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ABSTRACT
School choice mechanism designers use discrete choice models
to understand and predict families’ preferences. The most widely-
used choice model, the multinomial logit (MNL), is linear in school
and/or household attributes. While the model is simple and inter-
pretable, it assumes the ranked preference lists arise from a choice
process that is uniform throughout the ranking, from top to bottom.
In this work, we introduce two strategies for rank-heterogeneous
choice modeling tailored for school choice. First, we adapt a context-
dependent random utility model (CDM), considering down-rank
choices as occurring in the context of earlier up-rank choices. Sec-
ond, we consider stratifying the choice modeling by rank, regular-
izing rank-adjacent models towards one another when appropriate.
Using data on household preferences from the San Francisco Uni-
�ed School District (SFUSD) across multiple years, we show that the
contextual models considerably improve our out-of-sample eval-
uation metrics across all rank positions over the non-contextual
models in the literature. Meanwhile, stratifying the model by rank
can yield more accurate �rst-choice predictions while down-rank
predictions are relatively unimproved. These models provide per-
formance upgrades that school choice researchers can adopt to
improve predictions and counterfactual analyses.
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1 INTRODUCTION
Large school districts around the world employ school choicemecha-
nisms to assign students to K–12 schools. In many of these systems,
families submit ranked preference lists over school programs to
their district, and the district in turn assigns children to schools
via a centralized mechanism. School choice researchers employ dis-
crete choice models, statistical models of choices made from slates
of discrete options, to describe the preference-generation process
by breaking a ranking into a sequence of choices from dwindling
choice sets.

Such models are useful for explanation, indirectly identifying
the most in�uential school characteristics in the decision-making
of families, saving time and resources in surveying families. They
can also be used for forecasting and planning potential changes
in the district o�erings. Finally, these models are also central to
evaluating changes in school choice mechanisms themselves, as
policymakers propose changes to assignment mechanisms with
the hope of improving district outcomes. In the latter contexts,
these models play a role in simulating preferences and assignments,
and/or evaluating the resulting welfare of assignment under the
proposed mechanism. Put simply, better preference models lead
to better school choice analyses, and better analysis lead to better
childhood educational outcomes.

The widely-used ranked preference models in this space, includ-
ing the Plackett–Luce “exploded logit” model [22, 28], model the
process of constructing a preference ranking as a series of indepen-
dent discrete choices (conditional multinomial logit (MNL) in the
case of Plackett-Luce) based on school, program, and household
attributes. While many such models are simple and interpretable,
there is long-standing evidence in the discrete choice literature
for ranking behavior that is rank-heterogeneous, meaning that the
sequence of choices are driven by di�erent considerations as in-
dividuals work down a preference list [10, 12, 16]. The criteria an
agent uses for selecting top-ranked alternatives may di�er from
those at lower ranks, either due to true preference shifts or behav-
ioral mechanisms such as decision fatigue.

In this work, we present and evaluate two strategies for incorpo-
rating rank-heterogeneity in choice models for school choice. One
strategy achieves heterogeneity through a sequential dependence
using context e�ects, while the other relies on regularized model
strati�cation.

Rank-heterogeneity via context e�ects. Context e�ects describe the
in�uence of a particular decision context, including the available
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or previously-chosen options, on a individual’s relative preferences
between alternatives. We adapt a previous model of context e�ects,
the context-dependent random utility model (CDM) [30], to the
school ranking setting. The CDM has been used to study ranked
preferences [31] by decomposing the ranking process as a series
of choices in the context of the dwindling set of items yet to be
chosen. We consider a variation of the CDM more natural to the
school choice setting: modeling the ranking instead as a series of
choices in the context of the already chosen items. Surprisingly,
we show that the two modeling approaches (respectively, forward-
dependence and backwards-dependence) are equivalent, and opt to
use the latter variation when interpreting our results.

Rank-heterogeneity via model stratification. An alternative approach
to inducing rank-heterogeneity is stratifying the modeling problem
by rank position. Simply learning a series of independent models for
each rank position, however, can split the data too �nely and result
in poor generalization. To avoid this pitfall, we apply Laplacian
regularization [37] to the independent models, with carefully tuned
regularization graphs that bring models of adjacent choices close
together.

Incorporating context e�ects and model strati�cation are not
mutually exclusive, and we also evaluate the combination of both
approaches in our analysis. Moreover, we perform a series of abla-
tion studies to demonstrate the independent contributions of each
approach. We evaluate these new tools by modeling the preferences
for the San Francisco Uni�ed School District (SFUSD) kindergarten
programs during the 2017-18 and 2018-19 assignment years. We
�nd that the �rst strategy (context e�ects) dramatically lowers
out-of-sample negative log likelihood, particularly on down-rank
choices, when compared to rank-homogeneous models. The second
strategy (model strati�cation) delivers more accurate prediction in
top choices than a rank-homogeneous model—essentially, by mod-
elling them separately—but otherwise does not appear to produce
any signi�cant improvements over the non-strati�ed baseline. Fur-
thermore, we evaluate the performance of our context e�ect model
against a nested MNL model and demonstrate sizable advantages
in the school choice setting.

