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Abstract—Stochastic computing (SC) is an emerging paradigm
that offers hardware-efficient solutions for developing low-cost
and noise-robust architectures. In SC, deterministic logic systems
are employed along with bit-stream sources to process scalar
values. However, using long bit-streams introduces challenges,
such as increased latency and significant energy consumption.
To address these issues, we present an optimization-oriented
approach for modeling and sizing new logic gates, which results
in optimal latency. The optimization process is automated using
hardware–software cooperation by integrating Cadence and
MATLAB environments. Initially, we optimize the circuit topol-
ogy by leveraging the design parameters of two-input basic logic
gates. This optimization is performed using a multiobjective
approach based on a deep neural network. Subsequently, we
employ the proposed gates to demonstrate favorable solutions
targeting SC-based operations.

Index Terms—Analog optimization, co-processing, latency
reduction, stochastic computing (SC).

I. INTRODUCTION

STOCHASTIC computing (SC) is a reemerging computa-
tion paradigm experiencing a resurgence due to its ability

to reduce area and power consumption. In SC, deterministic
logic gates are driven by random pulses, taking into account
the probability values of each input. The resulting output
is obtained as another pulse train after processing the input
pulses. Previous research has demonstrated how each digital
logic gates perform a specific function based on input proba-
bilities [1]. Specifically, multiplication is achieved using AND

gates, while addition is achieved using multiplexers (MUXs).
The random pulses serve as inputs, carrying binary

information with N logic values. The correlation between
input pulses plays a crucial role in SC operations. Logic
gates exhibit different behaviors based on correlation level.
At the midpoint of positive and negative correlation, where
there is no correlation, logic gates correspond to well-known
arithmetic operations such as the AND multiplier [1], [2].
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Increasing N or the bit-stream length improves the accuracy.
In theory, deterministic results equivalent to traditional binary
arithmetic operations can be achieved as N approaches infin-
ity. However, larger values of N introduce significant latency.
Various solutions have been proposed to address this latency
issue, including area–delay optimization [3], deterministic
shuffling [4], variable-latency approaches [5], and D flip-flop
insertion methods [6]. Instead of focusing on higher-level
solutions, this work addresses low-level design challenges.
We employ multiobjective optimization methods at the tran-
sistor level to model and size new logic gates to minimize
latency and power consumption. We focus on circuit-level
design optimization and address the latency problem through
stream processing techniques. Our approach aims to leverage
low-level optimized design primitives.

Recently, there has been a growing interest in employing
deep neural networks (DNNs) as an optimization framework
due to their ability to deliver accurate outcomes [7]. In this
study, we employ DNNs to make the best decisions regard-
ing transistor geometry. We draw inspiration from the work by
Kouhalvandi et al. [7], who successfully handle data regression
for gallium nitride (GaN)-based transistors to predict optimal
design parameters, considering nonlinear multiobjective design
specifications. We employ multiobjective optimization meth-
ods, such as long short-term memory (LSTM) and Thompson
sampling efficient multiobjective optimization (TSEMO) algo-
rithm, due to their proven effectiveness [7]. Then, we train the
neural network to generate regression points corresponding
to the most suitable combinations of width (W) and length
(L) to achieve desired latency and power consumption lev-
els. The TSEMO algorithm [8] functions as a multiobjective
optimization approach, evaluating optimal values based on
various criteria. Identifying the Pareto-optimal front (POF)
is crucial to establish reference points for the DNN. We
optimize the latency × power value in the neural network out-
put by leveraging transistor geometries at the network input.
Unlike [7], where power amplifier parameters are used, we
employ transistor geometries as inputs. We utilize a shorter
network consisting of two LSTM layers. The LSTM struc-
ture is chosen to modify transistor geometries individually
in a 1-D time-like sequence and feed them to the neural
network. By feeding the network with consecutive geometries,
we evaluate the optimal output for latency × power within
the DNN. In contrast to [7], our output layer does not involve
parameters related to a power amplifier model but rather incor-
porates information associated with latency and stochastic
computation linked to transistor power. Moreover, consider-
ing multiple optimization criteria, we determine Pareto points
within a multiobjective optimization framework and train
the DNN accordingly. We explore 106 data points, cover-
ing various transistor geometry possibilities, to determine the
optimal geometry within this design space. We introduce
a novel two-input basic logic gate library tailored for SC,
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with optimization focusing on latency and power consumption
(i.e., objective optimization function).

The process begins by updating the logic gates’ func-
tionality through Shannon decomposition [9], which involves
remodeling each transistor-based logic gate. “Dummy tran-
sistors” are added where necessary to equalize the number
of transistors used in the pull-up and/or pull-down branches.
Subsequently, the presented regression DNN method from [7]
is employed to determine the circuit design parameters,
W and L, automatically. We utilize the TSEMO algorithm [8],
to optimize latency and power consumption, which leverages
the POF and effectively generates the set of optimal tradeoffs.
This algorithm offers improved efficiency compared to other
methods reported in [8].

