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Induced Lorentz violation on a moving braneworld
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We consider a braneworld scenario in which a flat 4D brane, embedded in M>! x S, is moving on or

spiraling around the S'. Although the induced metric on the brane is 4D Minkowski, the would-be Lorentz
symmetry of the brane is broken globally by the compactification. As recently pointed out, this means causal
bulk signals can propagate superluminally and even backwards in time according to brane observers. Here we
consider the effective action on the brane induced by loops of bulk fields. We consider a variety of self-energy
and vertex corrections due to bulk scalars and gravitons and show that bulk loops with nonzero winding
generate UV-finite Lorentz-violating terms in the 4D effective action. The results can be accommodated by
the Standard Model extension, a general framework for Lorentz-violating effective field theory.
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I. INTRODUCTION

The simplest braneworld scenario posits a spacetime of
the form M>! x S!, with a single extra dimension com-
pactified on a circle of radius R. The brane, assumed to be
at a fixed position on the S', has a Minkowski metric
induced on its world volume. In this scenario world volume
Lorentz invariance is an exact symmetry, inherited from a
symmetry of the underlying 5D spacetime.

A straightforward generalization of this scenario allows
the brane to either move on or spiral around the S'. This
generalization might seem quite innocuous. The induced
metric on the brane is still 4D Minkowski, so it would seem
that brane observers might be hard-pressed to find any
evidence that their brane has been boosted or rotated into
the compact direction.

From a different perspective, however, the effects of this
generalization are quite dramatic. Compactification on S’
preserves an SO(3, 1) symmetry that acts on the directions
orthogonal to the S'. Once the brane is moving on or
spiraling around the S!, this exact SO(3, 1) symmetry no
longer aligns with the would-be Lorentz symmetry of the
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brane world volume. Although there is no local indication of
the violation, world volume Lorentz invariance is broken
globally by the compactification. Without Lorentz invari-
ance all bets are off, and indeed [1-3] showed that bulk
signals can propagate faster than light and even backwards in
time according to brane observers. Fortunately causality—
a more robust feature—remains intact, inherited from the
causality of the underlying 5D spacetime.

Here we consider the effects of virtual bulk particles in
this generalized braneworld scenario. Such particles can
leave a moving or rotated brane, propagate around the
compact dimension, and return. Bulk loops have no reason
to respect world volume Lorentz symmetry and might be
expected to induce Lorentz-violating terms in the brane
effective action. We will see that this is indeed the case. We
focus on Lorentz-violating dimension-four terms in the
effective action, especially the electron self-energy and the
electron-photon vertex, and show that bulk loops induce
specific Lorentz-violating terms with finite, calculable
coefficients. These terms are part of the Standard Model
extension, a general framework for Lorentz-violating
effective field theories developed in [4,5]. There are
stringent experimental bounds on the Lorentz-violating
coefficients which have been tabulated in [6].

An outline of this paper is as follows. In Sec. II we
describe the braneworld scenario we will consider.
Section III discusses the propagator for a bulk scalar field.
In Secs. [Vand V we evaluate corrections to the electron self-
energy and the electron-photon vertex due to a bulk scalar
loop. Section VI considers the self-energy for a scalar field
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on the brane induced by a bulk scalar. Sections VII and VIII
evaluate the electron and scalar self-energy induced by a
bulk graviton loop. We conclude in Sec. IX with a discussion
of experimental bounds and future directions.

Cosmological implications of this scenario have been
studied in [7] and a different approach to braneworld
Lorentz violation has been developed in [8].

II. BOOSTED AND ROTATED BRANES

Consider a 5D spacetime M?>! x S!. To describe this we
begin from 5D Minkowski space M*! with coordinates
and metric

XM= (X"Z) M=0,...4 pu=0,..3
nuy = diag(+—---—). (1)

We obtain an S! by periodically identifying the Z coor-
dinate, Z~ Z + 2zR. It is convenient to describe this
identification as

XM XM 4 AM AM =(0,0,0,0,2zR).  (2)
These uppercase coordinates define the preferred frame for
the compactification, with an exact SO(3, 1) symmetry that
acts on the coordinates X*.

The standard braneworld scenario would be to place a
4D braneworld at rest at Z = (0. We are instead interested
in braneworld which is moving in the Z direction and/or
has been rotated into the Z direction. To describe
this we transform to a new frame with lowercase coor-
dinates x™ via

XM = LM XN (3)

Here LMy is an SO(4,1) transformation that acts non-
trivially on the Z coordinate. In the x” coordinates there is
a boosted and/or rotated identification

MaM 4 oM aM = LM AN, (4)

We set

M= (x,7) (5)
and imagine a braneworld at z = 0. The coordinates x™ can
be thought of as comoving and/or corotated with the brane.
Since all we have done is a 5D Lorentz transformation, in
the comoving coordinates the metric still has the form

ds* =, dx'dx’ — dz*. (6)
The compactification is hidden in the identification (4).

Thus, the induced metric on the brane is 4D Minkowski;
however, the SO(3, 1) symmetry of the brane metric does

not align with the SO(3, 1) symmetry that is preserved by
the compactification (2). Instead world volume Lorentz
symmetry is broken globally by the compactification,
which leads to the curious possibilities of superluminal
and even backwards-in-time signaling explored in [1-3].

