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A Generalized Residue Number System Design
Approach for Ultralow-Power Arithmetic Circuits
Based on Deterministic Bit-Streams

Kamyar Givaki*', Ahmad Khonsari

Abstract—The peak power consumption has become an impor-
tant concern in the hardware design process of some of today’s
applications, such as energy harvesting (EH) and bio-implantable
(BI) electronic devices. The limited peak harvested power in
EH devices and heating concerns in BI devices are the main
reasons for power control’s importance in these devices. This
article proposes a generalized design approach for ultralow-
power arithmetic circuits. The proposed circuits are based on
residue number system (RNS) combined with deterministic bit-
streams. The resulting circuits can be used in systems with
a restricted power budget. We suggest several approaches to
design generic hardware-efficient adders, multipliers, multiply—
accumulate (MAC) unit, forward converters (FCs), and reverse
converters (RCs). Using the proposed approach, designing these
components for any moduli of the RNS can be performed through
simple bit-width adjustments in the circuits. The synthesis results
show that the proposed adder achieves, on average, 69% and 2%
lower area compared to the bit-serial and a state-of-the-art RNS
adder, respectively. Furthermore, the proposed multiplier outper-
forms the bit-serial, interleaved, and a state-of-the-art design for
multiplying RNS numbers by, on average, 57%, 60%, and 77 %
in terms of power consumption, respectively. The efficiency of our
approach is shown via two essential applications, digital signal
processing, and machine learning. We implement an FFT engine
using the proposed method. Compared to prior RNS implemen-
tations, our design achieves 47% lower power consumption. We
also implement a CNN accelerator’s processing element (PE) with
the proposed computation elements. Our design provides consid-
erable speedup and lower power consumption compared to a
state-of-the-art ultralower-power design.

Index Terms—Addition, forward conversion, low power, mul-
tiplication, residue number system (RNS), reverse conversion.
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I. INTRODUCTION

N ENERGY harvesting (EH) devices, the required energy

is obtained from the environment by inertial kinetic, elec-
tromagnetic, and thermoelectric technologies. The amount of
the harvested power (energy in the time unit) in these devices
(regardless of the employed technology) is critically limited,
which constraints the application’s peak power consumption.
Consequently, there is a tradeoff between the functionality
of the circuit and the size of the harvesting part of the
EH devices [1], [2], [3]. Designing ultralow-power hardware
circuits is critical to addressing the current challenges of
using EH devices. In addition to the peak power problem,
the generated heat is another important concern in many
bio-implantable (BI) devices which arise the need for ultralow-
power computing schemes [4]. Residue number system (RNS)
is a number system that offers low-power and low-area addi-
tion, subtraction, and multiplication compared to conventional
binary arithmetic [5], [6]. These make RNS an attractive solu-
tion for BI devices. RNS has been used in various real-world
applications, from digital signal processing to machine learn-
ing, since the 1960s [7], [8], [9], [10], [11]. An RNS system
is represented by its moduli set, which is defined as a set of
L pairwise relatively prime positive integers. In this represen-
tation, a number X is represented by L smaller numbers with
fewer bit-width that are the remainders of X when divided by
the members of the moduli set [5], [12]. The lower bit-width
results in lower processing time since the critical path of the
arithmetic circuits is directly affected by the computations’ bit-
width. Converting a number represented in the conventional
binary system to its RNS equivalent is called forward conver-
sion. A number in the RNS format is not easily interpretable.
A reverse conversion technique is used to convert the RNS
representation back to its binary equivalent. Choosing an opti-
mum moduli set is an important challenge when employing
RNS in a system. The selected moduli set significantly impacts
the representation efficiency and the complexity of the com-
putation and conversion circuits [5]. A more complex system
often consumes more power consumption. The effects of each
stage on the complexity of an RNS system are described
as follows.

1) Forward Conversion: Computing the remainder of a
number when divided by other numbers (modulus) can
be challenging and requires a significant effort to imple-
ment in hardware. Although several generalized forward
conversion methods are proposed in the literature, the
existing methods are power- and area-hungry for most
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moduli. Therefore, designing hardware-efficient gener-
alized forward converters (FCs) is an ongoing research.

2) Modular Arithmetic: Computational elements are the
most sensitive parts of an RNS system to the selected
moduli set. Since RNS computations (i.e., additions and
multiplications) are performed in a modular manner,
designing adders(subtractor) and multipliers for some
moduli requires massive design efforts, and the out-
come may not be power- or area-efficient. Furthermore, a
moduli set contains several members; the modular com-
putations for each member are performed with different
critical path delays. Due to the dissimilarity in the crit-
ical path delay of different moduli, the modulus with
the longest critical path delay (the slowest) controls the
system’s execution time. Therefore, selecting an efficient
moduli set is critical for any RNS-based computational
system. Developing a simple design strategy that allows
circuit design of modular operations regardless of the
selected modulus and guarantees the same critical path
for modulus with the same bit-width can help wide use
of RNS in cost-efficient design of complex systems. For
example, (2" —1, 2", 2"+1) is a moduli set frequently
used in literature due to its simplicity in designing the
computation and conversion circuits.

3) Reverse Conversion: Conventionally, chinese remainder
theorem (CRT), and mixed-radix conversion are used
to convert a number from RNS back to the conven-
tional binary format [5]. Many hardware methods based
on these schemes have been proposed [13], [14], [15].
Most of these techniques are not area- and power-
efficient for all different moduli sets, limiting the use of
RNS. Therefore, designing generalized reverse convert-
ers (RCs) with low power demand can also play a critical
role in growing the use of RNS in today’s commercial
products.

This work considers these three stages and proposes a
novel methodology that offers a simple design flow for
power-efficient forward conversion, computation, and reverse
conversion circuits for any modulus in any RNS system. We
alter the conventional binary representation of each remain-
der to a uniform bit-stream representation, which makes the
proposed design hardware efficient.

Our proposed circuit for a multiplication operation receives
its residues inputs in binary and converts them into bit-stream
format using a modified version of the approaches proposed
in [16] and [17]. In this approach, the two binary operands
of the multiplication operation are first encoded to two bit-
streams. A clock-division technique [18] is then applied to the
two generated bit-streams to make them uncorrelated. Next,
the multiplication operation is performed by bitwise ANDing
the two bit-streams. A counter at the last stage is responsible
for converting back the output bit-stream to binary format. The
method offers a significant reduction in power consumption
and area occupation, though processing data in redundant bit-
stream format often results in higher processing latency and
energy consumption compared to pure binary approaches.

In summary, the main contributions of this work are as
follows.

1) We propose a new bit-stream generator that converts

binary numbers (residues) into their bit-stream equiv-
alents. Using this new bit-stream generator with our
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previously proposed RC and the modular multiplier,
the length of the required bit-streams reduces signifi-
cantly, resulting in a considerable reduction in latency
and energy consumption. Moreover, the proposed bit-
stream generator has a lower hardware footprint than its
predecessors.

