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We consider a braneworld scenario in which a flat 4D brane, embedded in M3;1 × S1, is moving on or
spiraling around the S1. Although the induced metric on the brane is 4D Minkowski, the would-be Lorentz
symmetry of the brane is broken globally by the compactification. As recently pointed out, this means causal
bulk signals can propagate superluminally and even backwards in time according to brane observers. Herewe
consider the effective action on the brane induced by loops of bulk fields.We consider a variety of self-energy
and vertex corrections due to bulk scalars and gravitons and show that bulk loops with nonzero winding
generate UV-finite Lorentz-violating terms in the 4D effective action. The results can be accommodated by
the Standard Model extension, a general framework for Lorentz-violating effective field theory.
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I. INTRODUCTION

The simplest braneworld scenario posits a spacetime of
the form M3;1 × S1, with a single extra dimension com-
pactified on a circle of radius R. The brane, assumed to be
at a fixed position on the S1, has a Minkowski metric
induced on its world volume. In this scenario world volume
Lorentz invariance is an exact symmetry, inherited from a
symmetry of the underlying 5D spacetime.
A straightforward generalization of this scenario allows

the brane to either move on or spiral around the S1. This
generalization might seem quite innocuous. The induced
metric on the brane is still 4D Minkowski, so it would seem
that brane observers might be hard-pressed to find any
evidence that their brane has been boosted or rotated into
the compact direction.
From a different perspective, however, the effects of this

generalization are quite dramatic. Compactification on S1

preserves an SOð3; 1Þ symmetry that acts on the directions
orthogonal to the S1. Once the brane is moving on or
spiraling around the S1, this exact SOð3; 1Þ symmetry no
longer aligns with the would-be Lorentz symmetry of the

braneworld volume. Although there is no local indication of
the violation, world volume Lorentz invariance is broken
globally by the compactification. Without Lorentz invari-
ance all bets are off, and indeed [1–3] showed that bulk
signals can propagate faster than light and even backwards in
time according to brane observers. Fortunately causality—
a more robust feature—remains intact, inherited from the
causality of the underlying 5D spacetime.
Here we consider the effects of virtual bulk particles in

this generalized braneworld scenario. Such particles can
leave a moving or rotated brane, propagate around the
compact dimension, and return. Bulk loops have no reason
to respect world volume Lorentz symmetry and might be
expected to induce Lorentz-violating terms in the brane
effective action. We will see that this is indeed the case. We
focus on Lorentz-violating dimension-four terms in the
effective action, especially the electron self-energy and the
electron-photon vertex, and show that bulk loops induce
specific Lorentz-violating terms with finite, calculable
coefficients. These terms are part of the Standard Model
extension, a general framework for Lorentz-violating
effective field theories developed in [4,5]. There are
stringent experimental bounds on the Lorentz-violating
coefficients which have been tabulated in [6].

An outline of this paper is as follows. In Sec. II we
describe the braneworld scenario we will consider.
Section III discusses the propagator for a bulk scalar field.
In Secs. IVandVwe evaluate corrections to the electron self-
energy and the electron-photon vertex due to a bulk scalar
loop. Section VI considers the self-energy for a scalar field
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on the brane induced by a bulk scalar. Sections VII and VIII
evaluate the electron and scalar self-energy induced by a
bulk graviton loop.We conclude in Sec. IXwith a discussion
of experimental bounds and future directions.
Cosmological implications of this scenario have been

studied in [7] and a different approach to braneworld
Lorentz violation has been developed in [8].

II. BOOSTED AND ROTATED BRANES

Consider a 5D spacetimeM3;1 × S1. To describe this we
begin from 5D Minkowski space M4;1 with coordinates
and metric

XM ¼ ðXμ; ZÞ M ¼ 0;…; 4 μ ¼ 0;…; 3

ηMN ¼ diagðþ − � � �−Þ: ð1Þ

We obtain an S1 by periodically identifying the Z coor-
dinate, Z ≈ Z þ 2πR. It is convenient to describe this
identification as

XM ≈ XM þ AM AM ¼ ð0; 0; 0; 0; 2πRÞ: ð2Þ

These uppercase coordinates define the preferred frame for
the compactification, with an exact SOð3; 1Þ symmetry that
acts on the coordinates Xμ.
The standard braneworld scenario would be to place a

4D braneworld at rest at Z ¼ 0. We are instead interested
in braneworld which is moving in the Z direction and/or
has been rotated into the Z direction. To describe
this we transform to a new frame with lowercase coor-
dinates xM via

xM ¼ LM
NXN: ð3Þ

Here LM
N is an SOð4; 1Þ transformation that acts non-

trivially on the Z coordinate. In the xM coordinates there is
a boosted and/or rotated identification

xM ≈ xM þ aM aM ¼ LM
NAN: ð4Þ

We set

xM ¼ ðxμ; zÞ ð5Þ

and imagine a braneworld at z ¼ 0. The coordinates xM can
be thought of as comoving and/or corotated with the brane.
Since all we have done is a 5D Lorentz transformation, in
the comoving coordinates the metric still has the form

ds2 ¼ ημνdxμdxν − dz2: ð6Þ

The compactification is hidden in the identification (4).
Thus, the induced metric on the brane is 4D Minkowski;
however, the SOð3; 1Þ symmetry of the brane metric does

not align with the SOð3; 1Þ symmetry that is preserved by
the compactification (2). Instead world volume Lorentz
symmetry is broken globally by the compactification,
which leads to the curious possibilities of superluminal
and even backwards-in-time signaling explored in [1–3].
From the brane point of view it is natural to decompose

aM into components tangent and normal to the brane, so
we set

aM ¼ ðaμ; 2πrÞ: ð7Þ
aμ becomes a preferred four-vector on the brane, which
shows that 4D Lorentz symmetry on the brane is sponta-
neously broken. The fifth component 2πr is a scalar on the
brane. In the calculations below we will find it useful to
work with the combination

bμ ¼ aμ

2πr
: ð8Þ

Up to Lorentz transformations on the brane there are three
cases to consider.
(1) Timelike bμ

In this case we can go to a reference frame on the
brane in which bμ only has a time component. This
can be obtained directly from (2) by boosting with
velocity β in the Z direction.