From the brane point of view it is natural to decompose
a™ into components tangent and normal to the brane, so
we set

aM = (a*,2zr). (7)

a* becomes a preferred four-vector on the brane, which
shows that 4D Lorentz symmetry on the brane is sponta-
neously broken. The fifth component 277 is a scalar on the
brane. In the calculations below we will find it useful to
work with the combination

aﬂ

T (8)

Up to Lorentz transformations on the brane there are three
cases to consider.
(1) Timelike b*

In this case we can go to a reference frame on the
brane in which »* only has a time component. This
can be obtained directly from (2) by boosting with
velocity £ in the Z direction.

(2)=( )G o

This leads to

bt =

a’ = (—yf2zR,0,0,0) r=yR. (10)
Note that
b* = (-$,0,0,0) (11)
with
b*=p€(0,1) (12)
or alternatively
1—p =L e.1). (13)

4

This corresponds to the “boostlike isotropic” case
discussed in [3]. As seen on the brane, bulk signals
propagate isotropically in all directions at super-
luminal speeds.

(2) Spacelike b*

In this case we can go to a reference frame on the
brane in which b* only has an x component. This can
be obtained directly from (2) by rotating through an
angle @ in the XZ plane.
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3)

<X) B (cos&
Z) \sin®

This leads to

_czisn99> (D a9

a’ = (0,sin02zR,0,0) r=cosOR. (15)
Note that
b* = (0,tan 6,0, 0) (16)
with
b* = —tan? 0 € (—0, 0) (17)
or alternatively
-0 =L (o). (18)
cos” 0

This corresponds to the “tiltlike anisotropic” case
discussed in [3]. As seen on the brane, bulk signals
propagate superluminally in the x direction and at
the speed of light in perpendicular directions.
Lightlike b*

Finally we consider the case of lightlike b* [9].
This can be obtained starting from (2) by making a
Lorentz rotation in the X~Z plane [10]. Here we
have introduced light-front coordinates X* = T' 4 X
with

ds* = dX*tdX~ — |dY|* — dZ?. (19)
The form of the Lorentz transformation is a little
unfamiliar. Introducing a parameter 1 € R it takes the
form

T 1+322 32 2 t
X|=| -2 1-12 x| (20
A A A 1 Z
or equivalently
Xt 1 0 O x*
X |=[21 22 X~ (21)
Z A 0 1 b4

To see that this is the appropriate Lorentz trans-
formation note that it leaves Xt invariant, X = x™,
so it acts on X~ Z planes. Also it preserves the
metric (19), with ds? = dx*dx™ — |dy|* — dz>. Ap-
plying the (inverse of) the transformation (20) gives

= (—=A27R, A2zR,0,0)

r=R. (22)

So the radius is unchanged, while

b = (=4,1,0,0) (23)

is indeed a null vector on the brane.
A null vector has no invariant length, so one can

go to an infinitely boosted frame in which b* = 0.
This restores conventional Lorentz invariance on the
brane. However if any matter (e.g., CMB photons) is
present on the brane one may not wish to perform an
infinite boost. In Sec. III we show that when 4 is
nonzero bulk signals can have a negative light-front
velocity in the x~ direction. With respect to Min-
kowski time this means that as seen on the brane a
bulk signal can travel faster than light and even
backwards in time in the x direction. For further
discussion of the geometry of this case, see the
Appendix.

Note that in all three cases we have b? < 1. The range

—o0 < b? < 0 is tiltlike, b2 = 0 is null, and 0 < % < 1 is

boostlike. Alternatively we can say that we always have

1 —b>>0 [11]. The range 0 < 1 —b?> < 1 is boostlike,

1—-b2=1isnull,and 1 <1 - 5% < o is tiltlike.

III. BULK SCALAR PROPAGATOR

We expect that bulk loops should induce Lorentz-
violating terms on the brane. Before turning to explicit
calculations we start with a discussion of the bulk propa-
gator. We focus on bulk scalar fields for simplicity.

The retarded propagator for a bulk field was discussed
in [1] while the static Green’s function was studied in [12].
Here we consider the Feynman propagator. It is straight-
forward to impose the appropriate periodicity (x*,z) =
(¥ + a*, 7+ 2zr) using a winding sum (equivalently, a
sum over image charges). In position space this gives the
propagator for a bulk scalar of mass y as

d*k i
A —
Z / / 2wk — g — pi?

r— +ie
% e—tk-(x—wa)elq(z—anw). (24)
It is convenient to shift
k-a
q—)q—|—2—m:q+k'b (25)
so that
i
A=
WZ_W/< Y e
e—lk~xez(q+k~b)ze—zq2nrw‘ (26)

We set z =0 since we will only be interested in bulk
propagation that starts and ends on the brane. Also we work
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in momentum space along the brane, which amounts to ﬂyn R _
dropping f i ke~ Then we are left with the winding- W= [ + [K[* +p } Fie neZ
sum form for the bulk propagator, (30)

! —iq2nrw

A= w:z—oo/zﬂ'kz q—|—k~b)2—ﬂ2+iee e (27) One branch of solutions has @ > 0 and a pole
that is displaced slightly below the real axis.
We can switch from a sum over windings to a sum over The other branch has w <0 and a pole that is
Kaluza-Klein momentum using the Poisson resummation displaced slightly above the real axis. Although we
identity do not have 4D Lorentz invariance, the poles are
- displaced in the standard way that allows for a Wick
Z / dq f(g)eia2mmv = b Z f(f) (28) rotation to Euclidean signature. One can check that
- 2n 2xr r there are no tachyons from a 4D perspective,