2) To the best of our knowledge, we propose the first gen-
eralized and efficient RNS adder (subtractor), FC, and
some fused operation units by exploiting bit-stream pro-
cessing. Our designs can be used for any modulus with
only some minor adjustments. These adjustments are
applied to support moduli with different bit-widths. The
proposed adder (subtractor) is more hardware efficient
than the current RNS adders/subtractors. Moreover, by
adding a few logic gates, the proposed modular adder
(subtractor) acts as a simultaneous modular adder and
modular subtractor. Furthermore, the proposed multiplier
is modified slightly to compute some fused operations
like (A x B4+ C) and (A x B+ C x D) with no additional
hardware cost. Similar to the other proposed hardware
component, the proposed RC and the modular multiplier
can be easily adjusted to support any modulus with any
bit-width.

3) Our experiments on several binary bit-widths with dif-
ferent moduli sets show that higher cardinality of the
moduli set can make the proposed architecture more
capable of being used in real-world applications. The
higher cardinality of the moduli set can be directly
translated to lower execution time and energy con-
sumption. Furthermore, our experiments show that the
proposed approach offers an ultralow-power computa-
tional scheme by combining RNS and deterministic
bit-stream computing [19], which suits applications with
ultralow-power demands, such as EH and BI devices.
Furthermore, we implemented two real-world appli-
cations (a neural network processing element (PE)
and a fast Fourier transform (FFT) engine) using the
proposed hardware components. Our evaluations show
the proposed components’ effectiveness in implementing
real-world applications.

The remainder of this article is organized as follows.
Section II discusses the necessary background on RNS and
deterministic bit-stream computing, and describes the previous
related works. Section III investigates the proposed methodol-
ogy and provides a detailed insight into the micro-architecture
of the proposed computation approach. Section IV provides the
results and compares the proposed method with prior works.
Finally, Section V concludes this article.

II. PRELIMINARIES AND RELATED CONTRIBUTIONS
A. RNS in Brief

RNS is a computational system that represents numbers by
their residues when divided by the members of a set of integer
numbers (called Moduli set). The set consists of several rela-
tively prime integers, each called a modulus. The cardinality of
the set equals L, (m, ma, ..., mr). Using this system a number
X is represented by a set of L other numbers, (x1, x, ..., XL)
where x; = X mod m;. Generally, each x;,i = 1---L, is sig-
nificantly smaller than the original number, X. Consequently,
residues need a lower bit-width to be represented compared
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Fig. 1. Two-input addition and a two-input multiplication using RNS.

to the original value, X. Therefore, when using RNS, com-
plex operations, such as high-bit-width multiplication, can be
split into simpler operations with lower bit-width running in
parallel [5], [12]. The number of unique values that can be rep-
resented using a specific RNS is called the Dynamic Range of
that system and is computed by multiplying all the members
of the moduli set, i.e., D=m| X mp X --- X mf.

Fig. 1 exemplifies the process of addition and multiplication
in RNS. In this example, the main operation is split into three
parallel suboperations. Each suboperation needs a 3-bit adder
or multiplier, while the original multiplication requires 7-bit,
and the original addition requires 5-bit computation circuit.
The results of the subcomputations can exceed the highest pos-
sible value for the modulus. For example, 2 x 4 = 8 is greater
than the highest possible value for mp = 7. In this case, the
result should be changed to 1. This shows that the operations,
here addition and multiplication, in an RNS system should
be modular. This is one of the main challenges in design-
ing efficient circuits for RNS systems. This work presents a
novel approach for designing modular multipliers and adders
for RNS-based systems.

B. Forward Conversion

Several techniques have been proposed to convert a binary
number to its RNS equivalent. Many of these methods need
read-only memories (ROMs) to store the residues of power 2 s
when divided by a modulus [20]. This increases the required
area and power cost to perform the conversion. Many opti-
mizations have been proposed to mitigate the hardware costs
of these techniques. But these still cannot satisfy the area and
power budget of ultralow-power systems. Some other methods
try to generate the residues using arithmetic functions instead
of precalculated values stored in ROMs. Designing these func-
tions for some moduli involves a complex process, and the
result is not hardware efficient [21], [22]. As several channels
exist in an RNS system, some techniques are proposed to share
some of the hardware between different channels to save area.
But these methods are only available for a few moduli such
as (2" £1) [23], [24].

C. Addition and Multiplication

Modular adders are investigated in prior works. Many arith-
metic techniques are employed to design efficient modular
adders [25], [26], [27], [28]. One-hot coding [29] and ther-
mometer coding [30] are employed in several works. General
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Fig. 2. Example of bit-stream generation and multiplication using the
(a) method in [16] and (b) one possible way of the method in [17].

modular adders, however, are not as hardware-efficient as cus-
tomized modular adders. The lack of such techniques raises
the need to design hardware-efficient modular adders.

Many methods have also been proposed to perform mod-
ular multiplication, one of the main concerns when dealing
with RNS. We can categorize the previously proposed modular
multipliers into two categories: 1) general and 2) customized.
Customized modulo multipliers target a specific modulus,
for example (2" — 1,2",2" 4+ 1), and try to optimize the
multiplier’s hardware or timing properties only for that moduli
set [31], [32], [33], [34]. The general modulo multipliers can
be broken into two subcategories: 1) look-up table (LUT)-
based and 2) arithmetic-based. The LUT-based methods are
suitable when the moduli are small. When the binary bit-
width of the operands is large, the LUT size increases in
quadratic trend, making their implementation impractical [35],
[36], [37]. When the moduli grow, it is necessary to use
arithmetic-based methods.

In arithmetic-based methods, several combinational circuits,
such as multipliers, adders, multiplexers, and in some cases,
a few memory cells are responsible for computing the modu-
lar multiplication [38], [39], [40]. Bajard et al. [38] proposed
a modular multiplication method based on the Montgomery
modulo-reduction algorithm that uses an auxiliary base to han-
dle multiplication in relatively large modules. Kornerup [41]
proposed another method based on the Montgomery reduc-
tion algorithm. In the Montgomery reduction algorithm, the
least significant digits of the partial products are used to
determine the quotient digits, and shift-and-add is used as
its reduction step [42]. Blakely [40] proposed a method that
computes modular multiplication using a bit-serial method.
Some other methods employ unconventional number codings
to present more efficient RNS multiplications. For example,
Cardarilli et al. [43] and Vun et al. [29] used one-hot cod-
ing in which a stream of several Os and one 1 represents
the value of the operand. Moreover, a multivoltage system is
proposed in [44] that decreases the power consumption of an
RNS system. This method computes the slowest RNS channel
with a higher voltage.