�
T

Z

�
¼

�
γ γβ

γβ γ

��
t

z

�
: ð9Þ

This leads to

aμ ¼ ð−γβ2πR; 0; 0; 0Þ r ¼ γR: ð10Þ

Note that

bμ ¼ ð−β; 0; 0; 0Þ ð11Þ

with

b2 ¼ β2 ∈ ð0; 1Þ ð12Þ

or alternatively

1 − b2 ¼ 1

γ2
∈ ð0; 1Þ: ð13Þ

This corresponds to the “boostlike isotropic” case
discussed in [3]. As seen on the brane, bulk signals
propagate isotropically in all directions at super-
luminal speeds.

(2) Spacelike bμ

In this case we can go to a reference frame on the
brane in which bμ only has an x component. This can
be obtained directly from (2) by rotating through an
angle θ in the XZ plane.
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�
X

Z

�
¼

�
cos θ − sin θ

sin θ cos θ

��
x

z

�
: ð14Þ

This leads to

aμ ¼ ð0; sin θ2πR; 0; 0Þ r ¼ cos θR: ð15Þ

Note that

bμ ¼ ð0; tan θ; 0; 0Þ ð16Þ

with

b2 ¼ − tan2 θ∈ ð−∞; 0Þ ð17Þ

or alternatively

1 − b2 ¼ 1

cos2 θ
∈ ð1;∞Þ: ð18Þ

This corresponds to the “tiltlike anisotropic” case
discussed in [3]. As seen on the brane, bulk signals
propagate superluminally in the x direction and at
the speed of light in perpendicular directions.

(3) Lightlike bμ

Finally we consider the case of lightlike bμ [9].
This can be obtained starting from (2) by making a
Lorentz rotation in the X−Z plane [10]. Here we
have introduced light-front coordinates X� ¼ T � X
with

ds2 ¼ dXþdX− − jdYj2 − dZ2: ð19Þ

The form of the Lorentz transformation is a little
unfamiliar. Introducing a parameter λ∈R it takes the
form

0
B@

T

X

Z

1
CA ¼

0
B@

1þ 1
2
λ2 1

2
λ2 λ

− 1
2
λ2 1 − 1

2
λ2 −λ

λ λ 1

1
CA
0
B@

t

x

z

1
CA ð20Þ

or equivalently0
B@

Xþ

X−

Z

1
CA ¼

0
B@

1 0 0

λ2 1 2λ

λ 0 1

1
CA
0
B@

xþ

x−

z

1
CA: ð21Þ

To see that this is the appropriate Lorentz trans-
formation note that it leaves Xþ invariant, Xþ ¼ xþ,
so it acts on X−Z planes. Also it preserves the
metric (19), with ds2 ¼ dxþdx− − jdyj2 − dz2. Ap-
plying the (inverse of) the transformation (20) gives

aμ ¼ ð−λ2πR; λ2πR; 0; 0Þ r ¼ R: ð22Þ

So the radius is unchanged, while

bμ ¼ ð−λ; λ; 0; 0Þ ð23Þ

is indeed a null vector on the brane.
A null vector has no invariant length, so one can

go to an infinitely boosted frame in which bμ ¼ 0.
This restores conventional Lorentz invariance on the
brane. However if any matter (e.g., CMB photons) is
present on the brane one may not wish to perform an
infinite boost. In Sec. III we show that when λ is
nonzero bulk signals can have a negative light-front
velocity in the x− direction. With respect to Min-
kowski time this means that as seen on the brane a
bulk signal can travel faster than light and even
backwards in time in the x direction. For further
discussion of the geometry of this case, see the
Appendix.

Note that in all three cases we have b2 < 1. The range
−∞ < b2 < 0 is tiltlike, b2 ¼ 0 is null, and 0 < b2 < 1 is
boostlike. Alternatively we can say that we always have
1 − b2 > 0 [11]. The range 0 < 1 − b2 < 1 is boostlike,
1 − b2 ¼ 1 is null, and 1 < 1 − b2 < ∞ is tiltlike.

III. BULK SCALAR PROPAGATOR

We expect that bulk loops should induce Lorentz-
violating terms on the brane. Before turning to explicit
calculations we start with a discussion of the bulk propa-
gator. We focus on bulk scalar fields for simplicity.
The retarded propagator for a bulk field was discussed

in [1] while the static Green’s function was studied in [12].
Here we consider the Feynman propagator. It is straight-
forward to impose the appropriate periodicity ðxμ; zÞ ≈
ðxμ þ aμ; zþ 2πrÞ using a winding sum (equivalently, a
sum over image charges). In position space this gives the
propagator for a bulk scalar of mass μ as

Δ ¼
X∞
w¼−∞

Z
d4k
ð2πÞ4

Z
dq
2π

i
k2 − q2 − μ2 þ iϵ

× e−ik·ðx−waÞeiqðz−2πrwÞ: ð24Þ

It is convenient to shift

q → qþ k · a
2πr

¼ qþ k · b ð25Þ

so that

Δ ¼
X∞
w¼−∞

Z
d4k
ð2πÞ4

Z
dq
2π

i
k2 − ðqþ k · bÞ2 − μ2 þ iϵ

× e−ik·xeiðqþk·bÞze−iq2πrw: ð26Þ
We set z ¼ 0 since we will only be interested in bulk
propagation that starts and ends on the brane. Also we work
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in momentum space along the brane, which amounts to
dropping

R
d4k
ð2πÞ4 e

−ik·x. Then we are left with the winding-

sum form for the bulk propagator,

Δ¼
X∞
w¼−∞

Z
dq
2π

i
k2−ðqþk ·bÞ2−μ2þ iϵ

e−iq2πrw: ð27Þ

We can switch from a sum over windings to a sum over
Kaluza-Klein momentum using the Poisson resummation
identity

X
w

Z
dq
2π

fðqÞe−iq2πrw ¼ 1

2πr

X∞
n¼−∞

f

�
n
r

�
: ð28Þ

This puts the bulk propagator in the form

Δ ¼ 1

2πr

X∞
n¼−∞

i
k2 − ðk · bþ n

rÞ2 − μ2 þ iϵ
: ð29Þ

It is clear that bμ ≠ 0 breaks 4D Lorentz invariance. We can
look for poles in the propagator and read off the dispersion
relation for the Kaluza-Klein tower to see how it is
modified from the perspective of a moving or rotated
brane [3,12]. There are three cases to consider.
(1) Timelike bμ

