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Abstract: Ensemble Kalman filters are an efficient class of algorithms for large-scale ensemble data
assimilation, but their performance is limited by their underlying Gaussian approximation. A two-
step framework for ensemble data assimilation allows this approximation to be relaxed: The first
step updates the ensemble in observation space, while the second step regresses the observation state
update back to the state variables. This paper develops a new quantile-conserving ensemble filter
based on kernel density estimation and quadrature for the scalar first step of the two-step framework.
It is shown to perform well in idealized non-Gaussian problems, as well as in an idealized model of
assimilating observations of sea ice concentration.
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1. Introduction

Data assimilation combines observations, both in situ and remotely sensed, with a
forecast model to estimate the state of a dynamical system. Ensemble Kalman Filters
(EnKFs; [1,2]) are a class of ensemble data assimilation methods that are widely used in
large-scale Earth science applications. Ensemble filters operate sequentially in time: Each
time that observations become available the ensemble forecast is adjusted, and the resulting
analysis ensemble is then forecast to the next time that observations become available. The
accuracy of EnKFs is limited (inter alia) by their underlying assumption of joint Gaussianity,
and there is a wide range of approaches to relaxing or removing this assumption. The class
of non-Gaussian extensions of the EnKF that is of interest here derives from the two-step
algorithm for implementing an EnKF developed by Anderson [3]. In the first step an EnKF
is used to update an ensemble of forecast observations; in the second step the ensemble
of observation increments is converted to an ensemble of state-variable increments using
linear regression. Both of these steps can be generalized, leading to non-Gaussian (i.e.
non-Kalman) ensemble filters [4].

The focus here is on developing a non-parametric, non-Gaussian ensemble filter for
the first step of this two-step process, where we assume that the first step (the update
in observation space) is a scalar Bayesian estimation problem. The restriction to scalar
problems is not very restrictive in light of the well-known property of Bayesian estimation
that observations with independent errors can be assimilated serially, in any order; the
problem of assimilating many observations can therefore often be reduced to a sequence
of problems assimilating scalar observations. The approach adopted here is based on the
probability integral transform

H* = F;! (Ff(Hf)). 1)

In the above equation H/ and H” are random variables distributed according to the prior
(forecast) and posterior (analysis) in observation space, respectively, and Fy and F, are
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the cumulative distribution functions (cdfs) of Hf and H”. The letter y is often used to
denote the value of an observation, and the standard observation model that relates the
observation y to the state vector x is

y=h(x)+e ()

where & is the observation operator (sometimes called the ‘forward” operator) and € is the
observation error. The letter H in Equation (1) is deliberately chosen here to emphasize
the difference between the observation including observation error and the observation
without including observation error. If X/ is a random variable distributed according to
the prior, then Hf = h (Xf ) is a random variable distributed according to the prior in
observation space. As described in [4], two-step ensemble filters do not need to assume a
standard observation model, and even when observations are related to the state by the
standard model one does not need to choose to estimate /(x) in the first step, but we retain
this formalism here for simplicity of exposition.

an > Hna

Figure 1. An illustration of a QCEF. The prior ensemble member H{ is mapped by the prior cdf Fy to
the value u € [0, 1]. This value is then mapped to the analysis ensemble member HY by the analysis
quantile function F; 1. The cdfs illustrated here correspond to the case of mixed distributions on a
bounded domain as discussed in Section 2.

As described in more detail in Appendix A, the transform Equation (1) operates by
mapping the forecast distribution for Hf to a uniform distribution on [0,1], and then
mapping from the uniform distribution to the posterior distribution of H*; it relates to
ensemble filtering as follows. Suppose that one has a forecast ensemble in observation

space h{: ,n=1,...,N,, and one wishes to generate an analysis ensemble in observation
space hj, n =1,...,N,. If Fy and F; I were known, then one could generate an analysis
ensemble by simply applying the transform to the forecast ensemble:

nt = f1 (Ff (h{;)). 3)

Typically neither Ff nor F, are known a priori, so they need to be estimated from the
ensemble and, in the case of F,, from the observation value. Note that F,- Lis the quantile
function for the posterior distribution, and that the ensemble members retain their quantiles
when moving from the forecast to the analysis. Ensemble filters that operate in this way
have therefore recently been called ‘Quantile-Conserving Ensemble Filters” (QCEFs [5]). The
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action of a QCEF on a single ensemble member is illustrated in Figure 1. Figure 1 illustrates
a QCEF where the prior and posterior cdfs have jump discontinuities; the appropriate
definitions of these functions and their inverses in such a case is discussed in Appendix A.

This paper develops a new method for estimating the QCEF transform. The method
uses kernel density estimation to approximate the prior probability density function (pdf).
Extra care is taken with the kernel density estimation to handle random variables with
bounded ranges, as well as to handle situations with a nonzero total probability on one
or both boundaries. This estimate of the prior pdf is then integrated approximately using
quadrature to produce an approximation of the prior cdf Fy. Bayes Theorem states that,
up to a normalizing constant, the posterior pdf equals the prior pdf multiplied by the
likelihood function. The new method therefore again uses quadrature to approximate the
posterior cdf F;; in addition to the approximation of the prior pdf, this only requires the
ability to evaluate the likelihood function. Finally, a rootfinding method is applied to the
equation

Fa(i) = Fy () = 0 4)

to solve for the analysis ensemble members .

The details of the new, non-parametric QCEF method are described in Section 2. Sec-
tion 3 compares the new method to the Bounded Normal Rank Histogram Filter (BNRHEF;
[6-8]) and to an EnKF in synthetic non-Gaussian DA problems where the posterior dis-
tribution is exactly known. Section 4 then compares these methods in the context of a
assimilating observations of sea ice concentration (SIC) into a single-column sea ice model
(Icepack). Conclusions are offered in Section 5.