Outline. Section 2 introduces notation and de�nitions used through-
out the work. Section 3 explains the SFUSD assignment system,
its inputs and outputs, and summarizes the data we use for train-
ing and evaluation. In Section 4, we describe the choice models
studied in this work, presenting the backwards-dependent context-
dependent model (CDM) and the strati�ed approach with Laplacian
regularization. Section 5 addresses identi�ability of the models and
details our model optimization framework. In Section 6, we present
and discuss the performance of our models; Section 7 concludes.
Additional discussion and analyses are found in the appendix of
our full text.1

1.1 Related Work
The present work closely relates to various prior works that develop
or apply preference models in school choice. Laverde [20] uses
an MNL choice model to simulate counterfactual assignments in
Boston in 2010–2013, quantifying the role of distance and unequal

1Full paper with appendices can be found at https://arxiv.org/abs/2306.01801.

access on stated preferences. Agarwal & Somaini [2] develop a
procedure for estimating an MNL model in the presence of strategic
reporting. Abdulkadiroğlu et al. [1] use MNL models to �nd links
between preferences, school e�ectiveness and peer quality in New
York City in 2003–2013. For an in-depth review of prior applications
of preference models in school choice, see Agarwal & Somaini [3].

Meanwhile, many works have studied the relative suitability
of di�erent choice models in school choice, evaluating accuracy
and prediction errors of preference models. For example, Pathak &
Shi [27] examine out-of-sample estimates for three models after a
large-scale policy change in Boston. They develop several model
evaluation metrics, and we adapt one to our work. Calsamiglia et
al. [9] similarly estimate a full choice system and evaluate it out-of-
sample using administrative data from 2006 and 2007 school years
in Barcelona.

Several prior e�orts aim to understand preference heterogeneity
between various demographic groups. For example, Laverde [20]
estimates MNL models for White, Black, and Hispanic families by
including indicator variables for these features in the chosen MNL
utility. Hastings et al. [15] apply mixed-logit models [24] to data
from Charlotte-Mecklenburg, North Carolina, learning separate
model coe�cients by race and SES status. In contrast to these
examples of heterogeneity between groups, the present work focuses
instead on preference heterogeneity within participants as they
assemble their rankings.

Our idea is inspired by prior works in psychology, economics and
marketing research, all of which cite inconsistent agent behavior
in the assembly of rankings. Under the observation that individu-
als are generally more careful in reporting their top choices than
lower ranked ones, Hausman & Ruud [16] model structured rank-
heterogeniety through a common choice model with increasing
variance as choosers proceed down the ranks, Chapman & Staelin
[10] drop ranked alternatives after a threshold, and Allison & Chris-
takis [4] interact model covariates with indicators for early (top-4)
or late (5+) rank choices. Our work extends this last idea by fully
stratifying models by rank position of choice, interacting all model
parameters with indicators for the �rst k ranks. More on our strati-
�cation (and regularization) framework in Section 4.

Finally, our work applies recent advances from the discrete
choice and preference learning literatures to the school choice
domain. The MNL model satis�es the axiom of independence of
irrelevant alternatives (IIA), that the relative probability of selecting
any item j over another item k from choice set S is independent
of the other items in S . However, this axiom is highly restrictive
and often not representative of the true choice process [38, 39].
We adopt strategies for going beyond the independence of irrele-
vant alternatives (IIA) assumption from Seshadri et al. [30], in turn
adapted from Batsell & Polking [7], extending that framework from
a previously-studied forward-dependent model of ranking [31] to
backwards-dependent ranking. Other recent work extending the
CDM include studies of salient features [8] and feature-based con-
text e�ects [34]; we leave the evaluation of such model extensions
as future work. Further, we benchmark the performance of our
approaches against the nested MNL model [23], which also goes
beyond the restrictive IIA assumption, in Section 6.1.
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2 CHOICE PRELIMINARIES
We begin by introducing our notation for viewing school choice
through the lens of discrete choice. For a speci�c school year, let
U B [m] = {1, ...,m} denote the universe set of all o�erings,
or alternatives, in the district, labeled 1 through m, and let n be
the number of students seeking assignment in the choice system.
Throughout this work, we use “household” and “student” inter-
changeably to represent the decision-maker, as enrollment pertains
to the student but rankings are often submitted by caretakers. Fur-
ther, let PO(U) denote the set of all partial orders on the alternatives
inU. A preference list Ri 2 PO(U) is household i’s partial ranking
of the alternatives in U, and we denote by ki  m the length of
that ranking. The vector of observable covariates on student i and
o�ering j 2 U are given by xi j , containing demographic, socioe-
conomic, geographic, and performance-related information on the
pair. Then, a school choice dataset, (D,X ), is de�ned as the collec-
tion of all participating-household’s partial rankings submitted to
the district, D = {R1, ...,Rn }, and observed student-program co-
variates, X 2 Rn⇥m⇥d , where xi j is a length-d vector of attributes
pertaining to student i and alternative j.

To learn a model of rank data, researchers typically transform
rankings to choices and then apply discrete choice models such as
the MNL, resulting in what is known (equivalently) as the rank-
ordered logit [16], exploded-logit [10, 29], or Plackett-Luce [22, 28]
model for rankings, which we present in Section 4. The generality
of converting rankings to choice is non-obvious, but the most pow-
erful and widespread transformation is motivated by the theory
of L-decomposable ranking distributions [11, 21] (L as in Left). A
ranking distribution is said to be L-decomposable if the probability
P(R) of observing ranking R = (r1, ..., rk ) can be decomposed into
probabilities of choices from dwindling choice sets, from most to
least preferred:

P(R) = P(r1 |{r1, ..., rk }) · P(r2 |{r2, ..., rk }) · ... · P(rk�1 |{rk�1, rk }).