In this case we set bμ ¼ ð−β; 0; 0; 0Þ and
kμ ¼ ðω;kÞ. The propagator has poles at

ω ¼ γ

�
βγn
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2n2

r2
þ jkj2 þ μ2

r �
∓ iϵ n∈Z:

ð30Þ

One branch of solutions has ω > 0 and a pole
that is displaced slightly below the real axis.
The other branch has ω < 0 and a pole that is
displaced slightly above the real axis. Although we
do not have 4D Lorentz invariance, the poles are
displaced in the standard way that allows for a Wick
rotation to Euclidean signature. One can check that
there are no tachyons from a 4D perspective,
ω2 − jkj2 ≥ 0. Finally we can evaluate the group
velocity

vg ¼
dω
dk

¼ γjkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γn
r

�
2 þ jkj2 þ μ2

r : ð31Þ

This makes it clear that wave propagation is iso-
tropic, with a velocity 0 ≤ vg < γ that exceeds the
speed of light if jkj is sufficiently large.

(2) Spacelike bμ

In this case we set bμ ¼ ð0; tan θ; 0; 0Þ and
kμ ¼ ðω; kx;k⊥Þ. The propagator has poles at

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

kx
cos θ

−
n sin θ

r

�
2

þ jk⊥j2 þ
�
n cos θ

r

�
2

þ μ2

s
∓ iϵ n∈Z: ð32Þ

Again one branch of solutions has ω > 0 and a pole that is displaced slightly below the real axis, while the other branch has
ω < 0 and a pole that is displaced slightly above the real axis, so we can performWick rotation in the standard way. One can
check that there are no tachyons from a 4D perspective,ω2 − k2x − jk⊥j2 ≥ 0. Finally the group velocity is anisotropic. For a
wave propagating in the x direction

vgx ¼
dω
dkx

				
k⊥¼0

¼
�

kx
cos θ −

n sin θ
r

�
cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
kx

cos θ −
n sin θ

r

�
2 þ

�
n cos θ

r

�
2 þ μ2

r ð33Þ

while for a wave propagating in one of the perpendicular
directions

vg⊥ ¼ dω
dk⊥

				
kx¼0

¼ jk⊥jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⊥j2 þ ðnrÞ2 þ μ2

q : ð34Þ

In the perpendicular directions we have the familiar group
velocity for a Kaluza-Klein tower of particles with masses
μ2n ¼ ðnrÞ2 þ μ2. In the x direction we have a group velocity
0 ≤ jvgxj < 1

cos θ that exceeds the speed of light if jkxj is
sufficiently large.

(3) Lightlike bμ

For the lightlike case we set bμ ¼ ð−λ; λ; 0; 0Þ. It
is convenient to introduce light-front coordinates on
the brane.

x� ¼ t� x k� ¼ ω� kx: ð35Þ

We will interpret τ ¼ xþ as light-front time and the
conjugate momentum kþ ¼ 1

2
k− as light-front en-

ergy. The propagator has poles at
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k− ¼ 1

kþ

��
λkþ −

n
r

�
2

þ jk⊥j2 þ μ2
�
: ð36Þ

This fixes the dispersion relation. As usual there are
two branches of solutions. Positive frequency modes
have kþ > 0 and k− > 0, while negative frequency
modes have kþ < 0 and k− < 0. Given a positive-
frequency plane-wave solution

e−ið12k−xþþ1
2
kþx−−k⊥·x⊥Þ ð37Þ

a stationary-phase approximation lets us read off the
group velocities with respect to light-front time.

v− ¼ dx−

dτ
¼ −

∂k−

∂kþ
¼ jk⊥j2 þ ðnrÞ2 þ μ2

ðkþÞ2 − λ2 ð38Þ

v⊥ ¼ dx⊥
dτ

¼ 1

2

∂k−

∂k⊥
¼ k⊥

kþ
: ð39Þ

In the transverse directions we have conventional
light-front kinematics [13]. In the longitudinal di-
rection there is a shift which allows the longitudinal
velocity to be negative, −λ2 < v− < ∞. This means
that in Minkowski coordinates bulk signals can
travel faster than light and even backwards in time
in the x direction. To see this, note that in Minkowski
coordinates a trajectory x− ¼ −λ2xþ corresponds to

x ¼ 1þ λ2

1 − λ2
t: ð40Þ

The Minkowski velocity is superluminal for
0 < λ2 < 1. The velocity diverges at λ2 ¼ 1 and
becomes negative for λ2 > 1, which as in [2] indicates
that the signal is traveling backwards in time. For
further discussion of this case see the Appendix.

IV. ELECTRON SELF-ENERGY

The world-volume metric induced on the brane is 4D
Minkowski, even if the brane is boosted or rotated in the Z
direction. Particles that solely propagate on the brane are not
sensitive to the breaking of 4DLorentz invariance and itwould
be reasonable to describe these “Standard Model” particles
using an effective actionwith 4DLorentz symmetry.However,
particles that propagate in the bulk can leave the brane, travel
around the compactification manifold, and return. Such
particles notice the global breaking of 4D Lorentz invariance
by the compactification and loops of such particles should
induce Lorentz-violating terms in the 4D effective action.
Here we study this effect, beginning with the simple

example of radiative corrections to the electron self-energy.
We imagine a real bulk scalar field χ of mass μ that has a
Yukawa coupling to the electron. We describe the coupled
system with the action

S ¼
Z

d5x

�
1

2
∂Mχ∂

Mχ −
1

2
μ2χ2

�

þ
Z

d4x½ψ̄ðiγμ∂μ −mÞψ − λψ̄ψχjz¼0�: ð41Þ

Note that the coupling λ has units ðmassÞ−1=2. The diagram
we wish to consider is shown in Fig. 1.