We proposed a low-power bit-stream-based modular
multiplier suited for RNS computations in [16]. For the mul-
tiplication of two n-bit residues, the design uses two n-bit
binary counters and two comparators to generate bit-streams
based on the clock division method of [18] and generates bit-
streams as depicted in Fig. 2(a). The initial bit-stream in the
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figure is obtained by comparing the input operands with the
output of an n-bit up-counter in n cycles. If the counter’s out-
put is less than the input operand, a 1 bit is added to the
bit-stream; otherwise, a 0 bit is added. The generated bit-
streams are ANDed using an AND gate. The number of 1s
in the output bit-stream is counted using a modular counter
which resets when it reaches a specific state. The multiplica-
tion result is the counter’s value after 22" cycles. We replaced
the counters and comparators of the bit-stream generator with
two identical finite state machines (FSMs) (with 2" states) and
two n-to-1 multiplexers (MUXs) in [17]. These modifications
reduce power consumption and area occupation compared to
the design of [16]; however, the number of processing cycles
for both methods are similar. An example of a two-input mul-
tiplication using the method of [17] is illustrated in Fig. 2(b).
The FSM used in [17] is based on the low-discrepancy (LD)
sequences proposed in [45] and [46] to convert the residues
to bit-stream representation.

D. Reverse Conversion

There is a large body of work in the literature to con-
vert the numbers back from RNS to standard weighted binary
representation. Many of these methods are developed based
on CRT-I, CRT-II, CRT-III, and Mix-Radix conversion theo-
rems [5]. Almost all these methods need multiplicative inverse
that must be computed online or stored in LUT, making
them inefficient for large moduli [47], [48]. Although several
memoryless methods have been proposed, these methods are
proposed only for specific moduli sets and cannot be general-
ized to all moduli sets [49]. Other methods, such as conversion
using functions, need many logical elements (e.g., full adders)
and LUTs, making them hardware inefficient [50], [51]. In
general, the previously proposed RCs are not power- and area-
efficient enough to be implemented in edge devices with a
limited area and power budget.

We proposed a generalized RC that uses an LUT with 2F
rows (L is the number of moduli in the moduli set) in [17].
In that design, L n-bit residues are converted to L parallel 2"-
bit bit-streams. In each clock cycle, L parallel bits are used
to select the corresponding row of the LUT. The outputs of
the LUT in each clock cycle are modularly accumulated to
calculate the binary equivalent of the input residues. Here,
we also used the FSM proposed in [45] and [46] to convert
the residues to bit-streams and the output of this method is
prepared after 2" clock cycles.

E. Bit-Stream Computing in Brief

Stochastic computing (SC) [19], [52], [53], [54] is an uncon-
ventional computing paradigm in which computations are
performed in a probabilistic sense on uniform bit-streams. The
probability of seeing a 1 in a stochastic bit-stream determines
the value of the bit-stream. A unipolar number X in the [0, 1]
interval is represented by a bit-stream in which the probability
of seeing a 1 is X. For example, any bit-stream with 50% of
1 s is a representation for X = 0.5 [19], [55].

In SC, arithmetic operations, such as addition, multiplica-
tion, or more complex operations, such as exponentiation and
hyperbolic tangent, can be performed by extremely simple
logic gates [53], [54]. For example, multiplication as a power-
hungry arithmetic operation in traditional binary computing
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is performed by using a single AND gate, scaled addition is
conducted using an MUX unit.

A stream of 2" bits can precisely represent an n-bit binary
number. A binary to stochastic bit-stream converter consists
of a register to hold the target number, a comparator, and a
number generator, such as a counter or a linear feedback shift
register (LFSR). The target number is loaded into the register,
and the number generator generates a new number in each
cycle. If the generated number is less than the target number,
the comparator produces a 1; otherwise, a 0 is produced. The
number generator can be a random number generator, such
as an LFSR to generate a random bit-stream (e.g., 101011)
or it can be an up- or down-counter to generate a unary bit-
stream (e.g., 111100). Both random and unary bit-streams can
be converted back to binary representation by using a counter
to count the number of 1s in the bit-stream [55].

The inputs of the SC multiplier (AND gate) must be uncorre-
lated, which means zero average correlation between the two
input bit-streams of the multiplier, to guarantee the correct-
ness of the output [19], [54]. The same property is needed in
scaled addition between the primary inputs and the select input
of the MUX. The traditional SC [52] suffered from random
fluctuations in the bit-streams and was unable to guarantee
this zero correlation requirement. Recently, some deterministic
methods of SC were proposed [18], [19], [56]. By restruc-
turing bit-streams, these methods guarantee the needed zero
correlation or independence and can provide high accuracy
computations using SC logic. In traditional SC, the indepen-
dence requirement between operand bit-streams was provided
by using different random number sources when generating
bit-streams. Instead, with the deterministic SC, this require-
ment is guaranteed by clock dividing bit-streams [18], rotation
of bit-streams [18], or using bit-streams with relatively prime
lengths [56]. With these methods, each bit of the first operand
(bit-stream) sees each bit of the second operand (bit-stream)
exactly once. The computation results are completely accu-
rate, free of random fluctuations or correlation errors. More
recently, a fast converging deterministic method of processing
bit-streams was also proposed in [57] by generating LD bit-
streams. All these deterministic methods guarantee completely
accurate results if generating and processing bit-streams for
the product of the length of input bit-streams. Therefore, accu-
rate processing of two n-bit precision binary numbers requires
generating and processing two 2%"-bit bit-streams.

III. PROPOSED METHOD

This section proposes a novel approach for designing
ultralow-power modular adders/subtractors and multipliers.
The proposed architecture can be easily adjusted to perform
modular operations for any arbitrary moduli. Our method
offers a critical path delay (processing time) proportional to the
bit-width of operands. Therefore, it is a solution to the unbal-
anced critical path delay of different moduli in conventional
RNS systems. Unbalanced critical path delay in RNS channels
can cause underutilization of some hardware components. In
conventional RNS, hardware circuits for different moduli may
have different critical path delays for each computing lane.
For example, the critical path delay for a conventional modu-
lar multiplier for modulus 9 is lower than that for modulus 13;
consequently, in an RNS system containing these two moduli,
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when the module 9 multiplier finishes its computation it stops
until the other multiplier also finishes its computation. A sim-
ilar circumstance may happen in the combination of RNS and
SC. The proposed design guarantees to avoid this unbalanced
situation if all the moduli in a moduli set have the same binary
bit-width. We also propose a low-cost method to design the
forward and RCs for use with the proposed computation ele-
ments. In the proposed architecture, we use the bit-stream logic
to design an architecture capable of changing the modules effi-
ciently. We first describe the process of converting inputs to
their equivalent bit-streams. After describing the proposed FC,
we explain our architecture for a modular adder(subtractor)
and a modular multiplier. The proposed multiplier can also
compute some fused operations. In the end, we discuss the
RC. Compared to other SC-based designs, our proposed design
produces an exact (completely accurate) output in lower clock
cycles and with lower hardware cost at the cost of increasing
the vulnerability to fault compared to conventional bit-stream-
based designs because RNS computation is highly sensitive
to faults. A single bit-flip or any inaccuracy in computations
may result in high output error. Increasing or decreasing even
one of the residues by one unit can cause a significant error
in the RNS-based computation. Therefore, it is important to
ensure all required cycles are passed before using the results.
Fig. 3 illustrates this shortcoming via an example.

A. Bit-Stream Generation

Instead of representing residues in binary format, our
method process residues in bit-stream format. The bit-stream
generator iterates each bit of a binary number equal to its
positional weight. Therefore, an n-bit residue is represented
with a (2" — 1)-bit bit-stream. Fig. 4 shows two example
bit-streams generated with this approach. We implement the
bit-stream generator using an FSM and an n-to-1 MUX. The
FSM controls the MUX to pass the proper bit in each clock
cycle.