This unraveling-from-the-left decomposition is sometimes also
referred to as repeated selection [31]. In the present work, we apply
repeated selection to ranking data throughout, simplifying the name
of the ranking model to just the enlisted choice model employed
after unraveling.

Encoding the unraveled choices as (agent, choice, choice set)
triples, the rank data D then becomes a choice dataset, D:

D =
ÿ

Ri 2D

ÿ
j 2[ki ]

�
i, ri j , Si j

�
(1)

where ri j is represents the j-th selection by agent i on ranking Ri ,
and Si j ✓ U is the slate of available alternatives, or choice set,
when choosing position j of ranking Ri . The size of the resulting
dataset is |D | = Õ

i 2[n] ki .
To concretely illustrate the decomposition at the level of a data

point, given a universe of alternatives U = {a,b, c,d}, consider
a dataset made up of one ranking, by agent 1, D = {R1}, where
R1 = (b,d, c). Following Eq. (1), the choice dataset becomes

D = {(1, r11, S11), (1, r12, S12), (1, r13, S13)}
= {(1,b, {a,b, c,d}), (1,d, {a, c,d}), (1, c, {a, c})}.

3 SAN FRANCISCO SCHOOL CHOICE
In this section, we present the assignment process implemented
within the San Francisco Uni�ed School District (SFUSD) from 2014
to the present. SFUSD is made up of 130 schools with 150+ unique
program o�erings. Students enroll in these programs via an annual
assignment lottery where families submit ranked preferences over
available o�erings to the district, and the district tries to honor
family choices while satisfying capacity constraints. The algorithm
performing this constrained assignment is the student-proposing
deferred acceptance algorithm [13]. Participation may occur across
all grade levels, but kindergarten enrollment is by far the largest
participating group each year, making up over a third of all annual
participants. As such, and following suit with many other studies
of school choice, we focus solely on kindergarten assignment.

In the face of overly-demanded program seats, the district uses
the following priority hierarchy to make assignments:

(1) Sibling: Highest priority. Given to younger siblings of stu-
dents enrolled at the school.

(2) PreK/TK: Given to students who (1) live in the attendance
area of the school (if applicable), and (2) are enrolled in a
PreK or TK program at the school itself or in the attendance
area of the school (if applicable).

(3) Test score area (“CTIP1”): Given to students living in neigh-
borhoods with low average test scores. Grants priority across
the district, not just to one program or school.

(4) Attendance area (AA): Given to students living in the at-
tendance area of the school.

(5) No priority: The absence of any of the above priorities.
For each program, a student is considered in the highest priority
category for which they qualify. Within each priority tier, ties are
broken by next highest tier if applicable, or by a random number,
�i j , drawn uniformly at random for each student-school pair2.

Once all submitted preference lists have been exhausted by the
matching algorithm, there may be students left without any assign-
ment, for which the district administratively assigns these students
to a program not on their list. In this work, as we are solely inter-
ested in modeling the preferences submitted by families in the �rst
stage, such assignments fall outside the scope of our analysis.

3.1 Dataset
To understand families stated preferences, we study data from both
the 2017–18 and 2018–19 school years, principally training models
on the 2017–18 data and evaluating out-of-sample on the 2018–19
data. We opted for this train–test split, following other work in
school choice [9, 27], to prevent data leakage. This split also mimics
real use cases of school choice preference models, where models
are used to simulate future years’ outcomes.

Within each year, we collapse all three rounds of stated prefer-
ence elicitation (instead of focusing only on the �rst and largest
round), to better capture the full district demographics. We exclude
programs that are newly o�ered the 18-19 school year, dropping
804 households from the test dataset, as our model’s �xed e�ects do

2This lottery design is known as themultiple tie-breaking rule (MTB) as students receive
multiple values, one for each ranked school. By contrast, the single tie-breaking rule
(STB) assigns a single lottery value to each student, used across desired schools. For
more on the analysis of tie-breaking rules, see [5, 6, 14? ].
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Table 1: Summary statistics of SFUSDdataset, by school year.

School year
2017-18 2018-19

No. participating households, n 5,115 4,329
Total o�erings,m 154 148
No. unique schools, ns 72 72
No. unique program types, np 22 19
Avg. length of ranking, k̄i 9.95 7.05
Size of choice dataset,

Õ
i ki 49,882 29,810

Percent students CTIP1 16.7% 18.7%

not extrapolate to never-before-seen alternatives. Handling these
out-of-distribution preferences is a known limitation of the MNL
class of models and an area of future work. Summary statistics for
each school year’s data are found in Table 1.