Our goal is to evaluate the diagram and expand in powers
of the external momentum p. In this way we will make
contact with the Standard Model extension, a general
effective field theory framework for Lorentz-violating
effects developed in [4,5]. The basic diagram is easy to
write down. Writing the brane-to-brane bulk propagator
with a sum over Kaluza-Klein momentum as in (29) we
have

iΣ ¼ λ2

2πr

X∞
n¼−∞

Z
d4k
ð2πÞ4

=kþm
k2 −m2 þ iϵ

×
1

ðk − pÞ2 − ððk − pÞ · bþ n
rÞ2 − μ2 þ iϵ

: ð42Þ

As pointed out in Sec. III, even though the bulk propagator
is not Lorentz invariant, it still has poles that allow for a
standard Wick rotation. So weWick rotate in the usual way,
setting

kE ¼ ð−ik0;kÞ d4k ¼ id4kEk2 ¼ −k2E ð43Þ

with a similar rotation for all other four-vectors. We
introduce a pair of Schwinger parameters s, t to represent
the propagators via the identity

Z
∞

0

ds e−As ¼ 1

A
: ð44Þ

It is convenient to use a frame in which only the first
component of bE is nonzero.

bE ¼ ðbE; 0Þ
pE ¼ ðpE;pEÞ
kE ¼ ðkE;kEÞ
γE ¼ ðγE; γEÞ: ð45Þ

FIG. 1. One-loop electron self-energy arising from a Yukawa
coupling to a bulk scalar.
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This leads to

iΣ ¼ iλ2

2πr

X∞
n¼−∞

Z
∞

0

ds
Z

∞

0

dt
Z

d4kE
ð2πÞ4 ð−γEkE − γE · kE þmÞ exp ½−sðk2E þ jkEj2 þm2Þ�

× exp



−t
�
ð1þ b2EÞðkE − pEÞ2 −

2n
r
bEðkE − pEÞ þ jkE − pEj2 þ

�
n
r

�
2

þ μ2
��

: ð46Þ

The momentum integrals are Gaussian and lead to the rather tedious expression

iΣ ¼ iλ2

32π3r

X∞
n¼−∞

Z
∞

0

ds
Z

∞

0

dt
1

ðsþ tÞ3=2ðsþ tð1þ b2EÞÞ1=2

×

�
−

tð1þ b2EÞ
sþ tð1þ b2EÞ

γEpE −
t

sþ t
γE · pE −

t
sþ tð1þ b2EÞ

γEbE
n
r
þm

�

× exp



−sm2 − t

��
n
r

�
2

þ μ2
�
−

st
sþ tð1þ b2EÞ

�
p2
Eð1þ b2EÞ þ 2bEpE

n
r

�

−
st

sþ t
jpEj2 þ

t2

sþ tð1þ b2EÞ
b2E

�
n
r

�
2
�
: ð47Þ

Now we expand in powers of the external momentum p. At zeroth order, after continuing back to the Lorentzian
signature and restoring Lorentz covariance, we find

iΣð0Þ ¼ iλ2

32π3r

X∞
n¼−∞

Z
∞

0

ds
Z

∞

0

dt
1

ðsþ tÞ3=2ðsþ tð1 − b2ÞÞ1=2
�

t
sþ tð1 − b2Þ

n
r
=bþm

�

× exp



−sm2 − t

��
n
r

�
2

þ μ2
�
−

t2b2

sþ tð1 − b2Þ
�
n
r

�
2
�
: ð48Þ

The term proportional to m is Lorentz invariant and therefore not interesting to us. The term proportional to =b
has the potential to violate Lorentz invariance, but it vanishes once the sum over n is performed. This follows from a
symmetry: the underlying expression (47) is invariant under bE → −bE, n → −n which implies that only even powers of bμ

can appear.
At first order in pμ, after continuing back to the Lorentzian signature and restoring Lorentz covariance, we find

iΣð1Þ ¼ iλ2

32π5=2

X∞
w¼−∞

Z
∞

0

ds
Z

∞

0

dt

�
t1=2

ðsþ tÞ3 =p −
2ðπrwÞ2s
t1=2ðsþ tÞ4 bμbνγ

μpν

�

× exp



−sm2 − tμ2 −

sþ tð1 − b2Þ
tðsþ tÞ ðπrwÞ2

�
: ð49Þ

Here we have used the identity (28) in reverse to
replace the momentum sum with a winding sum and
an integral over q. The integral over q is Gaussian and
leads to (49).
Working with a winding sum is advantageous for the

following reasons.
(i) Lorentz symmetry is broken globally by the

compactification. Particle trajectories with w ¼ 0
are not sensitive to the breaking and are guaranteed
to respect Lorentz invariance. Indeed in (49) we see
that the term with w ¼ 0 is proportional to p.

(ii) Ultraviolet divergences can only arise from thew ¼ 0
term in the sum, since nonzerowindingmeans the loop
can never shrink to a point. Indeed in (49) we see that
for w ≠ 0 the exponential in the second line serves to
cut off the short-distance regime s; t → 0.

Since we are only interested in Lorentz-violating terms, we
could simply discard the w ¼ 0 term to obtain a finite
result. However we might as well discard all terms propor-
tional to p. This means discarding the first term in
parenthesis in (49) as well as the trace part of bμbν. In
this way we obtain the Lorentz-violating contribution
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iΣð1Þ
LV ¼ −

iλ2r2

16π1=2

�
bμbν −

1

4
ημνb2

�
γμpν

X∞
w¼−∞

Z
∞

0

ds
Z

∞

0

dt
sw2

t1=2ðsþ tÞ4

× exp



−sm2 − tμ2 −

sþ tð1 − b2Þ
tðsþ tÞ ðπrwÞ2

�
: ð50Þ

This corresponds to a Lorentz-violating term in the 4D effective Lagrangian for the electron. In the notation of [5] the
relevant term isL ¼ icμνψ̄γμ∂νψ which makes a contribution icμνγμpν to iΣ. Comparing to (50) we can read off the Lorentz-
violating coefficient cμν, which can be conveniently presented as

cμν ¼ −
1

16π2
λ2

πr

�
bμbν −

1

4
ημνb2

�
I1 ð51Þ

where we have defined [14]

In ¼
1ffiffiffi
π

p
X∞
w¼−∞

Z
∞

0

ds
Z

∞

0

dt
snw2

t1=2ðsþ tÞ4 exp


−sðπmrÞ2 − tðπμrÞ2 − sþ tð1 − b2Þ

tðsþ tÞ w2

�
: ð52Þ

The induced coefficients cμν are real, dimensionless, trace-
less, and symmetric. They make a Lorentz-violating but
CPT-even contribution to the effective action.
We can think of (51) as a product of a loop factor

1
16π2

, a dimensionless coupling λ2

πr, a tensor structure
bμbν − 1

4
ημνb2, and a function I1 of the dimensionless

parameters b2, πmr, πμr. As can be seen in Fig. 2, I1 is an
increasing function of b2. It vanishes as b2 → −∞ and
(perhaps despite appearances) approaches a finite limit
as b2 → 1.