B. Forward Conversion

Any RNS system requires a forward conversion unit to con-
vert numbers from binary to RNS equivalent. We propose a
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Fig. 5. Architecture of the proposed FC. (a) FC for a single modulus. (b) FC
for a moduli set with L moduli.

low-cost generic converter that can be easily adjusted to per-
form the conversion of any binary number to residue format.
The architecture consists of a bit-stream generator and a mod-
ular counter. The modular counter counts the number of 1s in
its input until it reaches m; and then resets. Fig. 5(a) shows
the proposed architecture for the FC where A; is the ith bit of
the binary input A. Any RNS system has several channels.
Assuming that the employed RNS system has L channels,
L residues must be calculated to represent a binary number
accurately. As Fig. 5(b) shows the bit-stream generator can
be shared in calculating all L residues. In this scenario, only
one bit-stream generator sends its output to L distinct mod-
ular counters. Each counter resets after seeing the maximum
value of the module m;, i = 1, .., L. Converting an n-bit binary
number to its corresponding residues using the proposed cir-
cuit takes (2" — 1) clock cycles. To design a generic modular
counter, the reset signal of a simple counter is connected to
a comparator that compares the counter’s latest state with the
modulus register that stores the modulus value.

C. Addition (Subtraction)

Fig. 6(a) shows the architecture of the proposed adder (sub-
tractor) for one modulus. For an n-bit addition (subtraction),
the proposed circuit consists of a bit-stream generator (an FSM
and an n-to-1 MUX) and a modular up(down) counter. The
architecture of the adder is similar to the FC except that the
initial value of the adder’s modular counter can be loaded
in parallel at the beginning of the computations. Using this
architecture the adder(subtractor) completes its calculations
in (2" — 1) clock cycles where the input operands are n-bit
binary numbers. For a moduli set with L moduli, L copies
of the circuit of Fig. 6(a) are connected together. An RNS
system always has more than one computing channel. Since
the bit-stream generator consumes a high amount of power and
occupies a vast area, we share it between all the RNS system
channels as presented in Fig. 6(b). In this approach, the bit-
width of the shared elements must be equal to the system’s
largest bit-width.

In what follows, we describe the calculation process of
one channel of the proposed adder(subtractor) to calculate
A+ (-)B.

1) The first operand (A) is loaded into the modular counter,
and the second operand (B) is sent to the MUX input
of the bit-stream generator. Also, the FSM resets.

2) The bit-stream generator generates a bit-stream corre-
sponding to the second operand (B).
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Fig. 6. Block diagram of the microarchitecture of (a) proposed adder for one modulus; (b) proposed adder for a moduli set with a shared counter; and

(c) proposed multioperand adder for one modulus.

3) In each clock cycle, the modular counter counts up
for addition or counts down for subtraction if a 1 is
generated in the bit-stream.

For addition operation, the modular counter resets to
zero when its value exceeds the greatest possible value
in its corresponding modulus.

For subtraction operation, when the counter’s value
reaches zero, the next 1 in the MUX’s output sets the
value of the modular counter to the greatest possible
value in its corresponding modulus.

The calculation completes when the overflow signal of
the bit-stream generator’s FSM turns 1.

The proposed architecture can be modified to perform mul-
tioperand addition. Fig. 6(c) shows the microarchitecture of a
three-input adder for (A + B 4 C). This circuit includes an n-
bit 2-to-1 MUX and a T-flip-flop in addition to the proposed
two-input adder. The T-flip-flop is shared between all chan-
nels. Similar to the two-input adder, the first operand (A) is
loaded to the modular counter at the beginning of the com-
putations. Then, input B is fed into the bit-stream generator
using MUX 1 in Fig. 6(c).

In the end, the T-flip flop changes the select input of the
MUX in the first layer and feeds C to the bit-stream genera-
tor. This architecture can be extended to add more than three
inputs by changing the MUXs in the first layer and the logic
for selecting its inputs. In a generalized view, the system com-
pletes an S-input addition in (§ — 1) x (2" — 1) clock cycles.
We note that for these addition and subtraction operations, the
moduli set should be selected such that the values remain in
the dynamic range of the moduli set.

It is worth mentioning that the proposed adder (subtractor)
is kept simple to be easily modified to support different modu-
lar operations. It can be used individually in pure RNS systems
where designing modular adders (subtractors) needs massive
effort. Moreover, the proposed design can perform simultane-
ous addition and subtraction using an up/down counter with
a negligible hardware overhead. Consequently, only one hard-
ware component is required for modular addition and modular
subtraction, which decreases the hardware cost compared to
the case that modular adder and modular subtractor are sepa-
rated components. The proposed adder (subtractor) is a proof
of concept that shows how we can modify the multiplier

4)

5)

6)

proposed in Section III-D to perform other arithmetic oper-
ations efficiently. We use this concept to design the proposed
multiply—accumulate (MAC) and fused operation units.

D. Multiplication

Fig. 7(a) shows the microarchitecture of the proposed
multiplier. Each multiplier has two bit-stream generators, an
AND gate, several registers, a comparator, and a counter. The
inputs are two residue numbers in binary format. The two bit-
stream generators are connected in a cascaded fashion based
on the clock division method of [18] and convert the inputs
into two deterministic bit-streams. Note that our method is
not limited to the clock division method and can be used with
other deterministic methods of SC [19]. We choose the clock
division approach here because sequence generation using this
technique is simple and low cost.

The generated bit-streams are bit-wise ANDed using the
AND gate. The output of the AND operation is connected to
the modular counter in the last layer. This counter holds the
binary RNS result, and its value is ready and credible (contains
accurate result) in the last cycle of the computations. Using
this architecture, it is sufficient to adjust the bit-width of the
registers, comparator, MUXs, bit-stream generators, and the
modular counter at the last layer to support any other modules.

For an accurate multiplication, each bit of the bit-stream
corresponding to the first input must see all bits of bit-stream
corresponding to the second operand exactly once. The clock
division method [18] guarantees this interaction by repeating
each bit of the second bit-stream for the length of the first bit-
stream. We cascade the bit-stream generators to generate such
bit-streams. In what follows, we elaborate on this process.

1) First, both bit-stream generators are reset.

2) The first bit-stream generator is always enabled and
generates the bits of the bit-stream corresponding to
the value of the first operand. When one round of bit-
stream generation is complete, the overflow (OV) signal
is enabled. The bit-stream generator then resets and
regenerates the same bit-stream. Throughout each round
of generating the first bit-stream, the second bit-stream
generator stays in the same state, and its output bit
does not change. In each clock cycle, the outputs of the
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Fig. 8. Example of multiplication using the proposed multiplier for one

channel (the effect of the modular counter is eliminated for the sake of
simplicity).

two generators are ANDed together. The modular counter
counts up if the output of the AND gate is 1.

3) When the first generator completes one round, its over-
flow (OV) signal enables the second generator’s enable
(En) pin. Consequently, the second generator goes for-
ward and generates its next bit.