Our proposed SC logic gate (SLG) library is specifically
beneficial for SC-based image processing (e.g., edge detec-
tion and mean filtering) and machine learning applications
such as quantized neural networks (QNNs). Weight quanti-
zation in SC-based systems needs a cascaded topology with
finer-grained divisions for network weight values. Deeper
modules are employed to achieve smaller weights, requiring a
latency-aware solution to meet critical path delay constraints.
The proposed optimization technique uses the LSTM network
architecture to model and size logic gates. This approach
enables the construction of stochastic logic gate libraries that
are both latency and power efficient. Subsequently, we apply
a previously proposed module by Li et al. [10], [11] in a
QNN application to measure the delay by further checking
the accuracy performance. Finally, we provide a co-simulation
of circuit design within the overall system, along with a
preliminary latency analysis.

II. PROPOSED OPTIMIZATION METHOD

USING DEEP NEURAL NETWORK

A. Modeling of SLGs

As discussed in [5], latency issues are prevalent in SC designs,
leading to the misalignment of rise-time and fall-time in the
output phase. To address this problem, equalizing the worst-
case and best-case propagation delays for both high-to-low
and low-to-high input patterns is crucial. This can be achieved
by implementing parallel branches of transistors, where one
branch is active (logic 1), and the other is inactive (logic 0).
Consequently, Shannon decomposition (FShannon = xifxi + x̄ifx̄i)
is employed. By utilizing this expansion, we can ensure that
xifxi evaluates to logic 1 and x̄ifx̄i evaluates to logic 0. Hence,
each parallel branch will be active only once. The propagation
delays can be equal for all input patterns by equalizing the
number of transistors in each parallel branch and incorporating
necessary dummy transistors.

Our study introduces CMOS logic gates. Our proposed
modeling approach becomes essential for CMOS-based logic
gates, specifically NOR-2 and NAND-2 gates. We apply
Shannon decomposition and incorporate dummy transistors
to address this. XOR-2 and MUX 2:1 gates have their own
Shannon decomposition equations and do not require dummy
transistors. Fig. 2 for CMOS-based gates.

B. Multiobjective Optimization for Sizing Transistors

The optimization of transistor sizing for analog circuits,
particularly for SC designs, involves considering two cru-
cial factors: 1) latency and 2) power consumption. A
multiobjective optimization process is necessary to address
this, utilizing objective functions related to these two met-
rics. Kouhalvandi et al. [7] employed the TSEMO approach,

Fig. 1. DNN construction for multiobjective optimized transistor sizes.

TABLE I
COMPARATIVE DELAY RATIOS OF EXISTING LOGIC LIBRARY,

AND CMOS LIBRARIES

which relies on POF and demonstrates high calculation accu-
racy. Similarly, we adopt the TSEMO process to optimize
and determine the POF for latency and power. The sizing
of transistor width (W) and length (L) is performed within
this optimization. Fig. 1 illustrates the automated optimization
process based on a DNN for sizing the SLGs.

After obtaining suitable models for the logic gates in
Section II-A, the sizes of the transistors are optimized using
the proposed multiobjective optimization method. To achieve
this, a DNN is trained using data generated from a co-
simulation environment between MATLAB and Cadence [12].
The logic gate circuits described in Section II-A are redesigned
to incorporate transistor sizing. The transistor width (W) and
length (L) are randomly iterated, and the simulation results
of the circuits are fed into MATLAB to generate appropriate
training data.

We apply the TSEMO method in MATLAB, utilizing the
training data to construct an accurate DNN model representing
the SLGs. Fig. 1 illustrates the structure of the LSTM-based
DNN, which consists of two LSTM layers, each with 50
neurons and one fully connected layer. During the training
phase, we obtain the labeled values of W and L for the
desired latency–power consumption values. Fig. 2 presents the
optimized transistor sizes for CMOS-based logic gates.

Table I compares the ratios of worst-case rise (WR) time,
worst-case fall (WF) time, best-case rise (BR) time, and best-
case fall (BF) time between the standard built-in logic libraries
and the proposed SLG library. The results demonstrate that
the proposed SLG library achieves a latency ratio of approxi-
mately 1, indicating consistent delays across all input patterns.
This finding highlights the successful resolution of latency
issues in SC circuit designs. We simulated and optimized the
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Fig. 2. CMOS-based logic gates. From left to right, the gates are the inverter, two-input XOR, MUX, NOR, and NAND. The dimension of each transistor is
in nm unit, and “/” denotes width/length.

TABLE II
SC-BASED EDGE DETECTORS FROM SOTA WORKS

logic gates using the AMS 180-nm technology in the Cadence
environment.

III. APPLICATION OF THE PROPOSED SLG LIBRARY

A. SC Image Processing

We first evaluate the performance of the proposed library
for the state-of-the-art (SOTA) SC image-processing edge
detection architectures. We utilize a Cadence library and the
proposed circuit-level logic gates to implement the SC designs.
Table II lists the implemented SC edge detection designs.
Table III compares the implemented designs in terms of power
consumption with (w/) and without (w/o) using the proposed
SLG library. As can be seen, using the proposed library
reduces power consumption in all cases. Fig. 3(a) and (b) visu-
ally depicts the performance of the SLG library. The Caravan
sample image was processed using the Cadence-MATLAB
co-operated environment for the edge detection application.
The noise removal mean filtering application was also evalu-
ated using the Lena image in Fig. 3(b). We observed that the
accuracy performance of the SLG library is in the acceptable
range of peak signal-to-noise ratio (PSNR) values. Like edge
detection, the mean filtering application also proves the power
effectiveness of the proposed SLG.