The student-program covariates X used in this work were se-
lected by domain experts at SFUSD:

• Distance: scalar, in miles,
• Square-root distance: scalar, in sqrt. miles,
• Square-root distance ⇥ CTIP1: scalar, in sqrt. miles,
• Within 0.5 miles: indicator,
• Bus route: indicator for whether the district has bus routes
between student ZIP code and school ZIP code,

• Sibling match: indicator for whether the student has one or
more sibling(s) already enrolled at the school (not necessarily
same program),

• Language match: indicator for whether a language program
is in a student’s (non-English) home language,

• Attendance area school: indicator for whether the student
lives in the attendance area of the school,

• PreK/TK continuation: indicator for whether or not student
is enrolled in an SFUSD Pre-K or transitional kindergarten
in the same attendance area as or within the school.

We consider the following school-speci�c features as well, modeled
as interacting with the CTIP1-status of the student.

• Average color: state-de�ned metric quantifying school’s ab-
solute performance and improvement in English/language
arts, math, chronic absenteeism, and suspension rates. Ordi-
nal color code in each category, encoded as 1-5, and averaged
(higher is better),

• Fraction reduced lunch: fraction of the school’s population
that quali�es for free or reduced-price lunch by the district,

• Before/after school programs: indicator for whether or not
school o�ers before- or after-school programs.

We acknowledge that additional attention to feature engineering
can likely yield measurable performance improvements, but we
consider the above features adequate and realistic for our purposes,
namely evaluating the value of modeling rank-heterogeneity.

4 CHOICE MODELS FOR SCHOOL CHOICE
A choice model models probability distributions over subsets of a
collection. More formally, let S = {S : S ✓ U, |S | � 2} denote the
set of all subsets of size at least two of a collection U. Let P(j |i, S)
describe, for each agent i 2 [n] and each set S 2 S, the probability

of agent i selecting item j from set S . Recall from Section 2 that in
the SFUSD school choice mechanism, n households submit partial
rankings R1,R2, ...,Rn with student-program covariates X . Each
partial ranking Ri is decomposed into choices per Equation (1),
obtaining a dataset D of choices.

We begin by considering a random utility model (RUM) of choice.
The utility to agent i of alternative j in choice set S is given by

U (j |i, S) = V (j |i, S) + �i j ,
decomposed into a part labeled V that is known by the researcher
up to some parameters, the representative utility, and an unknown
part � that is treated as random [35]. Under the assumption of
independent Gumbel noise � , agent i’s probability of choosing
alternative j from choice set S is given in closed form by

P(j |i, S) = eV (j |i ,S )Õ
k 2S eV (k |i ,S ) , (2)

deriving the most ubiquitous RUM—especially in school choice—the
conditional multinomial logit (MNL) [21].

Taking the noise instead to be jointly Gumbel distributed with
correlation yields variations on amixedMNL [24] or nestedMNL [35]
model, the latter featuring correlations across pre-speci�ed clus-
ters of alternatives. We benchmark our performance against a
nested MNL model in Section 6. Mixed MNL models have per-
formed comparably to ordinary MNL in several prior school choice
studies [15, 26], so we do not benchmark against it in this work.

Under the MNL model, the task of the researcher is to de�ne a
representative utility function, typically a parametric model, de-
noted V� . We select our model from the chosen model class using
regularized maximum likelihood, selecting parameters � to mini-
mize

F (D;� ) = `(D;� ) + r (� ), (3)
where `(D;� ) is the negative log-likelihood (NLL) loss,

`(D;� ) = � 1
|D |

’
(i ,ri j ,Si j )2D

log
�
P� (ri j |i, Si j )

�
,

r (� ) = � | |� | |2 is the `2 penalty, and � is the regularization gain.

4.1 Basic utilities
At this point, our task is to de�ne the representative utility, V .
Assigning inherent utilities to each alternative,

V� (j |i, S) = �j , (4)

reduces the model to the basic Plackett-Luce model [21]. Here,
� 2 Rm̃ where m̃ < m is de�ned as the number of unique schools
plus the number of unique program-types o�ered in the district3,
m̃ = ns + np . See Table 1 for district summary statistics. We will
refer to this model as the �xed-e�ect MNL.

Adding user-alternative speci�c covariates yields a linear MNL,

V� (j |i, S) = �j + �
T xi j , (5)

3Each alternative in the choice universe j 2 U has an associated school, s(j), and
program type, p(j). Example program types are general education, special education,
and language program o�erings. As such, our �xed e�ect �j is actually shorthand
for �s (j ) + �p(j ) , reducing degrees of freedom while allowing our models to better
generalize to new o�erings at existing schools. We refer the interested reader to our
code for the exact implementation.
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the most common utility structure in the school choice literature.
Note that covariates contained in xi j , detailed in the previous
section, are indexed both by student and alternative; school- or
program-speci�c features (only indexed by j) are absorbed into the
�xed e�ects �j , and student-speci�c features (only indexed by i)
cancel out in the expression of the MNL choice probability, Eq. (2).

As as auxiliary benchmark, we implement a nestedMNLmodel,
using the same expression of representative utility as the linearMNL
in Eq. (5), for benchmarking in Section 6. In the nested MNL, alter-
natives are explicitly assigned to one of K nests (non-overlapping
subsets of U), and choice probabilities are de�ned to be corre-
lated within nests. See online Appendix C.3 for full discussion and
presentation of the nested MNL choice probabilities. The nests we
implement in this work are ‘Chinese Language’, ‘Filipino Language’,
‘General Education’, ‘Japanese Language’, ‘Korean Language’, ‘Span-
ish Language’, and ‘Special Education’ o�erings. Each nest is asso-
ciated with a number of unique program o�erings —see Table 1 for
more details.