4) This cycle continues until the overflow pin of the second

generator turns 1.

Fig. 8 shows an example of multiplying two 2-bit numbers
by converting them to bit-stream representation and extending
the bit-streams using the clock division method.

Similar to addition, there is more than one computing chan-
nel in the multiplier. The two bit-stream generators contribute
a significant portion of the proposed circuits’ hardware cost.
Consequently, we share the FSMs between all of the bit-
stream generators in all RNS channels. Fig. 7(b) illustrates
the architecture with shared components.

The input operands of the RNS multiplier are n-bit binary
numbers and the bit-stream corresponding to each input
operand is (2" — 1) bits. Each bit from the first operand
bit-stream must see all bits of the second bit-stream exactly
once. Since each bit of input bit-streams is processed at one
clock cycle and we use the clock division method [18], a
precise multiplication takes (22" — 2¢*+1 4+ 1) clock cycles
which is less than 22", the required number of clock cycles
with the design of [16] and [17]. Generally, residues used
in RNS-based calculation have low bit-width; therefore, the
proposed design mitigates the processing time compared to
non-RNS standard bit-stream-based multiplication. We note

Block diagram of the microarchitecture of (a) proposed multiplier; (b) proposed multiplier for a moduli set with shared counters; and (c) processing

that using moduli set with higher cardinality usually decreases
the residues’ bit-width, and our proposed architecture supports
computations using any modulus.

The architecture is the same for any modulus with the same
bit-width. Therefore, by choosing moduli with the same bit-
width, we can avoid asymmetry (unbalanced execution time)
in RNS channels, an important concern in designing RNS
systems. The unbalanced execution time has a more severe
impact when combining RNS and bit-stream processing than
conventional RNS. For example, if one channel needs 3 bits
(requires 49 cycles to complete calculations) and the other
channel needs 5 bits (requires 961 cycles to complete compu-
tations), the hardware components for 3-bit computations are
not used for the remaining cycles of 912 cycles, which can
cause a massive underutilization. In other words, asymmetry
does not affect the final result but dramatically decreases the
proposed design’s hardware efficiency.

E. Fused Operations

MAC operation (A x B + C) is widely used in today’s
real-world applications, such as FFT and neural network
computations. Conventional binary-based MAC design is com-
plex and consumes massive power and area. Our proposed
multiplier is capable of executing the operation without any
additional hardware in the datapath (with a minor change in
the control unit). If the residues corresponding to input C
(i.e., Cis) are loaded to the last layer modular counters of
their corresponding channels, (A x B 4 C) can be calculated
with no additional hardware cost compared to the proposed
multiplier. The proposed hardware for MAC operation is
shown in Fig. 7(c).

Moreover, the proposed multiplier is able to calculate
(A x B+ C x D). In the proposed multiplier in Section III-D,
the last layer modular counter is initiated to zero before start-
ing the multiplication process. If the output modular counter
is not reset before the multiplication, the result of the ongoing
multiplication is added to the previous result stored in the out-
put register. Therefore, by a simple modification to the circuit’s
control unit, we achieve a low-cost design for (A x B+ C x D).
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Fig. 9. Proposed RC, (a) LUT contents for the proposed RC; (b) example of LUT contents for L = 2; (c) microarchitecture of the proposed RC; and

(d) structure of the bit-stream generator.

F. Reverse Conversion

An RC is needed to convert the final results back from RNS
to standard binary format. The hardware overhead of such a
converter is relatively high. However, in the cases of having
several consecutive operations, it is possible to postpone the
conversion to the last layer of the operations. As discussed
in Section II, there are several methods to perform reverse
conversion; however, none of them is suitable for the proposed
adder and multiplier as our designs first need a conversion
from bit-stream-based RNS to binary-based RNS.

We recently proposed a reverse conversion method to
directly convert bit-stream-based RNS to its equivalent binary
representation [17]. The RC needs a small LUT. If the
cardinality of the selected moduli set is L, the proposed
method needs a LUT with 2% entries. The LUT contains P;s
described by

P;=P(m, ... (1)

The inputs of the P function are bits of bit-streams resulting
from converting input residues to bit-stream representation. In
any clock cycle, each input can only get two different values.
Therefore, 2L different values need to be stored in the LUT. P;
shows the reversed value of the vector V, where the members
of the vector are the bits in the binary representation of i. Since
the number of P;s is relatively small, it is possible to calcu-
late P;s offline. For example, if the moduli set is <8, 7, 5>,
Ps shows the binary value of an RNS number that its repre-
sentation is <1, 0, 1> g 7,5-. As illustrated in Fig. 9(a), each
entry of the LUT contains the equivalent binary value of the
corresponding combination of its inputs. Fig. 9(b) shows an
example when the moduli set has two members (e.g., 5 and 3).
The first entry shows the equivalent binary value for the RNS
number <0, 0> _53-. The second entry shows the equivalent
binary value for the RNS number <0, 1> _53-, and so on.

Fig. 9(c) shows the microarchitecture of the proposed RC.
The design contains a bit-stream generator, an LUT, and a
modulo-D accumulator, where D is the dynamic range of the
moduli set. The modulo-D accumulator has a modulo-D adder
and a register. The structure of the bit-stream generator is illus-
trated in Fig. 9(d). At the beginning of the process, the counter
in the bit-stream generator and the accumulator value is reset.
In each clock cycle, based on the value of the input, a bit-
vector V is generated. The value corresponding to vector V
is read from the LUT and is sent to the modulo accumulator.

, ML),

The circuit iterates for 2™ cycles, where m is the bit-width of
the residues. The accumulated value after these cycles is the
final output. To prevent the result from exceeding the dynamic
range, the accumulation must be done in the modulo of the
moduli set’s dynamic range.

The proposed RC can be directly connected to the out-
put bit-streams from the proposed multiplier and adder. In
this setup, the output counter of the multiplier and adder are
eliminated from their designs. Also, the bit-stream generator
in Fig. 9(c) is eliminated, and the converter is directly con-
nected to the bit-stream output of the multiplier/adder. This
saves a significant area and power consumption by merging
the multiplier/adder with the RC.

IV. EXPERIMENTAL RESULTS

We evaluate the efficiency of the proposed designs by com-
paring them with prior implementations. The proposed RNS
adder is evaluated by comparing it with three prior RNS addi-
tion methods for 8- to 64-bit binary input operands. The first
method is based on the thermometer coding [30]. The second
method is a bit-serial implementation of the modular adder.
In this design, we replaced the parallel adder in a generic
modular adder [50] with a bit-serial counterpart. Since mod-
ular adders for a customized moduli set are more power- and
area-efficient than the generalized ones, we also compare our
proposed adder with a customized adder to show the effective-
ness of the proposed method in terms of area occupation and
power consumption. Therefore, the third method is a high-
performance customized adder for moduli set (2" — 1, 2",
2" + 1) [31].

