%e_xr

r4142 _m _ 0 —(n—1L1p2
&1 — & <ce? b(€+€ e AT)Sc/e (n—30%)r

Hence if one chooses the open set V in such a way that %b2 < n always
holds, all the above inequalities hold true and thus we have shown that &,
converges locally uniformly. This gives the first claim in Lemma 2.6 (b).
For the second claim, by Lemma 2.6 (a), .A?Y’ p(a) is analytic in g. There-
fore for a small enough contour C around the origin, we have by the Cauchy
integral formula that A, p, (o) = 2%'1 ¢ A:]h p(@)g7""'dq. Then the analyt-

icity in « of .A?Y p(a) implies the result for A, p,(c). O
Recall py = H;,ﬂ and €95, from Lemma 2.15. We introduce:
4

Definition 2.16. Let r, = % for a € [0,Q) and ro = €95, for a € (=%,0).

By definition max gy, pe[1,255) E|Q(¢)[P] < 00. Moreover, from the proof
of Lemma 2.6, for each a € (—%, Q@) the convergent radius of A:]h pin ¢ is at
least r,. We will need r,, in Section 3.

3. BPZ EQUATION FOR DEFORMED CONFORMAL BLOCKS

Following the outline in Section 1.2, we now introduce a deformation of the
conformal block (Definition 3.3) and prove that it satisfies the BPZ equation

(Theorem 3.4). Throughout this section we fix v € (0,2), Q@ = 3 + %, and
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P € R. We define the deformed conformal block, denoted by ¢ (u,7), in a
restricted range of 7. For our application in Section 4, we need that for each
u € H, ¥ (u,7) is defined when Im(7) is sufficiently large. Our choice of
range below may not be the largest possible but it suffices for this purpose
and avoids further technicalities in justifying the definition. To describe our
range of (u,7) we first record a basic fact on the theta function, which we
prove in Appendix A.5.

Lemma 3.1. For 7 € H and g = €™, let B, := {u: 0 < Im(u) < 2 Im(7)}.

There exists qo > 0 such that if ¢ € (0, qo), then Im(izg 83&3) < 0 foru € B,.

Choose ¢ satisfying Lemma 3.1. For ¢ € (0, qp), we define
1
(3.1) f(u,q) == /0 Or(u+) 2|0, (z)]" 7 e Fre2V @) gy for u € B,.

As explained in Appendix A.5, u — f(u,q) is almost surely analytic and
nonzero on By; see Lemma A.6. Moreover, log f(u,q) and hence the frac-
tional powers of f(u,q) is specified in Definition A.7. In order to define the
u-deformed conformal block we need the following proposition.

Proposition 3.2. Fir x € {%,%} and o« € (—% + x,Q). For q € (0,qo)
X o
X

and u € B, we have E[|f(u, q)]_%Jr | < co. Moreover, E[f(u,q)_ﬁ%] is
analytic in u on By. Finally, define the domain
(3.2) DY = {(u,q) : |q] < ra—y and u € By}

QX

with ro from Definition 2.16. Then [f(u, q) 7 +W] admits a bi-holomorphic
extension in (u,q) on DS.

We defer the proof of Proposition 3.2 to Section 3.1 and proceed to intro-
duce the deformed conformal block. We will need the following expression:

(3.3) L, =x%/2 — ax/2.
Definition 3.3. For a € (—% +x,Q) and x € {7, %}, define

(3.4) $3(u,0) i= C(@)" ™0, ()™ |f(u,q) 73| for (u,q) € DY,
'”_X_lé_Ll (l _|_1) _ﬁ+ll+4l_>< 1 a | X
where C(q) = ¢™x 6x7 &2 X"X77QL(0) 3x* "3 7ix e 21 (=545)  and

E [f(u, q)_%+ﬂ is extended to DY as in Proposition 3.2. Define

P2

1 ; . .
(3.5)  YY(u,T) = e< 2 +672l’<(lX+1)>mTE;(u, e™") for (u,e™") € DY,
We call ¢ (u, 7) the u-deformed conformal block.
Although ¥¢ (u,7) and ¢ (u, q) only differ by a simple factor that could
have been absorbed in the definition of C'(q) from (3.4), we introduce both

because 5 (u,7) is convenient for the BPZ equation while %¢(u, q) is con-
venient for Section 4, which concerns the g-series coefficients of Ei(u,q).
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To get a more compact expression for Q,Z);‘(u, 7), recall from Section 2.2 that
O, (x)~/? = ¢=1m/2|Q_ (z)|~*/? for z € (0,1) and ¢ € (0,1). By Defini-
tion 3.3, for ¢ € (0, g0 A ra—y) we have the following expression

1 a4 X
(3.6) g (u,m) = W( )X TE [</ T(u,:n)empxegyf(x)d:J yﬂ] :
0

2
p2 Ylx 1 lX 2LX Ix Aly ol
e . . e G O, (utz)2X
for W =g 2 "2 6207 (0) 3% 3 3% and T (u,z) 1= ——p L.
(‘Z) q T( ) ( > ) @T(U)JQXGT(QE)_QZ

We now state the BPZ equation for w;‘(u, 7) which we prove in Section 3.2.

Theorem 3.4. For x € {3, %} and o € (—% +x,Q), we have

(3.7) (aw — 1 (I + D p(u) + 2i7rx2aT)¢§;(u,T) —0  for (u,é™) € D2,

where @ is Weierstrass elliptic function from Appendiz A.1.

3.1. Proof of Proposition 3.2. The first assertion follows from Lemma B.2.
_a,x
In fact, (B.5) implies that maxueKE“f(u, q)| WJW] < oo for each compact

K C %B,. For the second assertion, since the function u — f(u, q)_%+% is al-

most surely analytic on 95,, by Lemma 2.14 its expectation E[f(u, q)_%Jr%]
is also analytic in u on B,. To complete the proof of Proposition 3.2, it

remains to establish the analytic extension of E[ f(u, q)_%+%] to DY.
Similarly to the proof of Lemma 2.6(a), we use Cameron-Martin’s theo-
rem to manipulate the expression into a form with no g-dependence in the
GMC moment. Recall the i.i.d. standard real Gaussians a,, by, @nm,bnm
from (2.1)-—(2.3) in Section 2.1. For ¢ € D and u € B, set v’ :=u — % and

(3.8)

> 1 . ,
X u, R an+1bn (2m—2)ne27r1un+ an—ibn 2nme—27r1un :

(u.q) xn%; = ( )4 ( )q )

(3.9)

Z q(2k—1+m)n ,
Y(u,q) :=2x A ————=— cos(27u'n)

m,n,k>1 \/ﬁ
q(2k—1+m)n
—2x Z by m———— sin(2ru'n).

m,n,k>1 \/ﬁ

Since |q3/% < |e?™| < 1 < |e7?™¥| < |¢|73/? when u € B, the series for
both X(u,q) and Y(u,q) converge almost surely in ¢ € D, and e*®9 and
eY(®9) have finite moments of all orders. Recall also Q(g) from (2.27). Now
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define
(310) ¢%(u,q) :=E [E%FT(O)Q(q)ey(umeX(mQ)—%E[X(u,q)z}

1 L
(/ 2 Sin(m))_%e_i”%xempxe%’/w(x)dm) Wh]-
0
Proposition 3.2 follows from the two lemmas below.

Lemma 3.5. The function (u,q) — @;(u, q) admits an analytic extension
to DY.
X

Lemma 3.6. For g € (0,q0 Arq—y) and Imu = %Im 7, we have

(3.11)  E|f(u, q)‘%ﬂ = Ci(q) (—ie‘i’r“qwn(q)

aa=x)

for Ci(q) = [q"/0n(q)] "™ el 5= %~ EIF- (0],

X(x—a) -
) : Yy (u,q)

Proof of Proposition 3.2 given Lemmas 3.5 and 3.6. Since we have proved
_a X
the first two assertions, we know that E [ flu,q) JW} is analytic in u € B,.

Therefore (3.11) holds not only for Im(u) = %Im(T) but for all u € B,.

By Lemma 3.5, the right hand side of (3.11) provides the desired analytic

continuation in (u,q) for E [f(u, q)_w+§] as in the last assertion. O

Proof of Lemma 3.5. Our proof is parallel to that of Lemma 2.13 so we will
be brief here. For p1,p2,ps € (1,00) with pil—kp%—i-p% = 1, Holder’s inequality
yields that

(3.12) E [ e2Fr(0) V(e X (“’q>—%E[X(u,q>2}Q(q)‘
! . _agx
[ @sin(ray) et e g
1
< & [[e#FOF 00 X3l 7 g [10(q) 2]

(x=—a)p3 _ 1

Y ] r3
We now choose ranges for pq, p2, p3 for which each of the three terms on the
right side of (3.12) is finite for o € (—% +x,Q) and |g| < ro—y. This will

imply that 1/;;‘ (u,q) admits a bi-holomorphic extension to Dg.
For the first term, because a Gaussian random variable has finite expo-
nential moments, for any p; > 1 we have

1
B[] [ (@sin(ra) /e imE e B
0

1
B [[e3F0 Pt -3 < o

As in the proof of Lemma 2.13, to analyze the other two terms we divide

into cases based on the sign of @ — xy. For a — x positive, the exponent

@ in the third term is negative, meaning that the third term is finite
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for arbitrarily large ps thanks to Lemma B.2. Also choosing p; arbitrarily
large, it remains to check that the second term is finite for ps close to 1,
which follows by Lemma 2.15 applied with o — x in place of a.

For o — x negative, the third term is finite if 1 < p3 < —ﬁ. Recall

Definition 2.16 of r,. Choosing p; arbitrarily large and p3 close to —ﬁ,
it suffices to check that the second term is finite for po close to @,
which again follows by Lemma 2.15 applied with av — x in place of . (]
Proof of Lemma 3.6. Assume g € (0, goATq—y) and Imu = %Im 7. Similarly
as in the proof of Lemma 2.12, by Theorem B.3 we have

E[f(u,q)_%Jr%] = E[( /1 0,(2)| "7 O, (u+ x)%xe“'ypme%n(”ﬁ)dw>_%+ﬂ
0

=C { gFf(0)< T RO - X ayPr 3 Yeo(@) ) 7 T
= C1(q)E|e2 e2 (2sin(mz)) "2 O (x4 u)ze e dx '
0

Then by (2.25) and Theorem B.3, we get the following analog of (2.26)
(313) E|f(u,q) 7]
a 1 ay X7 v _2+i
= Cl(q)E[e2FT(O)Q(q)</ (2Sin(7r:13))_7@T(:17—|—u)7empxef}/“(x)d:n> K W]
0

for Q(q) from (2.27). We now claim that

(3.14) O (u+z)= _ie—iw(uﬂ)qén(q)eiE[Yw(M(uvq)}_

To see (3.14), recalling that v’ = u — 5, by (A.16) we have

(3.15)

@T(U+l‘) — —ie —im u+m H 2m 1 27r1 (u +m))(1—(]2m_16_2ﬂ—i(u’+m)),

Using 1 — z = exp{— Y02, 2-} for |2| < 1 and recalling (2.24), we have

H 2m 1 27r1(u +m))(1 o q2m—le—27ri(u’+m))

1n

(2m—
= exp{ V2 Z q (cos(2mu'n)E[a, Yoo ()] — sin(2mu'n)E[b, Yoo (z)]) }

n,m=1
Now, (3.14) follows from the observation that
2, g@m-tn
(3.16)  X(u,q) = —xV?2 Z (cos(2mu'n)ay, — sin(2mru'n)by,) .

n,m=1 \/7

Since q € (0,qp) and Imu' = 0, (3.16) implies that

2(2m—1)n

(3.17) X(u,q) €R and E[X(u,q)?=2¢ Y T—™
n,m=1 n
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By (3.13) and (3.14), we have

_a X
’Y+’Y

1
</ (2 Sin(ww))_%@T(x + u))‘;eﬁ’mee;Ym(m)dm>
0

= [—ie7 g0y (q)] 2 x

a1 X
B

~

1
(/ (2 Sin(ﬂ'x))_a*; e ElYoo (I)X(MQ)]e—iW’?ﬂcemee;Yoo(x)d:E)
0

Since X (u, q) is a real Gaussian, applying Cameron-Martin’s theorem again
with respect to the randomness of (ay, )n>1, (bn)n>1 while freezing (ay m)n,m>1,
(bp,m)n,m>1, we get (3.11) by comparing with (3.10). O

To finish this section we record an analytic extension result including «,
which is needed in the next subsection and in Sections 4 and 5.

Lemma 3.7. Given x € {%, %}, there exists an open set in C3 containing
{(ayu,q) s @ € (=5 + x,Q), Imu > 0,q = 0} on which (a,u,q) = ¥5(u,q)
has an analytic continuation.

Proof. Thanks to Proposition 3.2, we have the desired analyticity with re-
spect to u and ¢. As explained in the proof of Lemma 2.6 (b), analyticity
in « follows from a straightforward adaptation of the arguments of [RZ20b,
Lemma 5.6]. O

3.2. Proof of Theorem 3.4. This proof is conceptually straightforward:
we compute <8uu — (L +1)p(u)+ 2i7rx287) Y5 (u, 7) and find that it equals
0. In practice, we need to regularize 1/1%(11,7') so that there is no analytic
issue when taking derivatives, and the calculation is quite involved, requiring
integration by parts and several identities on the theta function.

When checking (3.7) we fix x € {3, %} and assume throughout that

2
(3.18) g€ (0,90 NTa—y), uveB, and o€ (—y+x, ;)

Recall from (3.5) that 9§ (u, q) and X{(u, ) are related by a simple factor.
By the analyticity of X{(u, q) in (u,q) from Proposition 3.2 and in (a, u, q)
from Lemma 3.7, once (3.7) is verified for the range (3.18), we know that it
holds for the entire range claimed in Theorem 3.4. The advantage of working
with the range (3.18) is that we can use the expression (3.6) for ¥ (u, ),
and the restriction on a will avoid certain singularity issues.

We introduce a regularization of 1§ (u, 7). Recall Yoo, Fr, Y; from (2.1)—
(2.3). We first realize Yo, as the restriction of a free boundary GFF on a
half-infinite cylinder. Recall Xy from Appendix B. For z € [0,1] x Rxq,
meaning « € C with Re(z) € [0,1] and Im(z) € R>o, let ¢(z) = _i%
HURU{oo}. Then ¢ conformally maps the half cylinder C; obtained by
gluing the two vertical boundaries of [0,1] X R>o to HURU {oco} (with
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?(1/2) = o0). Let Yo(z) = Xu(o(x)) for z € C4. Then Yoo(x) is a free
boundary GFF on C;.
Now fix ¢ > 0 small. Define 7.(-) = e 2n(e~!.), where 1 is a radial
smooth function supported on the unit disk satisfying [i; n(z)d*z = 1. For
€ (0,1), let YZ (x) be defined by the convolution:

YE (2) = (Yoo x 1) () = /c Yooz — 2" )ne (2 d?a.

Let Y? := YS + F;. Recall T(u,z) and W(q) from the expression (3.6) of
¥§(u, 7) and define s := =% + % Let
(3.19)
i 1 YIye WQ = 2 s
P2 (’LL,T) _ W(emr)eXPmrE |:(/ T(u’x)eﬂ’ypxe§y-r (2)— G E[YZ(z) ]dl‘) :| .
0

X?a

We first compute 9y,¢5 .. For € > 0, let
1 YIye "/Z]Eys 2 P
(3.20) Ve(u, 1) ::/ e2 Y7 @O =FENZ @7 (4, 2)e™ P dg;
0

2
(8:21)  Vie(w,y) = E|Vi(u,r) 370 FENZ 0],

Here we omit the dependence of Vi . on 7 for notation simplicity. Computing
the u derivatives of ¢ . in (3.19) we have

1
O (u, q) = xPmo$ (u, q) + sW(q)e™ " i T (u, )™ YV L (u, y)dy;

where

2 2
Vi, 2) = E[Va(u, )" 237 W= TENF ORI 37 (-0 m0s ),

)

1
E‘f‘é = 2xP7TsW(q)e”XP“ 8u’7'(u,y)emPyV17E(u,y)dy
0

1
+ W (q)e™ " ; Ouu T (1, )™ TIV1 (1, y) dy;

1 1
=W = (s — DW(g)em P / / 0T (u, 9)Bu T (11, 2) e WV, (u, y, 2)dyd.
0 0

The next lemma summarizes some basic properties of Vi . (u,y) and Vo o (u, y, 2).

Lemma 3.8. Suppose (q,u,«) are in the range (3.18). Let

L ey ()Y () mvPe, 2Yr (@) 1.\ 5T
(3.23)  Vi(u,y) ::EK/O e @I WIT (4 )™ ez T d:z:) ]
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Then for each fized u € By, the function Vi (u,-) is bounded continuous on
[0,1]. Moreover, lim._,o V1 -(u,y) = Vi(u,y) and

1
(3.24) / T (u, z)emPZVg,s(u,y, 2)dz = V1 .(u,y).
0

Finally, ¥ (u,q) = W(q)e™xFu fol T (u, 2)e™ V) (u, 2)dz.

