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Abstract—Hyperdimensional vector processing is a nascent
computing approach that mimics the brain structure and offers
lightweight, robust, and efficient hardware solutions for different
learning and cognitive tasks. For image recognition and classifi-
cation, hyperdimensional computing (HDC) utilizes the intensity
values of captured images and the positions of image pixels.
Traditional HDC systems represent the intensity and positions
with binary hypervectors of 1K–10K dimensions. The intensity
hypervectors are cross-correlated for closer values and uncor-
related for distant values in the intensity range. The position
hypervectors are pseudo-random binary vectors generated iter-
atively for the best classification performance. In this study,
we propose a radically new approach for encoding image data
in HDC systems. Position hypervectors are no longer needed
by encoding pixel intensities using a deterministic approach
based on quasi-random sequences. The proposed approach sig-
nificantly reduces the number of operations by eliminating the
position hypervectors and the multiplication operations in the
HDC system. Additionally, we suggest a hybrid technique for gen-
erating hypervectors by combining two deterministic sequences,
achieving higher classification accuracy. Our experimental results
show up to 102× reduction in runtime and significant memory-
usage savings with improved accuracy compared to a baseline
HDC system with conventional hypervector encoding.

Index Terms—Deterministic bit-streams, hyperdimensional
computing (HDC), hypervector encoding, stochastic computing.

I. INTRODUCTION

UNCONVENTIONAL data representations using long
binary sequences in the form of stochastic bit-streams [1],

unary bit-streams [2], and hypervectors [3] have come to
the fore of the emerging computing technologies in the last
decade. Unlike conventional binary radix representation, these
binary sequences assign equal weight to all bits independent
of their positions. Such holographic representation provides
robustness to soft errors (i.e., bit flips), as any single-bit fault
can lead to only a least significant bit error. It also realizes
complex computations using simple hardware-friendly oper-
ations. Hyperdimensional computing (HDC) is an emerging
computing paradigm based on the observation that the human
brain operates on high-dimensional data. HDC can transform
data into knowledge at a very low cost and with better or
comparable accuracy to state-of-the-art (SOTA) methods for
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Fig. 1. Basic HDC steps. (a) Training–testing for ML model. (b) Hypervector
encoding details.

diverse learning and cognitive applications [4]. The data are
encoded in HDC systems with high-dimensional vectors of
−1s (logic-0 in hardware) and +1s (logic-1 in hardware).
Fig. 1 illustrates the basic steps of HDC.

With an analogy to the traditional machine learning (ML)
systems, HDC provides efficiency with 1 simple arith-
metic operations, 2 noniterative learning, 3 optimization-less

model tuning, and 4 small model size. In conventional neural
networks (NNs), three basic operations are utilized for the
forward pass of the learning phase: 1) multiplication; 2) addi-
tion; and 3) activation. Similarly, in HDC, hypervectors are
1) multiplied; 2) accumulated; and 3) binarized during the model
obtainment. However, HDC only uses simple logical operators:
multiplication, also known as binding, with XORs, addition with
population counters, and binarization with comparator ( 1 ).
While HDC ends up with a final model after these fundamental
operations, conventional ML with NNs needs optimization over
an error check using operation-intensive partial derivatives and
model updates ( 2 , 3 ). The HDC models consist of binary
sequences of −1s and +1s, building each class with D-size
hypervectors instead of positional weights in matrices linking
loads of neurons in the consecutive layers ( 4 ).

For image classification, the current HDC systems encode
image data using pixel intensities and the corresponding posi-
tions (assuming that the system operates on 2-D grayscale
images, as shown in Fig. 1). SOTA studies call this approach
record-based encoding [5]. Two important parameters—
intensity values and pixel positions—are represented with
hypervectors. The record-based encoding assigns level hyper-
vectors, L, for the intensity values. Since the pixel intensities
are numerical values, closer numbers have similar vector
encoding. For D-dimensional vectors, n-bit grayscale inten-
sity representation conforms hypervectors between D-sized
L0 = 000..00D (full of logic-0s, i.e., −1s) and L2n = 111..11D