@” — |k|?> > 0. Finally we can evaluate the group

This puts the bulk propagator in the form velocity
A=l f: : (29) do K|
2ar At 2= (k-b+ 52— {2t ie’ vy = = ! . (31)
n=-—0o r : dk 2
V(@) 4k
It is clear that b* # O breaks 4D Lorentz invariance. We can
look for poles in the propagator and read off the dispersion
relation for the Kaluza-Klein tower to see how it is This makes it clear that wave propagation is iso-
modified from the perspective of a moving or rotated tropic, with a velocity 0 < v, <y that exceeds the
brane [3,12]. There are three cases to consider. speed of light if |k| is sufficiently large.
(1) Timelike b* (2) Spacelike b*
In this case we set b* =(—£,0,0,0) and In this case we set b* = (0,tan6,0,0) and
k" = (w, k). The propagator has poles at k" = (w, k., k). The propagator has poles at
; 2 2
w:i\/<i—“m9> +|kL|2+<"C°SQ> Y2 Fie nez (32)
cos 0 r r

Again one branch of solutions has @ > 0 and a pole that is displaced slightly below the real axis, while the other branch has

@ < 0and a pole that is displaced slightly above the real axis, so we can perform Wick rotation in the standard way. One can

check that there are no tachyons from a 4D perspective, @® — k2 — |k | |* > 0. Finally the group velocity is anisotropic. For a
do

wave propagating in the x direction
< ke nsinf))
cosd r
Vg = = (33)

xlk, =0 ke nsing)2 neosf\2 | 2
COSQ\/(mé} - ) + |5 +u

while for a wave propagating in one of the perpendicular (3) Lightlike b*
directions For the lightlike case we set b* = (—4,4,0,0). It
kL ils1 c%nvenient to introduce light-front coordinates on
dw 1 the brane.
Yol Tkl T 2 2 2 (34)
s\l P+ @2+ u
+_ £ _

In the perpendicular directions we have the familiar group S rE F=otk. (35)
Velocity for a Kaluza—Klein tower of particles with masses
pn = (5 + /t In the x direction we have a group velocity We will interpret 7 = x* as light-front time and the
0 < |vy,| < -5 that exceeds the speed of light if |k,| is conjugate momentum k, =1k~ as light-front en-
sufficiently large. ergy. The propagator has poles at
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1

k_:k—Jr

2
K’W - ;) + k.2 +u2]. (36)
This fixes the dispersion relation. As usual there are
two branches of solutions. Positive frequency modes
have k* > 0 and k= > 0, while negative frequency
modes have kT < 0 and k= < 0. Given a positive-
frequency plane-wave solution

e~k x 5k T~k X)) (37)

a stationary-phase approximation lets us read off the
group velocities with respect to light-front time.

de ok kP42

U T T T (k)2

dx 1 1 0k~ k 1
VLT 0 T 2ok, kT (39)
In the transverse directions we have conventional
light-front kinematics [13]. In the longitudinal di-
rection there is a shift which allows the longitudinal
velocity to be negative, —A> < v~ < co. This means
that in Minkowski coordinates bulk signals can
travel faster than light and even backwards in time
in the x direction. To see this, note that in Minkowski

coordinates a trajectory x~ = —Ax™ corresponds to
1422
=——7t 40

The Minkowski velocity is superluminal for
0 < A2 < 1. The velocity diverges at A> =1 and
becomes negative for > > 1, which as in [2] indicates
that the signal is traveling backwards in time. For
further discussion of this case see the Appendix.

IV. ELECTRON SELF-ENERGY

The world-volume metric induced on the brane is 4D
Minkowski, even if the brane is boosted or rotated in the Z
direction. Particles that solely propagate on the brane are not
sensitive to the breaking of 4D Lorentz invariance and it would
be reasonable to describe these “Standard Model” particles
using an effective action with 4D Lorentz symmetry. However,
particles that propagate in the bulk can leave the brane, travel
around the compactification manifold, and return. Such
particles notice the global breaking of 4D Lorentz invariance
by the compactification and loops of such particles should
induce Lorentz-violating terms in the 4D effective action.

Here we study this effect, beginning with the simple
example of radiative corrections to the electron self-energy.
We imagine a real bulk scalar field y of mass u that has a
Yukawa coupling to the electron. We describe the coupled
system with the action

k—p

>
>

p k p

Y

FIG. 1. One-loop electron self-energy arising from a Yukawa
coupling to a bulk scalar.

1 1
S:/dSX[EaMZaMZ_Eﬂ2)(2

+ [ ditiro, - mw -l @41

Note that the coupling 4 has units (mass)~'/2. The diagram
we wish to consider is shown in Fig. 1.