Proof. Since a € (x — 7, %) by (3.18), we have s — 1 < 0. By the GMC
moment bound (B.6) in Lemma B.2 we get the assertion on the boundedness

and continuity of V;. Cameron-Martin’s Theorem (Theorem B.3) yields
(3.25)

L 2y @ve() myPx, TVE(2) - LEYE(2)?] 5 \* 7!
Vl,e(U,y):EK/O e " R WIT (u, x)e ez’ s T dm) }

hence lim._,o V1 ¢(u,y) = V1(u,y). The equation (3.24) follows from Fubini
theorem and the definition of V; . and Va .. The last assertion follows from
the expression (3.6) of ¥ (u, q). O

We now compute 9-9% - (u, q).

Lemma 3.9. Suppose (q,u,«) are in the range (3.18). We have

aﬂ'wia(u’Q) =1 2 + 55 12X 6 2

—tau —tau
+ —1l,e + H2,e

bx
3 3 o7 (0)

where

= = sW(q) WXPU/ 0-T (u, y)e™ V1 . (u, y)dy,

myn — S(Z — D yp(g)emeru / / <17T (y_—;) N %%?’#?))

X T (u, )T (u, 2)e mPy+’f“321225(u y, 2)dydz.

2
Proof. Recall V:(u,T) = fol e3Y7 (0= FENT @17 (y, 2)em™Prdy. Taking the
T-derivative of (3.6), we obtain
(3.26)

05 (u, q) = 9 (log W(@))¥§ . (u, ) +5W(q)e™ ™ E [Vs(u, )0, Ve(u, 7)} -

Note that

. (P?oql 10 22 1, 210,0.(0
(3.27) aT(logW(q))zlw(7+172_;_6X_>;>< ciy 2y 0)

.<P2 N, 182 ) @ q)+<_§ l §S>af@;(0)

a

X7E

(u,

q)
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and

1
(3.28) E[va(u,f)s—la%(u,f)} - / 0-T (u, y)e™ PV o (u, y)dy
0

1
+/ T(wy)e™E [Va(uyT)S_lar[egyf(y)—iE[Yf(y)z}]dy |
0

where

2
= 0, (G Fr () = EIF(0)°]) x 37 W= gy,

We claim that

(3.30)

E[Va(u,7)° 10,370y
2
_E PZ(S 1)e 3V RV W))

1 2
/ E[F (2)0; Fr ()] T (u, 2)e™ #Ve (u, 7)* 23 Y7 =T B gzqy |
0

Since ¢ = €™ and we restrict to real ¢, we have 9, = imrqgd, where J, a real
derivative. By (2.1) and (A.3), we find that

B[O, Fy () Fy ()] = 4i 3 ma?™™ cos(2mn(y — 2)) = SO-EIF; () Fr (2)]

m,n=1

®T(y B Z) _

. ir  0:0:(y—2)  10:07(0)
n(q)

= —Orlog 6  O,(y_=2 360/

Combining with (3.26)—(3.30), we obtain Lemma 3.9.
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It remains to prove (3.30). By Cameron-Martin’s Theorem (TheoremB.3),

E[v (u, T)S—laTFT(y)e%Yﬂy)—%E[Yﬂy)ﬂdy]

2 2
IE[ Ve (u, 1) 00 Fr )= T EO- Fr (1) ]elYf(y)—%E[Yf(yF]dy]

s—1

/ T (u, 2)e™ P 3YF ()= F ELY, f(z)2]e%‘5E[YT(z)6¢Ff(y)}dz)

% e3YEW)- E[Yf(y)21e%‘sE[my)aTFT(y)]dy}

MI«Q

1
(s - DE( / E[F ()0, Fr ()] (, )™ Ve, 7)" 2 17 - UEVZ 1)
0
x 37 (v)- E[Y:<y>21dy]
2
+ SELE (000 F OB Ve, 7)1 e 70-FEZ 01y )

This computation combined with (3.29) and the fact that 9,E[F,(0)?] =
2E[F;(0)0; F-(0)] implies (3.30). O

To obtain the desired cancellation, we need to perform an integration by
parts on the first term of ZY from Ouu¢x -(u,q).

Lemma 3.10. Suppose (q,u,a) are in the range (3.18). Let:
”uu Z—’YPT('/ 0T (u,y)e™ ¥y, elu,y dy—i—/ Ouy T (u,y)e el Vi e(u,y)dy.

Then with an error term o.(1) uniform in y, z € [0,1]? we have:

(3.31)
o XVs=1) [P [M Oy —2) Oh(uty) OL(u+tz)
B 8 /0 /0 <@T(y_z) <@T(u+y) @T(u—l—z)) +OE(1)>
X T (u, y)T (u, 2)e™ PV, (u,y, 2)dydz.

Proof of Lemma (3.10). Given u € B, we can check that for some constant
c>0,asy — 0ory— 1, we have:

X <@’T(U+y) O (u)
2 \O:(uty) Or(u)

ay

(3.32) 0T (u,y) = > T (u,y) ~ csin'= 7 (7y).

Similarly, 8yu7T (u,y) ~ csin' =2 (7y). Since we assume o < %, both 0, T

and 0Oy, T are continuous in y on [0, 1]. We also record that for 7 (u,y), one
has T (u,y) ~ csin_%(ﬂy), which is an integrable singularity for o < %
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By integration by parts we have

1 1
P / DT (s y)e™PYV, - (u, )y — / 0T (u, ) [0ye™ PV - (u, ) dy
0 0
(3.33)

1 1
=— / Ouy T (u, y)e™F¥V1 o (u, y)dy — / T (u,)e™ YOV (u,y)dy.
0 0

Here there are no boundary terms since o < % Recalling (3.32), one has
T (u,y) for y =0 or 1.

Recall (3.25) where we applied Cameron-Martin’s Theorem (Theorem
B.3) to Vi.. Applying 9, to (3.25) and using Cameron-Martin’s Theo-
rem B.3 again, we find that:

2 1
OV1c(wy) = Tols = 1) [ T (020, BIY )Y V. 2)d
0

Let K.(-) be such that E[Y:(x)Y:(y)] = K.(z — y) and denote K.(y) :=
Oy K. (y). Therefore fol OuT (u,)e™ YO,V . (u, y)dy equals

72(3 B 1) ! ! auT(u7y) 5 €
T/o ; WayE[YT (y)Y7(2)]

T(“v y)T(’LL, z)eﬂﬁ/P(y—i_Z) V2,€(u7 Y, Z)dydz

P60 [ (T (wy) T (w2)
2 [ G ) Ko
T (u, )T (u, z)e”P(y“)Vgﬁ(u, y, 2)dydz,

where we have used that T (u,y)T (u, 2)e™ V™2V, (u,y, 2)dydz is sym-
metric under interchange of y and z and that the derivative K! is an odd
function.  Note that sin(ny)K.(y) is a bounded continuous function on
[0, 1] and uniformly converges to sin(my)9,E[Y;(0)Y-(y)]. One can check this
claim simply by explicitly writing out the convolution defining the smooth-
ing procedure:

K.(y) = /C /C E[Yoo(y — ) Yoo (&)1 (2) (a!)dP2d2’ + E[F,(y — 2)Fr (2')),

Kl(y) = /C OyE[Yoo(y — 2)Yoo (2" (2)ne (o) dPxd?a’ + OyE[Fr (y — x) Fr(a)]

C+
= || e BBy — )]

Then since 69;(5“@/’31’) is uniformly bounded in y € [0,1] for a u satisfying

Im(u) > 0, the quantity <6“T?u(uy§/) — 61}2(1;; )) K (y— z) uniformly converges
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to

X0,BIY ()Y ()] -

(u+ z)>
O-(u+y) O (u+2)
=) Ol y)_ Orluk )y
O.(y—2)\O.(u+y) O (u+2z)/
Therefore we obtain the o.(1) on the right hand side of (3.31), which is
uniform in y, z. Combining with (3.33), this concludes our proof. O

Lemma 3.11. We have lim. o Z5% + 25 + E5% = =y where

22 1
2= X (s — W (g)em / A, y)T (u, y)e™PYV1 (u, y)dy:
0

2

A ! ! ! / 2 2 "
A(u,x);zl@(”Jrf”) OL(u+x)OL(u)  104(w)? w* 167(0)

O-(u+z) Or(u+z)0-(u) 26,(u)? 6 66.(0)°
Proof. Combining (3.22), Lemma 3.9, and Lemma 3.10, we have

—uu “uu —tau __ X272 _ mxPu
(334) —2,c + —2, + —2,e — 2 S(S 1)W(Q)e X

1,1
/ / (As(y, z) + 0 (1)T (u,y)T (u, z)emP“mP'ng,g(u, Y, z)dydz
o Jo

for

10L(y —2) (Ohluty) OLlutz)
Baly2) = [2@( ><ef<u+y>‘ <u+z>)

(Ohlutn) Oy (Otuts) oLl

2\0,(u+y) Or(u)/\O (u+2z2) Or(u)
RLTECR-NY. )
40,(y—=2) 6 120.(0) ]’

where we have used (A.14). Applying (A.15) with (a,b) = (u+y,u+ 2), we
get

(3.35) Aoy, 2) = (&(u, y) + Alu, z)) :

N —

2,2
: ~uu | —tau __ — X7 TxPu 43
Therefore lim._,0 25t +Z51 +Z5 = Z» equals X5-s(s—1)W(q)e™ " times

(3.36)
hm/ / (u,y) + A(u, z))’T(u,y)’T(u,z)emPermPZVg@(u,y,z)dydz.

e—0

Recall fol T (u, 2)e™ P2V, (u,y, 2)dz = Vi o(u,y) from (3.24).Therefore the
limit in (3.36) equals fol &(u,y)T(u,y)emPyVl(u,y)dy as desired. O
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Proof of Theorem 3./4. Recall A from Lemma 3.11. By (3.22), Lemma 3.9—
Lemma 3.11, we see that lim._,q (&w + 2i7rx287>1/1;’<"€(u, q) = = where

1
(3.37) = = sW(g)e™XF / Av(u, )T ()™ PV V1 (u, ) dy:
0

_2_X auyT(ua y) 8uu7-(u7 y) + 2i7TX2 a‘FT(u7 y) X272 N

v T(wy) T (u,y) T (u,y)
We claim that = = sAq(u, y)9§ (u, q). Then by (A.4),

A1 (’LL, y) =

sA1(u, y) — Iy (ly + Dp(u) = _%X(X N %)(X B g)(g%//((g))
T+ 1)<ST(U)2 — 85&3 + %2%:((8))> — L(ly + Dp(u) = 0.

2

S

[
2

So this claims yields <8uu —L(ly+1)p(u) +2i7rx287>1/1;‘<‘ (u,q) = 0 as desired.

It remains to prove = = sAj(u, )95 (u, q). We compute

DT (uyy) _ X (Ofuty) Ofw) (Op(uty)\* (O’
Tlwy) 2 (efmy) 6, (u) <@T<u+y>> +<@T<u>>)
P (OLuty)  Oh(w))
T (@T<u+y>‘@T<u>>’
DuyT(1,y) _ X <e¢<u+y> - <@;
O-(uty) \O

Ty — 2

0-T(uy) 1 < ay ©(y
T(u,y) — 4mi (

The total prefactor of giggizgz in Ay(u,y) is therefore
gl Y2 Ys_ 7 2 2
X+ 1+ X" = ox X =)= 2)

/ 2
Similarly, the total prefactor of g:—gzgg in Ay (u,y) is Ix — X%+ Ix3. We

may therefore write

« 1 3\ 0 (u)?
Ai(u,y) = %(X —5xX7+ §x3) 5 Eu;2 + XA (,y) + XPAT (u, ) + XPAT (u, y)
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for
07 (u+y) @”(U)>
Al _1 T -
1(u,y) 2 <®T(U+y) @T(u) )
o n " 2 m 2,2
2 v P ONuty) ey Ofw) arm®  ay©r(0) | m
M) =0+ Py " Tow T 2 ceq) 2t
2

A3, y) = 7Ol(ut+y) vOl(uw) my l@l’(O)‘
20-(u+y) 406-(u) 12 120.(0)

Here to obtain A} we used (A.15) for (a,b) = (u + y,y). Adding 0 =

2 am .
(—%X—l—(l—i—%)x 2X )ﬁ to Ay(u,y), we obtain

(XY ay o 7 5\ Op(u)’ ﬁ_ﬂ 2 | X°7) O7(u)
Al(“’y)_<2 R +4 )@T(u)Q (2 1 ) 0. (u)
2 2 n 2
Xy Xy 07 (0)  (mPay® 7wy | X3
+< 6 12 )@;(0) +( 12 2 12 )

Therefore Aj(u,y) does not depend on y. Hence by (3.37) we have

[1]

1
= sW(q)e”XP“Al(u,y)/ T (u, 2)e™P2V) (u, 2)dz.

Since ¥5(u,q) = W(q)e ”XP“f T (u, 2)e™F*V; (u, z)dz by Lemma 3.8, we
get = = sA1(u,y)Yy (u,q) as claimed. O

4. FROM THE BPZ EQUATION TO HYPERGEOMETRIC DIFFERENTIAL
EQUATIONS

In this section, we apply separation of variables to the BPZ equation in
Theorem 3.4 to show that, up to a renormalization and change of variable,
the coefficients of the g-series expansion of the u-deformed block satisfy the
system of hypergeometric differential equations (4.4), giving access to certain
analytic properties of the u-deformed block beyond the scope of GMC.

Fix x € {3, %} and a € (—% +x, Q). Recall 3¢ (u,q) from (3.4). For u on
the upper half plane H, E%(u, q) is analytic in ¢ for |g| small enough. More
precisely, this holds when |¢| < 7o—y A qo and —% log |g| > Imwu. For each
u € H, let 0% ,(u) be the g-series coefficients of ¥ (u, ). Namely,

(4.1) ¥ (u, q) Z oy n(u)g" for u € H and |g| small enough.

P2y inr .
By Theorem 3.4, ¢ (u,7) = e< 7o lX(lXH))l Y% (u, e'™) satisfies the
BPZ equation, where [, 72 — 5%, This yields a system of differential

equations for o, (u). To get the desired hypergeometric equations, we
need the change of variable from the following lemma.
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Lemma 4.1. The map u > sin(mu) is a holomorphic bijection from (0,1)x
(0,00) to C\ (—o0, 1] which maps {u: Reu =1/2,Imwu > 0} to (1,00).

In light of Lemma 4.1, for w € C\ (—o0, 1], let

(4.2) ¢35 p(w) = sin(ru)xo?, (u) for w = sin?(7u) and u € (0,1) x (0, 00).

xX,n

Here sin(mu)x = elxlogsin(m) where arg(sin(mu)) is specified by requiring

arg(sin(mu)) = 0 when Reu = 1. We now describe the hypergeometric
equations which will be satisfied by ¢;7n(w). Define the differential operator

(4.3) Hy = w(l — W)y + (1/2 =1, — (1 = Iy)w) 0.

For n > 1, recall the coefficients p,(u) in the g-series expansion of Weier-
strass’s elliptic function p(u) from (A.6) and the polynomials @, (w) such
that @, (w) = g, (u) for w = sin?(7u). Consider the system of differential
equations on the sequence of functions {¢,(w)}n>0

(4.4)
(- (32 4 222 4 2m)) Yo ) = DD sz il

Here we adopt the convention that the empty summation Z?:l is 0 so
that (4.4) is homogeneous for n = 0. For n € Ny, (4.4) is a hypergeometric
differential equation with parameters (Ay ., By n,Cy) defined by
(4.5)

Iy [ 1
Ay = —5+12 P2+ 2,  By,= —%—i% Prion,  Cy=5-ly

Proposition 4.2. Fiz x € {7, %} and a € (—% + x, Q). Fquations (4.4)
hold for {¢% () }uzo on C\ (=00, 1]

Proposition 4.2 follows from a straightforward calculation starting from
the BPZ equation, which we give in Section 4.1. It allows us to understand
analytic properties ¢¢ , around 0 using the well-known solution theory for
hypergeometric equations; see Appendix C for a summary of needed facts
on hypergeometric equations. Since in general solutions of such equations
have branch cut on the real line, it is instrumental to consider the restriction
of ¢f ,, to the upper and lower half planes separately. We have Corollary 4.4
below of Proposition 4.2, which relies on the following property.

Definition 4.3 (Property (R)). A function f on the closed unit disk D
satisfies Property (R) if f is of the form f(w) = > o7 ja,w" for |w| < 1
with Y0 |an| < oc.

Corollary 4.4. Suppose v, x, o in Proposition 4.2 are such that C,, in (4.5)
is not an integer. Let D1 = {w € C: |w| < 1,Imw > 0} and Dy = {w € C:
|lw| < 1,Imw < 0}. Then fori e {1,2}, there exist functions {(bX m( ) }n>0
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and {¢Xm(w)}n20 on the closed unit disk D satisfying Property (R) such
that ¢

wni(w) and wl_CX(ba’ii(w) are solutions to equations (4.4) and

;,n(w) = ¢t>:|<z:71”( ) + 'lUl Cxqbzil(w) fOT w e DZ’,

1-Cy . e(l—C'X) log w

where w is specified by requiring argw € (—m, ).

We prove Corollary 4.4 in Section 4.2. Moreover, we will prove the follow-

ing linear relation between these qu’fl ;’s, which will be used several times.