2. Mixed delta-kernel distributions

This section describes the methods used to estimate the parameters in a mixed distri-
bution of the form

p(h) = pid(h — hy) + pmpu(h) + pud(h — hy) (5)

where J denotes the Dirac delta distribution. Here the random variable H is assumed to
take values in the range h € [hy, hy]. The constants py; ,, ., are the total probabilities at the
lower bound ;, in the interior (h;, hy), and at the upper bound k. As probabilities they
are non-negative and sum to one. If ij = —co then p; = 0, and if /i, = co then p, = 0. The
subscript /, m, and u stand for lower, middle, and upper, respectively, and the subscript int
on p,, stands for interior. We assume that p,, is a probability density function in its own
right, in particular that it integrates to one.

Bounded variables appear in many applications. For example, rainfall is never nega-
tive, and concentration mixing ratios are between zero and one. Bounded variables also
appear in the context of parameter estimation; for example microphysical parameters in
numerical weather prediction models or albedo parameters in snow and ice models are
bounded. Mixed distributions are also relevant to many applications; for example, one
might make a forecast with a nonzero probability of having no rain, while the remain-
ing probability is distributed across a continuous range of possible rainfall rates. These
distributions are also relevant to sea ice data assimilation, as seen in Section 4.

We assume that the likelihood function is available, up to a positive multiplicative
constant, i.e.

t(h;y) & py|=n(y) (6)

where py|y_j,(y) denotes the probability density of observing value Y = y given that
H = h, and the proportionality constant is positive and independent of .
In the present context, Bayes’ theorem takes the following form

p*(h) = prjy—y(h) < £(h;y)p(h) 7)
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where the proportionality constant is independent of & and serves only to guarantee that
the total integrated probability is one. When the prior p(h) is a mixed distribution of the
form Equation (5), Bayes theorem implies that the posterior distribution will also be a
mixed distribution, with posterior density

p(h) = pi6(h = hp) + Piupi(h) + pid(h = hu). ®)
The posterior class weights are given by

=a
a Pi

e T LU o
50
m u
=a

o= Pty ()

pi+ P+ P

where E,, denotes expectation with respect to p,,, i.e.

hy
B[ty = [ ey)pa(n)an (10)
1
The posterior probability density in the interior is

v oy LUy pa()
() = W (11)

These expressions follow from Bayes’ theorem Equation (7) where the proportionality
constant, which is the denominator in Equation (9), is set to ensure unit total probability.

The remaining subsections of this section describe methods that use an ensemble
h],;, n =1,...,N, to estimate the prior and posterior class weights and interior pdf, to
approximate the application of the prior cumulative distribution function (cdf) to the
ensemble, and finally to approximate the application of the posterior quantile function to
produce an analysis ensemble h%, n =1,..., N,.

2.1. Class weights
The prior class weights are easy to estimate from the ensemble. Suppose that there

are N; ensemble members on the left boundary (h{; = h;), Ny, in the middle, and N,, on the
upper boundary. Then the prior class weights are estimated as

Ny
P{l,m,u} ~ {ZG:,Z‘} . (12)

The only subtlety in the estimation of the posterior class weights lies in the approxi-
mation of the expected value of the likelihood function £(h;y) over the interior distribu-
tion. We approximate this using a simple Monte-Carlo approximation. Suppose that hﬁj
j=1,..., Ny are in the interior; then

1
E.[(h;y)] ~ N ) E(hﬁj;y) (13)

The approximations given by Equations (12) and (13) are inserted into the definition
Equation (9) to obtain approximations for the posterior class weights.
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2.2. Interior probability density using kernel density estimation

Kernel density estimation (KDE) is a classic way of using an ensemble of realizations of
a random variable to approximate the probability density function of the random variable
[9]. Suppose that K is a function with non-negative output that integrates to unity, and that

hj,;., j=1,..., Ny are independent realizations of a random variable H with pdf p;,. Then

KDE

pint(h> ~ Pint (h)m 2 fK . j (14)

where w; > 0 are called the bandwidths and K is the kernel. Kernel density estima-
tion theory addresses the choice of kernel function K and bandwidths w; that make the
approximation accurate.

We here choose to use the Epanechnikov kernel

3 2

Ky =5 (1-1) (15)
where (-) is the so-called Rectified Linear Unit that returns zero for negative arguments,
and returns the argument for non-negative arguments. We choose this kernel primarily
because it has compact support and is computationally inexpensive to evaluate, though it
has some other optimality properties in the context of kernel density estimation [10].

We set the bandwidths w; using the adaptive method described in [9, §5.3]. This
method proceeds as follows. First we use the standard rule of thumb to set a non-adaptive
bandwidth parameter

20
= N

where ¢ is the standard deviation of the interior ensemble [9, §3.4]. The value 2 in this
equation is specific to the Epanechnikov kernel; other kernels have different constants (cf.
[4].

Next a ‘pilot’ estimate of the density is obtained using the nearest-neighbor method [9,
§2.5]

wo (16)

k

P (h) = 2Ny (1) (17)
where dy(h) is the distance from / to the k' nearest neighbor in the ensemble. We set
k = | V/Nj | where | -] rounds down to the nearest integer.