Our goal is to evaluate the diagram and expand in powers
of the external momentum p. In this way we will make
contact with the Standard Model extension, a general
effective field theory framework for Lorentz-violating
effects developed in [4,5]. The basic diagram is easy to
write down. Writing the brane-to-brane bulk propagator
with a sum over Kaluza-Klein momentum as in (29) we
have

2 & [Pk fam
.
: 2ﬂrn;w/(2ﬂ)4k2—m2+ie
o 1
(k=p)* = ((k=p)-b+2> =’ +ie’

(42)

As pointed out in Sec. 11, even though the bulk propagator
is not Lorentz invariant, it still has poles that allow for a
standard Wick rotation. So we Wick rotate in the usual way,
setting

kg = (=ik% k) d*k = id*kgk* = —k%  (43)
with a similar rotation for all other four-vectors. We

introduce a pair of Schwinger parameters s, ¢ to represent
the propagators via the identity

0 1
/0 dse™ = 1 (44)

It is convenient to use a frame in which only the first
component of by is nonzero.

b = (bg,0)

pe = (PE.PE)

kg = (kg, kE)

ve = (Ve 7E)- (45)
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This leads to

> ir ) )
—ZMEj [as [Ta [ 5 G (rke =7 K ) exp (=5(8 + ke + )]
2 ) _2n 2 n 2
x exp  —t| (1 + bg) (kg — pr) _TbE(kE_pE)+|kE_pE| {7 +/4 : (46)

The momentum integrals are Gaussian and lead to the rather tedious expression

i s [ o0 1
iy = d dt
l 32713%2,0/ SA (s + 1)/ (s + 1(1 + b3)) '/

» 1(1+ b3) t t N
_ PR L SR L
s+ b2) EPE T e PE T T b)Y
t n
—am2— ¢ (1 2) o (21 4+ b2) + 2bgpp
xexp{ sm ((r) +/t) SEl 550 pe(l+bg) + EPE

2 12 p2 (1 2 4
_ — . 7
s+t|pE| s+ t(1+b2) E<r>} (47)

Now we expand in powers of the external momentum p. At zeroth order, after continuing back to the Lorentzian
signature and restoring Lorentz covariance, we find

./12 oo © © 1 ; "
0 — A / J / gt n
l 32”3”,;_:00 o o (s +1)32(s +t(1 = b?))1/? s+t(1—b2)r%+m

oot () ) ot ()

The term proportional to m is Lorentz invariant and therefore not interesting to us. The term proportional to }
has the potential to violate Lorentz invariance, but it vanishes once the sum over n is performed. This follows from a
symmetry: the underlying expression (47) is invariant under by — —bg, n — —n which implies that only even powers of b*
can appear.

At first order in p#, after continuing back to the Lorentzian signature and restoring Lorentz covariance, we find

1'/2 2(wrw)?s
> d dt b,b,y" p*
l 32n5/2w_z_:oo/ S/ (S+t t1/2(s+t)4 " v P )

s+ t(1 —b?
X exp {—sm2 —tu? - +t(s(+t)) (ITI"W)2}. (49)
|
Here we have used the identity (28) in reverse to (i) Ultraviolet divergences can only arise from thew = 0
replace the momentum sum with a winding sum and term in the sum, since nonzero winding means the loop
an integral over ¢. The integral over ¢ is Gaussian and can never shrink to a point. Indeed in (49) we see that
leads to (49). for w # 0 the exponential in the second line serves to
Working with a winding sum is advantageous for the cut off the short-distance regime s, — 0.
following reasons. Since we are only interested in Lorentz-violating terms, we

(i) Lorentz symmetry is broken globally by the  could simply discard the w =0 term to obtain a finite
compactification. Particle trajectories with w =0  result. However we might as well discard all terms propor-
are not sensitive to the breaking and are guaranteed  tional to p. This means discarding the first term in
to respect Lorentz invariance. Indeed in (49) we see  parenthesis in (49) as well as the trace part of b,b,. In
that the term with w = 0 is proportional to p. this way we obtain the Lorentz-violating contribution
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. 2 2 (o)
() A 1 y
iXpy =— 16272 <bubv - Z”#vb2> r'p Z

(&) (e SW2
ds dt———
/) A 12 (s +1)*

si(i=p)
X exp {—sm2 —tu? — —f—t(ts(%t)b) (ﬂrw)z}. (50)

This corresponds to a Lorentz-violating term in the 4D effective Lagrangian for the electron. In the notation of [5] the
relevant term is £ = ic,, wy* 0"y which makes a contribution ic,,y* p* to iZ. Comparing to (50) we can read off the Lorentz-

violating coefficient ¢

which can be conveniently presented as

s
C = —#i—i <bﬂby—%nﬂyb2>ll (51)
where we have defined [14]
I & o o0 s"w? s +t(1 — b?)
I, = WWZOOA dsA dtmexp {—s(;rmr)2 — t(mpr)? — sz}. (52)

The induced coefficients Cyy are real, dimensionless, trace-
less, and symmetric. They make a Lorentz-violating but
CPT-even contribution to the effective action.

We can think of (51) as a product of a loop factor

12

L., a dimensionless coupling 2, a tensor structure

1672’
b,b, —in,,b*, and a function I; of the dimensionless
parameters b2, rmr, zpr. As can be seen in Fig. 2, I, is an
increasing function of b?. It vanishes as h*> — —co and
(perhaps despite appearances) approaches a finite limit
as b* - 1.

W
N
w
S}
—_
(e
—

nmr=20.5
nur=0.5

nmr=0
nur=20.1

FIG. 2. The quantity /| appearing in the electron self-energy as
a function of b%.

|

The expression for I; simplifies if we set m =0 (a
massless fermion on the brane) and »* = 0 (a small boost
and / or rotation). Then the sum and integrals can be
performed and the behavior for small and large pr can be
extracted [15]. This leads to

Hog L as pr — 0
mr0: {0 " (53)

b2 ~0,
Zpre > as pr — oo.