The proposed RNS multiplier is also compared with five
prior designs for 8- to 64-bit binary input operands. These
methods are the method of [31], the interleaved method
of [40], a modified fully bit-serial version of the interleaved
method [40], and our previous bit-stream-based methods
of [16] and [17]. The moduli set (2" — 3, 2" — 1, 2") is
used to evaluate the proposed and all prior methods except
the method of [31]. Zimmermann [31] proposed a customized
design for the moduli set (2" — 1, 2", 2" + 1). The moduli set
selected in [31] is the most popular moduli set in literature,
and their proposed method is more efficient than the methods
with generic moduli sets. Therefore, if our design outperforms
their method, we can expect to outperform prior methods for
other moduli sets.
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Fig. 10. Synthesis results for two input addition in 45-nm technology. The
results are shown for 8- to 64-bit binary operands. (a) Area occupation (;LmQ)
and (b) power consumption (mW).

Next, we compare the proposed circuits for MAC oper-
ation with prior designs to show the effectiveness of the
proposed circuits. The proposed FC is compared with two
other FCs of [58] and [20]. The proposed RC is compared
with another efficient RC [48]. Since the proposed RC is fully
compatible with the proposed adder and multiplier, we also
evaluate the adder and multiplier followed by the proposed
RC. Furthermore, to investigate the impact of the moduli
set’s cardinality on the efficiency of the proposed methods,
we implement adders and multipliers for 16- to 64-bit data-
width with different moduli sets. Finally, we implement FFT
engines and convolutional neural networks (CNNs) PEs to
evaluate the proposed method in real-world applications. We
implement these applications with the proposed logic with sev-
eral configurations and compare them with binary and RNS
implementations.

For hardware cost comparison, we described all these meth-
ods using VHDL hardware description language. We used the
Synopsys Design Compiler to synthesize the designs using the
FreePDK 45-nm library [59]. We compare different designs of
addition and multiplication in terms of area and power.

A. Adder

Fig. 10 shows the synthesis results for the proposed adder
compared to prior methods. As can be seen, the proposed adder
offers 2% and 69% lower area compared to the customized
adder for moduli set (2" — 1, 2", 2" + 1) [31] and a bit-
serial variant of [50], respectively, for 8- to 64-bit additions.
The proposed method uses RNS to perform computations.
Since there are three moduli in the moduli set, the bit-width
of the RNS operation n for each binary precision m can be

3795

TABLE I
RNS BIT-WIDTHS AND THE REQUIRED CLOCK CYCLES FOR ADDITION
AND MULTIPLICATION (SOME EXAMPLES)

Binary
bit-width (1) 8 16 24 32
RNS
bit-width (n) 3 6 8 3
# of cycles 98 1 | 96 1| 95191 _1
for addition
# of cycles 23%2 26%2 28%2 oTTx2
for multiplication || —2% + 1| —27 41| —29 + 1|22 +1

computed by

p=2]

Table I shows some examples of the required bit-width
and number of clock cycles for RNS computations with the
proposed adder and multipliers when the cardinality of the
moduli set is three.

We have also compared the proposed adder with the adder
based on the thermometer coding proposed in [30]. Due to
the massive hardware costs of the thermometer coding-based
adder, we decided to only put synthesis results for only 8- and
16-bit additions in Fig. 10. The thermometer coding-based
adder finishes the computations in one cycle at the cost of
several orders of magnitude more hardware footprint. The
hardware complexity of the thermometer-based adder is O(2"),
where n is the bit-width of the inputs of the modular adder.
Three different modular adders are needed for the selected
moduli set. Hence, the hardware cost of the thermometer-based
method increases rapidly when 7 increases. As a result, adding
two 16-bit binary input operands occupies a massive area and
consumes very high power. Our proposed method outperforms
the thermometer-based method by 98% and 93% in terms of
area and power consumption, respectively. As seen in Fig. 10,
the power consumption of the implemented method follows
the same trend as its area occupation. The simple binary adder
outperforms others in both area and power because the other
techniques use modular operations, which need more hardware
resources. However, in many situations, individual adders are
not typically used; therefore, adders compatible with the other
components are a requirement yet to gain the advantages of
the proposed approach.

B. Multiplier

Fig. 11 compares the hardware area and power consumption
of the implemented multipliers. As can be seen, the proposed
multiplier outperforms the other designs in area occupa-
tion and power consumption for 8- to 64-bit multiplications.
For instance, for 16-bit binary multiplication, the proposed
method saves area by 59%, 57%, and 67% compared to the
customized, interleaved, and fully bit-serial implementations,
respectively. The proposed multiplier also offers, on average,
57%, 60%, and 77% lower power consumption compared to
the customized, interleaved, and fully bit-serial implementa-
tions, respectively. The high hardware cost of the interleaved
and the bit-serial method is due to using several registers in
their designs. Our proposed method needs (22" — 2"+1 4 1)
clock cycles to complete the computations; however, the other
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TABLE 11
SYNTHESIS RESULTS FOR FCS

‘ Measure H Bit-width H FC in [20] ‘ FC in [58] ‘ Proposed FC ‘

8-bit 442.1 304.6 245.0
Area 16-bit 1054.5 583.4 445.8
(um?) 24-bit 1937.7 932.5 660.3
32-bit 2812.9 1671.2 824.6
8-bit 1.86E-02 1.80E-02 9.93E-03
Power 16-bit 3.51E-02 3.76E-02 1.87E-02
(mW) 24-bit 5.33E-02 6.05E-02 2.76E-02
32-bit 6.83E-02 9.65E-02 3.44E-02

methods need one, 7, and n* clock cycles, respectively. This
will increase the energy consumption of the proposed method
compared to others. Finally, the proposed method outperforms
the binary implementation in both area and power.

Also, compared to the previously proposed combination
of RNS and bit-stream processing [16], [17], the proposed
multiplier of this work requires lower hardware resourses
because the employed bit-stream generator has a lower hard-
ware cost. In addition, the proposed multiplier performs a
single multiplication faster than the multipliers in [16] and [17]
because they complete their calculations in 22" clock cycles.

1) MAC Operation: The area and power overhead of the
proposed MAC design compared to the proposed multiplier
is negligible. The slight hardware cost overhead is due to the
additional input registers for the third input of the operation.
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TABLE III
SYNTHESIS RESULTS FOR RCS AND COMBINATION OF
ADDER/MULTIPLIER AND THE PROPOSED RC

Binary Area Power
Bit-Width Method (um?) | (mW)
(m 8: 3) RC in [48] 391.9 3.38E-2
RC in [17] 254.8 1.81E-2
Proposed RC 211.6 1.52E-2
Multiplier [31] + RC [48] 669.7 | 5.67E-02
Multiplier + RC [17] 309.3 1.88E-02
Proposed (multiplier + RC) 217.7 | 1.62E-02
(mli 6) RC in [48] 803.4 | 7.01E-02
RC in [17] 592.7 | 3.41E-02
Proposed RC 480.1 2.88E-02
Multiplier [31] + RC [48] 1922.2 | 2.05E-01
Multiplier + RC [17] 674.3 3.64E-02
Proposed (multiplier + RC) 487.1 | 2.96E-02
- 32 n RC in [48] 1533.6 | 1.32E-01
RC in [17] 1187.3 | 6.43E-02
Proposed RC 1007.1 | 5.60E-02
Multiplier [31] + RC [48] 5327.9 | 6.18E-01
Multiplier + RC [17] 1406.9 | 7.15E-02
Proposed (multiplier + RC) || 1022.6 | 5.68E-02