This pilot estimate of the density is then used to construct local bandwidth factors

B -1/2
pim (h{’l(])
Aj=|—= (18)
8
where g is the geometric mean of f)im(h{;,). These local bandwidth factors are finally used to
modulate the non-adaptive bandwidth wg, producing adaptive bandwidths

2.3. Boundary corrections on the interior probability density

The foregoing kernel density estimate of the probability density function is a consistent
approximation even when the data come from a bounded distribution, but the order of
accuracy is significantly reduced near boundaries. There are many approaches to updating
the kernel density approximation for bounded distributions. Two directions not pursued
here include reflecting the data around the boundaries, and transforming the data from a
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bounded to an unbounded distribution before performing kernel density estimation in the
unbounded domain.

The approach taken here is to locally modify the kernel near the boundary [11,12]. We
define the following two functions

—64(—2+ t(4+3t(t —2)))
(1+ 5419 +3t(t—6))
240(t — 1)?

mt) = A3t —6))" @)

(20)

(The argument t here is simply a dummy variable; it does not denote time.) The form
of these functions depends on the choice of kernel function as described in [12, §1]; the
expressions given above correspond to the Epanechnikov kernel. These functions are used
to modify the j* kernel in the approximation Equation (14) near the boundary. Specifically,
if the j* term is evaluated at a point & that is within a distance w; of the lower boundary,
then the kernel is multiplied by

_ h—nl _
l(h h’) + ! m(h h’). (22)

If the j* term is evaluated at a point / that is within a distance w; of the upper boundary,
then the kernel is multiplied by

_ h—hl _
l<h”h> — / m(h“ h). (23)
wj wj wj

This correction returns the accuracy of the approximation near the boundary to the
same order of accuracy enjoyed by the approximation away from boundaries. In the
absence of boundaries the approximation Equation (14) integrates to unity, as required for
a probability density function. The correction breaks this property, so that the corrected
approximation no longer integrates to unity. It must therefore be scaled by an appropriate
factor, equal to the integral of the corrected approximation over the support of the pdf.
This scaling factor (inter alia) is approximated using quadrature as described in the next
subsection.

2.4. Cumulative distribution functions using quadrature and sampling

Applying the QCEF transform requires evaluating the approximations to the prior and
posterior cumulative distribution functions (cdfs) described in the foregoing sections. For
values in the interior, i.e. not on the boundaries, this is achieved using quadrature. Before
describing the quadrature, we discuss the application of the prior cdf Ff to values on the
boundary.

2.4.1. Boundary sampling
The formal definition of Fy as the cdf of the prior given by Equation (5) implies that

Fe(h) = p1-

But with this formal definition the QCEF transform Equation (1) would not produce an
analysis ensemble distributed according to the true posterior distribution. As detailed in
Appendix A, in order for Equation (1) to work correctly for any pair of prior and posterior
distributions of the form Equation (5) and Equation (8), Fy should map values on the
lower boundary to a uniform distribution on [0, p;], and it should map values on the upper
boundary to a uniform distribution on [1 — py, 1].

171
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We achieve this as follows. First draw a single random number u from a uniform
distribution on [0, 1], then set

u
= . 24
TN @)
Suppose that we have N prior ensemble members on the lower boundary h; = h{,(s,
s=1,...,N;. Then we set
Fy(f) =0+ S 25)
AN Ne

Similarly, suppose that we have N, prior ensemble members on the upper boundary
h, = h{;, t=1,...,N,. Then we set

Fr(nh) =1~ <v+ t;]el). (26)

Strictly speaking, F¢(h) is an abuse of notation, because the map defined above is multi-
valued, and is a function of an entire ensemble rather than a single argument, and is not
deterministic. Ultimately what matters is that we have a map from the forecast ensemble

h£ to a set of values that are uniformly distributed on [0, 1].

The question of how to define F; for boundary values was addressed in [8] in the
context of the bounded normal rank histogram filter (BNRHF). They chose to map all
members on the boundary to the middle of the corresponding interval; e.g. ensemble
members on the lower boundary map to the value p; /2. On the one hand this preserves the
property that identical ensemble members are all treated identically, where the approach
taken here arbitrarily separates identical ensemble members. On the other hand, as will
be seen in Section 3, this choice leads to an inability to correctly represent the posterior in
certain cases.

2.4.2. Quadrature

For any & € [h, h,], the kernel-density approximation to the interior prior cdf is

h
" pie(tyat. @)
1

KDE
int

The kernel approximation to the interior pdf pi3* is piecewise-smooth, with discontinuous

derivatives at the points hjnf]. + wj, where w; is the radius of kernel that is centered at h{,r]..

We begin by defining breakpoints /i that consist of the points h{;j + w; and the points I
and hy, (if they are finite). These points are sorted, and any points outside the range [k, h,]
are discarded. The remaining points define a set of subintervals Iy = [l hg,1]. If h € I 4
then we have

h k h
[opmnde= Y [ praman+ [ psat 8)
hl i=1 Ii hk

In the absence of boundary corrections these integrals can be evaluated exactly by integrat-
ing the Epanechnikov kernel. In the presence of boundary corrections it is possible, but
tedious, to compute the integrals analytically; for the posterior interior cdf the integrand
is multiplied by the likelihood function ¢(k; y), so none of the integrals can be computed
analytically. In these cases we approximate each of these integrals using Gauss-Legendre
quadrature with five-points, which is exact for polynomials up to degree nine [13, §5.3].
The integrals pre-computed on each sub-interval using Gauss-Legendre quadrature to save
computational cost, so that a single evaluation of the cdf requires only computing the final
integral

h
P (£)dt (29)
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and adding it to the sum of the pre-computed integrals. New integrals must be pre-
computed for each new forecast, so the savings are not as great as they would be if it were
possible to pre-compute values once and use them for all forecasts.