V. ELECTRON-PHOTON VERTEX

Next we consider the one-loop correction to the electron-
photon vertex due to a bulk scalar. The diagram is shown
in Fig. 3.

Suppressing the external polarizations and writing the
bulk propagator with a momentum sum as in (29), the
diagram is

FIG. 3. One-loop vertex correction due to a bulk scalar.
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i Z/ ﬁ2+k+m u
27zr Y (py + k)P —m? +ie
pﬁ—l—k+m
(p1 + k) —m? +ie
1

. 54
(kb2 — i e (54)

We can evaluate this similarly to the electron self-energy.
We Wick rotate, introduce a series of Schwinger parameters

—— Vdet he™

1

(P1g+kg)*+m?
1

(Pae+kg)*+m?

1 o 412 N AV 2
k2E+(kE.bE—ﬂ)2+u2:A deT e, (55)

:/oodsl e_sl[(plE+kE>2+m2]
0

©
— / ds2 e %2 [(PZE+kE>2+’"2]
0

and evaluate the Gaussian integral over k. This gives

2
(prerz)—sz(p%Eerz)—t(’r'—erﬂz)

T

X ehwv“v |:2 ha[)’y%y}ll?yg + (pZE YE ha[)’y yE - m)},/é(plE YE hy(Sv},yE - m):| (56)
where we have introduced the convenient notation
1 1 1 1
hy, = diag( 57 , , )
si+sy+t(1+bg) sy +spy+t sy+s,+1 s+ +¢
n
v =51 phg + $2php — fblfg;' (57)

Now we expand in powers of the external momenta. At leading (zeroth) order, after continuing back to Lorentzian signature,
switching to a winding sum for the bulk propagator, and doing a bit of Dirac algebra, we find

—s m?—sym?>—tu?

1
Or = je)? d / d / dt
—e Z / R (@) 2 (4n (s, + 53 L )¢

X exp {—

s) + s+ (1 = bz)”zrz 2
Z(S] +S2 +l)

1
w2 b |——————y* + mPy?
}|:S1+S2+ly 4

(mrw)?

B (S] + 5y + t)z (2%19”

-y (58)

We drop all Lorentz-invariant terms, which includes the UV-divergent terms with w = 0. Setting s = s; + s, we are left

with the Lorentz-violating contribution

X exp {—sm2 —t? —

This pairs nicely with (50) to produce a gauge-invariant but
Lorentz-violating dimension-four term in the effective
action, namely,

L = ic,py' D"y D, =0, —ieA,. (60)
The coefficient c,, is given in (51). Since we stopped at
zeroth order in the momentum, this outcome, required by
gauge invariance and Ward identities, can be thought
of as a consistency check on our results. Expanding (56)

L 02 ) s
167 1/2<bbﬁ %ﬁb>ynﬂw_z_:oo/ ds/ dltl/z(sﬂ

2
s+t(l=>b )ﬂ2r2W2
t(s+1)

(59)

beyond zeroth order in the external momenta would
give higher-derivative corrections to the electron-photon
vertex.

VI. SCALAR SELF-ENERGY

Having calculated the one-loop Lorentz-violating cor-
rection to the self-energy of an electron, we now perform a
similar calculation for a real scalar field ¢ on the brane
with a cubic coupling to a bulk scalar y. We start from the
action

105014-8
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k—p

p k p

FIG. 4. One-loop scalar self-energy arising from a cubic
coupling to a bulk scalar.

2

1 1
+ /d4X|:§aﬂ¢aﬂ¢—§m2

. 0

ig o foo 1

9 ds | di

32n3rn§_:m/o SA (s+1)%2(s+1(1+b3))"/?

1 1
S:/de[zaM;(aM —y%f]

P3| D)

2 st n
—sm?—t n 2 ) p2(1+DbXY+2b — )=
Xexp{ . ((r) +”> s+r(1+bi~)<pE( G EpEr)

Note that the coupling g has units (mass)*'/2. The diagram
we wish to consider is shown in Fig. 4.

Writing the brane-to-brane bulk propagator with a sum
over Kaluza-Klein momentum as in (29), the diagram is

g_2 / d*k 1
2rr A~ | (2n)*k* —m? + ie

1
(k=p)-b+2)?

X . 62
(k=p)* - — 2+ ie (62)
We Wick rotate to the Euclidean signature as in (43) and
introduce a pair of Schwinger parameters as in (44).
Parametrizing the Euclidean momenta as in (45) and
performing the Gaussian integral over k; we find

St r 5 (12
bz | — . (63
+t|pE| +ert(ler%) E<r> (63)

Now we expand in powers of the external momentum p. At zeroth order the result is Lorentz invariant and can be
ignored. At first order the sum over the Kaluza-Klein momentum vanishes because it is odd under n — —n. At second order,
after continuing back to the Lorentzian signature and restoring Lorentz covariance, we find

2(wrw)?s?