B. SC QNNs

Prior work has applied SC to design hardware-efficient neu-
ral network systems [19], [20]. Li et al. [10], [11] redesigned
the SC-based NN with the quantization property [21]. By using
their SOTA stochastic unary code adder (SUC-adder), we mea-
sure the performance of the SLG in terms of critical path delay.
For the experiments, we set the quantization sensitivity to 2

TABLE III
POWER CONSUMPTION (mW) OF THE SOTA SC-BASED EDGE

DETECTOR DESIGNS WITH AND WITHOUT SLG

Fig. 3. Real applications of the cooperative environment using SLG: visual
result of (a) edge detection and (b) mean filtering for noisy (µ = 0 and

σ 2 = 0.008) image.

Fig. 4. Proposed simulation for QNN with 2-bit quantization.

bits for the network parameters. This representation requires
1/4, 1/2, and 3/4 fractional values in the weight bit-streams.
Fig. 4 depicts the proposed simulation environment. The over-
all system is simulated in MATLAB Simulink, co-processing
the Cadence Virtuoso environment. Thus, the optimized cir-
cuit module is set for measurement on the same platform by
using the partial design property of the simulation platform.
Li et al. [10], [11] efficiently used the SUC-adder for quan-
tized weight processing. The number of logic 1s in the weight
stream is adjusted fractionally depending on the quantization
sensitivity. This affects the topology of the SUC-adder in terms
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TABLE IV
LATENCY OF THE SUC-ADDER IN QNN FOR DIFFERENT DESIGNS

Fig. 5. Accuracy of QNN architecture constructed by SLG (N = 64).

of the cascaded elements. The SUC-adder can be considered
a MUX-like structure, where the select input stream is trivially
applied like the weight inputs in fractions.

In our experiments, we obtained model inferences using
a 2-hidden-layer multilayer perceptron (784-200-100-10) for
classifying the MNIST handwritten digit dataset. We start the
training process on Python using the Keras framework for
full precision training. Subsequently, we apply a post-training
method to quantize weights and activations. The activation
function is a sigmoid, selected to produce positive-only outputs
for neurons. To simulate the hardware, we built a co-processing
environment using MATLAB Simulink and Cadence Virtuoso,
combining digital and analog components. When using 2-bit
quantization, our network model achieves an accuracy of 97.39%
for N = 64-bit SC bit-streams. Table IV compares the critical
path latency of the CMOS design approach applied to the
SUC-adder module design. For N = 64, the CMOS design
provides better critical path delays, while the latency changes
are reported for different MUX structures.

Finally, we evaluate the performance of classifying corrupted
handwritten images using the MNIST-C dataset. For the exper-
iments, we employ a multilayer perceptron (784-200-100-10)
with two hidden layers for classification. Like in previous
experiments, the training process begins in the Keras frame-
work for training with full precision. Subsequently, we employ
a post-training approach to quantize weights and activations,
employing a fine-tuning technique, as mentioned earlier. The
chosen activation function is again sigmoid, which ensures
positive-only neuron outputs. Fig. 5 illustrates the classifica-
tion accuracy for five different corruption types based on 2-bit,
3-bit, and 4-bit quantization levels facilitated by the SLG-based
MUXs. The performance of the QNN can be compared by con-
sidering the corruption types and the quantization levels. Our
results demonstrate the applicability of the SLG approach and
its efficiency. The proposed platform is flexible not only from
a hardware perspective but also for the exploration of multiple
datasets considering the application performance.

IV. CONCLUSION

In this study, we introduced a novel methodology for opti-
mizing basic logic gates for SC designs. Initially, we modeled
the logic gates by applying Shannon decomposition to stan-
dard logic gates. To determine the sizes of the transistors,
we utilized an LSTM-based DNN trained through regres-
sion to optimize latency versus power using the POF. The

optimization process was automated and performed using the
Cadence 180-nm technology in the MATLAB platform. Once
the optimal logic gates were obtained, we proceeded to sim-
ulate the SUC-adder in the QNN. We evaluated the critical
path latency in the 2-to-1, 4-to-1, 8-to-1, and 16-to-1 MUX

structures, considering CMOS-based design primitives. This
work demonstrates how low-level optimization techniques can
be applied to high-level applications. We compared the power
consumption of the SOTA SC-based image processing archi-
tectures with and without the optimized library utilization.
QNN performance in the case of multiple datasets and quan-
tization levels was evaluated using the designed SLG and the
cooperative platform. Finally, we presented an analog and dig-
ital design co-simulation on a unified platform leveraging the
capabilities of MATLAB and Cadence tools.
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