Lemma 4.5. In the setting of Corollary 4.4, for w € D, we have
(4.6)

a,l T im e im
¢X,n72(w) =€ P lx(bxn 1( ) and (bX n, 2( ) = P lx(bxm l(w)

The hypergeometric equations allow us to analytically extend qSX o Z(w)
jointly in & and w beyond the range achieved in Lemma 3.7 by GMC argu-
ments. For this we need the following generalization of Property (R).

Definition 4.6. Suppose U C C is an open set. We say that a func-
tion g(w,a) is (w,a)-regular on D x U if g can be written as g(w,a) =
Yoo an(a)w™ satisfying two properties: (1) a,(«) are analytic functions
on U; and (2) > 07 |an(a)] < oo where the convergence holds uniformly for
« in each compact subset of U.

Lemma 4.7. Recall Cy, = 5 -1, =1— (Q—a)x )X For each i,j € {1,2} and
n € Ny, there exists an open complex nezghborhood U of {a € (—; +x,Q) :

Cy ¢ Z} such that the function (w,a) — ¢Xn ;(w) in Corollary 4.4 have an
emtenszon to D x U which is (w, a)-reqular in the sense of Definition 4.6.

Lemma 4.7 will be used in Section 6 to prove the shift equations (Theorem
6.1) for the probabilistic conformal block. We now construct a particular
solution to (4.4), which will be used to in the proof of Lemma 4.7 and
Theorem 6.1. To define it, for ¢ = 1,2 and n > 1, let

aj Ly +1) =~ o _
(4.7) gxfi,i(’w) =X — éfﬂ_g E pz(w)¢xjﬁl_l7i(w) for w € Dj.
=1

Then g;‘il(w) satisfies Property (R) by Corollary 4.4. By the solution

theory of homogeneous hypergeometric equations (see Lemma C.5 and Sec-
tion 4.3), we can define the following functions in terms of g;il(w)

Definition 4.8. Forn > 1, and i = 1,2, let G (w) be the unique function

XM,

on D satisfying Property (R) such that G®! (1) = 0 and

XM,

(HX < l2 + 4X 2(P? + 2n)>> Gi,lm(w) = gfgil(w) for w € D).
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Let G2 (w) be the unique function on D satisfying Property (R) such that

X,5Ty1
and Gifm( ) =0 and
1 —
<Hx - (Zli + ZXZ(P2 + 2”))) - CXszm(w) w™ ngxnz( ) for w € D;.
Define G¢  ;(w) = Gi’é J(w) = G;"gi(w) =0 and
G ni(w) = Gii”( ) +w'™ CXGziZ(w) for w € D; and n > 1.

We need the following two facts on G2 . which we prove in Section 4.3.

XMyt

Proposition 4.9. Fori = 1,2, the functions {GS, ,, ;(w)}n>0 are a solution
to (4.4) satisfying the following:

(). Gy pa(l) = G Lo(l) = 0. GPo(0) = e™ITGT 1(0), and
Giiz(O) = —emxPHThGE 2 (0 for each n > 0.
(b). Lemma 4.7 holds with Gx’f”( w) in place of qum(w). Namely for

each i,j € {1,2} and n € Ny, there exists an open complex neighbor-
hood U of {a € (—% +x,Q) : Cy ¢ Z} such that (w,a) — G I (w)

XMy 0
has an extension to D x U which is (w, )-regular.

We now give the proofs of all the statements claimed above.

4.1. Proof of Proposition 4.2. The BPZ equation (3.7) for ¢ (u,7) =

P2 1 .
D Ll (1 PN s
e( 7t )>m72§(u, e'™) implies that for u € H, we have

> 0w alu) = Ll +1) sz 0% (1) — 202300, (u)

n>0
P (1;2 + 6121 (1 + 1)) 0% 0w)] 4" = 0.

Therefore for each n = 0,1, 2.., we have

2

(auu — 1 (l, + 1) — 3 (P? + 2n)> o (1)

sin?(7u)
l +1 Zpl X7n l )

Setting éi‘n(u) = ¢, @ (sin?(mu)) = s1n(7ru)l><ax n(u), we get

(4.8)  (Ouu — 27l cot(mu)dy, — 7T2lf< — 23 (P? + 2n)) (W)

L+ 1) Zpl B i (u).
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Notice that 2m/w(1 — w)dy, = Oy, hence for n > 0, checking

22
Oyu—2ly, cot(wu)@u—7T2li—7T2X2(P2+2n) = 4n? (’HX— (ZX+XZ(P2+2n)>>

implies that the equations (4.4) hold for {¢% , (w) }n>0- O

4.2. Analytic properties via hypergeometric equations. We now prove
Corollary 4.4 and Lemma 4.5. With #, from (4.3) and A, ,, By, and C,
from (4.5), we have

1 1
Hy— <Zl>2< + sz(]ﬂ + 2”)) = (w(l—w)aww+(Cx_(1+Ax,n+Bx,n)w)8w_Axme,n)

This makes (4.4) into hypergeometric equations of the form (C.1) which we
reviewed in Appendix C.

Proof of Corollary 4.4. Note that C, — A, , — By, = %, and

[ Im(Cy — Ayn)| = [Im(Cy — Byn)|

= |Im(1 — Ayp)| = | Im(1 — Byp)| = gx/zﬂ + 2n.

Therefore if C ¢ Z, then (Ay n, By n, Cy) satisfy the condition in Lemma C.5
on inhomogeneous solutions. Following Appendix C.1, for each n € Ny, let
(4.9) U1 (W) 7= 2F1(Ay s Byn, Oy, w),
(4.10) V3 n(w) == o P (L + Ay — Oy, 1+ By — Oy, 2 — Oy, w),
where o I} is the Gauss hypergeometric function. Then vf, , (w) and vg, ,(w)
satisfy Property (R), and of, , (w) and wl—ngjw(w) form a linear basis

of the solutions to #H, — (%li + IX%(P?+2n)) f = 0.
Fix n € Ny and i € {1,2}. Choose wy # ws in I; such that

1-C 1-C
(4.11) ?}f‘7x7n(zz)1)zz)2 ng‘,x,n(wg) —w; ng"x’n(wl)fuf"x’n(wg) #0.
For n = 0, ¢, ; is linear combination of o', , (w) and wl_cxvgxm(w)

uniquely specified by the values of ¢§7n’i(w1) and ¢§7n,i(w2), since ¢ ; is a
solution to the homogeneous hypergeometric equation. This gives the exis-
tence and uniqueness of (bi(l” and (bigl Note that @;(w) are polynomials
and hence entire functions for all [ € N. Now for n = 1, the existence and
uniqueness of qﬁii” and qﬁiil follows from Lemma C.5. Furthermore, the
result for general n follows from inductively applying Lemma C.5. (]

In light of Corollary 4.4, let ¢, ; be the continuous extension of ¢ ,

from D; to D; := D; U OD;. Namely,

(4.12) ¢%, (w) = (bz,l”(w) + wl_cx¢§:i7i(w) for w € D; and i € {1,2}.
We will use the following lemma to prove Lemma 4.5.

Lemma 4.10. For each n € Ny and w € [—1,0] we have

(4.13) ;,n,l(l) = ¢;,n,2(1) and ¢;,n,2(w) = eﬂxp_ﬂleﬁi,ng(w)-
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Proof. Let f(w) := ¢ ((1—w). Then f solves the hypergeometric equation
for parameters (A, B,C) = (Ay,0, By,0,1 + Ay o0 + Byo — Cy). Since Cy —
Ay o— Byo = %, applying Lemma C.8 with U := {z ¢ D : 1 — z € D;},
and D :=D\ [0, 1], we see that as w € D tends to 0, f(w) tends to a finite
number ¢. Therefore as 1 —w € C\ (o0, 1] tends to 1, ¢F ((1 —w) = f(w)
tends to ¢g. Inductively applying Lemmas C.7 and C.8, we see that as
l—w e C\(~oo,1] tends to 1, ¢ (1 —w) = f(w) tends to a finite constant
¢n. On the other hand, we have that ¢$ ,(w) = ¢ ,, 1 (w) tends to ¢, ;(1)
as w — 1 within ;. Therefore ¢;,n,1(1) = ¢,. The same argument gives
Y n2(1) = cn, hence ¢% |, 1(1) = ¢F ,, 5(1) as desired.
For the second identity, let q@%n( ) = sin(mu)x o¢ n(u). We claim that

(4.14) Ain(u +1)= e’rXP_”ilXQAS;n(u) for we H.

Since %(_% + %) = ly, Lemma A.6 implies that E | f(u + 1,q)_%+%] =
e ME [f(U,Q)_%JFﬂ for |g| chosen sufficiently small for both sides to be

defined. Because of the e™" factor in ¥¢(u, q) from (3.4), we get (4.14).
Now note that QS;n,l(sinz(wit)) = qASO‘ (it) and ¢;n2(sin2(7r(1 +it))) =
@ .(1+it) for £ > 0. By (4.14), we have ¢2 (it + 1) = ™™g (it),
hence ¢, o(w) = ™= ”‘lxqunl( ) for w 6 [-1,0). Taking the limit
w — 0 yields ¢, 5(0) = e™F~ le(;SO‘m’l(O). O
Proof of Lemma 4.5. By Lemma 4.10, we have qSX n2(0) = em™xP— ”Tlxqﬁxm 1(0).

Set ¢, = gbz ,11 9 — em™xP— ”TquSa ! Then ¢g is a solution to the n = 0 case
of (4.4) which satisfies Property (R) and has the value ¢o(0) = 0. By
Lemma C.1 on the structure of the solution space of the hypergeometric
equation, we must have ¢y = 0. Since ¢ is a solution to (4.4) with n = 1,
we 81m11arly get ¢1 = 0. Continuing via induction on n, we get ¢, = 0,
hence qSX (W) = e”XP_i”ngbz:,l%l(w) for all n.

By Lemma 4.10, for w € [-1,0] we have

™ 17rlX( xnl(w) ¢§7lzl( ))

On the other hand, by (4.12), since w'~%x has branch cut at (—oo,0), we
have on (—1,0) that

3% pa(w) = ¢ 1 (w) + ™= (w);

¢§,n,2(w) ¢§ 711 2(w) + e_ﬂ(l_cx ‘w‘l—CX ¢x,n,2(w)'

1
;,n,Z(w) - ¢§,n,2(’w) =e

Putting these together, we have ¢’ Z o(w) = e”XP—i”lX62(1_C><)7ri¢;’i71(w) =

’TXP+”TIX<;SXH 1(w) on (—1,0). Therefore, gbx no = e“XP*'i”lX(bz:il on D
by their analyticity. O



PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS 37

4.3. The particular solution and (w, «)-regularity. By Definition 4.8,
Sn.i(W0) }n>0 solves (4.4) as asserted in Proposition 4.9. In this section we
will first prove Proposition 4.9 (a) and then prove Lemma 4.7 and Proposi-

tion 4.9 (b) together.
Proof of Proposition 4.9 (a). By Definition 4.8, Gxn (1) = GY,,0(1) =

By Lemma 4.5, we have gxn2(w) = em™XP- lﬂlexm’l(w) and gxnz(w
_eWXP+17Tl><g°"2 1(w), which implies that Gxn2( ) = e™xP~ WIXG;; (0) and

G2 5(0) = —emXPHTL G2 (0), O

Proof of Lemma 4.7 and Proposition 4.9 (b). We will repeatedly use two key
facts about (w, a)-regularity. Firstly, if f(«) is analytic on a domain U C C
and g(w) satisfies Property (R) on D, then f(a)g(w) is (w,a)-regular on
D x U. Moreover, (w, a)-regularity is preserved by the solution to hyperge-
ometric differential equation as stated in Lemma C.6.
We now inductively prove the following statement index by integer m > 0:
(4.15)
Proposition 4.9 (b) holds for G*? ~ and Lemma 4.7 holds ¢/

XM,T x,m—1,i"

Since GX%Z( w) = 0 and Statement (4.15) on QSij_ll is vacuous, State-

ment (4.15) holds for m = 0. Now we fix n > 0 and assume that State-
ment (4.15) holds for any m < n. We aim at proving Statement (4.15) for

=n+L
By the definition of GX ni » we see that ¢¢ | ;(w) — G, ;(w) is a solution

to the homogeneous version of the hypergeometric equation (4.4). Recall
v}y n(w) and v, (w) from (4.9) and (4.10). By Lemma C.1 we may write

(4.16) ¢ 5(w) = G i (W)HXy (@] (W) FXF s (w08 (w),

for Xi ni(a) and X>2( ni(@) independent of w. Thus

(417)  uni(w) = GY(w) + X (@)ofy o (w)  for i, j € {1,2}.

, 1 _ 2
For i = 1,2 recall from Corollary 4.4 that ¢, ;(w) + w! CX@&;M(w) =
tn(w) on w € D;. By Lemma 3.7 and Equations (4.1) and (4.2), ¢$ ,,(w)
is analytic in « on a complex neighborhood of (—% + x, Q). Due to the
analyticity of GX 0 Z( ) in « by induction hypothesis, we see that F'“(w) :=
X>1< (VT (W) + Xi il )wl_cxvgixm(w) is analytic in o on a complex
neighborhood of {a € (—; +x,Q) : Cy ¢ Z} for w € D;.

For each ag € C, there exist wy,wy € D; such that equation (4.11) holds
with @ = g and U]xn(wk) is analytic at g for 1 < j,k < 2. By solving
linear systems, X>1< ni(a) and Xx n.i(@) can be expressed in terms of F'*(wy)
and {fuj N n(wk)}lgj,k§2- Therefore X}( ni(a) and X>2< n.i(@) are analytic in «
on a complex neighborhood of {a € (—; +x,Q) : Cy ¢ Z}. By Lemmas C 2
and C.3 on the regularity of v equation (4.17) yields that ¢

jxn( )7 XMt
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is (w, a)-regular on D x U. Recall g;‘il(w) from (4.7). By the induction
hypothesis, we see that g;"j ( ) is (w, a)-regular on D x U. By Lemmas C.5

and C.6, we see that Gx i is (w, a)-regular on D x U. This concludes our
induction. O

5. OPERATOR PRODUCT EXPANSIONS FOR CONFORMAL BLOCKS

In this section, we prove that the g-series coefficients {A, pn(@)}nen,
of A:]h p(a) from (2.11), which were originally defined for o on a complex
neighborhood of (—%, @) may be analytically continued to a complex neigh-
borhood of (—%,2Q). Moreover, they are linearly related to ¢§m from
Corollary 4.4. To state the result, we introduce the following quantities.

2

Fix x € {3, %} and recall I, = &~ — %X from (3.3). Define the functions

1o 2le 4l>< )
(5.1) Wi (a,7) := 7 (2mel™) 3( RS i ;

I 2l 6l2
(5.2) W (a,v) = —eZi”lX_2i7rX2(27rei )_E(WX—F : 8lX+_T) —ix—1
) (a,7):
1 — e2mxP=2inly 4 1 2 D5 — X; + 2%‘)F(l ax)T(ax — x )
_ ~2 2 2x
X(@—a) v D( — XHr(1— 23

Recall from (A.3) that ©’(0) is equal to ¢'/* times a power series in ¢ with
radius of convergence 1. We define the quantities nfgn(oz) as coeflicients of
the following ¢-series expansions:

4lx(lx+1)+zl +2 1h(x+D) 1y 41 e _
(5.3) OL(0)3 ¥ 3T — 372 5ixT% an,n(a)qn;
n=0
4 IxUx+1) 2 1lx(l +1) 1l 0
(5.4) oL (0) i S ann

We are now ready to state the main theorem of this section.

Theorem 5.1. For each n € Ny, the function A, pn(a) can be analytz'—
cally extended to a complex neighborhood of (—%,ZQ). Recall ¢>?
Corollary 4.4. For x € {3, %} and o € (x, Q) we have

(5.5)
Grona(0) = Wi (0,7) [no(@) Ay pala = X) + Z (@) Ay pn(@ = )]

(5.6)

o from

n—1

Grma(0) = Wif (0,7 [ o(@) Ay pn(a+X) + Y 1 (@) Ay @+ 30|,

m=0
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where we interpret Ay pn() via the analytic extension above and use the
convention that the value of the empty summation 2;1:0 is 0. (Note that
¢;71L1(0) is well defined for x € {3, %} and o € (x, Q) since Cy = % -y =
1- % € (3,1) and thus the condition of Corollary 4.4 is satisfied.)

Our proof of Theorem 5.1 relies on the operator product expansion (OPE)
for the u-deformed conformal blocks. We will state the OPE results in Sec-
tion 5.1. Since these results follow from a direct adaptation of the methods
of [KRV20, RZ20b], we will give brief proofs in Appendix D. We complete
the proof of Theorem 5.1 in Section 5.2.

Theorem 5.1 allows us to strengthen Lemma 4.7 and the last assertion
of Proposition 4.9 into the following Corollary 5.2, which gives analytic
extensions of Gx ni(w) and QSX’iL ;(w).

Corollary 5.2. Fiz v € (0,2) and x € {3, 2} There exists a complex
neighborhood V' of (—— + x,2Q — x) such that ¢ o (w) in Lemma 4.7 and

X,M%
G;’f“( w) in Proposition 4.9 admit an extension on D x V which is (w, a)-

reqular (see Definition 4.6) fori,j = 1,2 and n € Ny.