2.5. Application of the quantile function using rootfinding

The QCEF probability integral transform Equation (1) requires inverting the approxi-
mation to the posterior cdf. This is accomplished via rootfinding methods. We define the
function

f(h) = Ea(h) - Fy (). (30)

If f(h%) = 0 then K} = Fa_l(Ff(hﬁ)), as desired.

To obtain a first guess for the solution, we use the pre-computed values discussed in
the previous section to form a piecewise-linear approximation to f (/) between the points
hy. The root of this piecewise-linear approximation can be found analytically, and serves as
the first guess supplied to the rootfinding algorithm.

The rootfinding method starts with the secant method [13, §2.3], which produces a
sequence of approximations to the root. This continues until either (i) the tolerance (2%) is
met, (ii) the max number of iterations (50) is reached, or (iii) two consecutive approximations
bracket the root. If (iii) occurs, i.e. if two approximations of i, are found that produce
values of f with opposite sign, then the algorithm switches to an improved bisection
method from [14] called the ‘Interpolation, Truncation, and Projection (ITP) method,” which
terminates either when the tolerance is met, or the max number of iterations is reached.
The rootfinding problems that need to be solved to update the ensemble are independent
of each other and can therefore be carried out in parallel, but the implementation used here
does not make use of parallelism.

The worst-case performance of the combined secant-ITP method is that of the bisection
method, i.e. the error reduces by a factor of 2 at each iteration (linear convergence). The
method will therefore reach the tolerance before hitting the max number of iterations as
long as the initial error is less than 2!!. The best performance comes from the case where
the method never switches from secant to ITP; in this case the order of the method is
between linear and quadratic, with exponent (1 + 1/5)/2 = 1.62 [13, Theorem 2.3]. Using
the configuration recommended in [14], the best-case performance of the ITP method is
convergence with order /2.

The computational bottleneck in a single iteration of the rootfinding method is the
evaluation of the cdf F,. If the integrals on the sub-intervals were not pre-computed as
described in the foregoing section, then these integrals would have to be re-computed at ev-
ery step of the rootfinding iteration, and for every ensemble member; the pre-computation
thus leads to significant savings. With the pre-computation, the most expensive part of a
single evaluation of the cdf is the computation of the Gauss-Legendre approximation to the
integral on a single sub-interval Equation (29), which requires evaluating pi** five times.

int

3. Non-cycling tests

This section compares three ensemble filters on three scalar problems where the answer
is known analytically. The three algorithms are

e  The Ensemble Adjustment Kalman Filter [EAKF; 15],
¢ The Bounded Normal Rank Histogram Filter [BNRHEF; 7,8],
*  The Kernel-based QCEF (KQCEF) developed in the preceding section.

The ensemble size is varied through N, = 20, 40, 60, 80, and at each ensemble size the test is
repeated 100 times. In all three problems the likelihood is normal

Uhy) = e_%(l%y) : (31)

The tests and their results are presented in the following subsections.
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In each test we generate an ensemble drawn from the prior, apply the three filters
above to the same prior ensemble, and use the Kolmogorov-Smirnov [KS; 16] test on the
null hypothesis that the analysis ensemble is drawn from the known posterior distribution.
A drawback of this (or any) test of the null hypothesis that the analysis ensemble is drawn
from the true posterior distribution is that the null hypothesis can be rejected even when the
analysis ensemble is drawn from a distribution that is close to the true posterior distribution.
(Naturally, if the analysis distribution is close to the true posterior distribution, then it
takes a large ensemble to confidently reject the null hypothesis.) The KS test could, for
example, reject the null hypothesis in a situation where the analysis ensemble mean has
very small error, but the shape of the analysis ensemble clearly does not reflect the true
posterior distribution.

An alternative would be to directly estimate a distance (or divergence) between the
analysis and true posterior distributions, e.g. using the Kullback-Leibler (KL) divergence.
A strength of the KL divergence as compared to the KS test is that the KL divergence
provides a number representing the error in the analysis distribution (whereas the KS test
simple accepts or rejects the null hypothesis). A weakness of the KL divergence is that it
can be hard to interpret, whereas the KS test has a very clear meaning. Like the KS test,
sample-based estimates of the KL divergence are sensitive to ensemble size [17,18].

3.1. Normal Prior

In this problem the prior is Gaussian, with mean zero and unit standard deviation.
The posterior is therefore also Gaussian, with known mean and variance. In addition to
varying the ensemble size, we also vary the value y of the observation and the observation
error standard deviation 7. If y is far from 0 then the observation is in the tail of the prior
distribution. If v < 1 then the observation error is small compared to the prior.

Each panel in Figure 2 shows the fraction of times that the KS test rejected the null
hypothesis at the 5% significance level. The horizontal axis shows the value of y, while the
vertical axis shows the logarithm of the observation error variance. Low values indicate
that the analysis ensemble produced by the ensemble filter was frequently consistent with
the true posterior distribution. The top row shows the EAKF results, the middle row shows
the BNRHEF results, and the bottom row shows the KQCEEF results. The columns show the
results for N, = 20,40, 60, and 80, from left to right.
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EAKF

BNRHF
log10(obs error variance)

log10{obs error variance)

KQCEF
log10(obs error variance)
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Figure 2. Each panel shows the fraction of 100 experiments where the null hypothesis that the analysis

Ne = 60

1
08
06
04
02
0
0 1 2 3 a

Ne = 80

1
08
06
04
) 02
- 0
o 1 2 3 a4

ensemble was drawn from the known true posterior distribution was rejected by the Kolmogorov-
Smirnov test at the 5% significance level. The prior is a standard normal. The likelihood is normal
with mean y that varies along the horizontal axis and variance 72 that varies along the vertical axis.
The EAKE, BNRHE and KQCEF results are in the upper, middle, and lower rows. The ensemble size
varies across the columns from 20 to 80.