The �xed-e�ect and linear MNL models presented in this section
satisfy IIA (see Section 1.1). As a result, they are rank-homogeneous,
relying on a constant representative utilityV (j |i, S ;� ) for each alter-
native regardless of when the choice is being made in the ranking
process. The contextual choice model that follows does not satisfy
IIA and thus leads to rank-heterogeneous choice distributions.

4.2 Context e�ects
The context-dependentmodel (CDM) [31] is our �rst strategy for
incorporating rank-heterogeneity into the traditional MNL models
above. The CDM relaxes the strict IIA assumption, initially crafted
to model “choice set e�ects” [36] whereby the slate of alternatives
under consideration impacts the choice probabilities of the agent.
We modify this modeling framework to suit the school choice se-
quential ranking problem. Speci�cally, under the standard CDM,
each choice j from choice set S occurs within the context of the
choice set S . For our purposes, we generalize this framework to
consider the choices as occurring within the context of a generic
and possibly di�erent context set of alternatives, A.

The representative utility of this generalized CDM models con-
text e�ects as a linear dependence between items, interpretable as
“push” and “pull” factors, with items in A pushing and pulling on
each alternative in the choice set S ,

V� (j |i,A, S) = �j + �
T xi j +

1
|A|

’
k 2A

ujk ,8j 2 S .

When A = S \ j we recover the standard CDM. The parameters
ui j are de�ned for all i, j 2 U where i , j. The generalized CDM
has the same parameter complexity as standard CDM, requiring
m(m�1) parameters beyond the linear model, arranged in a matrix-
like structure U 2 Rm⇥m , with unde�ned diagonal. To reduce the
parametric complexity of the model, U can be factorized as the
product of two low-rank matrices, U = TCT with T ,C 2 Rm⇥r

serving as target and context embeddings, respectively, analogous
to word2vec-type methods [25]. The low-rank CDM representative
utility is then written as

V� (j |i,A, S) = �j + �
T xi j +

1
|A|

’
k 2A

tTj ck . (6)

We proceed with the factorized form of the CDM in this work. The
low-rank CDM introduces a hyperparameter, in the form of the
embedding dimension r ; see Section 5 for a discussion of hyperpa-
rameter tuning.

To accompany this change in model, the structure of the data
described in Eq. (1) must be generalized to include a generic context
set for each choice, resulting in the following choice dataset

D =
ÿ

Ri 2D

ÿ
j 2[ki ]

�
i, ri j ,Ai j , Si j

�
, (7)

where Ai j is the context set when agent i chose item j. Table 2
summarizes the representative utilities of the three models—the
�xed-e�ect MNL, linear MNL, and CDM—and their parameters.

Forward vs. backward-dependence. In the original formulation of
the CDM for rankings [31], the context set was assumed to be
the choice set itself, A = S \ j, a formulation we refer to as the
forward-dependent contextual ranking model.

Considering the generalized CDM above, we consider instead a
model where the context set A is the set of already-chosen alterna-
tives. Equivalently, let A = U \ S , the complement of the current
choice set. We introduce this model as the backward-dependent
contextual ranking model. Rather than modeling context e�ects
between alternatives in the choice set, it measures how well each
alternative �ts with the choices already made. This conceptual shift
is better suited to the psychology of the school choice selection
process than the former framing, and yields a more interpretable
model in ranking settings where choice sets are large, such as in
school choice.

Considering these two di�erent approaches to modeling rank-
ings as a sequence of contextual choices, it seems as though these
formulations constitute di�erent model classes. However, we �nd
that the forwards- and backwards-dependent CDM ranking model
classes are in fact equivalent, and provide a bijection between the
spaces of parameters for both the unfactorized and factorized mod-
els. See online Appendix A for proofs of Theorems 1 and 2.

T������ 1. Let �F = {� F , �F ,U F } denote model parameters of
the unfactorized forward-dependent CDM ranking model, and �B
denote those of the backward-dependent model. The forward- and
backward-dependent parameters are equivalent under the bijection
�B = f (�F ), where

f (� ) =
8>><
>>:
n
�i +

’
j 2U\i

ui j , 8i
o
, �,�U

9>>=
>>;
.

The inverse map is the map itself, f �1 = f .

T������ 2. Let �F = {� F , �F ,T F ,CF } denote model parameters
of the low-rank forward-dependent CDM ranking model, and �B
denote those of the low-rank backward-dependent model. These model
parameters are equivalent under the bijection �B = �(�F ), where

�(� ) =
8>><
>>:
n
�i + t

T
i

’
j 2U\i

c j , 8i
o
, �,T ,�C

9>>=
>>;
.

The inverse map is the map itself, ��1 = �.

In Section 6, as a supplemental analysis, we consider results
for truncated top-k-dependent context sets, Ai j = {ri1, ..., ril } for
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Table 2: Summary of models and the number of degrees
of freedom, Np . Herem denotes the number of alternatives
(school and programpairs) o�ered by the district, m̃ = ns+np
denotes the total number of unique schools and program
types, d is the length of xi j , and r is the embedding dimen-
sion of the low-rank CDM.