Proof. Since A, pn(c) can be analytically extended to a complex neighbor-

hood of (— 4 ,2Q), by (5.5) and (5.6), there exists an Open complex neighbor-

hood V of (—— + X, 2Q — x) on which ng ».1(0) and ng ».1(0) admit analytic

extension in «. By Lemma 4.5, the same holds for qSX .1(0) and ng n.2(0).
Recall (4.17) that ¢*7 (w) = G*? .(w) 4+ X7 (a)v 0§\ p(w) for i,j €

XM X7t XM,
{1,2}. Setting w =0 ylelds

J — AT a,j
(57) Xx,n z(a) - ¢X n 1(0) - Gx,n,i(o)'
Forn =0, equatlon (5.7) implies that Xf( n Z( ) admits an analytic extension
to V, hence ¢ ; is (w, a)-regular on D x V by (4.16). Now by Lemma C.6

we see that GX’{ ; admits a (w, a)-regular extension on D x V. This further

1mphes that XJ (@) admits an analytic extension to V, hence ¢7
G

get that ¢/ ; and Giﬁl . admit (w, a)-regular extension on D x V. O

1 and

x.2,; admit (w a) regular extension on D x V. Now by induction in n we

Theorem 5.1 and Corollary 5.2 are the only ingredients used in the proof
of Theorem 2.11 in Section 6. The reader may skip the rest of this section
in the first reading.

5.1. Operator product expansion. Recall the u-deformed block ¥3 (u, )
from Definition 3.3. We define the renormalized deformed block by

(5.8) oy (u,q) = Sin(ﬂu)lxqﬁ;‘(um).
Throughout this section we assume that v € (0,2), P € R, 7 € iR and
q=¢"" € (0,1). Moreover, ¢ and u are small enough such that (u,q) € DY
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as in equation (3.2). We will provide three operator product expansion
(OPE) results for ¢ (u, ¢) which describe its asymptotic behavior as u tends
to 0. The first one corresponds to the direct evaluation of ¢$(u,q) at u = 0.

Lemma 5.3. Consider u = it with t € (0,3 Im(7)). For a € (—% +Xx,Q),
(5.9)

P2 bt 1y 1 abldl) gy 2
276 6 6@7(0)3 X 3 3 A

Lim ¢ (u, q) = Wy (@, 7)q 5,pla=x).

Proof. By direct substitution and using (A.3) we have

. P2l 1l o
lim ¢ (u,q) = q 2 > SO
u—0

1 a X
< F |:(/ e%YT(x)@T(x)—%’—i-%eWyP:cdx) ~,+v:|
0

_lxUxtD 1 4 Ix(x+1)

P _1 2 2
(g ? o ehTEeLO)8 X TSNTIAT - x). O

:WX_

Our second OPE result concerns the next order expansion when y = 7
and o € (3, %) We gives its proof in Appendix D.

Lemma 5.4. Consider u = it with t € (0,3 Im(7)). Let x = 3 and a €

2
(3, %) We have

(5.10)  lim sin(ru) ! (¢§ (u,q) — 95 (0, Q))

U—

+ ﬁ+ll_2lx(1;lx) , le(lx2+1)_glx q ol
=W, (a,7)q P e(0)F ot TRAD plat ).

Our third and most intricate OPE result is the counterpart of Lemma 5.4
with x = 2 or % and « close to (). To state the result we need the reflec-
tion coefficient of boundary Liouville CFT. We will recall its probabilistic
meaning in Appendix D. However, for the rest of this section we just define

it as the explicit formula obtained in [RZ20b, Theorem 1.8]. Namely define

(5.11) R(a,x,P):= ﬁ’ﬂy

F% (o — %)e—iw(g—l—iP)(Q—a)
«

DQ- 0S5 13 +1P)S;(5 —§ —iP)

where I'y (z) and S 1 (z) are special functions introduced in Appendix A.2.
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For a € (Q,2Q + %), we use the reflection coefficient to define
(5.12)

RY pla) = —go 13 Q@F 3= () P+ 2= Qs iQ g (O)(Q—a)(’Y—a)
s

n(q

y em(%—(a—%—Q)(a—W))(QW)(G—%—Q)(Q—OO F(—%)F(% -1- —)I‘(l + =5 — %)
. . o @ 2 @
(—& 4+ 1)(1 —emPiTHTy  T(F 1= T+ T — %)F(; -1
Y 1 ol ol %_742__1
X R(a — > x, P)E </0 eﬁyf(m)@T(x)_E(zQ_a)emed:E>

Lemma 5.5. The function o — Rq pla) admits an analytic continuation
in a complex neighborhood of (Q, 2Q)

Proof. By the moment bounds given by Lemma B.2 and the analyticity
provided by Lemma 3.7, the GMC expectation in (5.12) is well-defined and
analytic in « in a complex neighborhood of (Q,2Q + %) The prefactor
in front of the GMC expectation is an explicit meromorphic function of «
with known poles; the exact formula (5.11) shows that it is analytic in «
in a complex neighborhood of a € (Q, 2@Q)), making the entire expression of
Rf]% p(a) analytic in a complex neighborhood of (Q,2Q). O

We are now ready to state the last OPE result. The proof is also given
in Appendix D.

Lemma 5.6. Consider u = it with t € (0,1 Im(7)). Let x = % or 2. There

2
exists a small ag > 0 such that for a € (Q — ap, Q) we have

2
=

(5.13)  lim sin(mu) 2! (¢§(u, q) — 620, q)>

u—0
n 2 1hO4l) o a2y
=Wila,y)g? " ° @ 0.(0)° ¥ 3R] p(a+x).
Note that the x = % case of Lemma 5.6 takes the same form as Lemma
5.4, except with RV pla+ 3) in place of "47 pla+3). This suggests that
Rf]% p(a) gives the analytic extension of Aq7 () beyond a = Q. We will
prove this at the level of g-series in the proof of Theorem 5.1 below.

5.2. Proof of Theorem 5.1. We first prove the easiest part of Theo-
rem 5.1, which does not require analytic continuation of A‘ff pla).

Lemma 5.7. The equation (5.5) holds for x € {3, %} and o € (x, Q).

« %2+%lx(lx+1) « « oo @ n
Proof. Recall ¢ (u,7) = q 2 * 6x Y¢(u, q) and X (u, q) = Y2 og n(w)g

n=0 "~ x,n
from (3.5) and (4.1). Recall ¢$ ,,(w) = sin(ﬂu)lxa;‘é’n(u) with w = sin?(mu)
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from (4.2). Since ¢ (u, q) = sin(ﬂu)lxi/);l(um), we have

P2y >
¢;(u7 q) =q 2 T6x2 Ix(Ix+1) Z¢a,n(w)qn for w — sin2(7ru).
n=0

Recall Proposition 4.2 and Corollary 4.4 that for a € (—% + x,Q) and
Cy ¢ Z, we have ¢ ,(w ( ) = ¢! (w)+w' =% ¢>2 (w) for w € D;. This gives

X510 X1, %
P

: L (lx+1
limy, 0 ¢% (4, q) = ¢ 2 ot )ZZO:O qsi;n,l(o)q". For o € (—% + x,Q),

+ozh(xt+1) oo

P72
by Lemma 5.3 ¢ 2 o qﬁi’i’l(O)q" equals

1 4 lx(lirl)

(514)  Wy(am)g? 6 8hTEEL(0)5  TNTEAL (o — ),

Since Cy, =1 — (Q-a)x )X , for a € (x,Q), we have Cy € (3,1) hence C, ¢ Z.
Expandlng (5.14) 1nto a g power series using the definition of 7}, from (5.3),
we get (5.5) for a € (x, Q) as desired. O

We have seen that Lemma 5.7 follows from comparing series coefficients
based on the OPE result Lemma 5.3. Using the same argument with the
OPE results Lemmas 5.4 and 5.6 instead, we get the following.

Lemma 5.8. Equation (5.6) holds for x = 3, a € (3, ) Define R pn(a)
by the series expansion R% (@) =32, R%p,n( )q". Then equation (5.6)
holds with R pn(a + x) in place of Ay pn(a+ x) for x € {3, %} and
a € (Q — ap, Q) for some small ag > 0.

Proof. By Corollary 4.4, for a € (—% +x, Q) and Cy ¢ Z, we have
a,2 _ . s\ —20,—1 a () o
(5.15) @y, (0) = lim sin(mit) > (65,() - 67,(0)).
Similarly as in Lemma 5.7, by Lemma 5.4, for x = and a € (%, %) we have

that ¢’ PR 200 gal (00 cquals

f_z Ix(+1x) 16 Ix(Ix+1)
G16) Wit T e ¥ 0t D),

Since Oy =1 — (Q_a)w €(3,1- —) for o € (3 —), we have Cy ¢ Z for
X =13 and a € (3, 2). Expanding (5.16) into a ¢ power series using the
definition of 7}, from (5.4), we get (5.6).

Using Lemma 5.6 instead of Lemma 5.4, the identical argument gives
(5.6) with R pn(a + x) in place of A, p,(a + x) for x € {3, %} and o €
(Q — ap, Q) for some small g > 0. (Note that by choosing ag small enough

Cy=1- Q-a X%Zasbefore) O
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Proof of Theorem 5.1. We prove the following claim by induction:
(5.17)

A, pn(a) admits an analytic extension to a complex neighborhood of
4

(—=,2Q), under which A, p,(a) = Ry pn(a) for a € (Q,2Q).
~

Given (5.17), by Lemma 5.8 and the analyticity of QSX 1.1(0) from Lemma 4.7,
we immediately complete the proof of Theorem 5.1.
We first prove (5.17) for n = 0. By Lemma 5.8, setting n = 0 and xy = %

2
n (5.6) we see that for o € (3, 3)

%) = [Wir( 7'7)77%_70( )] l(b” 01( )

By Lemma 2.6(b), we know A, po(«) is analytic in a complex neighborhood

of (—%,Q). Since C'y =1 — (Q-a)y )7 € (3,1) for a € (,Q). By Lemma 4.7,

qﬁ’il(O) is analytic in o« in a complex neighborhood of (3,Q). By the
27 )

(5.18) A%p,o(a +

explicit expression for Wi (a,v) from (5.2) and the fact that 77; ola) =
Iy (1 1
(27Tei7r)% X(XX2+ )_%IX, the right hand side of (5.18) is analytic in « in a com-
plex neighborhood of (3,Q). We now define A, po(a+ 3) as the right hand
side of (5.18) on this neighborhood. This gives a definition of A, po(c) on
a complex neighborhood of (v, Q + ), which is consistent with its original
definition on (—%,Q). Therefore we have analytically extended A, po(c)
in « to a complex neighborhood (—%, Q + 3), under which (5.18) holds for

ae(},Q).

On the other hand, by Lemma 5.8 for some small ovg > 0 we have
(5.19) R%P,O(a"i_%) = [Wg(aﬁ)??;o( a)]” 1¢v 01(0) for a € (Q—ap, Q).
By Lemma 5.5, R po(c) is analytic in a complex neighborhood of (@, 2Q).
Set Ay po(a) = Ry po(c) in this neighborhood. Since (—%, Q+3)nN
(@,2Q) # 0, this defines an analytic extension of A, po(a) on a complex
neighborhood of (—%, 2@Q). This proves (5.17) for n = 0.

For n > 1, suppose (5.17) holds for m < n. By (5.6) and Lemma 5.8,

Ty + + -1 0,2 5,m—m Y.
AW,PJL(OH_E) - [W% (Oé, 7)77%70(61)] ¢%,n,1(0)_ WA%P,WL(O["FE%
m=0 7.0
il g (@)
Ty — et + —1 0,2 _ 7m—m gl
Ry, pn(a+ 2) [W% (cv, 7)77%70(04)] ¢%7n,1(0) 2:0 T @ Ry, pm(a+ 5 ).
m 3

As in the n = 0 case, the first equation together with the induction hy-
pothesis for (5.17) gives a definition of A, p,(a + 3) for o in a complex
neighborhood of (3,Q). This provides an analytic extension of A, p,(a)
on a complex neighborhood of (v,Q + ). Setting A, pn(a) = Ry pn(a)
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on a complex neighborhood of (Q,2Q), we arrive at the desired analytic
extension of A, p,(c) claimed in (5.17). O

6. EQUIVALENCE OF THE PROBABILISTIC CONFORMAL BLOCK AND
NEKRASOV PARTITION FUNCTION

Recall jip(oz) from (2.13) and Z7 p(g) from (2.16). Theorem 2.11 asserts
that they agree as g-power series. In this section, we prove Theorem 2.11 by
showing that their g-series coefficients satisfy the same characterizing shift
equations. The proof is divided into six steps. We now present these steps,
deferring the proof of a few statements to later subsections. N

Our first step is to establish the shift equations for A, po(a) and { A, pn(a)}nen
defined in (2.12) and (2.13). The shift equations uses A, ,,, By n, Cy from (4.5)
and Gii” from Definition 4.8, which are related to the hypergeometric dif-
ferential equations from Proposition 4.2. In particular, we need

vel.= gl (0) and V)f‘nz = G2 (0) for n € Ny.

X7 X5, 1 Xm,1

Moreover, we need the connection coefficients (see (C.2))
(6.1)

r o D(CIT(C = Ay = By)

I(Cy = Ay n)T(Cy = Byn)

D(2 = CYT(Cy = Ayn = Byn)

T'o:i=
and T2 T(1— Ay,)T(1— By,

Recall that A, p, (o) and G;ﬁ” are analytically extended in « via The-
14 —

orem 5.1, and Corollary 5.2, respectively. This allows us to view AJ =

% from (2.13) as an analytic function in @ on a complex neighborhood

of (—%, 2Q), and to view V. 2 and Vi 2 as analytic functions in « on a com-
plex neighborhood of (—% +x,2Q — x). We are now ready to state the shift
equations for A, po(c) and {j%p,n(oz)}neN, which we prove in Section 6.1
by combining the hypergeometric differential equations and the operator
product expansions from Theorem 5.1.

Theorem 6.1. Recall explicit functions WiE(a,v) from (5.1) and (5.2) and
nim(a) from (5.3) and (5.4). Fixz vy € (0,2) and x € {%,%} For a in a
complex neighborhood of (—% + x,2Q — x), we have

=

J(@,7) Top 1+ emPHrhonl ()
6.2) A a—x)=— 7 : - X A a+x).
( ) ’Y,P,O( X) WX— (CM7 ’y) 1’\071 1 _ e’]TXP—l’]TlX 77;70(C¥) FY?P7O( X)
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Setting TN/XO‘TZ = V;?f;qu;(oz,7)_177;,0(00_1.,4%30(0( —x)7t, we have

-1 —
S nx,n—m (Oé) e

(6.3) A, pa(a—x)+ Z - Ay Pl =X)
m=0 77X,0(O‘)
n—1 _+
Fn Tr = Fn r n—-m\%) ~
— D20l 7 (et x) + 2ol o (@) A pnla+ )

Iynaloe naTo2 2= nfo(a)

Tx P+imnl
Fn,2 1+e™ x ‘701,2 + i}a,l
Fn 1 1— ewxP—ile xX5m XMt

Our second step is to get the explicit expression (6.4) below for A, po(a).
We prove it in Section 6.2 by checking that the right side of (6.4) satisfies the
shift equation (6.2) as well. Proposition 6.2 allows us to explicitly compute
the normalization Z9 p(q) in Definition 2.4 thanks to (2.14).

Proposition 6.2. For vy € (0,2), a € (—%,Q), and P € R, we have
2

i7ra2 = TQ
(64) Apole)=e (3) 7 e (1 1)

Iy Q-2+ 903 (Q—-%—iP)Ty(Q—§ +iP)
Py(3)ly(Q —iP)Ty(Q +iP)l'3(Q — o)

Our third step is to prove a uniqueness result for a shift equation closely
related to (6.3). For n € N, consider the shift equation

20

(6.5) Xn(or = x) = Ya(x, @) Xn(a +x) + Zn(x; @)
on unknown function X, (a), where we set Y, (x, «) := 1223128; and
n—1_—
Myn-m(@) ~
(66) Zn(X7a) = Z MA%P,m(a - X)
m=0 nX70 a)
—l ot mx P+inl
I‘n2FOln nxn—m(a)N Fpol+e™ a2 | Tral
) ) ) ) _ 5 VOC, .
T o) mZ::O (@) A0t ) T g Vi Vi

By (6.3), we see that (6.5) holds with .Z%pm in place of X,, for each n € N.
However, it is crucial that in (6.5) we view X,, as the only unknown function
while Y,, and Z,, are viewed as given. It is the uniqueness of this shift
equation that is most convenient for the proof of Theorem 2.11. We state
this uniqueness as Proposition 6.3 and prove it in Section 6.2 along with
Proposition 6.2.