/2
d dt p*—
3271.5/2 Z / S/ (( —|—t

W=——00

Again we have used the identity (28) in reverse to replace
the momentum sum with a winding sum and an integral
over ¢g. The integral over g is Gaussian and leads to (64).
The first term in parenthesis is Lorentz invariant and can be
dropped. The second term can be matched to a Lorentz-
violating term in the effective action [5]

L= Sk 9 (65)
with a traceless coefficient k,,. Removing the Lorentz-
invariant trace from the second term in (64) we identify

1 1
kﬂl/ = —Fﬂzgzn’r (bﬂby - Z?’]ﬂyb2> 12 (66)

where /,, is defined in (52). The induced coefficients k,, are
real, dimensionless, traceless, and symmetric. They make a
Lorentz-violating but CPT-even contribution to the effec-
tive action.

We can think of (66) as a product of a loop factor ; 6 —,
a dimensionless coupling ¢’zr, a tensor structure
b,b, —in,b* and a function I, of the dimensionless
parameters b2, rmr, zpr. As can be seen in Fig. 5, I, is an

t1/2( + l‘)4 bﬂb

t(s+1)

o )exp {-om? =2 —erwﬂ}. (64)

1.2

L 1 -

0.8

0.6

0.4-

/ b2
5 4 3 2 1 0 1

tmr=20.5
Tur=0.2

FIG. 5. The quantity /, appearing in the scalar self-energy as a
function of b2
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increasing function of b2. It vanishes as b> — —co and
approaches a finite limit as b> — 1.

The expression for I, simplifies if we set m =0 (a
massless scalar on the brane) and »* = 0 (a small boost
and/or rotation). Then the sum and integrals can be
performed and the behavior for small and large pr can
be extracted [16]. This leads to

s aspr—0

6.

b* =~ 0, mr0: n "
ge—erpr
3

(67)

as pr — oo.

VII. ELECTRON SELF-ENERGY
FROM A BULK GRAVITON

The graviton is the most likely candidate for a bulk field.

It also provides an interesting contrast to the bulk scalars
we have considered so far, since it carries spin and has
a nonrenormalizeable coupling to the stress tensor on
the brane. For these reasons we consider corrections
|

k—p

p k p

FIG. 6. Electron self-energy due to a bulk graviton loop.

to the electron self-energy induced by a bulk graviton
loop. The diagram is shown in Fig. 6.

Bulk gravitons in the large extra dimension scenario
[17-19] have been considered in [20] and we borrow
several of their expressions. We expand the 5D metric about
flat space,

2
9gap = Nap + WhAB (68)

where My is the 5D reduced Planck mass. The brane-to-
brane graviton propagator is

i actBp + Naplse — 31aBNCD
2= (k-b+ 22— 12 1 ic

69
i 2rr - 2 (69)

where k is the 4D momentum, r is the Kaluza-Klein momentum, and we have introduced y as an infrared regulator. The
propagator is written in de Donder gauge, £ = 1 in the notation of [20]. We assume the graviton couples to the 4D stress

tensor on the brane,

L= li/(l]/”aﬂ - m)l// -

i _
T;w = Zl//(y#ay + },Daﬂ

which leads to the vertex

\kg

1%

So far the motion of the brane has only entered
in the graviton propagator (69), in a manner exactly
analogous to the scalar propagator (29). However the
motion of the brane also enters in the effective 4D
coupling. The Newtonian potential on a moving brane
was studied by Greene et al. [12], who found that the
relation between the 4D and 5D reduced Planck masses
becomes [21]

M, = (y22R)\/23>. (72)

Jw —

W Tﬂyh/w ‘210

5
i

2 0wy, + 05y, )y (70)

#3/2 [(kl + kQ)ﬂ% + (kl + k2)u7,u] (71)

_4M
A’l 5

For a moving brane » = yR so the reduced 4D Planck
mass is

My = (2ar)'/2MY* =24 x10'8 GeV.  (73)

We take this relation to hold in general, i.e. even for a
brane that is tiltlike rather than boostlike.

After all these preliminaries we are ready to evaluate the
diagram in Fig. 6 [22]. The basic diagram is straightforward
to write down.
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k + p)2y,,(k+ m)yy* + 5K+ p) (K +m)(k + p)

d“k
167trM3 Z /

With some Dirac algebra the numerator can be simplified
so0 it is at most linear in Dirac matrices. We Wick rotate,
introduce Schwinger parameters, and perform the Gaussian
integral over k. It is convenient to do this in a frame in
which the Euclidean vectors have components

bE — (bl,0,0,0)
Pe = (P1.2.0.0)
kg = (ky, ko, ks, ky). (75)

Then we continue back to Lorentzian signature, restore
Lorentz covariance, and expand in powers of p. At zeroth
order all terms are either Lorentz invariant or vanish
because they are odd under n — —n. At first order in p,
after switching from a momentum sum to a winding sum,
we find that many terms are either Lorentz invariant or
vanish because they are odd under w — —w. Discarding all
such terms we are left with a Lorentz-violating contribution
to the effective Lagrangian, £ = ic,, py"d"y where [23]

1 1 1
o = To i (WP e

1 & [ o 952 _25r— 1112+ 5s5b*
1 d dt
6\/7_:;% s/) w32 (s + )0

gravity —

—m? +ie)((k - p)* -

(74)

((k=p)-b+2)?—p +ie)

(ii) a dimensionless coupling <— built from the effec-

tive radius r and the reduced 4D Planck mass M,
(iii) a symmetric traceless tensor structure b, b, — 31,,b?,
and
(iv) a function Iy, of the dimensionless parameters
b%, wmr, mpr.