Fig. 12 compares the hardware cost of the proposed MAC
unit with the binary and RNS counterparts. As can be seen
in Fig. 12, the proposed method offers, on average, 92% and
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TABLE IV
SYNTHESIS RESULTS FOR ADDITION AND MULTIPLICATION FOR DIFFERENT MODULI SET
I Addition I Multiplication |
Binary RNS .
.. . P Power Area # of clock | Energy Power Area # of clock | Energy
pre((;:’s;on Moduli set bn(‘x])dth (mW) (um?) cycles (pJ) (mW) (um?) cycles (pJ)
4194304, 4194303, 4194301 2 2.01E+03 | 1.35E-01 | 4.19E+06 | 7.64E+05 || 1.80E+03 | L.I4E-01 | 1.76E+13 | 2.81E+12
131072, 131071, 131069, 131067 17 2.08E+03 | 143E-01 | 1.31E+05 | 1.97E+04 | 1.84E+03 | L.I9E-01 | 1.72E+10 | 2.49E+09
S 2048, 2047, 2045, 2043, 2041, 2039 11 2.09E+03 | 1.45E-01 | 2.05E+03 | 2.40E+02 || 1.86E+03 | 1.21E-01 | 4.19E+06 | 4.11E+05
m= 512, 511, 509, 507, 505, 503, 499, 493 9 2.28E+03 | 1.65E-01 | 5.11E+02 | 6.66E+01 | 2.02E+03 | [.35E-01 | 2.61E+05 | 2.43E+04
128, 127, 125, 123, 121, 119, 113, 109, 107, 103 7 226E+03 | 1.65E-01 | 1.27E+02 | 1.45E+01 | 1.98E+03 | [.37E-01 | 1.61E+04 | 1.46E+03
64,63, 61, 59, 55, 53, 47, 43, 41, 37, 31, 29 6 226E+03 | 1.76E-01 | 6.30E+01 | 8.76E+00 | 2.04E+03 | .45E-01 | 3.97E+03 | 4.14E+02
131072, 131071, 131069 17 1.56E+03 | 1.06E-01 | 1.31E+05 | 1.46E+04 || 1.37E+03 | 8.97E-02 | 1.72E+10 | 1.88E+09
8192, 8191, 8189, 8187 3 T.61E+03 | 1.I2E-01 | 8.19E+03 | 7.80E+02 || 1.42E+03 | 9.26E-02 | 6.71E+07 | 5.53E+06
m =48 1024, 1023, 1021, 1019, 1015 10 [57E+03 | 1.I0E-01 | 1.00E+03 | 8.33E+01 || 1.39E+03 | 9.25E-02 | 1.05E+06 | 7.26E+04
128, 127, 125, 123, 121, 119, 113 7 T.58E+03 | 1.ISE-01 | 1.27E+02 | 9.35E+00 || 1.40E+03 | 9.63E-02 | 1.61E+04 | 9.63E+02
64, 63, 61, 59, 55, 53, 47, 43, 41 6 T.68E+03 | 1.29E-01 | 6.30B+01 | 5.36E+00 || 1.54E+03 | 1.09E-01 | 3.97E+03 | 2.00E+02
2048, 2047, 2045 i1 1.04E+03 | 7.22E-02 | 2.05E+03 | 1.20E+02 || 9.20E+02 | 6.06E-02 | 4.19E+06 | 2.06E+05
512, 511, 509, 507 9 T.14E+03 | 8.18E-02 | 5.11E+02 | 3.05E+01 || 1.OIE+03 | 6.75E-02 | 2.61E+05 | 1.22E+04
m =32 128, 127, 125, 123, 121 7 T.13E+03 | 8.28E-02 | 1.27E+02 | 6.73E+00 || 9.97E+02 | 6.82E-02 | 1.61E+04 | 6.38E+02
64, 63, 61, 59, 55, 53 6 T.12E+03 | 8.75E-02 | 6.30B+01 | 3.64E+00 || 1.03E+03 | 7.27E-02 | 3.97E+03 | 1.76E+02
32, 31, 29, 27, 25, 23, 19 5 T.14E+03 | 8.87E-02 | 3.10B+01 | 1.54E+00 || 9.90E+02 | 7.16E-02 | 9.59E+02 | 3.71E+01
64, 63, 61 6 5.60E+02 | 430E-02 | 6.30E+01 | 1.71E+00 || 5.16E+02 | 3.64E-02 | 3.97E+03 | 7.80E+01
m =16 32, 31, 29, 27 5 6.53E+02 | 5.03E-02 | 3.10E+01 | 8.73E-01 || 5.65E+02 | 4.12E-02 | 9.59E+02 | 1.86E+01
16, 15, 13, 11,7 Z 6.49E+02 | 5.32E-02 | 1.50E+01 | 4.87E-01 || 5.916+02 | 441E-02 | 2.03E+02 | 531E+00
. . TABLE V
73% lower power consumption compared to the implemented REAL-WORLD APPLICATIONS WIDELY USED IN EMBEDDED SYSTEMS
binary and RNS designs, respectively.
Application Formula
C. Forward Converter PP
To evaluate the hardware efficiency of the proposed FC, FFT Xy, = YN emizmhn/N
we compare our FC with the conversion methods in [58]
. . . N—-1 .
and [20]. In contrast with many prior works that implement DCT Xy =31, wicos| 5 (i + $)k]
specific modules, [58] and [20] propose efficient generic FCs. ~
We implemented these three methods with different bit-widths FIR filters > im0 bi-xln — ]
from 8 to 32 bits. Table II compares the hardware costs of ComvNet Py )
. . . . OonviNe Wiy
the implemented FCs for four different bit-widths. As can be i

seen, the proposed FC outperforms the FC in [20] in terms of
area and power, on average, by 75% and 52%, respectively.
Moreover, our FC offers 36% and 56% less area and power
compared to the FC in [58]. These results confirm the effi-
ciency of the proposed FC for devices with a restricted power
budget.

D. Reverse Converter

To show the hardware efficiency of the proposed RC, we
compare it with two efficient RC presented in [17] and [48].
The RC in [48] is designed only for the specific moduli set
(2™ —1,2™,2"41). But similar to our RC, the RC in [17] can
be used with any moduli set. Table III compares the hardware
cost of the proposed RC and the two other RCs when m = 3
(n=28),m=06(n=16),and m = 11 (n = 32). The proposed
RC outperforms the RC of [17] by, on average, 14% saving
in power consumption and 9% lower area. Furthermore, the
proposed RC offers, on average, 45% and 70% lower area and
power compared to the RC in [48]. The main reason for the
lower area of the proposed RC compared to the RC in [17]
is the difference in the FSMs used to generate bit-streams.
The design of [17] uses the FSM-based bit-stream generator
proposed in [45] to convert the residues to bit-stream repre-
sentation. But the FSM used in this work iterates each bit of
a binary number equal to its positional weight. It should be
noted that the cost of input registers are considered in the syn-
thesis results reported in [17]; however, in the results reported
in Table III, we do not consider the cost of these registers.