It is seldom the case in practice that the forecast comes from a known family of
parametric distributions, and that the likelihood is conjugate to the prior. But in those
cases, or in cases where the forecast distribution is well-approximated by a parametric
distribution that is conjugate to the likelihood, one expects that a filter based on conjugate
parametric distributions (cf. the methods discussed in [19] and [5]) will outperform non-
parametric approaches like the BNRHF and KQCEEF. That is indeed the case here: the prior
and likelihood are both normal, which precisely matches the assumptions of the EAKF, and
we see that the EAKF performs best of the three algorithms in this test. The only source of
errors in the EAKF is sampling errors in estimating the prior mean and variance. These
sampling errors decrease as the ensemble size increases, but so does the sensitivity of the
KS test; combined, these effects lead to minimal changes in the accuracy across ensemble
sizes. The EAKF performs well overall, but slightly less well when the observation is in
the tail of the prior, and when the observation error variance is comparable to the prior
variance.

All the methods perform well when the observation error variance is large compared
to the prior variance, regardless of the value of y. This is reassuring, because the analysis
ensemble should be only minimally changed compared to the forecast ensemble when the
observation error variance is large.

When the observation value v is in the tail of the prior, neither BNRHF nor KQCEF
performs well. Again, this is not surprising because the representation of the tails of the
prior and posterior in the BNRHF and KQCEEF relies on ensemble members in the tails, and
there are, by definition, not many ensemble members in the tails.

The only benefit of the KQCEF over the BNRHF in this problem comes when the
observation error variance is small compared to the prior variance, and the observation
value is not too far into the tails of the prior. In such cases the KQCEF significantly
outperforms the BNRHE. This is because the BNRHF approximates the likelihood by
evaluating it at ensemble members and linearly interpolating between ensemble members;
when the observation error is small compared to the prior spread, the gaps between
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EAKF

BNRHF
log10(obs error variance)

log10{obs error variance)

KQCEF
log10(obs error variance)

ensemble members can be so large that the piecewise-linear approximation of the likelihood
is inaccurate. See Section 5.1 for further discussion of this issue.

3.2. Bi-normal Prior

In this problem the prior is a Gaussian mixture with two equally-weighted components,
each of which has unit standard deviation. One component is centered at —2 while the other
is centered at 2. The posterior is therefore also a Gaussian mixture, where the class weights,
means, and variances are known functions of the observation value and observation error
variance. As in the foregoing problem, in addition to varying the ensemble size, we also
vary the value y of the observation and the observation error standard deviation 1.

y y y

Figure 3. Each panel shows the fraction of 100 experiments where the null hypothesis that the analysis
ensemble was drawn from the known true posterior distribution was rejected by the Kolmogorov-
Smirnov test at the 5% significance level. The prior is an equal mixture of two normals, each with
unit variance, with means at -2 and 2. The likelihood is normal with mean y that varies along the
horizontal axis and variance 'yz that varies along the vertical axis. The EAKF, BNRHEF, and KQCEF
results are in the upper, middle, and lower rows. The ensemble size varies across the columns from
20 to 80.

Each panel in Figure 3 shows the fraction of times that the KS test rejected the null
hypothesis at the 5% significance level. The arrangement of the panels is the same as
Figure 2. The KQCEF performs best of the three algorithms in this test. As in the normal
problem, the errors are largest (but still not too large) when the observation is in the tail
of the prior, and the observation error variance is close to one. The errors are smaller here
than in the normal problem because an observation value of y = 4 is only two standard
deviations from one of the Gaussian modes of the prior, whereas in the normal problem an
observation value of y = 4 is four standard deviations from the mean of the prior. There
are also slightly elevated error levels when the observation error variance is small and the
ensemble size is small. These appear presumably because the ensemble members are being
split between the two modes of the prior, and each mode is poorly resolved.

The BNRHF performs well on this problem only when the observation error variance
is large, in which case all the methods perform well. When the observation error variance
is small the BNRHF performs worse than the EAKF. In this case the problem exhibits what
some authors have called ‘medium nonlinearity’ [20,21]: The prior is very non-Gaussian
but the posterior is approximately Gaussian. In such cases the EAKF effectively ignores the

335

336

337

338

340

341

346

347

348

349

355

356

357

358



Version June 12, 2024 submitted to Remote Sens. 12 of 27

prior and moves all of the ensemble members close to the observed value y. The BNRHF
uses an approximation of the likelihood function and posterior pdf that is piecewise linear
between the ensemble members. If the likelihood is so tight that the structure of its peak
falls between ensemble members, then the BNRHF cannot correctly represent the posterior
pdf, which leads to errors. See Section 5.1 for further discussion of this issue.

When the observation error variance is close to the prior variance, the EAKF performs
very poorly. But more importantly, the EAKF errors increase as the ensemble size increases.
This is because the EAKF uses an affine transformation to update the ensemble members,
and this affine transformation preserves the equally-weighted bimodal structure of the
prior. As the ensemble size increases the KS test becomes more sensitive and can tell the
difference between the unequally-weighted bimodal structure of the true posterior and the
equally-weighted bimodal structure produced by the EAKFE.

3.3. Mixed prior

In this problem the prior is a mixed distribution on [0, 1] consisting of delta distribu-
tions ath = 0 and /1 = 1 each with probability py and a truncated normal in the interior with
mean 1/2 and variance (of the un-truncated normal) 1/16. The observation error variance
is fixed at 72 = 1/64, and the observation value y is varied between zero and one. The
posterior is therefore also a mixed distribution with delta distributions on the boundaries
and a truncated normal in the interior, and all of the class weights and truncated-normal
parameters can be computed in terms of the parameters of the prior and likelihood.