The function /iy is shown in Fig. 7. It simplifies if we
set m = 0 (a massless fermion on the brane) and »*> = 0
(a small boost and/or rotation). Then the sum and integrals
can be performed and the behavior for large and small u can
be extracted. For graviton loops there is no IR divergence,
even for a massless fermion on the brane, and we find

-3¢(3)
3(mpr)%e

aspur—0

b2~0, m~O0:1 {
gravity ™~ —
22 as ur — oo.

(77)

VIII. SCALAR SELF-ENERGY FROM A BULK
GRAVITON

Finally we consider corrections to the self-energy of a
minimally coupled scalar field due to a bulk graviton loop.
We assume the graviton couples to the 4D stress tensor on
the brane,

+1(1=0?%)
x exp { —s(zmrw)? —t(x, rw2—s7 . 1 1
p{ ( ) ( H ) Z(S+I) _ aﬂ¢0y¢_§m2¢2_WT/whﬂv .0

(76) ’
= 0,40, — '7 (020" — m*¢? (78
We have written (76) as a product of . © ) )

(1) a loop factor ; 6 —, which leads to the scalar—graviton vertex
\74?2
1

v — =575 [k + kukay — N (ky - ky —m?)] (79)

M
A"l 5

The diagram we wish to evaluate is shown in Fig. 8 [24]. With the brane-to-brane graviton propagator (69) the basic

diagram is straightforward to write down.

4k2p* +5(k-p)? +3m*k-p —Sm?

d4k
[y = E
! 47rrM dzri3 /

— i+ ie) (k= pJ -

((k=p)-b+2*—pu*+ie) (80)

Compared to the electron self-energy considered in Sec. VII the main difference is in the contractions of the stress tensors in
the numerator. As is by now familiar we Wick rotate, introduce Schwinger parameters, and perform the Gaussian integral
over kg. It is convenient to do this in a frame in which the Euclidean vectors have components
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2
b
5 4 3 2 T & 1
1 .
2
gravity

3
4-
5 p

nmr=0.3

ntur=0

FIG. 7. The quantity /I,., appearing in the electron self-

energy due to a bulk graviton loop. The function decreases
rapidly but has a finite limit as b> — 1.

b = (b1,0,0,0)
PE = (P1.12.0,0)
kg = (ki ky, ks, ky). (81)

Then we continue back to Lorentzian signature, restore
Lorentz covariance, switch from a momentum sum to a
|

1 1 1 2 | yscalar
km/ = —@W (bﬂby - anuz/b )Igravny

1 + ds(zmrw)?

— 4s%(wmrw)*

5-
4-
3
scalar
gravity
2 -
1-
2
_/ b
5 4 3 2 1 0 1
ntmr=0.3
Tur=0

FIG. 9. The quantity Izcrilv‘”‘i{y appearing in the scalar self-energy
due to a bulk graviton loop. The function increases rapidly but

has a finite limit as 2 — 1.

winding sum, and expand in powers of p. At zeroth order in
p the expression is Lorentz invariant. At first order in p the
result vanishes because all terms are odd under w — —w. At
second order in p many of the terms are Lorentz invariant.
Discarding all Lorentz-invariant terms we are left with a
Lorentz-violating contribution to the effective Lagrangian,

L =1k, 0'¢pd* ¢ where [25]

scalar __
I gravity — / ds /

We have written (82) as a product of
(1) a loop factor 6 =,
(i1) a dimensionless coupling

w32 (s 4 1)*

ﬁ built from the effec-

tive radius r and the reduced 4D Planck mass M,

(iii) a symmetric traceless tensor structure b, b, — +1,,b?,
and
k—p
p k p
FIG. 8. Scalar self-energy due to a bulk graviton loop.

_s+t(1—b2)}‘ (82)

exp {—s(nmrw)2 - t(ﬂﬂrw)z t(s 4 t)

(iv) a function I;g‘{j‘l{y
b?, mmr, myr.

The function I;g{;‘l{y is shown in Fig. 9. It simplifies

if we set m = 0 (a massless scalar on the brane) and

= 0 (a small boost and/or rotation). Then the sum and

integrals can be performed and the behavior for large

and small u can be extracted. There is no IR divergence

of the dimensionless parameters

in I;glv‘j{y, even for a massless scalar on the brane, and
we find

123

3 as pr — 0
b2 ~0 ~ (Q: [scalar 31:( ) H

~ m= Igravuy 4 2 ,—2mpur
5 (mpr)”e as pr — oo
(83)
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IX. CONCLUSIONS

In this work we considered a braneworld which is
moving or spiraling around a compact extra dimension
which we take to be a circle of radius R. The configuration
is described by an effective radius r for the compactifica-
tion and a four-vector b* that spontaneously breaks the
Lorentz symmetry of the brane world volume.

YR boostlike

r=4qR null
cosOR tiltlike
(=.0.0.0)  boostlike

b= (=1,2,0,0)  null (84)
(0,tan0,0,0) tiltlike.

Loops of bulk fields are sensitive to the parameter b* and
can induce Lorentz-violating terms in the 4D effective
action. We explored this, emphasizing the dimension-four
terms which correct the electron self-energy and the
electron-photon vertex.