Model V� (j |i,A, S) � Np
Fixed �j {� } m̃
Linear �j + �T xi j {� , �} m̃ + d
CDM �j + �T xi j +

1
|A |

Õ
k 2A tTj ck {� , �,T ,C} m̃ + d + 2rm

l = min(k, j), to evaluate whether a more limited dependence (and
thus, simpler model) performs as well as full backward-dependence.
We �nd that even the truncated top-1 CDM—with knowledge only
of the agent’s �rst choice—makes considerable gains over the lin-
ear MNL model, but the full (top-m) backwards-dependent CDM
exhibits the best performance.

4.3 Stratifying across ranks
It has been generically noted [10, 12, 16] that the criteria individu-
als use for selecting top-ranked alternatives di�ers from those for
lower-ranked alternatives, either due to decision fatigue or a true
preference shift. As such, we consider the possibility of within-agent
preference shift by stratifying the choice model by rank, and learn-
ing independent choice models at each rank position. A possible
concern with this approach is that we end up with considerably less
data for each model in this strati�cation, compared to estimating a
single common model. To address this concern, we encourage mod-
els at neighboring ranks to be close to one another via Laplacian
regularization, resulting in a Laplacian-regularized strati�ed
model [37]. The methods of Laplacian-regularized strati�cation
are closely related to popular methods for smoothing (`2) and trend
�ltering (`1) in temporal [17] and general graphical [32, 40] do-
mains, where the underlying idea of parameter fusion dates back
to at least the work of Land and Friedman [19, 33].

The strati�cation builds upon a base choice model—in this work,
one of the three models summarized in Table 2. Taking the number
of strata to be K , a strati�ed choice model is then the composition
of K sub-models with parameters � = {�1, ..., �K } 2 RK⇥N , where
N is the number of parameters in the chosen base model.

The K models are regularized towards each other as dictated by
an accompanying regularization graph [37]. In our case, rank-based
strati�cation lends itself well to a common “path graph” for regu-
larization, where models of adjacent ranks are connected by edges
and thus regularized towards each other. Laplacian regularization
here is then de�ned as:

rL(� ) = �L
K’
i=2

| |�i � �i�1 | |22,

where �L is a chosen Laplacian regularization strength, and rL is
convex in � . Compared to the non-strati�ed objective in Eq. (3), the
regularized, strati�ed objective function is the sum of K decoupled
model losses (each with a local `2 regularization) and the Laplacian

regularization term:

F (D |� ) =
K’
k=1

[`(Dk ;�k ) + r (�k )] + rL(� ). (8)

Regularized strati�ed models feature two additional hyperpa-
rameters over their base models, the number of strata K and the
Laplacian regularization gain �L ; see Section 5 for a discussion of
hyperparameter tuning.

5 MODEL SELECTION AND OPTIMIZATION
We brie�y discuss the identi�ability of the presented models, along-
side details about hyperparameter tuning and optimization. Amodel
is identi�able if no two distinct sets of parameters, � and � 0, produce
the same probability distributions over all choice sets S 2 S. Identi-
�ability is crucial in settings where decisions are made based on
interpreting parameter estimates. If the goal is solely to make deci-
sions based on the resulting distributions only, e.g., from predictions
or simulations, identi�ability is not strictly necessary.

The traditional MNL family of ranking distributions are non-
identi�able due to their shift-invariance. In this case, strategies for
achieving identi�ability are to �x one of the parameters, constrain
their sum, or to apply regularization and obtain the minimum-norm
parameter estimates [41]. In our work, we employ the latter strategy
for the MNL and all other models, applying non-zero `2 regulariza-
tion, r (� ), in the objective function and achieving identi�ability by
obtaining the minimum norm solution.

The models in this work introduce additional hyperparameters;
the low-rank CDM requires the selection of the embedding dimen-
sion r , and a strati�ed model is speci�ed by K and �L ; the num-
ber of strata and amount of Laplacian regularization, respectively.
We tune these hyperparameters via 5-fold cross validation within
our training dataset, selecting the values that minimize validation
loss. Figures illustrating our search over these hyperparameters are
found in online Appendix B, with Table 3 summarizing the chosen
values. With hyperparameter values selected and regularization
in place, the models are fully speci�ed and we proceed to train
our models on the full 2017–18 dataset for testing on the 2018–19
dataset.

We run Adam [18], implemented in PyTorch, with default param-
eters, lr = 0.001, � = (0.9, 0.999), � = 1e�8, adding `2 regularization
with weight � = 1e � 5 in accordance with our hyperparameter se-
lection for �. Model parameters are updated over batches of training
data until reaching max_epoch = 1000 or convergence, i.e., when
the absolute di�erence in losses is less than � = 1e � 4. See online
Appendix C for a discussion on the learned model parameters.

6 RESULTS
In this section, we evaluate and examine eightmodels—non-strati�ed
and strati�ed versions of the �xed-e�ect MNL, linear MNL, CDM,
and nested MNL models—trained on 2017–18 preference data and
evaluated out-of-sample on 2018–19 data. We observe unique ad-
vantages of the context e�ects modeled by the CDM when bench-
marked against the other models, and �nd that stratifying any
model results in strictly (but marginally) better predictions, mostly
for top (�rst) choices.
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Figure 1: Model negative log-likelihoods. Left plot shows overall train and test losses (lower is better) on train (2017-18) and
test (2018-19) datasets, respectively. Right plot shows out-of-sample test (2018-19) losses disaggregated by rank. CDM models
display lowest overall test losses overall and down rank, and strati�ed models �t top-choices best.