The EAKF can produce analysis ensemble members outside the range [0,1]. It is
possible to update the EAKF so that it respects the bounds, e.g. by truncating values outside
the boundary back to the boundary. The ad-hoc updates amount to an unfair comparison
with the more sophisticated BNRHF and KQCEF though, so we refrain from testing the
EAKEF on this problem, and compare only the BNRHF and KQCEF.

The value of pg controls the initial number of ensemble members on the boundaries.
For py = 0 there are no forecast ensemble members on the boundaries, and neither BNRHF
nor KQCEF will move ensemble members onto the boundary when there are none there
initially, regardless of the value of y. The test with pg = 0 simply tests the ability of BNRHF
and KQCEF to handle cases with bounded variables.

1
0.9F
0.8F

0.7p

0.6

0.3F

0.2F

0.1p

y

Figure 4. Division of the total posterior probability between the left boundary, interior, and right
boundary as a function of the observation value y for the test with mixed and bounded prior. Each
color corresponds to the prior probability on each boundary. The solid line indicates the posterior
probability on the left boundary; the distance between the solid and dashed lines indicates the
posterior probability in the interior; and the distance from the dashed line to 1 indicates the posterior
probability on the right boundary.
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As pg increases from zero, the number of forecast ensemble members on the boundaries
increases. For a fixed positive value of py, the value of ¥ controls how many ensemble
members move off of or onto each boundary. This is illustrated in Figure 4. The value y
varies along the horizontal axis. At a fixed value of y, the posterior probability for each
class (lower boundary, interior, upper boundary) is indicated by the lines, which divide the
vertical axis between the three classes. Each color corresponds to a different value of py;
the distance below the solid lines indicates the posterior probability on the left boundary;
the distance between the solid and dashed lines indicates the posterior probability in the
interior; and the distance above the dashed lines indicates the posterior probability on the
right boundary. For example, when y = 1/2 we see that the posterior probability is almost
entirely in the interior for all values of pp, meaning that all ensemble members on the left
and right boundaries should all move to the interior wheny = 1/2.

As another example, suppose that pg = 0.05, meaning that when N, = 20 the prior
ensemble has one member on each boundary. If y = 0 then the posterior probability on
the left boundary is approximately 0.4, so we expect to have approximately 8 posterior
ensemble members on the left boundary. In this case the posterior probability on the upper
boundary is near zero, so the remaining 12 posterior ensemble members should be in the
interior.

In this problem we test two aspects of the posterior separately. The analysis ensemble
produced by each filter allocates a certain number of ensemble members to each class (left
boundary, interior, right boundary). This distribution of ensemble members between classes
should be statistically indistinguishable from a draw from a multinomial distribution, so we
begin by testing the null hypothesis that the analysis ensemble, condensed to just numbers-
per-class, is a draw from the multinomial distribution whose parameters correspond to the
true posterior.

Figure 5 shows the fraction of times that the multinomial test rejected the null hypoth-
esis at the 5% significance level. The horizontal axis shows the value of y, while the vertical
axis shows the value of py. The KQCEF performs better than the BNRHF in this test. At
each ensemble size there are combinations of pp and ¥ where BNRHEF fails the multinomial
test 100% of the time. The reason for these failures is that the BNRHF moves ensemble
members off the boundary all at once or not at all. For some combinations of pp and y,
the true posterior requires some of the ensemble members on the boundary to move off
the boundary and into the interior. For other combinations of py and y, the true posterior
requires some of the ensemble members on the boundary to move into the interior and
some onto the other boundary. For these combinations of py and y the analysis ensemble
produced by the BNRHF either moves all or none of the members off the boundary, which
is different enough from the true posterior that it fails the test, especially when the prior
ensemble members on the boundary should be split in half. As the ensemble size grows the
difference between half and all (or between half and none) grows, making the error more
egregious. The KQCEF has some difficulty in similar regions of parameter space, but is still
very accurate.

We also use the KS test to determine the accuracy of the distribution of the interior
ensemble members. The true posterior distribution in the interior is a truncated normal
with known parameters, and we use the KS test to test the null hypothesis that the analysis
ensemble members in the interior (regardless of how many there are in the interior) are
drawn from the true posterior distribution in the interior. The results are shown in Figure 6.
The problem is particularly difficult when py is large, because in this case there are many
prior ensemble members on the boundaries, and few in the interior. BNRHF and KQCEF
both use the interior ensemble members to estimate the interior distribution, and when
there are few interior ensemble members the approximation of the interior distribution is
inaccurate. This is reflected in the results, particularly near y = 1/2, because when v is
near the middle of the interval the posterior probability is almost entirely in the interior
(cf. Figure 4). On the other hand, for values of py and y where the posterior has very few



Version June 12, 2024 submitted to Remote Sens. 14 of 27

&
z

Ne = 40 Ne = 60 Ne = 80

1 1 1
0.45 0.45 0.45
0.4 0.8 0.4 08 0.4 08
035 03s 03s
0.3 0.6 03 0.6 0.3 0.6
0.25 0.25 0.25
0.2 04 02 04 02 04
0.15 0.15 0.15
01 0z 01 o2 01 o2
0.05 0.05 0.05

o o 0

0 05 1 0 05 1 ) 05 1

1 1 1
0.45 0.45 0.45
04 08 04 0.8 0.4 0.8
0.35 0.35 0.35
03 06 03 0.6 03 0.6
0.25 0.25 0.25
02 04 02 04 02 04
0.15 0.15 0.15
01 0z 01 oz 01 oz
0.05 0.05 0.05

o 0 0

0 05 1 0 05 1 0 0.5 1
y y y

Figure 5. Each panel shows the fraction of 100 experiments where the null hypothesis was rejected

at the 5% significance level. The null hypothesis is that the number of posterior ensemble members
on the left and right boundaries and in the interior is consistent with a trinomial distribution whose
parameters are the known true probabilities on the boundaries and in the interior. The prior is a
mixed distribution with probability pg on both the left and right boundaries and a truncated normal
prior in the interior. The value of pg varies along the vertical axis. The likelihood is normal with mean
y that varies along the horizontal axis and variance 9> = 1/64. The BNRHF and KQCEF results are
in the upper and lower rows, respectively. The ensemble size varies across the columns from 20 to 80.