(full of logic-1s, i.e., +1s). A random bit-flipping approach
is utilized starting from the first level hypervector, L0. At
each level, k = (D/2n) bits are randomly flipped (0 ↔ 1
flip). On the other hand, each pixel’s position is considered
in a 2-D (x, y) image matrix. Since positions are not numer-
ical values, each coordinate is represented with a symbolic
assignment of random hypervectors. These are called position
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Fig. 2. Image hypervector encoding for cognitive tasks of HDC. (a) Prior art for baseline HDC having conventional position-based encoding. (b) Proposal
in this work using LD Sobol sequences that alleviate position-based operations. (c) Our deployment procedure and processing environment.

hypervectors, denoted as P. Any pixel position, (xi, yj), has
a global representation of Pi,j, valid for training or inference
images. Ps are orthogonal to each other. Random hypervector
assignment approximately provides this orthogonality. Each
P has 50% logic-1s and 50% logic-0s. After encoding pixel
and position hypervectors, the final encoded image is obtained
by multiplying and accumulating the values of Ls and Ps:
H = �N

i=1(Li ⊕ Pi), where N is the image size (row ×
column).

This letter proposes a novel approach for encoding image
data in HDC systems. We utilize low-discrepancy (LD)
sequences [6], such as Sobol (S), Halton, or Van Der Corput
(VDC) sequences, for deterministic encoding of the image
intensity values. We do not encode positions; instead, we use
the corresponding index of any sequence (e.g., Sobol Si) rang-
ing from S1 to Srow×column. Finally, the image hypervector
formula becomes H = �N

i=1(Li). Our experimental results on
an image classification HDC system show that the proposed
encoding technique reduces the inference runtime by 102×
with 8K vector dimensions for the MNIST dataset. The accu-
racy of the proposed method surpasses the baseline and SOTA
approaches for the CIFAR-10 dataset [7], [8], [9].

II. FROM RANDOM TO DETERMINISTIC ENCODING

Current HDC systems provide orthogonality by generating
pseudo-random hypervectors [10]. The best random vectors
are selected over iterations for the best performance. In this
letter, we develop a hypervector encoding technique using
LD sequences that is deterministic and highly accurate and
does not need any iteration. Generating two distinct hypervec-
tor data structures (P and L) and applying logical processing
(XOR, multiplication) on them can be very time and energy-
consuming. As an important advantage, our technique operates
on a single hypervector data, L. We further propose a hybrid
technique for generating hypervectors by combining different
types of deterministic sequences instead of a single type, pro-
viding a higher classification accuracy. Our technique relies
on LD sequences, initially employed for stochastic computing
(SC), and extends their application to HDC. In the literature,
several methods have been proposed to improve the accuracy
of HDC models. Yan et al. [11] introduced an efficient HDC
approach with lower hypervector dimensions, incorporating

retraining to achieve higher accuracy. Similarly, QuantHD [8]
quantizes the model and includes a retraining phase to com-
pensate for accuracy loss. Imani et al. [7] proposed SearcHD,
which encodes data points into a hyperdimensional space using
binary elements and utilizes in-memory computation for train-
ing. They assign multiple binary hypervectors to each class.
Another approach [9] incorporates a binary NN (BNN) to
improve inference accuracy. All these SOTA methods uti-
lize optimization techniques such as NN assistance, retraining,
quantization, or learning to enhance accuracy. However, our
approach in this study employs a plain HDC without applying
any additional optimization technique.

Very few studies have explored the analogy between SC
and HDC [12], [13], [14], despite the significant alignment of
these emerging computing paradigms. This work is the first
to exploit the deterministic techniques from SC for possible
image and symbol encoding in HDC.

A. Novel Hypervector Encoding

LD Sobol sequences have proven their effectiveness for SC
systems [1], [15], [16]. They are used to generate ideal inde-
pendent bit-streams for accurate SC operations. In this letter,
we use Sobol sequences for dynamic hypervector generation.
We compare the normalized intensity values with Sobol num-
bers from different Sobol sequences to generate high-quality
hypervectors.