L =ic,yy' D'y D, =0, —ieA,. (85)
The one-loop coefficients ¢, ~ b,b, — %nﬂybz due to bulk
scalars and gravitons are given in (51) and (76). There are
stringent experimental bounds on Lorentz violation,
reviewed in [6]. For the electron, for example, laboratory
bounds on the dimensionless coefficients c,, have reached
the level of ~1072!' [26].

The Standard Model extension is a general framework
for incorporating Lorentz violation and provides many
effects to explore. In addition to the QED effects mentioned
above, we considered Lorentz-violating corrections to the
self-energy of a scalar field, £ = %kﬂyd”gﬁd” ¢, with coef-
ficients k,, given in (66) and (82). Taking the scalar field as
a proxy for the Higgs field, the experimental bounds on &,
are surprisingly good [6], having reached the level of
10712210729 [27] or 10~13-10727 [28].

While many similar calculations could be done, there are
also theoretical issues worth exploring. In particular it
would be interesting to understand soft emission from a
moving braneworld. This should be related to the infrared
behavior of the diagrams we have considered. For example
for > = 0 the vertex correction (54) has an IR divergence
when p? = p3 = m?, which should cancel against soft
emission in suitable inclusive observables.

Any signal for Lorentz violation in the present epoch
would be of the utmost significance. One can also entertain
the idea that, although Lorentz-violating effects are
extremely small today, they may have been larger in the
early Universe. Perhaps a braneworld was highly boosted in
the early Universe and only slowed and stabilized with
time. Could the attendant violation of Lorentz symmetry

in the early universe leave an observable imprint on
cosmology?
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APPENDIX: MORE ON LIGHTLIKE »*

Since the geometry of the null case may be a little
unfamiliar we give some further explanation. According
to (21) a brane at z = 0 has Z = AX ™, so the brane spirals
around the S' as one moves in the X direction. At 7 = 0
the brane is located at Z = AX, which means it has been
rotated in the XZ plane by an angle 6 = tan™! 1. Setting
X = 0 we have Z = AT, which means the brane is moving
along the Z axis with velocity 4. (As in the “closing
scissors” effect this velocity can be arbitrarily large.)
However it is the component of the velocity perpendicular
to the brane that is physically relevant, and as can be seen in
Fig. 10 this is given by

y=vV1+2

(A1)

Thus we can summarize the lightlike case as a combination
of a boost and a rotation with [29]

yp =tanf = . (A2)

We would like to understand what a causal signal in
the bulk looks like on such a brane. Following the analysis
in [2] we consider a bulk signal sent out from the origin
T = X =Y = Z = 0 and ask where its future intersects the
brane. It is simplest to work in the covering space where the
origin corresponds to an infinite series of image charges
located along the Z axis at

FIG. 10. The case of lightlike b*. The angle between the brane
and the X axis is # = tan~! A. The brane moves along the Z axis

with velocity 4; the perpendicular component of the velocity is
denoted .
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Z,=2nRw  weZ. (A3)
In the bulk the future light cones of the image charges are
given by
XX~ = |Y]? = (Z -2zRw)* = 0. (A4)
Using (21) to switch to comoving coordinates and recalling
that for this case r = R, the future light cones are given by
(x=22rwA)2 +|y|> + (z=27rw)? = (t+27xrwi)?.  (AS)
At fixed 7 we see that the future light cones are spheres of
radius ¢ + 2zrwA centered at
X =2arwl y=0 z = 2mrw. (A6)
The situation in the xz plane is shown in Fig. 11. The
centers of the spheres lie along the line x = Az. Their
envelope defines a cone with opening angle 6 = tan™! 1.
The tip of the cone is located at [30]
x=—t z=—t/A (A7)
The bottom part of the envelope is horizontal and intersects
the x axis at
X =t (A8)
This means bulk signals propagate in the —x direction at the
speed of light. The top part of the envelope, on the other
hand, intersects the x axis at

x=-t+ /%tan(2«9)

142

Thus bulk signals propagate in the +x direction with speed

ifﬁ in agreement with (40). For 0 < 1 < 1 there is super-

luminal propagation in the +x direction. At A =1 the

X

0_-
- 0

FIG. 11. At fixed ¢ the future light cones of the image charges
form circles in the xz plane. Their envelope forms a cone which
moves in the direction indicated by the arrow. The lower part of
the envelope is parallel to the z axis and moves downward at the

speed of light. The upper part of the envelope intersects the x axis

_ 142
at x = = t.

velocity diverges and propagation is instantaneous. For
A > 1 the velocity is negative, which can be thought of as a
signal from the origin that is traveling in the +x direction
but backwards in time. Alternatively it can be thought of as
a signal going forward in time that was emitted in the far
past at x = +o0, destined to reach the origin at # = 0. This
can be seen geometrically in Fig. 11 from the fact that the
range 1 < A < oo corresponds to 7/2 < 260 < x.

If we include the transverse directions, then at time ¢ and
position x = z = 0 the envelope extends into the transverse
directions a distance

[ 2
ly| = (/> + (/—2) tan 0

=1+ 2t

Thus bulk signals propagate in the transverse directions at a
superluminal speed v/1 + 4. To relate this to (39), note that
a particle moving in the transverse directions has x = 0,
which means x™ = x~ = r and hence v~ = 1. Then (38)
(n/r?+p
(k+)z
velocity is bounded above by /1 + 12

(A10)

becomes |v, |*> + =1+2%, so the transverse
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