ensemble members in the interior (e.g. for large py and for y near one of the boundaries),
both filters perform well according to this test. The reason for this is that the sensitivity
of the KS test depends on the sample size; in situations where there are very few analysis
ensemble members in the interior it is hard to tell whether they are distributed correctly or
not.

Overall the KQCEEF performs significantly better than the BNRHF in this test. This can
again be traced back, at least in part, to the fact that the BNRHF moves all the boundary
ensemble members together or not at all. When py is large there are many prior ensemble
members on the boundaries. If y is near 1/2, then BNRHF correctly moves the boundary
members into the interior, but it moves all the members from the left boundary to one
location in the interior, and all the members from the right boundary to another location
in the interior. The prior distribution had delta distributions on the boundaries, and the
analysis produced by BNRHF incorrectly moves these delta distributions into the interior.
The KS test notices these jumps in the interior, and flags the BNRHF analysis distribution as
being significantly different from the true posterior. That said, the KQCEF also outperforms
the BNRHF even when py = 0, i.e. there are no ensemble members on the boundary, but in
this case the BNRHF performs better than it does when pg > 0. The EAKF was not tested
on this problem, but it also moves all members from the boundary to the same location
in the analysis, and therefore suffers the same problem (in addition to the problem of not
respecting the bounds).

4. Application to sea ice concentration

Assimilation of satellite observations of sea ice provides an excellent example of a
data assimilation problem with bounded, non-Gaussian distributions. We follow [22] in
using the single-column version of the CICE sea-ice model, called Icepack [23], to explore
how advances in nonlinear, non-Gaussian data assimilation algorithms might lead to
improvements in sea ice data assimilation.
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Figure 6. Each panel shows the fraction of 100 experiments where the null hypothesis that the
analysis ensemble in the interior was drawn from the known true posterior distribution in the interior
was rejected by the Kolmogorov-Smirnov test at the 5% significance level. The prior is a mixed
distribution with probability pg on both the left and right boundaries and a truncated normal prior in
the interior. The value of pg varies along the vertical axis. The likelihood is normal with mean y that
varies along the horizontal axis and variance 9? = 1/64. The BNRHF and KQCEF results are in the
upper and lower rows, respectively. The ensemble size varies across the columns from 20 to 80.

The model represents sea ice in a single grid cell. Within this grid cell there are five
categories of ice thickness, not counting open water (zero thickness). For each category the
model tracks a range of variables, notably including the fraction of the grid cell area that
is covered by ice within that category, as well as the total volume of ice in that category.
The mean thickness within a category is given by the volume divided by the area fraction,
and the mean thickness lies between the thickness bounds that define the category. Each
ice category is covered by some amount of snow, and the model tracks the total volume
of snow covering each category; the snow thickness covering an ice category is equal to
the snow volume covering that category divided by the area fraction of the category. The
variable of interest here is the total sea ice concentration (SIC), equal to the sum of the area
fractions of the five ice categories; it is also equal to one minus the fractional area of the
grid cell that has no ice cover (i.e. open water). Although we investigate the method in the
context of the CICE model, the approach developed here could be applied to any model
that has SIC as a state variable, e.g. the SIS [24] and neXtSIM [25] models.

4.1. SIC Likelihood

There are several satellites whose sensors return data relevant to SIC, and observations
of SIC have been assimilated into sea ice models for decades [26-34]. Assimilating data
from any particular satellite requires an observing model appropriate to that satellite; we
introduce such a model here. We assume that as the satellite tracks across a single grid cell
(corresponding to the Icepack model) it makes N, measurements at points within the grid
cell. At each point it observes whether there is ice or open water; k of the N, points have
open water. This model is relevant to, for example, the laser altimeters aboard the ICESat-2
platform [35]. ICESat-2 provides more information than just ice vs no-ice; assimilation
of sea ice thickness observations is an important topic, but out of scope for the present
investigation.

We model the observations as a sample from a binomial distribution with parameters
ap and N,, where ay is the open water area fraction within the grid cell, i.e. one minus the
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SIC. The likelihood function is therefore proportional to a beta distribution with parameters
k+1land N, — k+1:
0(ag; No, k) o< af(1— ag) ok, (32)

The likelihood function is all that the BNRHF and KQCEEF filters need to assimilate
the observational data; the EAKF requires a Gaussian approximation of the likelihood. The
likelihood, when viewed as a function of a9 has mean

k+1

Y= N, 12 (33)

and variance [36, §25.3]

72:(k+1)(No—k+12). (34)

(3+No)(2+ No)

We provide these values to the EAKF as the observation value and observation error
variance. Note that in the limit N, — oo the observation error variance goes to zero. As
described below, we use either N, = 10 or N, = 100. The former produces a larger
observation error variance, while the latter produces a smaller observation error variance.
The Gaussian approximation of the likelihood is accurate in the configuration with N, =
100. (The red line in the right panel of Figure 10 shows the likelihood function when
Np = 100 and k = 30.)