Fig. 2(a) shows the traditional hypervector encoding for
image hypervectors (baseline HDC). Ps are generated by com-
paring the random numbers with a threshold value of 0.5. This is
an unbiased value to produce an equal number of +1s and −1s
in each hypervector, thereby having better orthogonality. Level
hypervector generation is based on bit flipping. The generated
hypervectors are then multiplied element-wise (bit-wise XOR in
hardware). To accumulate the multiplied hypervectors (L ⊕ P)
coming from each pixel, positions are traversed. Hypervectors
are added to each other again by element-wise processing (bit-
wise popcount in hardware). The final values are evaluated
for class hypervector, and binarization is performed via sign
function (thresholding with comparator in hardware). For each
class in training, data are processed to contribute to the cor-
responding class hypervector. In inference, each query image
from the test set is evaluated for the same encoding steps, and
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Fig. 3. Example training and testing of Baseline HDC and our proposal. MNIST and CIFAR-10 with 8-bit grayscale images are utilized. (a) Baseline HDC:
Ps are generated using pseudo-random techniques based on the position of each pixel. Ls are generated using random bit-flipping methods. LFSR is used
for P and L generation. Ps and Ls are multiplied (binding—via XORs), and the results are used for addition (bundling—via pop-counters). Thresholding (or
subtraction) is used for the sign function. In software simulations, the rand() function is used for P and L generation, and arithmetic operators are used
for multiplication, addition, and the sign() function. (b) Our proposal: Ps are not utilized. Ls are generated using quasi-random methods (LD sequence
generators). There is no binding. Ls are directly used for bundling (via pop-counters). Thresholding (or subtraction) is used for the sign.

the obtained query hypervector is compared with each class’
trained hypervectors, e.g., using cosine similarity. The highest
similarity is the classification result.

Fig. 2(b) shows our proposed encoding technique. We rad-
ically change the encoding in cognitive HDC systems by
alleviating their operations. Any pixel intensity is encoded
based on the pixel position corresponding to the LD sequence
index; this is exemplified in Fig. 2(b) with Sobol sequences.
The normalized intensity value (by D) is compared with each
element in the corresponding Sobol sequence. If the normal-
ized intensity is greater than the Sobol random number, the
hypervector position gets +1; otherwise, it gets −1. After
obtaining L, we perform the accumulation without the multi-
plication step of the encoding. The rest of the operations are
the same as those in the baseline HDC.

B. Hybrid Deterministic Encoding

In addition to Sobol sequences, we explore two high-quality
LD random sequences, Halton and VDC, for HDC encoding.
The discrepancy term in LD refers to the deviation from uni-
formity within the sample space. Thus, high orthogonality is
expected by using LD sequences, and the HDC system can
benefit from them. The VDC sequences play a fundamental
role and serve as the foundation for some other LD sequences,
such as Halton sequences. Generally, each VDC sequence is
constructed by reflecting the digit values of a given number
with respect to the radix point for a base-B number and then
representing the resulting number within the (0, 1) interval.
This can be realized efficiently in hardware.

The HDC system may require many random sequences for
the encoding stage. For instance, the number of needed random
sequences may correspond to the number of image pixels. Due
to the limitation in the number of available LD sequences in
some tools (e.g., MATLAB has 1111 built-in Sobol sequences
and Python has 21 201 different sequences), we also explore the
case of using different types of sequences (e.g., Sobol + VDC).

III. DESIGN EVALUATION

Fig. 3 presents the overall structure of the baseline HDC
model [Fig. 3(a)], and the proposed method [Fig. 3(b)] con-
sidering the training and testing phases. The baseline HDC
is constructed without the assistance of retraining or NN.
During the training phase, the P and L hypervectors are gener-
ated using pseudo-random methods, e.g., linear-feedback shift
register constructs. The results are then multiplied by XOR

operations and then processed through pop-counting oper-
ations. The binarized results, obtained through subtraction, are

TABLE I
ACCURACY COMPARISON FOR MNIST

stored as models for each input. The same procedure is applied
during the testing phase, where the resulting binary hypervec-
tor is compared with the stored hypervectors using cosine

similarity. In contrast, the proposed method in Fig. 3(b) only
utilizes the L hypervectors and does not involve the P hyper-
vectors. We evaluate the accuracy of these models with the
MNIST and CIFAR-10 datasets, consisting of 50K images for
training and 10K for testing.

Fig. 2(c) shows the details of our processing environment.
We evaluate the performance of the proposed technique on
an embedded platform (700-MHz ARM-based) with limited
hardware resources. We first utilize the MNIST dataset for
the classification task and compare the performance of the
baseline and the proposed encoding technique (when using
Sobol sequences) for accuracy, runtime, and memory usage.