The expression for I1 simplifies if we set m ¼ 0 (a
massless fermion on the brane) and b2 ¼ 0 (a small boost
and / or rotation). Then the sum and integrals can be
performed and the behavior for small and large μr can be
extracted [15]. This leads to

b2 ≈ 0; m ≈ 0∶ I1 ≈

8<
:

1
6
log 1

μr as μr → 0

π
3
μre−2πμr as μr →∞:

ð53Þ

V. ELECTRON-PHOTON VERTEX

Next we consider the one-loop correction to the electron-
photon vertex due to a bulk scalar. The diagram is shown
in Fig. 3.
Suppressing the external polarizations and writing the

bulk propagator with a momentum sum as in (29), the
diagram is

FIG. 3. One-loop vertex correction due to a bulk scalar.
FIG. 2. The quantity I1 appearing in the electron self-energy as
a function of b2.
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iΓμ ¼ −
eλ2

2πr

X∞
n¼−∞

Z
d4k
ð2πÞ4

p2 þ =kþm
ðp2 þ kÞ2 −m2 þ iϵ

γμ

×
p1 þ =kþm

ðp1 þ kÞ2 −m2 þ iϵ

×
1

k2 − ðk · bþ n
rÞ2 − μ2 þ iϵ

: ð54Þ

We can evaluate this similarly to the electron self-energy.
WeWick rotate, introduce a series of Schwinger parameters

1

ðp1EþkEÞ2þm2
¼
Z

∞

0

ds1e−s1½ðp1EþkEÞ2þm2�

1

ðp2EþkEÞ2þm2
¼
Z

∞

0

ds2e−s2½ðp2EþkEÞ2þm2�

1

k2EþðkE ·bE−n
rÞ2þμ2

¼
Z

∞

0

dte−t½k2EþðkE·bE−n
rÞ2þμ2�; ð55Þ

and evaluate the Gaussian integral over kμE. This gives

iΓμ ¼ ieλ2

2πr

X∞
n¼−∞

Z
∞

0

ds1

Z
∞

0

ds2

Z
∞

0

dt
1

16π2
ffiffiffiffiffiffiffiffiffiffiffi
det h

p
e−s1ðp

2
1Eþm2Þ−s2ðp2

2Eþm2Þ−tðn2
r2
þμ2Þ

× ehμνv
μvν
�
1

2
hαβγαEγ

μ
Eγ

β
E þ ðp2E · γE − hαβvαγ

β
E −mÞγμEðp1E · γE − hγδvγγδE −mÞ

�
ð56Þ

where we have introduced the convenient notation

hμν ¼ diag

�
1

s1 þ s2 þ tð1þ b2EÞ
;

1

s1 þ s2 þ t
;

1

s1 þ s2 þ t
;

1

s1 þ s2 þ t

�

vμ ¼ s1p
μ
1E þ s2p

μ
2E − tbμE

n
r
: ð57Þ

Nowwe expand in powers of the external momenta. At leading (zeroth) order, after continuing back to Lorentzian signature,
switching to a winding sum for the bulk propagator, and doing a bit of Dirac algebra, we find

iΓð0Þμ ¼ ieλ2
X∞
w¼−∞

Z
∞

0

ds1

Z
∞

0

ds2

Z
∞

0

dt
1

ð4πtÞ1=2ð4πðs1 þ s2 þ tÞÞ2 e
−s1m2−s2m2−tμ2

× exp



−
s1 þ s2 þ tð1 − b2Þ

tðs1 þ s2 þ tÞ π2r2w2

��
1

s1 þ s2 þ t
γμ þm2γμ −

ðπrwÞ2
ðs1 þ s2 þ tÞ2 ð2=bb

μ − b2γμÞ
�
: ð58Þ

We drop all Lorentz-invariant terms, which includes the UV-divergent terms with w ¼ 0. Setting s ¼ s1 þ s2 we are left
with the Lorentz-violating contribution

iΓð0Þμ
LV ¼ −

ieλ2r2

16π1=2

�
bαbβ −

1

4
ηαβb2

�
γαηβμ

X∞
w¼−∞

Z
∞

0

ds
Z

∞

0

dt
sw2

t1=2ðsþ tÞ4

× exp



−sm2 − tμ2 −

sþ tð1 − b2Þ
tðsþ tÞ π2r2w2

�
: ð59Þ

This pairs nicely with (50) to produce a gauge-invariant but
Lorentz-violating dimension-four term in the effective
action, namely,

L ¼ icμνψ̄γμDνψ Dμ ¼ ∂μ − ieAμ: ð60Þ

The coefficient cμν is given in (51). Since we stopped at
zeroth order in the momentum, this outcome, required by
gauge invariance and Ward identities, can be thought
of as a consistency check on our results. Expanding (56)

beyond zeroth order in the external momenta would
give higher-derivative corrections to the electron-photon
vertex.

VI. SCALAR SELF-ENERGY

Having calculated the one-loop Lorentz-violating cor-
rection to the self-energy of an electron, we now perform a
similar calculation for a real scalar field ϕ on the brane
with a cubic coupling to a bulk scalar χ. We start from the
action
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S ¼
Z

d5x

�
1

2
∂Mχ∂

Mχ −
1

2
μ2χ2

�

þ
Z

d4x

�
1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2 −

1

2
gϕ2χjz¼0

�
: ð61Þ

Note that the coupling g has units ðmassÞþ1=2. The diagram
we wish to consider is shown in Fig. 4.