Proposition 6.3. Fiz vy € (0,2) with 2 irrational and P € R. For n € N,
let X} (a) and X2(c) be meromorphic functions on a complex neighborhood
V of (—%,2Q). Suppose (6.5) for x € {%,%} and o € (—% +x,2Q — x)
holds with X in place of X, for i = 1,2, and moreover, X} (ap) = X2(ap)
for some aq € (—% +%x,2Q — x). Then X}(a) = X2(a) for alla € V.
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Our fourth step is to establish Zamolodchikov’s recursion when —% eN:

Theorem 6.4. Fiz v € (0,2), o € (—%,Q), and q € (0,1). If—% €N, then
P— .Z?WP(a) admits a meromorphic extension to all of C under which

o0

1 nmR,m,TLa L _L al(O—2)—
6.7) AL p(a)= Y ¢ P;_ilé)«“?y,pm,n(a)Jr[q 127)(q)] (@272,
n,m=1 m,n

where Ry n(a) and Py, are explicitly defined in (2.20) and (2.21).

The key to the proof of Theorem 6.4 is that when —% € N we have a

Dotsenko-Fateev integral representation of Af]y’ p(a), which we analyze in

detail in Section 6.3. From this representation and Proposition 6.2, we

will show in Section 6.4 that for —£ € N all poles of .Z‘fﬁp(a) are sim-

ple, lie in {£P,,, : n € Nand 1 < m < N}, and have residues given by
Ry mn() in (6.7). To conclude the proof, we then show in Section 6.4 that
limp_s o0 Aip(a) = [q_len(q)]a(Q_%)_2, giving the final term in (6.7).

Our fifth step is to show Theorem 2.11 for —% € N using Theorem 6.4.
This argument is known in physics, but we provide it below for completeness.

Theorem 6.5. Suppose —% € N for v € (0,2) and o € (—%,Q), and
qg € (0,1). Let Aip(a) be defined under the meromorphic extension to
P € C from Theorem 6.4. Then Z9 p(q) = .A?Y,P(a) as formal g-series.

Proof. By Theorem 6.4, (2.19), and (2.22), when N € N, the formal ¢-

series expansions for both Z,?‘ p(q) and the meromorphic continuation of

.Z?Y p(a) solve the recursion (6.7). Denoting their difference by Af]y pla) =
Yoo 0 Ay pn(a)g™, we find by subtraction that

00 00 R (a) 00
S A pn(a)g" = > qznm% > Ayp, . kla)d".
n=0 n,m=1 MmN p—0

Equating g-series coefficients of both sides expresses A, pn(a) as a linear
combination of A, p,,(a) with m < n. By the form of the right hand side,
we find A, po(a) =0, and an induction shows A, p,(a) = 0 as needed. O

Our final step is to put everything together and prove Theorem 2.11.
This is done by combining Theorem 6.5 with a detailed analysis of the shift
equation from Theorem 6.1 and Proposition 6.3; see Section 6.5. In the rest
of the section we give detailed proofs for Steps 1,2,3,4,6 above.

6.1. Proof of Theorem 6.1. For i,5 € {1,2} and n € Ny, recall ¢*7 .(w)

X511
and gb;m(w) from Corollary 4.4, where we use the analytic extension of
@3 i(w) in a from Corollary 5.2. Since ¢, ;(w) — GY ,, ;(w) is a special
solution to the homogeneous variant of (4.3), the discussion of the linear
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solution space around 0 and 1 of such differential equations in Appendix C.1

implies that for some Xf( (@), Y)im(oz) we have

Py mi(W) = G i(w) + Xy i(@) 2F1 (Ayns Byyns Oy w)

+ X2 (@) w TP (14 Ay — Oy, 14 By — Cy, 2 — Oy w);

(W) = G5 i (0) + Y 5(0) 2Fy (Ayns Byns 1+ Ay + By — Oy 1 — w)
+ Y2, () (1 = w)Sden=Bony By (Cy = Ayn, O — By, 14+ Cy — Ayn — Byni 1 — w).
Together, these equations imply for 7 € {1,2} that

71 ’1 . .
¢;n,i(w) = G;n,i (w) + X)1( n, z(a) 2 [ (AX,TU BX,ny CX7 ’LU)7
¢or J(w) = Gt (w) + X2, (@) 2 Fi(1+ Ay — Cy, 1+ By — Cy, 2 = Gy w).
By the connection equation (C.2) with the coefficients I'y, ; in (6.1), we have
Yxlnl( ) = N1Xxn7,( )+Fn2Xan(a) forie {1,2}

Because ¢7 . 1 (1) = ¢%,,2(1), G ,,1(1) = GF,2(1) = 0, and Cy — Ay, —
By, = %, this implies that

Iy,
65)  Xlal0) = Xhpa(0) = 20X 01(0) = X 05(0))
By ¢§7112( ) = emxP- ml"(ﬁxn 1(0) and <Z5Xn2( ) = e”XPH”lX(bi:i’l(O) from

Lemma 4.5, we have

Xynla) + Gxn2(0)=¢“’1 (0) = eI (XY (a) + Gxnl( )

X512 X5
X)2(,n,2(a) + GX n, 2(0) = ¢;:EL,2(0) = WXP—HWlX (X)% n, 1( ) + GX n, 1( ))

Combined with (6.8) and Proposition 4.9 on Gx ».» this gives
(6'9) (1 - XP 1 lX)X>1<,n 1( ) = nl(l +e b lX)X)%,n 1( )
n

Recall W;E(oz,y) defined in (5.1) and (5.2). By Theorem 5.1 we have
X1 (@) + G01(0) = 67,1 (0)

= Wy (@,7) [ mgo(@) Ay, pn(a =) + ann (@) Ay (e = )]
X3 (@) + Gy 1 (0) = 657 1(0)

n—1

= W () [ o (@) Ay (@ +0) + D2 0 (@) As,n(a + )]

m=0



48 PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS
Recall our definition V% = i;l(O) By (6.9) we have
My 0(@) Ay pn(e = x)
- 1yl
= WX (Oé,’}/) (Xx,n,l( ) X,n 1 Z nx n— m %Pm(a - X)

1Fn 91+ eﬂxP-ﬁ-le
L1 1 — emaPinty heol®

= _W;(aa ’Y)W_ (Oé, ’Y)

X (@) Ay pn (0 + x)

il -1
1T 14 em™xPHinhe C

11— em™xP—imly

- W;(aa ’Y)W_ (Oé, ’Y)_

X T’)—(i_,n—m(a)A’YvP,m(a + X)

m=0

T 9 1+ e7rxP+i7rlX B
1-n, Va2+W ( ) IV;’z,nl

+ WX (Oé,’)/) Fn 1 1— e7rxP inly, " Xon

- Z nx,n m %Pm(a - X)

Specializing the above equation to n = 0 yields (6.2). For n > 1, dividing
both sides of the equation by W."(a,v)n, o(a) Ay, po(e — x) and applying
(6.2), we get (6.3). This concludes the proof. O

6.2. Proof of Propositions 6.2 and 6.3. Let A(a) be the claimed ex-
pression for A, po(c) given by the right-hand side of (6.4). We first show
that A(a) and A, po(«) satisfy the same shift equation.

Lemma 6.6. We have A(a — x) = Yo(a, x)A(a + x) where Yo(a, x) equals
b T(E P2 — AP +2) 44
F1+10,)r1+1, —ixP)L'(1 + 1, +ixP) ~?

Moreover, Ay po(a—x) = Yo(a, x)A, pola+x), where Ay po(a) is extended
to a complex neighborhood of (— ?; 2Q) as in Theorem 5.1.

. _o: 2 _
e417rlx 2imy BWXPF(l—’y )

4

Proof. By (A.12), we have A(a — x) = Yo(o, x)A(a + x). In light of (6.2),
to prove A, po(a — x) = Yo(a, x) Ay po(a + x), it suffices to show

W (a,7) Do 1 + e™FHiml 77;0(04)
Wy (a,7) Do 1 — emxP=imhe = (o)

where W¥(a,7) and ni,, () are as in (5.1)—(5.4). By (5.1) and (5.2)

(6.10) Yo(a, x) = —

612
W (OZ,'Y) 2i7rlX—2i7rX2(2ﬂeiﬂ)_%(w7x+%_glx+7§) —2l,—1
™
W (avfy) (27Tei7f)_%(2+2'ylx+4lx+6l )
1 — e2mxP—2irly F(%X — L )T(1 + 21, )1“(—2lx)( 4 )1X:%
— .

X(Q —a) I(~1,)0(1 — V_)%X gl

)

2
5
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By the reflection and duplication formulas for the gamma function (see (A.7)
and (A.8)), we have
Lo _ r'e- COT(Cx — Ay 0)T'(Cx — Byo)
Lo ['(Cy)I'(1 — Ay 0)T'(1 — By o)
22xnl(3 + 1)

L3 = L)T(A + 1 — ixP)L(1 + 1y + ixP) cos(51, — iﬂ'%) cos(Gly + iw%).

* (a .
By (5.3) and (5.4) we have Z{LE; = (2776”)_%1X_%. The desired iden-
X0\

tity (6.10) follows by combining these identities and simplifying. O

Proof of Proposition 6.2. Recalling that [, = —2 —ZX from (3.3), we observe
that Yp(x, @) is meromorphic in a € C with countably many zeros and poles,
so we can find o € (—%—i—x, 2Q—x) such that A(ap) # 0 and Yp(x, @) has no
zeros or poles in the set ag —I—Zv—l—Z%. Let Ao(a) := Ay po(a) —cA(a) where
¢ is such that Ag(ap) = 0. By Lemma 6.6, Ag(a — x) = Yo(x, ®)Ao(a + x)
for x € {3, %} and « in a complex neighborhood of (—%, 2Q). Because the
interval (—%,QQ) has length bigger than ~, the function Agp(a) admits a
meromorphic extension to a complex neighborhood U of R, which we still
denote by Ag(a), such that Ag(a—3) = Yo(3, @) Ag(a+ 3) for each a € U.
By the meromorphicity of Ag(«), we also have Ag(a— —) Yo( a)Ao(a+
%) for each « € U. For o € ao+Z’y+Z;, since Ag(ap) = 0 and YO(X, a) #0,
we have Ag(a) = 0. Note that ag + Zy + Z% is dense in R when 2 ¢ Q.
Since Ag is meromorphic on U, we must have Ag(a) = 0 for all o € U.
Now the continuity in v implies that A, po(a) — cA(a) = Ag(a) = 0 for
all v € (0,2). Since A, po(0) = A(0) by direct computation, we must have
¢ =1, meaning that A, po(a) = A(a) for all v € (0,2) as desired. O
Proof of Proposition 6.3. Define A, (a) := X} (a) — X2(«). Subtracting the
given equations for ¢ = 1,2, we obtain for x € {3, %} and o € (—% +x,2Q —
x) that A, (a—x) = Yo (x, @) Ap(a+x). Since I' has poles at {0, —1,—2,...}
and no zeros, for P € R and n € N the explicit expression

U(3 -3, +iXVP2+2n)0(4 — L1, —iXV/P2 4 2n)

(1 + 30 +i¥3VPZ+2n)T (1 + 3, — i¥3VP2+ 2n)
D(1+ 3, +i3P)P(1 + 41, — iXP)
I‘(l l +iXP)r ( 1l XP)
yields that Y}, (x, @) is meromorphic in o € C without real zeros or poles.

Since A, () = 0 for some ap, the same argument as in the proof of Propo-
sition 6.2 gives that A,, = 0 for irrational 72 as desired. O

Yn(X7 ) -

6.3. The Dotsenko-Fateev integral. The starting point for proving The-
orem 6.4 is the following integral representation of .Af]y p(a) when - eN
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Lemma 6.7. [f N = -2 €N fory € (0,2), a € (—%,Q),and q € (0,1), the
function A‘fhp(a) is given by

20 _ 5 2_9

(6.11) A?YP(O() = qﬁ_ﬁQ-i-%n(q)Za'y-i-T_Za

N s N . N
</ ) H 0, (zi —x;)| = H O (z;)~ T ™ P Hda;,-.
0 i=1

1<i<j<N i=1

Proof. Since —% = N € N, by Theorem B.3 we can write

E[(/l e%YT(m)@T(x)_a_;eWVPQCdx)_ ]
0

INN N 3 2 N
— O, (z; —%ew'mei eTE[YT(mi)YT(mj)] dz;.
() Mot = I i

1<i<j<N i=1

2e

The explicit formula for E[Y; (x;)Y(z;)] in (2.5) now gives Lemma 6.7. O

We now apply a rotation-of-contour trick to the integral (6.11) and use
the quasi-periodicity of the theta function to relate the values of Af]y’ pla) at
P, and P,,_s,. This is crucial to the proof of Theorem 6.4.

Proposition 6.8. Recall Py, , = 217" + % from (2.21). If N = -5 €N,

fory €(0,2) and o € (—%, Q), viewing P — Aflhp(oz) as an entire function,
2 iTa

(6.12) Aipm’n(a) = q2"+(m_1)y7e_TwA?%Pm72’n(a) for (m,n) € Z2.

Proof. Consider the domain D = {z+7y:xz € (0,1) or y € (0,1),z,y € R}

from Definition A.3 and define on D the functions

5 20 _ 52
Za7+7_1a —2

a?_a 1
Imn(u) = 21139 5y(q)

0, ()~ FH AT O, (1 — u) " T e P,

f(P,U):=</01>N_1 II 10, (2 — ;)| %

1<i<j<N-1
N-1 ) , N-1
v ol ay )
H Or(r;i—u)” 7O, (u— :EZ-)_TGT(:Ei)_TeumZ H dx;,
i=1 i=1

where we interpret fractional powers of O, via Appendix A 4.
By the integral expression (6.11) and (A.17), for N € N

. 2 1
(613) Al (a)=TNDET /0 Gonn () f (P )

Let the fundamental domain T be the parallelogram bounded by 0,1, 7,1+
7. We see that f(P,u) and g, ,(u) are holomorphic in u on the interior of
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Ty, so integrating along a contour limiting to the boundary of Ty, we find

1+7

1
(6.14) /Ogm,n<u>f<P,u>du+ /1 G () (P, )l

T 147
- / gmm(u)f(Pa u)du - / gm,n(u)f(P, U) =0.
0 T

By (A.18), we have f(P,u+1) = f(Pu) ifue{z+yr: 2z € R,y € (0,1)}.
irm~y?

57— = 2min, we find

Moreover, since my Py, ,, —

ay m'y2 ay

Gmn(u+l) = empm'”“’r(?_T_T)gm,n(u) = gmn(u), if ue {z+yr:y € (0,1)}.

Thus [; gmn(uw) f(P,u)du = 11+T Gm.n(w) f(P,u)du, and (6.14) implies

1 1+7 1
/ Gmn(w) f(P,u)du = / Gmn(w) f(P,u)du = / G (u+T) f (P, u+T)du.
0 T 0

By computing with (A.19), we find for v € {z +y7: 2 € (0,1),y € R} that

TP n YT eiway(u— % +3)

Im,n (u + T) =e€ Imn (u)7

. iny2r
f(Piu+T1)= e(N=D(imy*ut =g ) f(P — iy, u).
Combining these, we find that if u € {z +y7: 2 € (0,1),y € R}, then

gm,n(u + T)f(Pm,m U+ T)
. T . imy2T
= P T imey (U= 5) o(N=D)(m?ut 555 0 ) £ (P — iy, 1)

2
2n4-(m—1)% -5

e 2 gm—2,n(u)f(Pm—2,na ’LL)

=4q

In the last line, we have used the fact that ©,(u) = ©,(1 — u) for any
u € {x+yr:z € (0,1),y € R}. Integrating both sides over [0,1] and
recalling (6.13), we obtain (6.12). O

We will use the following corollary of Proposition 6.8 to prove Theorem 6.4.
Proposition 6.9. Ify € (0,2), a € (—%,Q), q€(0,1) and —% €N, then

_imaym

(6.15) A?Y,Pmn(a) = "M 2 A?y,P,mn(O‘) for (m,n) € Z2.

Proof. This follows from Proposition 6.8 and the fact that

Al p, (a)
Aq (Oé) — | | Vol'm—2k+2,n Aq (OZ) 0O
Yy Prm,n P A2/7Pm72k7n(a) Y P—m,n
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6.4. Proof of Theorem 6.4. By Lemma 6.7, when —% € N, the function

P .A?Y’ p(a) can be analytically extended to P € C via the integral (6.11).

~ Aq
Therefore P — A:]h pla) = % meromorphically extends to P € C as

well. To establish Theorem 6.4, it remains to prove (6.7). We now state four
lemmas on the pole structure of Afh p(a) and prove (6.7) with these lemmas.

We then devote most of the subsection to the proof of these lemmas. In all
four lemmas we assume v € (0,2), a € (—%,O), g€ (0,1),and N = —% e N.

Moreover, we recall Py, , = 217" + % from (2.21) and Ry, , from (2.20).

Lemma 6.10. We have .Z‘fhp(a) = .Z:Zh_P(a) for all P € C.

Lemma 6.11. The function P + A, po(a)™! is meromorphic with poles
only at P = £P,,, forn € N and 1 < m < N. Moreover, the poles are
simple. Finally, the residues Resp—p,, , Af]y pla) of A‘fhp(a) satisfy

1

(6.16) anlgsw .Z?Y,P(oz) — g2 mR%m,n(a)Aipfmyn ().

Lemma 6.12. The function A, p,(a) is rational in P for each n € N.

Lemma 6.13. Define aj, by [q_%n(q)]a@_%)_2 =322 arqg" near ¢ = 0.

