CAS SciFinder®

Task History

Initiating Search August 2, 2024, 5:45 PM

References:

Advanced Search:

Author Name: Parihar, Ashish

Search Tasks

Task	Search Type	View
Returned Reference Results (73)	References	View Results
Exported: Viewed Reference Detail	References	View Detail

Copyright © 2024 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

CAS SciFinder® Page 2

Reference Detail

View in CAS SciFinder

Synthesis and reactivity of (Pybox)Os and (Pybox)Ru complexes: Comparison with isoelectronic (Phebox)Ir complexes

By: Parihar, Ashish; Malakar, Santanu; Emge, Thomas J.; Goldman, Alan Stuart

0 Substances • 0 Reactions • 0 Citations

Our laboratory has reported that $(^{CX3}Phebox)Ir(H)(OAc)$ (X = H, F) catalysts are highly active for the accept orless dehydrogenation of n-alkanes¹, particularly in the presence of Lewis acids. In this work we report the synthesis of isoelec tronic (Pybox)OS(H)(OAc) and (Pybox)Ru(H)(OAc), and investigation of these complexes for alkane dehydrogenation. DFT calculations predict (Pybox)Ru(H)(OAc) to catalyze acceptorless alkane dehydrogenation with a barrier lower than that for $(^{CH3}Phebox)Ir(H)(OAc)$, while the barrier calculated for (Pybox)OS(H)(OAc) is even lower. The rate-limiting step chem. for the catalytic cycle is calculated to be a net M- H/C-H σ -bond metathesis reaction, although expulsion of H_2 from the reaction mixture was found to be rate-determining under typical conditions for accept orless n-alkane dehydrogenation catalyzed by $(^{CF3}Phebox)Ir(H)(OAc)$. H/D exchange experiments were used to probe the kinetics of C-H activation yielding the order of activity: $(Pybox)OS(H)(OAc) > (Pybox)Ru(H)(OAc) > (^{CF3}Phebox)Ir(H)(OAc)$. Exptl. investigation of catalysis by (Pybox)Ru(H)(OAc) and (Pybox)OS(H)(OAc) is still in progress but the Ru complex, unfortu nately, does not appear to be stable at the high temperatures required for acceptorless alkane dehydrogenation. We have also reported that $(^{CH3}Phebox)Ir(C_2H_4)_2$ catalyzes selective dehydrogenative coupling of ethylene to butadiene via an iridacycl opentane complex. In this work we used the precursor $(Pybox)OSH_4$ to investigate the same catalytic reaction and appears to result in and analogous dehydrogenative coupling of ethylene to form butadiene via an osmacyclopentane.

Conference

Source

Abstracts of Papers, ACS Fall 2022, Chicago, IL,

United States Pages: No pp. given Conference; Article

2022

CODEN: 70APE2 Full-Text Search

View all Sources in CAS Scifinder

Database Information

AN: 2022:2981073

CAplus

Company/Organization

Chemistry and Chemical Biology

Rutgers The State University of New Jersey

New Brunswick United States **Publisher**

American Chemical Society

Language English

Copyright © 2024 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.