Table I compares the accuracy for different dimensions of
1K, 2K, and 8K with the SOTA HDCs. For the baseline HDC,
the training and testing are performed 100 times to report min-
imum, maximum, and average classification accuracy. Since
our approach is free from randomness, it completes in a sin-
gle iteration. As can be seen, the proposed encoding achieves
a higher accuracy than the average and minimum accuracy
of the baseline encoding for all dimensions. We also compare
the inference runtime per image. We can see that the proposed
technique reduces the runtime by 43× for 1K and 102× for
8K. The memory usage is also reduced by 10.4× for 1K and
23.6× for 8K when using the proposed technique.

To further explore the LD sequences, we utilize hybrid com-
binations of Sobol + VDC and Halton + VDC sequences. These
increase the design space by increasing the indexes derived from
merged sequences. We observed that the combined usage of
Sobol and VDC sequences results in better outcomes than using
the Sobol sequences alone. This enhancement can be attributed

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on April 02,2024 at 20:16:00 UTC from IEEE Xplore.  Restrictions apply. 



SHOUSHTARI MOGHADAM et al.: NO-MULTIPLICATION DETERMINISTIC HYPERDIMENSIONAL ENCODING 213

TABLE II
ACCURACY COMPARISON OF HYBRID SEQUENCES USING MNIST

TABLE III
HARDWARE COST OF TWO HYPERVECTOR GENERATIONS WITH D = 256

TABLE IV
ACCURACY COMPARISON FOR CIFAR-10:

SOTA HDCS VERSUS THIS WORK

to the perfect interorthogonality between the sequences and
their intraorthogonality. Table II presents the accuracy results
for the classification of the MNIST dataset.

In addition to evaluating the performance of our encoding
technique on an embedded system, we compare the hardware
ASIC costs of the proposed hypervector generators. Table III
reports the hardware cost of three hypervector generation
methods using the Synopsys Design Compiler v2018.06 and
the 45-nm FreePDK gate library. The VDC sequence gener-
ator design employs a simple log2D-bit counter to generate
sequence values for a specific base of D, assuming that D
is a power of 2. This sequence generator benefits from its
simplicity and lightweight design, and as it can be seen, pro-
vides approximately 3.5× and 9.58× greater area efficiency
compared to the Halton sequence generator and Sobol-based
design, respectively. In terms of power consumption, the VDC
design is approximately 3.14× and 1.53× more efficient than
the Halton and Sobol sequence design, respectively.

To widen the scope of our study and encompass a broader
array of applications, we expand our analysis to the CIFAR-10
dataset. We evaluate the performance of the HDC architec-
ture not only in terms of self-accuracy but also in conjunction
with NN-assisted systems. Initially, we employed a widely
used convolutional NN (CNN) architecture where HDC is used
as a classifier. Dutta et al. [21] have previously addressed
the potential accuracy degradation of HDC when applied to
CIFAR-10 without convolutional features. We measured the
performance of self-HDC, HDC functioning as a classifier in
the presence of CNN, and HDC with the support of transfer
learning, specifically leveraging the VGG11 (Visual Geometry
Group, 11-layer depth, pretrained on approximately 1.2 mil-
lion images from the ImageNet Dataset) architecture. Table IV
presents the results compared to the SOTA studies. Notably,
the plain HDC, without any NN modifications or retrain-
ing, exhibited superior accuracy performance when equipped
with our proposed encoding technique. Furthermore, analysis
conducted with CNN and transfer learning showed improved
accuracy compared to SOTA designs.

IV. CONCLUSION

This study presents a novel encoding method to enhance
the accuracy and minimize the runtime and memory usage
of hypervector generation and processing in cognitive HDC
systems. We leverage deterministic LD sequences, which
offer a fast and precise hypervector encoding approach. Our
experimental findings showcase a remarkable 102-fold reduc-
tion in runtime and a 23.6-fold decrease in memory usage
when employing the proposed technique, compared to the
conventional HDC encoding, particularly in embedded envi-
ronments. Furthermore, we explored utilizing various deter-
ministic sequences and evaluated their impact on accuracy and
low-level hardware performance.
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