Then for k >0 the limit _ lim A, pg(a) exists and equals ay.
R>P——00

Proof of Theorem 6.4 based on Lemmas 6.10-6.13. By Lemma 6.12, .,I?Y’Rk(oz)
is a rational function in P. By Lemma 6.11, its poles are located at P =
+P,, n. By Lemmas 6.10 and 6.13, with a;, defined in Lemma 6.13 we have

o0
- 2P , Resp—p,, , A ,P,k(a)
Ay pala) = Y T +ag,
n,m=1 L

where the series has finitely many non-zero summands. N
By Cauchy’s theorem around P = P, ,, we have Resp—p,, . A:Z/P(a) =

Y reoResp_p,, .. .Z%Rk(oz)qk as convergent series in q. By (6.16) we have
Resp—p,, . Ay pi(a) =0 for k < 2mn, and moreover,

~ R ) ~
D)= Y a0 3 ko) + a.
n,meN,2mn<k m,n

Therefore the ¢F-coefficients of both sides of (6.7) are equal, namely (6.7)
holds as an equality of formal g-power series, yielding Theorem 6.4. O

In the rest of this subsection, we prove Lemmas 6.10-6.13 in order.
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Proof of Lemma 6.10. For P € R, we have

E|:</1 e%YT(x)@T(:E)—a—;eﬂVde:E)_%]
0
_ E|:</l 62Y (1— x)@T(l _ :E)_%eva(l_x)dl?)_%].

0
Since {Y;(1 — ) }o<z<1 and {YT(.Z')}()SI<1 are equal in law and O,(1 —z) =
©,(x), for P € R we have Aip(oz) = ”Pa.AfIY _pla). Sending ¢ — 0
we have A, po(a) = e A, _po(a). Therefore Aq pla) = "Z?y _pla) for
P € R. By meromorphicity in P of ‘A:Z/, (o) for —9 = N € N, the same
holds for all P € C. 0

Lemma 6.11 follows from a straightforward (but lengthy) calculation based
on the explicit formula of A, po(a) from Proposition 6.2.

Proof of Lemma 6.11. Specializing Proposition 6.2 to N = —% € N and
using the shift equation (A.12) for T’ 3, we get
(6.17)
2 N2 mPN N 1+ (2N— J+1)
At = T ) ( )

)r(1+% — 17y

Recall T'(z) has simple poles at {0,—1,—2,...} and no zeros. Thus (6.17)
implies A, po(c) has simple zeros at P = +P,, , forn € Nand 1 <m < N.
This yields the pole structure of A, po(a)~! asserted in Lemma 6.11. We
now compute the residues of A, po(a)~!. Define

(6.18) H 1+—+7—)F(1+&——)

so that A, po(a)™t = Ce™ MéDNf(P) for some C' := C(«, ) independent of
P. Recall Ry, () from (2.20). We claim that

R‘eSP:Pm n f(P) 1
1 : = mn(Q).
(6 9) f(P—m,n) 2Pm,n R% ’ (a)

By (A.9), we have Resp—p,, , T(1+ " +3) = 2 Res,—y_, T(z) = £ <(‘nljj)’,1
for n € Nand 1 <m < N. Therefore

N
2 (_1)n—1 ],7 2 ,72
j=1 J= 173#m
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By ['(z +n) =T(z —n) [[/=}, (z + 1), we have

l=—n

(6.20)
Resp—pn, f(P) _ 2 (=1)" [ T, 0+ 3+ X5+ 2240
f(Pomn) iy (n =1 e, m#OHl__n(lJrﬂ +l)
N in?  my? m—1 "/ N'Y J’Y
where we used };Ij:l( * 43:; 1 :;l) = HJ_;’L”(H R S S . Note that
j=1,m (LT ===+ =1 mJ;eo(1+—+l)
(6.21)
m—1 n—1 2 . 9 m—1 n—1
21
II IIa +%+ =" 11 T1 @ ).
j=—ml=—n j=—ml=—n v

Since (—1)"1(n — 1)n! =[]/, 1#-1(1+1), we have

(6.22)
1 S § AP my” i
(=1)" Hn—1)In! | H 11 (1= -+ = (=~ +n) | I - 0
j=1-m,j#0l=—n J,1)ESm,n
where we recall Sy, ,, defined below (2.20). Combining (2.20), (6.20), (6.21)
™ (Pm,nfpfm,n)N 17ra m
and (6.22) yields (6.19). Since e~ - 2 —e 2 for N=-2 and

1 _ myPN
A, po(a)™ =Ce” 2 f(P), forn e Nand 1 <m < N we have

iTaym 1

1 iraym 1
PBPeWSl’n APY’P’O(OZ) =e 2 2Pm n Rfy,m,n(a)A«{7P777L,n70(Cl) .

2nm 17ra'ym

Combining this with A? o) =q Al 5.P_ .y () from Proposi-
tion 6.9, we obtain (6.16). O

For Lemma 6.12, it is easy to see that P — j%p,k(oz) has finitely many

poles, the main effort is to obtain the polynomial growth of A, p () at oo
which yields its rationality. This requires a fine analysis of f(P) in (6.18).

Proof of Lemma 6.12. By Cauchy’s theorem around P = P, ,, we have
Resp—p,, , A%P( a) = S Resp—p,, ., A, pi(a)g® as convergent series in g.
By (6.16) we have Resp—p,, ,, ./Z(%p,k( ) = 0 for k < 2mn. By Lemma 6.10,

Resp—_p,, ., Ay, pr(a) = 0 as well. Because all poles are located at P =
+P,, , for some m,n by Lemma 6.11, for each k the meromorphic function

P~ .Z% pi has finitely many poles. Let
ri:=min{|Py,— P | : 1 <m,m' <N, n,n' €N, and (m,n)+#(m' ,n)}

which is positive. For 1 <m < N and n € N, let Bt ,, (resp. B, ) be the
ball around Py, ;, (resp. —Pp, ) with radius g, so that Bim N Bi, = 0 for
(m,n) # (m',n'). Define C°:= C\ Ur<meNn>1(B mnUB,, ). Recall that
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A, po(@)™t = C(a,)e ™ P2 f(P) for f(P) in (6.18) and some explicit
C(a,7y) not depending on P. We claim that there exists K € N with

(6.23) M := sup |P|"Kem™NIRe(P)/2) £(P)| < 0.
Pece

We first prove Lemma 6.12 given (6.23). For Re P < 0 and P € C°, we have
[PI7 1A po() ™! = Cla, 7)|PI~Ke ™R £(P)] < MC(a, 7).

On the other hand, since [e™"*| < 1 for Re P < 0, we have |Ai7p(o¢)| < 00,
where the bound only depends on «,~,|q| and is uniform in Re P < 0.
Applying Cauchy’s theorem in ¢ to extract g-series coefficients, for k € N, we
get Cr(a,v) 1= supge p<o |Ay,pr(a)| < oo. Since A, pr(a) = A, _pi(),
we get Sup peco \P\_K\.Z%p,k(a)] < C with C, = MC(a,v)Ck(a, 7). Since
it has finitely many poles, P~ .Z% pi(c) is analytic for large enough |P|.
By the maximal modulus theorem, [P~ .,Z% pr(a)| < C}, for large enough
|P|. Thus P‘K.Z%p,k(a) is a rational function and so is .Z%Rk(a).

It remains to prove (6.23). Note that I'(1+ ” + 1“’P) = mwsin(7(1+ % +
BE))-Ir (-4 & — BP)=1 by (A. 7) Moreover, by our choice of C° we have
maxpece €™ ReP)/2 sin(r(1 + 7 + 92))71| < oo. Since f(P) = f(—P),
it suffices to show for 1 < j < N there exist some C; > 0 and K; € N with
(6.24)

ivP ivP

7’ 77’

(1 L
Because 42713
(= %)

is analytic in P for Im P > 0, it suffices to check that

it is polynomlally bounded for |P| large. By Stirling’s approximation (A.10),
D(z) ~ /Ze™?22(1+ O(|2| ™)) as [z] = o0 Wlth Rez > 0. For Im P > 0,

this applies to I'(1 4+ % - E) and I(—2- — %) as |P| grows large.
;fherjfore (6.24) holds if K; > 1+ % - (—JT) = % + 1, which implies
6.23). O

We now prove Lemma 6.13 using the expression of "4?% p(a) from Lemma 2.12.

Proof of Lemma 6.13. We assume that P < 0 and N = _Ta € N. Recall
that Afhp(a) = [q_%n(q)]o‘(Q_%)_Qeia%p.flghp(a) from Lemma 2.12 where
(6.25)

1 o
ft?y pla) = E[(/ ez (Fr(@)=F=(0)) (9 Sin(7r:17))_a“//2empxegy°°(x)d:n> 7].
’ 0
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Under our assumption that —% € N, the right side of (6.25) is analytic in ¢
for |q| < 1. We claim that for a fixed r € (0, 1),

7.p@

) : .
(6.26) polim .AO @ = 1 uniformly for ¢ € C with |¢| = 7.

Since A? p(a) = A? p(a)AY p(a)™! = (q—l—lzn(q))a@—%>—2A3,P(Q)Agvp(a)—1,
we get Lemma 6.13 from (6.26).
To prove (6.26), we introduce the (complex) measure

,u,q(dx) = e%(Fr(x)—Fr(O))(z Sin(ﬂx))—aw/2e7r’yP:ce%Yw(x)dx
so that A?V,P(a) = E[ﬂq([Q 1])N] for ’q‘ < 1. For e € (O, 1)7 we have

N

020 B0 =3 (7 )Ebna0.2) (e )Y

i=0
For I C [0,1], let M,(I) := supxelM:re%‘FT(””)_FT(ON. Then |pq(I)] <
M, (Ipo(I). Holder’s inequality and the independence of F; and Y., imply
(6.28)  [Eluq([0]) nglle, 1)V

< E[M,([0, 1))V |E[o ([0, €))V] (M)l—@

Efuo([0, )]
For P < 0, note that

Bl 1)) < = NPB ([ @singre) 2=z ]

and
e/2 S N
Elpo([0,£])V] = e ™ NIPI2E | ( / (25in(mz)) =723 dz) 7).
0

Since E[M,.([0,1])V] < oo and E[uo([0,1])V] < oo, by (6.28) there exists a
constant C' = C(e,r) such that for i < N, |¢| = r, and P < 0, we have

629)  [Elpg((0, €]} gl 1)V )] < Eluo((0, 1)V IC (e, r)e 7717
Applying (6.27) and (6.29), we have for a possibly enlarged C'(e,r) that
(630)  Elpg([0,1)™] = Elug ([0, )] + Efuo([0, 1) e, r)e= 171

for |¢q| = r and P < 0. A similar argument shows that for some C(¢) > 0
we have Elyio([0, 1))™] = E[uo([0, 6]) ](1 + C(e)e ™M),

Set me 1= SUP,e |g/=r ez (Fr@)=Fr(0) _1| 50 that |u,([0,€]) — po(]0,€])] <
mepo([0,€]). Then

|1 ((0,€D)™ — po([0,e)™] < 11q ([0, €]) — p0([0,])] x NM;([0, 1) o ([0, )™
< me x NM,([0,1])" o ([0, ])™
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By the dominated convergence and continuity of F(z) at z = 0, we have
)~ ]
]

lim. o E[m.M,([0,1))] = 0, hence lim. o E%Z‘I% g)N = 1 uniformly in
|g| = r and P < 0. Combined with (6.30), we get (6.26). O

6.5. Proof of Theorem 2.11. We need to prove .Z%p,n(a) = Z, pn(a) for
Z, pn in (2.17). Let us outline the proof. First, from explicit expression we
see that as a meromorphic function in

(631) Z'y,P,n(Oé) = Z4/7,Pn(a)'
By Theorems 6.1 and 6.5, for x = 3 and =* € N we have

(6'32) Z2X7P,n(a - X) = Yn(X7 a)Z2x,P,n(a + X) + Zn(Xy 04)'

We will show that both sides of (6.32) admit meromorphic extension in x
around [0, 00) and the validity of (6.32) can extend to x € (0,00). Therefore
Z, pn(a) satisfies the shift equation (6.5) for x = 3, namely

(6.33) Zypnla=X) =Yn(X, @) Zy,pnla+X) + Zn(x; a)
with x = 3. Since Z, pn = Z4/5,pn by (6.31), we see from (6.32) that
Z., pn(c) satisfies (6.33) with x = % as well. Now the uniqueness in Propo-
sition 6.3 implies Z., p,(a) = A, pa(a).

We use an inductive argument to implement this outline. We say a func-
tion f(x) is x-good if it admits meromorphic extension to a complex neigh-

borhood of [0,00). We say a function f(w,x) is (w, x)-good if there exist a
complex neighborhood U of [0,00) and countable subset V' C U such that

e for each w € D, f(w,x) is meromorphic in x on U with poles in V;

e the multiplicity of the poles are uniformly bounded in w € D;

e f admits an extension to D x (U \ V) where f is (w, x)-regular in
the sense of Definition 4.6 with x in place of a.

For x € {3, 2} and j € {1,2} define the normalized expressions

(6:34) Gyt (w) == G (W)W (@,9) (@) Ay pola = x)
(6.35) Ot 1 (w) = o5 (@)W (,7) g g(@) ™ Ay pola = x) ™

Normalizing (4.17), we see that for some Xi,n(a) not depending on w

(6.36) 057 (w) = GU7 (w) + XI (@), (w) for n € N and j = 1,2,

X,'l’l,l ] xX,n

where v, | (w) are as in (4.9) and (4.10). Note that Va4l = ~§i1(0) for
Vx,h defined in Theorem 6.1 and used in the expression (6.6) of Z,(x, @).
We now inductively prove the following statements (a),, and (b),, indexed

by n=0,1,2,---. Theorem 2.11 then follows from (a),.

(a)n : Z'y,Pn( ) = JZ'y,Pn(O‘) for a € (_%7262)7 Y€ (072) and X € {%7 %}
(b)p : (w,x) — qun 1(w) is (w, x)-good for each a € R and j € {1,2}.



58 PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS

For n =0, since Z, po(a) = .Z%R()(oz) 1, (a)g holds. Since Gx’é ;(w) =0,
we have )Nfl N(a) = (JZ?’:L’I(O) =1 and Xfml(a) = ¢X,n,2(0) = —1. By the
expression for v n(w) in (4.9) and (4.10), we get (b)o.

For n € N, assume (a),, and (b),, hold for 0 < m <n — 1. We first show

that Gii 1 (w) and Gii 1 (w) are (w, x)-good. By Definition 4.8 and (6.34),

(Hy = (5 + 23 (P? +20)) /4) Gy 3 (w) = G 3 (w)
where Z]';}L 1(w) is defined as gX”nJ( w) in (4.7) with ¢Xn ;.1(w) in place of
QSX’fL 11( w). Since (b),, holds for m < n, gx,n,l(w) is (w, x)-good. Applying
Lemma C.6 to [, oy (x — Z)Mﬁzil( ), where M is a uniform bound on the
multiplicity of poles of x — ?Jféi 1( ) we see that Gx n1(w) is (w, x)-good.
The same argument shows that Gx n1(w) is (w, x)-good as well.

We now prove (a),. First fix o < 0. By our induction hypothesis, for
m < n, .Z%p,m(a) = Z, pm(a). Let Xk = 5. For k € N large enough we
have a > —% + & with v, = 2x, = —$. For such k, Theorems 6.1 and 6.5
yield that (6.32) holds for x = xk. Namely for n € N and x = xx we have

Z2X7P,TL(O‘ - X) = YTL(X’ O‘)ZQX,PJL(O‘ + X) + Zn(Xy Oé).

We now show that both sides of (6.32) are x-good for a fixed o < 0. By
their explicit expressions, Iy, I';, 1, I'y2 and Y, (x, @) are meromorphic in
x € C. Moreover, (A.3) and the definition of 7, (@) in (5.3) yield

ﬁ 1 ) 42Ot yor 2 _ i Mhen(@) .

k=1 it Theol@)

and H(l - q%)4
k=1

lX(lX+1) a1,

_anna n

n= 177x0a

nxn( a)

no(@)
X 0
Gx’ﬁL 1(0) and Gii 1 (w) is (w, x)-good, VX,’n is x-good. By expression (6.6)
for Z,(x, @), we see that x — Z,(x,a) is x-good.

Recall the following standard fact on meromorphic functions.

SO are rational functions in x for n € Ny. For j = 1,2, since Vxn =

Lemma 6.14. If f and g are meromorphic functions on an open set U C C
with f(z) = g(zk) for some z, € U with an accumulation point in U, then
f=gonaloflU.

Since limg_ 00 Xx = 0 and both sides of (6.32) are x-good, Lemma 6.14
implies that (6.32) holds for x € [0,00). As explained at the beginning
of this subsection, by (6.31) and (6.32), for a fixed v € (0,2) and x €
{3, %} the shift equation (6.33) holds for a € (—% + x,0). By Theorem 5.1
and Corollary 5.2, both sides of (6.32) are meromorphic in « in a complex
neighborhood of (—% + x,2Q — x). Thus (6.32) holds for v € (0,2), x €
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{3, %}, and (—% + x,2Q — x). Now Theorem 6.1 and the uniqueness in
Proposition 6.3 imply (a)p,.