6.1 Goodness of �t
Figure 1 depicts train and test negative log likelihood (NLL) losses
on the left, and test losses disaggregated by rank on the right. We
include a “null” model in the plots, representing uniform choices
over programs, as a baseline reference point. We see that the CDM
models, strati�ed or not, result in considerably lower test losses than
the �xed-e�ect, linear, and nested MNL models overall. Stratifying
provides modest decreases in overall test loss across all models.

On top choices, many families have priority access to one school
in the district (e.g., sibling or PreK/TK priorities), and in most cases,
rank these schools �rst. The linear and CDM models incorporate
these priorities into the model, and therefore model top choices
better than the �xed-e�ect model. The CDM leverages no additional
information in the �rst choice as the context set is empty (i.e., no
choices have been made). As such, there is negligible di�erence
between the linear MNL and CDM models at position 1. However,
after the relatively easy task of predicting top-choices, the CDM is
able to leverage the choicesmade and separates itself from the lower-
�delity models. Stratifying yields a lower test loss for top choice
across all three models, but quickly loses its advantage at lower
ranks, likely due to diminishing training data at those positions (Cf.
Table 1, households rank fewer than 10 programs on average).

Truncated top-k-dependent CDM. Recall from Eq. (6) that the CDM
utility di�ers from the linear MNLmodel via a sum of pairwise inter-
actions between alternatives and a context set, A. Throughout this
work, the context set is taken to be the set of all previously-chosen
alternatives, which has a powerful equivalence in expressivity (The-
orems 1 and 2) to the standard CDM. As a robustness check, it is
reasonable to ask which prior choices are most relevant to the con-
text set. We evaluate several variations on the CDM model with the
context being de�ned as the set of k top alternatives. Speci�cally,
the utility is given by Eq. (6) with Ai j = {ri1, ..., ril } for agent i’s

Figure 2: Negative log likelihoods of truncated top-k-
dependent CDMswhere the context set is only the top-k cho-
sen alternatives. Here k = 0 is equivalent to the linear MNL,
and k = m, the total number of o�ered programs, is equiva-
lent to the standard CDM.

j-th choice, where l = min(j,k). In other words, for choices made
after position k , only the �rst k choices constitute the context.

Figure 2 presents the losses for these top-k-dependent CDM
models. When k = 0, the context set is always empty and the model
is equivalent to the linear MNL. When k =m, the number of o�ered
programs, we recover the backwards-dependent CDM considered
everywhere else in this work. We �nd that even a minimal con-
text set, e.g., the top-choice only (k = 1), provides considerable
improvement compared to the no-context linear model. That is, the
information of what an agent chose �rst supplies the model with
meaningful signal in making all down-rank predictions. That said,
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Figure 3: The context e�ect matrix, U = TCT , of the CDM.
Element ui j is the utility boost program j receives from pro-
gram i being in the context set. The block diagonal structure,
highlighted with grey outlines, suggests that the CDM pri-
marily (but not only) learns e�ects between like program
types.

letting the context e�ect be linear in the full set of prior choices
(k =m) has measurable advantages.

Interpreting context e�ects. In Figure 3, we show the pairwise in-
teractionsU = TCT estimated for the (non-strati�ed) backwards-
dependent CDM. Element ui j = tTj ci is the utility boost that pro-
gram j receives from chosen program i being in the context set. In
the heatmap, programs on the x- and �-axes were arranged �rst
by program type and then by (descending) popularity within each.
From top/left to bottom/right, the program types are General Edu-
cation (65), Spanish Language (32), Special Education (27), Chinese
Language (24), and Miscellaneous Language (6) programs.

We see signi�cant block structure in the matrix, suggesting that
the CDM primarily (but not only) uses the context set to learn
program type a�nities. For example, the third block along the
diagonal corresponds to Special Education programs, where we see
a strong positive context e�ect. That is, once a family has ranked
a special education program, it becomes much more likely that
the family will rank other special education programs. This model
behavior is highly intuitive, and is also beyond the behavior of
an MNL model or any other model assuming independence. Put
simply, the CDM’s use of context e�ects enables it to pick up on
household signals, from the second choice and onward, that are
otherwise not available a priori at the household level.

The block structure ofU may seem to suggest good performance
from a nested MNL model, as the latter explicitly clusters similar
programs. Instead, in Figure 1 we �nd that the nested MNL shows
only marginal gains over the linear MNL model and is not com-
petitive with the CDM. This result sounds surprising, but is fairly
intuitive; in models obeying IIA (such as the �xed-e�ect and linear
MNL models), when an item is removed from the choice set, that
item’s probability is proportionally redistributed to the remaining

Figure 4: Top- and second-choice probabilities of the non-
strati�ed linear, nested, and CDM models over special edu-
cation programs for a sample household whose �rst choice
was a special education program. The CDM model learns a
drastically updated second-choice probability given the con-
text of the top choice.

alternatives for follow-up choices. The nested model instead al-
lows the removed alternative’s probability to be non-proportionally
distributed to the remaining items, speci�cally by favoring the al-
ternatives in its nest (see online Appendix C.3 for details). However,
in this setting, the choice universe and nests are relatively large, so
the impact of redistributing already-small choice probabilities is
marginal.