Writing the brane-to-brane bulk propagator with a sum
over Kaluza-Klein momentum as in (29), the diagram is

g2

2πr

X∞
n¼−∞

Z
d4k
ð2πÞ4

1

k2 −m2 þ iϵ

×
1

ðk − pÞ2 − ððk − pÞ · bþ n
rÞ2 − μ2 þ iϵ

: ð62Þ

We Wick rotate to the Euclidean signature as in (43) and
introduce a pair of Schwinger parameters as in (44).
Parametrizing the Euclidean momenta as in (45) and
performing the Gaussian integral over kE we find

ig2

32π3r

X∞
n¼−∞

Z
∞

0

ds
Z

∞

0

dt
1

ðsþ tÞ3=2ðsþ tð1þb2EÞÞ1=2

×exp



−sm2− t

��
n
r

�
2

þμ2
�
−

st
sþ tð1þb2EÞ

�
p2
Eð1þb2EÞþ2bEpE

n
r

�
−

st
sþ t

jpEj2þ
t2

sþ tð1þb2EÞ
b2E

�
n
r

�
2
�
: ð63Þ

Now we expand in powers of the external momentum p. At zeroth order the result is Lorentz invariant and can be
ignored. At first order the sum over the Kaluza-Klein momentum vanishes because it is odd under n → −n. At second order,
after continuing back to the Lorentzian signature and restoring Lorentz covariance, we find

ig2

32π5=2

X∞
w¼−∞

Z
∞

0

ds
Z

∞

0

dt

�
st1=2

ðsþ tÞ3 p
2 −

2ðπrwÞ2s2
t1=2ðsþ tÞ4 bμbνp

μpν

�
exp



−sm2 − tμ2 −

sþ tð1 − b2Þ
tðsþ tÞ ðπrwÞ2

�
: ð64Þ

Again we have used the identity (28) in reverse to replace
the momentum sum with a winding sum and an integral
over q. The integral over q is Gaussian and leads to (64).
The first term in parenthesis is Lorentz invariant and can be
dropped. The second term can be matched to a Lorentz-
violating term in the effective action [5]

L ¼ 1

2
kμν∂μϕ∂νϕ ð65Þ

with a traceless coefficient kμν. Removing the Lorentz-
invariant trace from the second term in (64) we identify

kμν ¼ −
1

16π2
g2πr

�
bμbν −

1

4
ημνb2

�
I2 ð66Þ

where In is defined in (52). The induced coefficients kμν are
real, dimensionless, traceless, and symmetric. They make a
Lorentz-violating but CPT-even contribution to the effec-
tive action.
We can think of (66) as a product of a loop factor 1

16π2
,

a dimensionless coupling g2πr, a tensor structure
bμbν − 1

4
ημνb2, and a function I2 of the dimensionless

parameters b2, πmr, πμr. As can be seen in Fig. 5, I2 is an

FIG. 4. One-loop scalar self-energy arising from a cubic
coupling to a bulk scalar.

FIG. 5. The quantity I2 appearing in the scalar self-energy as a
function of b2.
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increasing function of b2. It vanishes as b2 → −∞ and
approaches a finite limit as b2 → 1.
The expression for I2 simplifies if we set m ¼ 0 (a

massless scalar on the brane) and b2 ¼ 0 (a small boost
and/or rotation). Then the sum and integrals can be
performed and the behavior for small and large μr can
be extracted [16]. This leads to

b2 ≈ 0; m ≈ 0∶ I2 ≈

(
1

6π2μ2r2 as μr → 0

2
3
e−2πμr as μr → ∞:

ð67Þ

VII. ELECTRON SELF-ENERGY
FROM A BULK GRAVITON

The graviton is the most likely candidate for a bulk field.
It also provides an interesting contrast to the bulk scalars
we have considered so far, since it carries spin and has
a nonrenormalizeable coupling to the stress tensor on
the brane. For these reasons we consider corrections

to the electron self-energy induced by a bulk graviton
loop. The diagram is shown in Fig. 6.
Bulk gravitons in the large extra dimension scenario

[17–19] have been considered in [20] and we borrow
several of their expressions. We expand the 5Dmetric about
flat space,

gAB ¼ ηAB þ 2

M̄3=2
5

hAB ð68Þ

where M̄5 is the 5D reduced Planck mass. The brane-to-
brane graviton propagator is

ð69Þ

where k is the 4D momentum, n is the Kaluza-Klein momentum, and we have introduced μ as an infrared regulator. The
propagator is written in de Donder gauge, ξ ¼ 1 in the notation of [20]. We assume the graviton couples to the 4D stress
tensor on the brane,

L ¼ ψ̄ðiγμ∂μ −mÞψ −
1

M̄3=2
5

Tμνhμνjz¼0

Tμν ¼
i
4
ψ̄ðγμ∂ν þ γν∂μÞψ −

i
4
ð∂μψ̄γν þ ∂νψ̄γμÞψ ð70Þ

which leads to the vertex

ð71Þ

So far the motion of the brane has only entered
in the graviton propagator (69), in a manner exactly
analogous to the scalar propagator (29). However the
motion of the brane also enters in the effective 4D
coupling. The Newtonian potential on a moving brane
was studied by Greene et al. [12], who found that the
relation between the 4D and 5D reduced Planck masses
becomes [21]

M̄4 ¼ ðγ2πRÞ1=2M̄3=2
5 : ð72Þ

For a moving brane r ¼ γR so the reduced 4D Planck
mass is

M̄4 ¼ ð2πrÞ1=2M̄3=2
5 ¼ 2.4 × 1018 GeV: ð73Þ

We take this relation to hold in general, i.e. even for a
brane that is tiltlike rather than boostlike.
After all these preliminaries we are ready to evaluate the

diagram in Fig. 6 [22]. The basic diagram is straightforward
to write down.

FIG. 6. Electron self-energy due to a bulk graviton loop.
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iΣ ¼ 1

16πrM̄3
5

X∞
n¼−∞

Z
d4k
ð2πÞ4

ðkþ pÞ2γμð=kþmÞγμ þ 1
3
ð=kþ pÞð=kþmÞð=kþ pÞ

ðk2 −m2 þ iϵÞððk − pÞ2 − ððk − pÞ · bþ n
rÞ2 − μ2 þ iϵÞ : ð74Þ

With some Dirac algebra the numerator can be simplified
so it is at most linear in Dirac matrices. We Wick rotate,
introduce Schwinger parameters, and perform the Gaussian
integral over kE. It is convenient to do this in a frame in
which the Euclidean vectors have components

bE ¼ ðb1; 0; 0; 0Þ
pE ¼ ðp1; p2; 0; 0Þ
kE ¼ ðk1; k2; k3; k4Þ: ð75Þ

Then we continue back to Lorentzian signature, restore
Lorentz covariance, and expand in powers of p. At zeroth
order all terms are either Lorentz invariant or vanish
because they are odd under n → −n. At first order in p,
after switching from a momentum sum to a winding sum,
we find that many terms are either Lorentz invariant or
vanish because they are odd under w → −w. Discarding all
such terms we are left with a Lorentz-violating contribution
to the effective Lagrangian, L ¼ icμνψ̄γμ∂νψ where [23]

cμν ¼ −
1

16π2
1

ðπrM̄4Þ2
�
bμbν −

1

4
ημνb2

�
Igravity

Igravity ¼
1

6
ffiffiffi
π

p
X∞
w¼1

Z
∞

0

ds
Z

∞

0

dt
9s2 − 2st− 11t2 þ 5sb2

w3t1=2ðsþ tÞ6

× exp


−sðπmrwÞ2 − tðπμrwÞ2 − sþ tð1− b2Þ

tðsþ tÞ
�
:

ð76Þ

We have written (76) as a product of
(i) a loop factor 1

16π2
,

(ii) a dimensionless coupling 1
ðπrM̄4Þ2 built from the effec-

tive radius r and the reduced 4D Planck mass M̄4,
(iii) a symmetric traceless tensor structure bμbν − 1

4
ημνb2,

and
(iv) a function Igravity of the dimensionless parameters

b2, πmr, πμr.
The function Igravity is shown in Fig. 7. It simplifies if we

set m ¼ 0 (a massless fermion on the brane) and b2 ¼ 0
(a small boost and/or rotation). Then the sum and integrals
can be performed and the behavior for large and small μ can
be extracted. For graviton loops there is no IR divergence,
even for a massless fermion on the brane, and we find

b2 ≈ 0; m ≈ 0∶ Igravity≈

−1

4
ζð3Þ as μr→0

−1
3
ðπμrÞ2e−2πμr as μr→∞:

ð77Þ

VIII. SCALAR SELF-ENERGY FROM A BULK
GRAVITON

Finally we consider corrections to the self-energy of a
minimally coupled scalar field due to a bulk graviton loop.
We assume the graviton couples to the 4D stress tensor on
the brane,

L ¼ 1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2 −

1

M̄3=2
5

Tμνhμνjz¼0

Tμν ¼ ∂μϕ∂νϕ −
1

2
ημνð∂λϕ∂λϕ −m2ϕ2Þ ð78Þ

which leads to the scalar-graviton vertex

ð79Þ

The diagram we wish to evaluate is shown in Fig. 8 [24]. With the brane-to-brane graviton propagator (69) the basic
diagram is straightforward to write down.

iΣ ¼ 1

4πrM̄3
5

X∞
n¼−∞

Z
d4k
ð2πÞ4

4k2p2 þ 4
3
ðk · pÞ2 þ 8

3
m2k · p − 8

3
m4

ðk2 −m2 þ iϵÞððk − pÞ2 − ððk − pÞ · bþ n
rÞ2 − μ2 þ iϵÞ : ð80Þ

Compared to the electron self-energy considered in Sec. VII the main difference is in the contractions of the stress tensors in
the numerator. As is by now familiar we Wick rotate, introduce Schwinger parameters, and perform the Gaussian integral
over kE. It is convenient to do this in a frame in which the Euclidean vectors have components
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bE ¼ ðb1; 0; 0; 0Þ
pE ¼ ðp1; p2; 0; 0Þ
kE ¼ ðk1; k2; k3; k4Þ: ð81Þ

Then we continue back to Lorentzian signature, restore
Lorentz covariance, switch from a momentum sum to a

winding sum, and expand in powers of p. At zeroth order in
p the expression is Lorentz invariant. At first order in p the
result vanishes because all terms are odd under w → −w. At
second order in p many of the terms are Lorentz invariant.
Discarding all Lorentz-invariant terms we are left with a
Lorentz-violating contribution to the effective Lagrangian,
L ¼ 1

2
kμν∂μϕ∂νϕ where [25]

kμν ¼ −
1

16π2
1

ðπrM̄4Þ2
�
bμbν −

1

4
ημνb2

�
Iscalargravity

Iscalargravity ¼
4

3
ffiffiffi
π

p
X∞
w¼1

Z
∞

0

ds
Z

∞

0

dt
1þ 4sðπmrwÞ2 − 4s2ðπmrwÞ4

w3t1=2ðsþ tÞ4 exp


−sðπmrwÞ2 − tðπμrwÞ2 − sþ tð1 − b2Þ

tðsþ tÞ
�
: ð82Þ

We have written (82) as a product of
(i) a loop factor 1

16π2
,

(ii) a dimensionless coupling 1
ðπrM̄4Þ2 built from the effec-

tive radius r and the reduced 4D Planck mass M̄4,
(iii) a symmetric traceless tensor structure bμbν − 1

4
ημνb2,

and

(iv) a function Iscalargravity of the dimensionless parameters
b2, πmr, πμr.

The function Iscalargravity is shown in Fig. 9. It simplifies
if we set m ¼ 0 (a massless scalar on the brane) and
b2 ¼ 0 (a small boost and/or rotation). Then the sum and
integrals can be performed and the behavior for large
and small μ can be extracted. There is no IR divergence
in Iscalargravity, even for a massless scalar on the brane, and
we find

b2 ≈ 0; m ≈ 0∶ Iscalargravity ≈

(
1
3
ζð3Þ as μr→ 0

4
9
ðπμrÞ2e−2πμr as μr→∞:

ð83ÞFIG. 8. Scalar self-energy due to a bulk graviton loop.

FIG. 7. The quantity Igravity appearing in the electron self-
energy due to a bulk graviton loop. The function decreases
rapidly but has a finite limit as b2 → 1.

FIG. 9. The quantity Iscalargravity appearing in the scalar self-energy
due to a bulk graviton loop. The function increases rapidly but
has a finite limit as b2 → 1.
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IX. CONCLUSIONS

In this work we considered a braneworld which is
moving or spiraling around a compact extra dimension
which we take to be a circle of radius R. The configuration
is described by an effective radius r for the compactifica-
tion and a four-vector bμ that spontaneously breaks the
Lorentz symmetry of the brane world volume.

r ¼
8<
:

γR boostlike

R null

cos θR tiltlike

bμ ¼
8<
:

ð−β; 0; 0; 0Þ boostlike

ð−λ; λ; 0; 0Þ null

ð0; tan θ; 0; 0Þ tiltlike:

ð84Þ

Loops of bulk fields are sensitive to the parameter bμ and
can induce Lorentz-violating terms in the 4D effective
action. We explored this, emphasizing the dimension-four
terms which correct the electron self-energy and the
electron-photon vertex.