It remains to prove (b),. The argument is parallel to the proof of Corol-
lary 5.2 with x in place of a. By Theorem 5.1 and (6.2), we have

~01 Ny 7
(b;’n,l(o) = |:A—Y7Pn - + Z o m 'y,Pm( - X)]7
m=0 T,X 0
“a,2 T,X n m(a) I‘0 1 1- eﬂXP_iﬂX
) 0 — |:A 7_,4 :| : n .
¢x7n,1( ) v Pl +X) + mz:o 0 0(@) %Pm(a +X) Too 1+ emxPHiml

Since (a),, holds for m < n, we see that (bxnl( ) is x-good for j = 1,2.
Since V& = G7 (0) is x-good for j = 1,2, by (6.36) we have X7 ,(a) =

XM, 1
¢§n L(0)= V2 which is x-good. Therefore X7 ,,(a)v 0§\ (W) is (w, x)-good.

Again by (6.36) we get (b)y,. O

APPENDIX A. CONVENTIONS AND FACTS ON SPECIAL FUNCTIONS

This appendix collects facts on the special functions we use in the main
text. See [DLMF, Chapters 20 and 23] and [Bar04] for more details.

A.1. Theta and Weierstrass elliptic functions. For ¢ € (0,1), the
Dedekind eta function is n(q) = qi [122,(1—¢%*). For 7 € H= {Im 2z > 0},
set ¢ = ™. Although ql_lz [T, (1 — ¢%*) is multi-valued for complex g, we
interpret it as single-valued in 7 € H via

(Al) T,(eiwr) — ei{r—; H(l _ e2ki7r'r)'

For v € C and 7 € H, the Jacobi theta function is given by
(A.2)

O, (u) = —2¢'T sin(mu) H(l — 2P (1 — 2 cos(2mu)el?FTT 4 MATT),
k=1
Let © (u) denote the u-derivative of ©,(u). In these terms, we have
(A.3) 0L(0) = —2me’ T [ (1~ €2H77)% = —2mp(el™)?.
k=1
For a fixed 7, Weierstrass’s elliptic function p is given by
Y (u)2 @//( ) 1 @///( )
A4 =L .
. Y= wp e, Fa )
It admits the following expansion (see e.g. [DLMF, Equation (23.8.1)])

2 2n

(A5) p(u) = Wi — Z E%;T_qu cos(2mnu) — — —I- Z qu)

n=1
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where p(u) = 1/u?+0(u?) due to the identity >°°0 % =y, (1_‘1;7;”)2.

This expansion implies that p(u) further admits a g-expansion
(A.6) p(u) = Z on(u)g", where p,(u) =0 for odd n.
n=0

By (A.5), there are polynomials @, (w) with @, (w) = @, (u) for w = sin?(7u).

A.2. Gamma function and double gamma function. The gamma func-
tion is I'(2) := [, t* te~'dt for Rez > 0. In particular, I'(n) = (n —
1)! for n € N. It has meromorphic extension to C with simple poles at
{0,—1,—-2,--- } and satisfies I'(z + 1) = 2I'(2), the reflection formula

(A7) Fz)Ira-=z) = (7] for z ¢ Z,
and the Legendre duplication formula

1
(A.8) [(22) = 22 1 20 (2)D(z + 3

By (A.7), T'(z) has no zeros and I'(z)~! is entire with simple zeros at
{0,—1,—2,--- } so that

(A.9) Res I'(z) = (_1)n'

z=—n n!

The z — oo asymptotics of I'(z) are governed by Stirling’s approximation;
for each § € (0,7), with an error term O(|z|~!) depending on §, we have
(A.10)

2
I'(z) ~ 4/ ge_zzz(l +0(|z|™Y)) for |z| > 1 and argz € (6§ — 7, ™ —4).

Finally, for Re(z) > 0 the double gamma function F%(z) is

OOﬁ[ e—zt_e—% (
(

_
tla e ¥)a—e ) 2 t

0l

(A.11) logI‘%(z) ::/0

The function I' 1 (z) admits meromorphic extension to C which has no zeros

and has simple poles at {—34* — 2Tm | n,m € N}. Moreover

(A.12) F%(z +x) =V ZﬁXXZ_%F(XZ)_lrg(Z) for x € {%, %}

For 72 ¢ Q, ['y(2) is completely specified by (A.12) and F%(%) = 1. Other
values of v can be recovered by continuity. We also use the function

(A.l?)) S% (Z) = F% (Z)F%(Q - Z)_l.
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A.3. Identities on O, (u). In Section 3 we use the following identities on
the theta function ©,(u). Here we use the notations 0/ (u) := 9,0, (u) and
O(u) := 0yuO-(u), where 9, and 9, are holomorphic derivatives.

(A.14) 70,0 (u) = i@l(u).
O’(a—-0b) ©O’a 0”(b O (a—10b) /0 (a O’ (b
(A.15) @:E - bg " eiga; * @:Ebg - 2@iga— b; <@:§a§ - @ib;)
L&) O (h)  e7 () _
O,(a) O:(b)  ©4(0)
(A.16)
@T(U+z) — _je 17ru—”r—7 AT ﬁ o(2n=1) 17r7'+27mu)(1_e(2n—1)i7r7——27riU).

2

(A.14) comes from [WW21, Section 21.4], (A.15) is stated in [FLNOO9,
Equation (A.10)] and may be derived by applying the operator 0,0, — %87
to [WW21, Exercise 21.13], and (A.16) comes from direct substitution.

A.4. Fractional powers of O,(u). We first recall the following fact.

Lemma A.1l. Fix a positive integer k. Suppose f is analytic on a simply
connected domain U C CF such that f(z) # 0 for each z € U. Then there
exists an analytic function g on U such that f = e9. Moreover, if § is an
analytic function on U such that f = €9, then § = g + 2kri for a k € Z.

The function g can be viewed as choice of branch for log f, which satisfies
Re(g) = log|f| and Im(g) = arg f modulo 27. For ¢ € R, we define the
fractional power f¢ by f¢ = el°87 for a specific choice of branch for log f.
For f(q) = q_len(q) = [172,(1 — ¢?*), which is analytic on D, we specify
log f by requiring log f(q) = > 5o, log(1—¢?*) for ¢ € (0,1). By Lemma A.1,
we have:

Lemma A.2. For each ¢ € R, the function [q_%n(q)]c is analytic in D

We now specify ©,(u)¢ as an analytic function of (u,7) in a certain domain.
Note that O, (u) < 0 foru € (0,1) and 7 € iR by (A.2). Moreover, ©,(u) =0
if and only if u = m + n7 for some m,n € Z; see [DLMF, Section 20.2].

Definition A.3. Let D := {z + 7y : x € (0,1) ory € (0,1),z,y € R}.
Define O, (u)¢ = 18097 for ¢ € R and (u,7) € D x H, where log ©,(u)
is specified by requiring Imlog©,(u) = 7 for u € (0,1) and 7 € iR. For
u € R\ Z so that ©,(u) # 0, we define log O, (u) and O, (u)¢ by continuous
extension.

By Definition A.3, we have
(A.17) 0,(2)¢ = |0, (2)|° for z € (0,1) and 7 € iR.



62 PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS

Moreover, for ¢ € R, we have by [DLMF, Chapter 20.2] that

(A.18) O (u+1)°=e ™0, (u)° ifue{z+yr:ye(0,1)}
(A19) O (u+7)° =e 2390 (u)° ifue{z+yr:ae(0,1)}
The following lemma is needed in the next subsection.

Lemma A.4. Fizc> 0 and 7 € H. Let By = {u: 0 < Imu < 3Im7}.
Then there ezists a constant C' such that |©,(u)¢| < C|sin(ru)|¢ for u € B,.

Proof. Define ¢, (u) by O,(u) = sin(ru)p,(u). By (A.2), we have ¢, (u) =
—2¢" AT, (1 — ¢*)(1 — 2 cos(2mu)g?* + ¢**), which is continuous on B,,.
Moreover |¢,(u+ 1)| = |¢-(u)| by (A.18). Therefore |¢,| is bounded on B,
hence |0, (u)¢| < C|sin(7u)|® with C = max, .- lp- ¢ O

A.5. On the definition of the u-deformed block. We first prove Lemma 3.1
and then use it to make sense of fractional powers of f(u,q) needed for the
definition of the u-deformed block in Section 3; see Definition A.7.

Proof of Lemma 3.1. By [DLMF Equation (20.5.10)] we have

O (u) cos
A2 T = +4 (2
(A.20) o () s1n T Z - — sin(2mnu).
Since Re(cot(z)) = e;;%‘(j? and Im(sin z) = cos(Re(z))(e™(?) — e=Im(2)),
o’ (Z) 1— e 4r Im(z)
Im (22 ) = o=
" (@T<z>> e P

0 2n
+ 27 Z ﬁw(e%"lm(z) — 72 ImE)) cos(2mn Re(2)).

Since Im(z) > 0, we have Wl‘%ﬂ;‘lg) > I(1— e~4"Im(=)) Note that
2m Z | e m(z) _ e_%”Im(z)) cos(2mn Re(z))
—q"
o7 q2e27r Im(z) q2e—27r Im(z)
1—¢2 <1 — 2e2rIm(z) B q2e—27rIm(z)>'

For h(f]}') = —q SC’ SlnCe h/( ) = (1_((11221:)2 S (1_q2eg72r1m(z))2 forx € [e_zﬂlm(2)7e27rlm(2)]7
we have

q2e27r Im(z) B q2e—27r Im(z) _ (]2 e27rlm(z) o Im(z)
1— q2e27r Im(z) 1—¢q 227 Im(z) (1 _ q2e27r Im(z))2

2 27 Im(z)

o qe —47Im(z
- (1 — 2e2nIm(2))2 <1 ¢ ( ))‘
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1
For Imz < %ImT, we have ¢?e?™Im? < ¢3,

(07 1)7

Since ﬁ is monotone on

o q2e27r Im(z)

_ 27 q _
o —4nIm(z) _—4rIm(z)
1_q2 (1_q2e27r1m(z))2 <1 € ) < 1—q2 (1_q%)2 (1 ¢ )

[NIES

Nl

1 1
(1—¢2)?

Since lim,_so % = 0, go with the desired property exists. O

From Lemma 3.1 we immediately have the following.

Lemma A.5. Fiz ¢ € (0,q0) and u € B,. Let the straight line between
O,(u) and O,(u+1) = —O,(u) divide the complex plane into two open half
planes H, and H, where H, contains a small clockwise rotation of ©.(u)

viewed as a vector. For x € (0 1), we have ©,(u+ x) € H, .

Proof. Let g(z) = Imlog ©;(u + z) for € R. Since (log©;)" = g/ﬂg’ by

) =
Lemma 3.1, g(1) — g(0) = —7 and ¢'(z) < 0 for € R. By the definition of
H,, for € (0,1) we have O,(u + z) € H,. O

Fix v € (0,2) and x € {3, %} Recall f(u,q) from (3.1). For notational
simplicity, we set ¢ = ZX and write

1
(A.21) flug) = [ u+a)ulde)
0
where v(dx) is the measure on [0, 1] given by
(A.22) v(dz) == |0, (z)|" 7 T2 @)y,
Using Lemma A.6 below we can define the fractional power of f(u,q).

Lemma A.6. Fiz q € (0,q0). Then f(u,q) is analytic in v on B, and can

be continuously extended to B,. Moreover, f(u+1,q) = e C’“f(u q) and
f(u,q) #0 foru e By,. Fmally, f(1,q) > 0.

Proof. By Lemma A.4, ©¢ is bounded on B, and continuous except at
integers. Therefore f(u,q) in (A.21) can be continuously extended to B,.
By (A.18), f(u+1,q) = e~“™ f(u, q) for u € B,. By Lemma A.5, Im(6, (u+

)c@ (u)=¢) < 0foru € B, hence Im(O,(u)~¢f(u,q)) < 0. Since O (u)~°f(u,q) =

fo (u+2)°0.(u)"v(dz), we get f(u,q) # 0. Since v is supported on [0, 1]
and@ (1+a:) > 0 for z € (0,1), we have f(1,q) > 0. O

Definition A.7. Fix ¢ € (0,qg) as in Lemma A.5. We define u +— log f(u, q)
for u € B, by requiring lim,,_,; Im[log f(u, q)] = 0. For each 5 € R, we define
f(u,q)P = ePlogfwg),
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APPENDIX B. BACKGROUND ON LOG-CORRELATED FIELDS AND
(GAUSSIAN MULTIPLICATIVE CHAOS

Let us first provide a general definition of log-correlated fields.

Definition B.1. A centered Gaussian process X on a domain U C R? is
called a log-correlated field if it admits a covariance kernel of the form
1
(B.1) E[X(z)X(y)] = clog gt 9(z,y),
where ¢ is a positive constant and g : U x U — R is a continuous function.

Due to the singularity of the log kernel, these fields cannot be defined as
pointwise functions but only as random generalized functions (distributions).
Given a random variable X', we use E[X X (z)] to denote the distribution
such that [ dzh(z)E[XX (z)] = E [X ([ dwh(z)X(z))] for all suitable test
functions h. In a similar fashion, the covariance kernel (B.1) means that for
all test functions hq, he, one has

B |( [ am@x@) ([ atawx)| = [[ asaum@mepixo i

Consider a field X as in Definition B.1 with d = 1,¢ = 2, and fix vy € (0, 2).

X WzE X 2
2Xn =5 EXn(2)"] g4 converges

For a large class of regularizations {X,,} of X, e
in probability to the unique GMC measure e3¥dx associated with X , see,
e.g. [Berl7]. Definition 2.3 is a special case of such limiting procedures. Con-
sider the log-correlated field Xy on the upper half plane with its boundary

included with covariance

(B.2) E[Xu(x)Xu(y)] = log —log |z +i|> —log |y +i|> +2log 2

|z — yllz — 7
for z,y € HUR. The field Xy is an example of a free boundary Gaussian
free field (GFF) on H. For x € HUR, let X (z) be the average of Xy over
the semi-circle {z € H : |z| = |z|}. Let Zy := Xg — X. Then X and Zy are
independent and Zy is a log-correlated field with covariance

||V Jy|

[z =yl

(B.3) E[Zu(z) Zu(y)] = 2log

We use the field Zy and X in Appendix D.

We now state a general result of existence of moments of GMC measure
covering all situations encountered in the main text. Concretely, we will use
the case when F(z) below equals 3 F;(z) or 0, where F; is as in (2.3).

Lemma B.2 (Moments of GMC). Fiz v € (0,2) and o < Q. Fiz x €
{3, %} Let F : [0,1] — R be a continuous Gaussian field independent of

Yoo(z), and f : [0,1] — (0,400) be a continuous bounded function. Then

forp < % A2(Q — a) we have

1 . P
(B.4) E K/ el sin(mz:)_;f(:n)egy‘x’(x)dx) ] < 00.
0



PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS 65

For q € (0,q0) with qo defined in Lemma 2.15, let B, = {z : 0 < Im(z) <
%Im(T)} and K C B, be compact. Forp < %/\%(Q—a), we have uniformly
mu € K that

P

} < .

Forp < 2% A %(Q — aV7), we have uniformly in v € K and y € [0,1] that

,\/2
(B6) ,
2
E [ / F @+ T EY o @)oo )] i () =7 O (2 + 1) 2 f(z)e2 > dx ] < 0.

0

Proof. For (B.4) we are in the classical case of the existence of moments of
GMC with insertion of weight «. The assertion follows from the argument
for [DKRV16, Lemma 3.10], adapted to the case of one-dimensional GMC.

For (B.5), when p > 0, by Lemma A.4 |0, (z+u)* | is uniformly bounded
from above for v € K and z € [0,1] therefore (B.5) follows from (B.4).
When p < 0, let hy(z,u) := —Im(O,(u+ )2 O-(u) "2 ) and hy(z,u) =
Re(O,(u+z) 2 ©,(u)” 2 ). Since A1 <1, by Lemma A.5, we have hy (z,u) >
0 for u € B, and z € (0,1). On the other hand, we have |ha(x,u)| > 0 for
u € By and x € {0,1}. Therefore |h(x, u)|A|ha(z,u)| is uniformly bounded
from below for x € [0,1] and v € K. Now we again get (B.5) from (B.4).

Lastly (B.6) can be treated the same way as (B.5) except the bound on p
changes to p < ;45 A %(Q — a V) due to the %E[Yoo(a:)Yoo(y)] term. This
is equivalent to adding a ~ insertion which results in a modification on the
bound on p as shown in [DKRV16, Lemma 3.10]. O

1
(B.5) E [ / oF(@) sin(wx)_%@T(x + U)%f(a:)e%%"(x)dx
0

Finally, we state a form of Cameron-Martin’s theorem used in the main
text. See [Shal6], [BP21, Section 3.3] or [Arul7, Theorem 0.2] for details.