The proposed RC can be used after the proposed adder and
multiplier to directly convert their output bit-stream to binary
format (the output counters are omitted). In this case, the area
and power consumption of the combined circuit is less than the
sum of the area and power of the adder/multiplier and the RC.
Table III shows that the combined circuit of multiplier and RC
can save both area and power by at least 40% compared to the
case of implementing separate designs for the multiplier and
RC. Moreover, the comparisons show that the proposed design
decreases the required power by near an order of magnitude
and area by at least a factor of three compared to a combination
of the multiplier of [31] and the RC of [48].

E. Different Moduli Sets

The required number of clock cycles to complete computa-
tions using the proposed approach depend on the cardinality
of the selected moduli set. In the above sections, the moduli
set had three members; hence computations of operations with
long bit-widths need many clock cycles to complete computa-
tions. This results in a very long processing time and very high
energy consumption, which is unacceptable in many applica-
tions. For example, (2222 —223 4 1) clock cycles are required
for a 64-bit multiplication in an RNS system with three mod-
uli. Increasing the cardinality of the selected moduli set is
a solution to decrease the number of processing cycles. We
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TABLE VI
SYNTHESIS RESULTS FOR FFT ENGINES WITH DIFFERENT CONFIGURATIONS IN 45-NM TECHNOLOGY

[ Bitwidth ] 8-bit I 16-bit | 32-bit |
[ Method [[ Binary | RNS [ [17] | Proposed [ Binary | RNS [ [17] [ Proposed || Binary [ RNS | [17] [ Proposed |
Area (um?) || 42415 [ 25384 [ 1099.1 [ 1127.2 || 14742.1 [ 8013.2 [ 2088.3 [ 2057.8 [[ 45074.3 | 21729.5 | 38243 | 3478.9
Power (mW) || 0395 | 0208 | 0.113 | 0.105 1512 | 0795 | 0.197 | 0.179 5517 | 2357 | 0339 | 0.292
TABLE VII

investigate the impact of the number of modules in the moduli
set on power, energy, processing time, and area of the circuits.
Table IV shows that the moduli sets with more members neg-
ligibly increase the power and area but exponentially decrease
the number of clock cycles. This significantly reduces the
energy consumption and processing time. Consequently, there
is a tradeoff between area/power and energy/processing time.
Since the proposed approach offers a low-effort design process
and the moduli’s area and power overhead are negligible, we
suggest using the moduli set with the largest cardinality.

F. Proposed Method in Real-World Applications

Table V shows the formulas for computing FFT, finite
impulse response (FIR) filter, discrete Cosine transform
(DCT), and CNNs, which are widely used in many real-
world applications [61], [62]. Addition, multiplication, and
fused operations are the main building blocks of these func-
tions. In contrast to high-performance computing platforms
like CPUs [63], [64] and GPUs [65], [66] that are optimized
for computational performance, EH and BI devices must sat-
isfy power constraints. Therefore, using the proposed method
can lead to low-power and low-area implementation of these
functions.

We first investigate the efficiency of the proposed designs
in implementing several FFT engines. FFT is an efficient
algorithm to compute the discrete Fourier transform (DFT).
We implemented the FFT algorithm with different number
of points (64, 128, 256, and 512 points) and different data
precisions (8-, 16-, and 32-bit) in binary, RNS [17], and our
proposed method. These FFT processors have similar architec-
tures except their PEs. The building blocks (butterfly elements)
of each FFT engine with the same bit-width are similar.
Therefore, we only compare the hardware cost of these ele-
ments, and use the complete implementations to investigate the
conversion overheads. Next, we implement the PE of the CNN
accelerator proposed in [60] with: 1) binary; 2) bit-stream-
based RNS method of [17]; and 3) proposed computational
elements. Our implementation consists of the computational
and combinational parts of the PE in [60].

1) FFT Design: Table VI compares the hardware area cost
of a butterfly element for FFT calculation with several comput-
ing schemes with different bit-widths. The proposed method
utilizes, on average, 78% less area than the binary-based
design. Also, it occupies 62% and 6% less area compared
to the conventional RNS-based design and the design of [17],
respectively. There is no need to convert from/to RNS iter-
atively in FFT processors, and a single binary-to-RNS con-
version on the primary inputs is sufficient. The computations
in the intermediate layers are all performed in the RNS
domain. Finally, an RNS-to-binary conversion will convert
the final results back to their corresponding binary repre-
sentation. Therefore, RCs are placed at the last layer of

SYNTHESIS RESULTS OF PE OF CNN ACCELERATOR

| Method || Area (um?) [ Power (mW) [ CP Delay (ns) |

[60] 8145.64 0.477 5.43
[17] 1340.32 0.152 0.73
Proposed 1309.54 0.149 0.71

computations in the RNS-based design, the design of [17] and
the implementation based on the proposed method. Our syn-
thesis results show that the overhead of these conversions for
FFT calculation with more than 64 points is less than 10%.

Table VI also compares the power consumption of the
implemented FFT butterfly elements. For 8-bit data precision,
the proposed design outperforms binary-based and RNS-
based implementations with 72% and 47% lower power
consumption, respectively. Table VI also shows that the power
efficiency of the proposed method increases by increasing
data-width. For example, for 16-bit data, the proposed method
offers 74% and 86% less power consumption than the RNS-
based and binary-based implementations, respectively. The
bit-stream-based design of [17] consumes, on average, 12%
more power compared to the proposed design. Since the num-
ber of clock cycles to complete the computations with the
two bit-stream-based methods, i.e., [17] and our method, are
exponentially greater than the binary and RNS baseline meth-
ods, these two methods need more processing time and energy
consumption.

2) CNN Design: To further evaluate the proposed method,
we implemented the PE of [60] with binary, bit-stream-based
method of [17], and the proposed components. In our eval-
uation, we eliminate memories and buffers since they are
implemented with similar logic in all three designs. All designs
are implemented with 16-bit binary precision. Table VII shows
the synthesis results. As it can be seen, the proposed design
provides lower area and power usage. Although the proposed
design outperforms the binary implementation by 6.22x and
3.13x more efficient area occupation and power consump-
tion, it only offers near 1% better power and area compared
to [17]. Therefore, reducing the number of clock cycles and as
a direct result, reducing processing time and energy consump-
tion is the most important advantage of the proposed design
compared to [17].

V. CONCLUSION

In this work, we proposed a novel approach for ultralow-
power design of modular adders and multipliers. The proposed
method guarantees the same critical path latency for modu-
lar adders or multipliers with the same data bit-width. The
proposed approach offers a cost-efficient design in terms of
area occupation and power consumption. The ultralow-power
and low-area property of the proposed design makes it an
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excellent choice for edge devices, especially the EH and
BI devices. We also proposed an efficient bit-stream-based
RNS-to-binary convertor that outperforms the state-of-the-art.
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