To illustrate how choice probabilities are redistributed in dif-
ferent models, Figure 4 showcases �rst- and second-choice prob-
abilities by the non-strati�ed linear MNL, nested MNL, and CDM
models over the special education subset for an example house-
hold in the district who �rst chose a special education program. We
see that the CDM drastically alters its second-choice distribution,
(correctly) boosting the likelihood of this household choosing an-
other special education program, while the nested model’s top- and
second-choice distributions are almost indistinguishable. Special
education programs are low-probability selections in the data at
large, and the nested paradigm can only marginally in�uence future
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Figure 5: Accuracy inkth Prediction. The CDMmodelmakes
use of the provided context and generates the most accurate
predictions at lower rank positions.

predictions when one such item is removed from the choice set.
The CDM has a far greater ability to update its future distributions
in the context of rare chosen items.

6.2 Down-rank prediction accuracy
Beyond in- and out-of-sample goodness of �t, we now consider the
prediction quality of the models on the test dataset. Speci�cally,
we task the models with making a prediction at rank position k ,
conditional on the �rst k�1 choices made, resulting in an “accuracy
in kth Prediction” evaluation metric. Recall that Ri denotes the true
ranking of household i , where ri j is the jth item in the ranking
for j  ki . Let Rik be the set of their true top-k choices, Rik =
{ri1, ri2, ..., rik }. Denote by Ik = {i : ki � k} the set of households
who have ranked at least k alternatives. Then, given a choice model,
denote by �ik the modal prediction by the model at position k , i.e.,
the highest probability alternative over remaining programs, in the
context of the previous k � 1 choices, Aik = Ri ,k�1,

�ik = arg max
j 2Sik

V� (j |i,Aik , Sik ),

where the representative utilities V (·) are de�ned in Section 4. The
metric is then given by

Accuracy in kth Prediction =
1
|Ik |

’
i 2Ik

1(�ik = rik ).

Figure 5 summarizes model performances on this metric. The
CDM models are signi�cantly more accurate in making down-rank
predictions when given earlier choices, which is precisely the use-
case of the contextual model. Strati�cation leads to improvements
in down-rank predictions made by the �xed-e�ect MNL model,
but has limited e�ect on the linear, nested and CDM models. It
appears to learn that if a household has not already ranked the
most popular programs, they wont be adding them later, as seen
in Figure 8 of online Appendix C. Doing so, it outperforms its
non-strati�ed counterpart beyond position 5.

We can also disaggregate these accuracies by sub-populations of
interest, see online Appendix D. We �nd that the groups receiving

sibling and PreK/TK priorities have top choices that are relatively
easy to predict, as their preferences are concentrated on their (typi-
cally singular) priority schools. All models generally under-perform
on CTIP1, Hispanic/Latino, and Black student populations, relative
the broader population, for one of two reasons: either the subgroups
demonstrate more varied preferences than other subgroups, or the
training data was relatively small. Lastly, we see in Figure 12 that the
CDM specializes in predicting down-rank choices for households
with non-mainstream initial preferences.

7 CONCLUSION
In this work, we introduce rank-heterogeneous preference model-
ing for school choice and present two strategies, discrete choice
context e�ects via a backwards-dependent CDM, and model strat-
i�cation by rank position. Rank-heterogeneous models have the
potential to leverage already-chosen alternatives when making
down-rank predictions, or to broadly capture evolving household
values down a ranking. We de�ne and evaluate several metrics,
�nding that incorporating context terms in the utility dramatically
decreases test loss over the linear and nested MNL models, cap-
turing signals not present in covariates alone while also seeing
particular improvements in modeling rare choices. The contextual
model also generates more accurate predictions for list-completion
tasks. Stratifying by rank yields improvements in top-choice accu-
racy across all models, but otherwise does not result in signi�cant
improvements or additional predictive power down-rank.

While rank-heterogeneousmodels enable school choice researchers
to improve predictions and perform counterfactual analysis, our
methods do not come without limitations. For one, the increased
parametric complexity of the CDM and regularized strati�cation
strategies raises, albeit mildly, model training times and data re-
quirements relative to the MNL. Recent developments to the CDM
[34] mitigates this problem by leveraging the model’s block struc-
ture and learning interactions between program attributes rather
than the programs themselves. Applying this work to the school
choice setting would reduce complexity while uncovering context
e�ects, a promising direction for future work. Another limitation
stems from our model failing to generalize to new program of-
ferings with unde�ned �xed-e�ects. Here, applying strategies for
out-of-distribution prediction—such as establishing a prior on the
�xed-e�ects of new program o�erings based on the values for simi-
lar o�erings—provide further directions for future work. Despite
these limitations, we strongly encourage school choice researchers
to consider rank-heterogeneous models in their preference model-
ing tasks for improved down-rank and rare-event prediction.
Reproducibility. The SFUSD data used in this work is not public,
but implementations of all models as well as notebooks used to
generate plots in this paper are available at: https://github.com/
ameloa/rankingmodels.
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