Theorem B.3. Let Y(x) be either of the Gaussian fields Yoo(x) or Yi(x)
on [0,1] defined in Section 2.1. Let X be a Gaussian variable such that the
joint process (X,Y) is Gaussian, and let F' be a non-negative measurable
function. Then

(B7) E[e* VIR (@)acpon)| = B [F(Y (@) + EXY @)aepn)]

Moreover, non-negative measurable functions f and G, we have
(B.8)

1 1
E[ex—;wc< / f(:v)egy(x)dxﬂ :E[G ( / f<x>e%<Y<x>+ﬂ*:[w<xn>d$ﬂ.
0 0

Theorem B.3 means that under the reweighing by the Radon-Nikodym
derivative eX_%]E[X2], the law of Y is that of (Y (z) + E[XY (2)])ze[o,1) under
the original probability. We frequently apply (B.8) to the case where G(z) =
P where the functional of interest becomes a moment of GMC.
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APPENDIX C. HYPERGEOMETRIC DIFFERENTIAL EQUATIONS

For parameters A, B,C and a function g on C, the hypergeometric equa-
tion (see e.g. [DLMF, Chapter 15]) with inhomogeneous part g is

€1 (w(l = w)yw + (C = (1+ A+ B)w)dy — AB) f(w) = g(w)

This appendix reviews the background on the solution theory to (C.1). We
will omit the proof of basic facts such as Lemma C.1.

C.1. Homogeneous hypergeometric differential equations. If g(w) =
0, the homogeneous equation (C.1) can be solved by the Gauss hypergeo-
metric function o F1 (A, B,C;w), whose power series coefficients are charac-

terized by ag = 2F1(A, B,C;0) = 1 and agzl = ((Zj_f))((gig)) for n € N. It

solves (C.1) with g = 0. Moreover, we have the following.

Lemma C.1. Set vi(w) := oF1(A, B,C;w) and vo(w) := o F1(1+A—C, 1+
B —C,2—C;w). Then both vi(w) and w'~Cvy(w) solve (C.1) with g = 0,
and they form a linear basis of the space of solutions to (C.1) defined on an
open subset of C\ ((—o0,0] U [1,00)).

If Re(C') > Re(A+ B), the series for 9 F1 (A, B, C';w) converges absolutely
on the closed unit disk D. Therefore we have:

Lemma C.2. IfRe(C) > Re(A+ B), both v1(w) and va(w) satisfy Property
(R) from Definition 4.3.

A separate basis of solutions to (C.1) with good behavior at w =1 is
2F1(A, B, 1+ A+B—C, 1—w), (1—w)¢~ 4By (C—A,C—B,1+C—A—B, 1-w).
The two bases are related by connection equations. In particular, we have
rer¢—-A-B)
2) o (A B,1+A+B—-C,1—w)=
re-or{C-A-B) ,_¢
I'(l—ATI(1-B)

If Re(C) > Re(A + B), the coefficients in (C.2) satisfy Fuler’s identity
(C.3)

va(w).

T(C)[(C — A— B) I'(2-C)[(C—A—B)

Moreover, % is holomorphic in A, B, C. Since I' is meromorphic

on C with poles at {0,—1,—2,---} and has no zeros, we have the following.

Lemma C.3. Let V = {(A,B,C) € C?: Re(C) > Re(A + B) and C ¢ Z}.
Both functions (w, A, B,C) +— v1 and (w,A,B,C) — wvg are continuous
on D x V and analytic on D x V. Moreover, if C — A and C — B (resp.
1—A,1—B) are not in {0,—1,—2,---}, then v1(1) # 0 (resp. va(1) #0).
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C.2. Inhomogeneous hypergeometric differential equations. If g(w)
is not identically zero, then any solution to (C.1) can be written as

(C4) f(ZU) = fhomog(w) + fpart(w)a

where fpart(w) is a particular solution to (C.1) and fhomog(w) solves the
homogeneous version of (C.1). We will give a particular solution to (C.1)
using power series. We need the following extended notion of integration.
Suppose f(w) =Y 77 apw™ for w € D such that

(C.5) i ] < 00,

and B € C\{1,2,---}. We define ["¢t~7 f(t)dt by

. tBf(t)dt = w' P w” D.
(C.6) /0 f(t) w Zn—ﬂ—i—l or w €

The following lemma, which is left as an exercise to the reader, justifies the
integral notation [’ ¢~ f(t)dt.

Lemma C.4. In the setting of (C.6), we have

0

%(/Ow t‘ﬁf(t)dt> = w‘ﬁf(w) for w € D.

Moreover, w? [("t=P f(t)dt = >0, nf—ﬁ"ﬂwnﬂ satisfies Property (R).
The following lemma is used in the proof of Corollary 4.4.

Lemma C.5. Let U C C? be such that (A, B,C) € U if and only if
C¢Z, Re(C—A-B) e (0,1),and C—A,C—B,1-A,1-B ¢ {0,—-1,--- }.

Fiz X € {0,1 — C}. Suppose g(w) = wXg(w), and g(w) is a function sat-
isfying Property (R). Then for each a € C, there exists a unique function
fa satisfying Property (R) such that f,(1) = a and w* f,(w) solves equa-
tion (C.1). Moreover, (w,A, B,C) — fu(w) is continuous on D x U and
analytic on D x U.

Proof. We check easily that if Y a,t" satisfies Property (R) and >, ; b,t"
satisfies (C.5), then (377 ant™) (3_5 bnt™) satisfies (C.5). By (C.5), the se-
ries expansion of (1 — #)4+tB~=C around 0 satisfies (C.5). Thus (lvigtc%

(resp., W%,LA,—B) is tX (resp., t“71X) times a power series satisfy-

ing (C.5). Let

W() PC/W v1(t)g(t) —
= 7 f D
—I—l_Cw ; tl—C(l_t)C—A—Bdt’ or w €D,
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where both integrals in (C.7) are defined via (C.6). By Lemma C.4,

(C.8) both w™ /0 ’ ﬂl’fg%dt

w t)g(t
and w!=¢=X /0 tl_c(vll (_)f)(c)—A—B dt satisfy Property (R).

Thus w™ fpar(w) satisfies Property (R) and is analytic in A, B, C.

Since the Wronskian determinant of v; and w'~Cvy is given by (1 —
Cw=%(1 — w)¢~174=B by the variation-of-parameters method in differ-
ential equations, fpart is a particular solution to (C.1). Since vi(1) # 0
by (C.3), if X =0, then

vy (w
(C9) £alt0) = Fra (1) + (a = Fpare(1)) 202

vi(1)
is the desired function, which is unique by Lemma C.1. If X =1 - C, we
conclude similarly with w!=®vy(w) in place of vy (w). O

We now extend Lemma C.5 to incorporate the (w, «)-regularity.

Lemma C.6. Suppose U C C is an open set and g(w, &) is a function which
is (w,a)-regular on D x U in the sense of Definition 4.6. Suppose we are
in the setting of Lemma C.5. For a € C, let f(w,a) be defined as fq(w) in
Lemma C.5 with g = g(w,a). Then f(w,a) is (w,a)-reqular on D x U.

Proof. Recall that oF (A, B,C,w) is holomorphic for C ¢ {0,—1,-2,...}.

By the same argument as in (C.8), we see that both w™ [’ (lfigtc%dt

and w!~¢—X fow W%%,—Bdt are (w,a)-regular on D x U. Therefore

w™X foart 18 (w,a)-regular on D x U with fpar from equation (C.7). If
X = 0, we obtain Lemma C.6 by (C.9). If X = 1 — C, we can use the
counterpart of (C.9) with w!'~Cvy in place of vy. O

We need the following variant of Lemma C.5, which can be proved by the
same argument as Lemma C.5.

Lemma C.7. Suppose C' is not an integer. Fiz X € {0,1 — C}. Suppose
g(w) = w¥g(w), and g(w) is an analytic function on D. Let fpau be de-
fined as in (C.7). Then fpeme is a particular solution to (C.1). Moreover,
w™X fpai(w) is an analytic function on D.

The next lemma is used in the proof of Lemma 4.10.

Lemma C.8. Suppose A, B,C, X, g are as in Lemma C.7 with Re(1—-C) >
0. Given 0y € [0,27), let D = {z = reél’ : r € (0,1),0 # 6o}. Suppose f
solves (C.1) on an open set U C D. Then f can be extended to an analytic
function on D such that as w € D tends to 0, f(w) tends to a finite number.

Proof. Since wX restricted to U can be analytically extended to D, Lemma C.8
follows from Lemma C.7, (C.4), and the solution structure of the homoge-
neous hypergeometric equation from Section C.1. O
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APPENDIX D. PROOF OoF OPE LEMMAS

In this section we prove Lemmas 5.4 and 5.6. We will be brief when the
arguments are straightforward adaptation of those in [KRV2O RZ20b].

Proof of Lemma 5.4. Set lg = l2. Let g(u fl 20O (2)” 2 O (u +

2
2)Te™Prdz and f(u) = E[g(u +%] Using (3.6) we can write ¢% (u, q)
2 .
as X(u)f(u) where X(u) = W(e™)e™ ™ sin(7u)0O, (u)~ and W(el™T)
is defined under (3.6). X is thus differentiable at 0. For t € [0,1], let

g(t,u) == (1 —t)g(0) + tg(u). The claim of interest can be reduced to
determining the leading order of:

)

3
~

1) =10 = (-2 +3) [ Ellat) ~ g)ate.)”5 Hlar

By a direct asymptotic analysis as done in [RZ20b, Equation (3.15)], we
have uniformly in ¢ € [0, 1] that

(D1) T w207 E(g(w) — g(0)g(t,u) 5

N

]

1 _a_ 1
:(1 i ewyP—2i7rlo)CE [(/ e%YT(m)GT(x)_%__Z umdx> ¥ 2] |
0

. iy 2 2 2 AP (Y a7
217‘([0—”%q—%—%n(q)—%—%gé(o)ﬂo F(l 2 )F( 12"" 2 4 ) Since

(=7)
1+ 2lp € (0,1) and X is differentiable at 0, (D.1) yields that

lim sin(mu) =20~ 1((;50‘ (u,q) — ¢§(0,Q))

u—0
—2lp—1 7y P—2irl a 1
7 0TE(0)(1 — ™ ) -~ t5 C
vy

1 _a_ 1
( / e%YT<w>eT<x>—%—§emPrdx> ! ]
0

Recall ©7(0) = —271(q)? from (A.3). Plugging in the value of ¥(0) and the
definitions of W3 and .Af]y p» we get Lemma 5.4. (]
2 )

»

whereC = ¢

E

Before proving Lemma 5.6 we first recall a probabilistic interpretation
of the reflection coefficient R(«,x, P) introduced in (5.11). Consider the
Gaussian field Zyg in Appendix B defined on the upper half plane with
covariance

(D.2) E[Zu(x)Zu(y)] = 2log ||x| v |y|| for x,y e HUR.
r—y

For A > 0 consider the process

(D.3) B Bs—)\s s>0
' ST ) Bos4+As s<0,
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where (BS —A8)s>0 and (Bg — \s)s>0 are two independent Brownian motions
with negative drift conditioned to stay negative; see [DMS21] for more details
on this process. Consider an independent coupling of (B, Zy) with A =
%. For o € (,Q) , let:

(D) pla, 1,7 E+mP)
1 &0 ’YBQF 27 —v/2 s X P 1z —v/2
== / e2”v (eﬁ a(—e™%) | omimgtmyP o5 Zu(e )> dv.
2/
Then the boundary two-point function for boundary Liouville CFT (without
bulk potential) is defined by

_ . . 2(Q-a)
(D.5) R(a,1,e” 2 +mF) rﬂ[(p(a,l,e—”%“”)V }

It was introduced in [RZ20b]. It was proved as [RZ20b, Theorem 1.8] that
(D.6) R(a, 1,6_“%4'”1)) = R(a, x, P) with R(a,x, P) in (5.11).

An analogous two-point function was first introduced for Liouville CFT on
the Riemann sphere in [KRV20]. A special case of R(a, 1,e 72 ™7 was
computed in [RZ20a]. They appears naturally in the first order asymptotics
of the probability for a GMC measure to be large.

Proof of Lemma 5.6. We write u = it and work with small ¢ > 0. For a
Borel set I C [0, 1], we introduce the notation

(D.7)
o a X

Ki(it) :== /e%YT(m)67($)_%®T(it +2)2 ey, and s = -3 + pot
I

Let h be a real parameter chosen slightly larger than x(Q — «). Recalling
the definition of X given in Appendix B, let g, (t) := e3Fr(03X(Umt™™) anq
o) = OL(0)3 % (2m) T tF+H3(NQ-0) K EIFOPl (1), Let M be an
exponential random variable with rate (QQ—«), and recall p(«, 1, e~im g +myP )
from (D.4). A straightforward adaptation of the OPE method in [KRV20,
RZ20b]? gives the following two claims for « sufficiently close to Q. First as

t — 0, the difference E[K| 1)(it)*] — E[K[g(0)°] is given by

(D.8)
E[(K (14 (it) +1

X
2

oe2M pla, 1,e7 2 TP~ BIK(, 1 (it)°] + o(t¥O7).

2In [KRV20], see the proofs of Lemmas 9.5 and 9.6. In [RZ20b], in the proof of Lemma
5.6, see equations (5.19), (5.25), (5.49).
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Secondly, we have
2(Q-a)

(D.9) lim X~ QE[g;

s 2(Q—a)
lim K (it)” ]

atx—2Q

1
— CE[( /O 37 @)Q, (g)~ 3N TPr gp) ]

for the constant

2
Since 2™ has density %(Q - a)v_W(Q_a)_llwldv one has

E[(K (g1 (it) +12 ore2™p(a, 1,e ™2 7)) ] — B[K (4 1y (it)°]
2 & dv
—2(Q-a)E W
@ [/1 v5 (@@
<<K(t,1_t>(it) +i% (a1, e_i”%wyp)”) - K(t@—t)(it)sﬂ

= O02(Q - ol 1,67

(1+u)s—1 2@Q-o 20w
’ |:/It du u%(@—a)—i—l Tt K(t,l_t)(lt) ¥ 7

X i OX
i2 oipla,l,e T2 TP

where we have applied the change of variable v = R () v

X _in X P
. L 1Tgtp(a717e im 5ty ) . .
with u; 1= K o0 (D) being random, and where flt is a complex

integral over the half line I obtained by rotating the real interval (|u|, +00)
by an angle of arg u;. Notice that lim; ¢ u; = 0 almost surely. By a standard
complex analysis argument, as ¢ — 0 one has that:

(1+u)y—1 /+°° (1+u)s—1
/It du—5——— @t —\J duiu%(qz—a)ﬂ (14 o0(1)).

uy utl



72 PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS

This then implies:

E[(K(t,l—t)(it) + iLQXUtG%MP(OG L, e_iW%erP))s] - E[K(t 1— t)(lt)s]
= }@- )E(Q — a)ﬁ(a 1 emp_i)

1+ E(Q O!) . s—2 —Q —
/d ) |:’Y K(t,l—t)(lt) W(Q )]—I—O(tX(Q ))
u’y
(22 i)r( 2Q-a—
_ _x(Q—-a) “/ 72 24 Ty —M
i N R(a le 2)
Y Y
(Q@—a)

By using the two claims (D.8) and (D.9) we arrive at:

E[K[o,1(it)*] — E[K[y,11(0)"]

Now the asymptotic of the difference in Lemma 5.6 can be reduced to that
of E[K[1(it)°] — E[K]o11(0)*]. Since 1 + 2l = x(Q — «), by (5.12) and
R(a, 1, e_i”%“wp) = R(a, x, P), we obtain Lemma 5.6 for y = %

We now check the case x = 2 this will require a small manipulation on
the R function. Set Iy = 12 The asymptotic expansion of E[K|g)(it)°] —

E[K[o,1(0)°] we have just derived implies this time:

(D.10)

g5 +3rlo(=l) gl (0)= 5l 1=l (27) 3 Q=) =3 Q=) g/ ()~ 3(Q-)—in
2a 4 2 a
F(T B ?)F(Wz—i_ 1- ; R(Oé, 1’ e—l7r+7r’YP)
LS -



PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS 73

By the definition (5.12) of RY p(ar + %), for a > 3 we have
(D.11)

lia, 2 130 20 2 942
R pla+ 2) = —q BEHHTIHOm, ) BBt ot g

2

eiw(%l—(a—v)(a—v—g))(zﬂ)m NG-e) T(=L)NEZE-1)I(1+5-2)
x 'v ay A Y ay a’Y 2
1-2-3 2)(1 4 emPrimpHingy TG - 50 - S)0E +2-1)
7 g _ —ir - +7r“/P /1 1Y, (x) —%(2Q—a—2) myPx %_—y%_l
><R(Oz+7 2,1,6 )E[( ; €2 O, (x) 7e dm) ]

To obtain the desired answer of Lemma 5.6, using the shift equations satis-
fied by R - see equations (3.22) and (3.74) of [RZ20b] - and simply canceling
out common factors, we compute a ratio of reflection coefficients as

R(a,1, e imtmrP) R(a,1, e imtm™P) R(a + %,Lemp)
Blat2—§1emhtmP) R+ 3L P) R 2 g inlemp)
anP iz 20
I RNPEE r(ZrQ - 2 l—er 22175
o imty2 | . o’
W(Q_Oé) F(l——)_ 1F(%_§)F( _%+VT2)1+€WVP—TW+IW%

Substituting (D.11) into (D.10) and simplifying yields the desired claim. [
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