L ¼ icμνψ̄γμDνψ Dμ ¼ ∂μ − ieAμ: ð85Þ

The one-loop coefficients cμν ∼ bμbν − 1
4
ημνb2 due to bulk

scalars and gravitons are given in (51) and (76). There are
stringent experimental bounds on Lorentz violation,
reviewed in [6]. For the electron, for example, laboratory
bounds on the dimensionless coefficients cμν have reached
the level of ∼10−21 [26].
The Standard Model extension is a general framework

for incorporating Lorentz violation and provides many
effects to explore. In addition to the QED effects mentioned
above, we considered Lorentz-violating corrections to the
self-energy of a scalar field, L ¼ 1

2
kμν∂μϕ∂νϕ, with coef-

ficients kμμ given in (66) and (82). Taking the scalar field as
a proxy for the Higgs field, the experimental bounds on kμν
are surprisingly good [6], having reached the level of
10−12–10−20 [27] or 10−13–10−27 [28].
While many similar calculations could be done, there are

also theoretical issues worth exploring. In particular it
would be interesting to understand soft emission from a
moving braneworld. This should be related to the infrared
behavior of the diagrams we have considered. For example
for μ2 ¼ 0 the vertex correction (54) has an IR divergence
when p2

1 ¼ p2
2 ¼ m2, which should cancel against soft

emission in suitable inclusive observables.
Any signal for Lorentz violation in the present epoch

would be of the utmost significance. One can also entertain
the idea that, although Lorentz-violating effects are
extremely small today, they may have been larger in the
early Universe. Perhaps a braneworld was highly boosted in
the early Universe and only slowed and stabilized with
time. Could the attendant violation of Lorentz symmetry

in the early universe leave an observable imprint on
cosmology?
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APPENDIX: MORE ON LIGHTLIKE bμ

Since the geometry of the null case may be a little
unfamiliar we give some further explanation. According
to (21) a brane at z ¼ 0 has Z ¼ λXþ, so the brane spirals
around the S1 as one moves in the Xþ direction. At T ¼ 0
the brane is located at Z ¼ λX, which means it has been
rotated in the XZ plane by an angle θ ¼ tan−1 λ. Setting
X ¼ 0 we have Z ¼ λT, which means the brane is moving
along the Z axis with velocity λ. (As in the “closing
scissors” effect this velocity can be arbitrarily large.)
However it is the component of the velocity perpendicular
to the brane that is physically relevant, and as can be seen in
Fig. 10 this is given by

β ¼ λ cos θ ¼ λffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
: ðA1Þ

Thus we can summarize the lightlike case as a combination
of a boost and a rotation with [29]

γβ ¼ tan θ ¼ λ: ðA2Þ

We would like to understand what a causal signal in
the bulk looks like on such a brane. Following the analysis
in [2] we consider a bulk signal sent out from the origin
T ¼ X ¼ Y ¼ Z ¼ 0 and ask where its future intersects the
brane. It is simplest to work in the covering space where the
origin corresponds to an infinite series of image charges
located along the Z axis at

FIG. 10. The case of lightlike bμ. The angle between the brane
and the X axis is θ ¼ tan−1 λ. The brane moves along the Z axis
with velocity λ; the perpendicular component of the velocity is
denoted β.

INDUCED LORENTZ VIOLATION ON A MOVING BRANEWORLD PHYS. REV. D 108, 105014 (2023)

105014-13



Zw ¼ 2πRw w∈Z: ðA3Þ

In the bulk the future light cones of the image charges are
given by

XþX− − jYj2 − ðZ − 2πRwÞ2 ¼ 0: ðA4Þ

Using (21) to switch to comoving coordinates and recalling
that for this case r ¼ R, the future light cones are given by

ðx−2πrwλÞ2þjyj2þðz−2πrwÞ2¼ðtþ2πrwλÞ2: ðA5Þ

At fixed t we see that the future light cones are spheres of
radius tþ 2πrwλ centered at

x ¼ 2πrwλ y ¼ 0 z ¼ 2πrw: ðA6Þ

The situation in the xz plane is shown in Fig. 11. The
centers of the spheres lie along the line x ¼ λz. Their
envelope defines a cone with opening angle θ ¼ tan−1 λ.
The tip of the cone is located at [30]

x ¼ −t z ¼ −t=λ: ðA7Þ

The bottom part of the envelope is horizontal and intersects
the x axis at

x ¼ −t: ðA8Þ

This means bulk signals propagate in the −x direction at the
speed of light. The top part of the envelope, on the other
hand, intersects the x axis at

x ¼ −tþ t
λ
tanð2θÞ

¼ 1þ λ2

1 − λ2
t: ðA9Þ

Thus bulk signals propagate in the þx direction with speed
1þλ2

1−λ2 in agreement with (40). For 0 < λ < 1 there is super-
luminal propagation in the þx direction. At λ ¼ 1 the

velocity diverges and propagation is instantaneous. For
λ > 1 the velocity is negative, which can be thought of as a
signal from the origin that is traveling in the þx direction
but backwards in time. Alternatively it can be thought of as
a signal going forward in time that was emitted in the far
past at x ¼ þ∞, destined to reach the origin at t ¼ 0. This
can be seen geometrically in Fig. 11 from the fact that the
range 1 < λ < ∞ corresponds to π=2 < 2θ < π.
If we include the transverse directions, then at time t and

position x ¼ z ¼ 0 the envelope extends into the transverse
directions a distance

jyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ

�
t
λ

�
2

s
tan θ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
t: ðA10Þ

Thus bulk signals propagate in the transverse directions at a
superluminal speed

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
. To relate this to (39), note that

a particle moving in the transverse directions has x ¼ 0,
which means xþ ¼ x− ¼ t and hence v− ¼ 1. Then (38)

becomes jv⊥j2 þ ðn=rÞ2þμ2

ðkþÞ2 ¼ 1þ λ2, so the transverse

velocity is bounded above by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
.
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