4.2. Experimental Design

We perform data assimilation over a single year (2011) at 75.54°N, 174.45°E. This
location is between the East Siberian and Chuckchi Seas; unlike areas nearer the center
of the Arctic icepack, this area experiences large changes in SIC over the course of the
year. Each ensemble member is forced by atmospheric conditions from distinct members of
the CAM6 + DART reanalysis [37]. Each ensemble member includes a slab ocean within
Icepack. The initial conditions and lateral heat flux convergence forcing are the same for all
ensemble members; they are derived from the ocean component output of a fully-coupled
historical simulation of the Community Earth System Model [38].

Even with each member being forced by a different atmosphere, the ensemble spread
is small, as the dynamics are not chaotic, and variability associated with lateral processes
is missing in the single-column model. To introduce greater ensemble spread, three snow
parameters of the Icepack model are perturbed:

*  The R_snw nondimensional snow-albedo parameter is varied between —2 and 0

e The rsnw_nlt melting snow-grain radius parameter is varied between 1.3x1073 and
23x1077 m

*  The ksno parameter determining the thermal conductivity of snow is varied between
0.2 and 0.35 W/m/degree.

The left panel of Figure 7 shows the SIC for free-running (no DA) ensemble from July
through October. Outside of this window the SIC is near 100% for all ensemble members.
The icepack begins to melt in late July, and the freeze-up occurs between late September
and early October, depending on the ensemble member. The combination of perturbed
snow parameters and different atmospheric forcing produces a wide range of minimum
values for SIC, from less than 10% to more than 90%.

There are 80 ensemble members total because there 80 distinct atmospheric forcing
conditions in the CAMS6 + DART reanalysis. The black line denotes the reference member
that is used to produce synthetic observations in an observing system simulation experi-
ment (OSSE). We run data-assimilating experiments with two ensemble sizes: 20 and 79;
the latter is the largest ensemble possible when reserving one of the 80 total members to be
the reference case. To reassure the reader that the 20 members of the smaller ensemble span
the full range of behaviors as seen in the full ensemble, the members of the ensemble of
size 20 are shown with slightly thicker lines in the left panel of Figure 7.

501
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Figure 7. Left panel: SIC as a function of time for a free-running ensemble of 79 members (grey) and
a reference member (black). Right panel: SIC as a function of time for an ensemble of size 20 using
the EAKEF to assimilate observations of SIC every 10 days.

The right panel shows the results from an EnKF run with a 20 member ensemble
assimilating N, = 10 observations every 10 days. When all of the ensemble members
have SIC close to 1, i.e. at the beginning and end of the plot, as well as in the time period
excluded from the plot, the analysis has very little impact on the ensemble. This is because
the forecast ensemble spread is very small compared to the uncertainty in the observations,
so the observations are effectively ignored. Ignoring the observations in this context is not
necessarily a bad thing, because the ensemble forecast is very close to the reference value
anyways.

Ice-observing satellites have a range of repeat periods; for example, ICESat-2 has a
91-day repeat period, and CryoSat-2 has a 369 day repeat period, but provides uniform
coverage of the Arctic approximately every 30 days. With a 30 day observation interval
we would have only 2 or 3 assimilation cycles within the window of time where SIC is
dynamically changing, and it would be hard, on the basis of only 2 or 3 assimilation cycles,
to discover statistically robust differences between the performance of different filters. We
use a 10 day window as a compromise. Although no single satellite is expected to pass
over a grid cell every 10 days, there are multiple satellites observing, and in a full model of
the Arctic there would be observations of nearby grid cells that would affect the grid cell
that is modeled here using Icepack.

With a 10 day window there are approximately 7 analysis cycles in the period between
the beginning of the summer melt and the fall freeze-up. Since this is still too few cycles to
obtain robust statistics, for each experimental configuration (described below) we run 10
experiments, where each experiment shifts the day of the first assimilation cycle by one
day. In this way we end up with data from assimilation cycles on every day of the year
while maintaining a 10 day window between cycles.

4.2.1. Experimental Configurations

We use two sets of ensemble sizes: N, = 20 and N, = 79. The 79-member ensem-
ble results from the fact that we only have 80 different atmospheric forcings from the
CAM6+DART reanalysis, and one of them serves as the reference. We assimilate either
N, = 10 or N, = 100 observations at each cycle. All experiments with N, = 10 use a single
set of observations, and all experiments with N, = 100 use a single set of observations.

We use a two-step assimilation cycle. In the first step we use EAKF, BRNHF, or KQCEF
to assimilate the open water fraction a9. Whenever EAKF produces an 4 outside of [0, 1]
we map the offending value back to the nearest edge of the allowable interval.
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In the second step we update the area fraction and ice volume for each ice category in
the same, simple way: If 4 is the open water fraction in the forecast and 4 is the open
water fraction after assimilation, then the area fraction for each category is multiplied by
(1—ag)/(1— ay). Le. if the open water fraction increases then the area fractions for all
of the ice thickness categories decrease by a fixed factor, and vice versa. The ice thickness
and snow thickness for each category are not changed by the analysis. More sophisticated
methods for updating the ice and snow thicknesses are important research topics (cf. [22]);
the method used here is designed to put all of the models on an even footing, and to focus
attention on the first step - the update in observation space.

4.3. Results

With three filters, two observing systems (N, = 10 or 100), two ensemble sizes (N, = 20
and 79), and 10 experiments for each configuration, we eventually run 120 years of cycling
data assimilation. To assess the performance of the filters, we compute the continuous
ranked probability score [CRPS 39,40] using the forecast and analysis ensembles at each
assimilation cycle. The CRPS measures the accuracy of the probabilistic estimate provided
by the ensemble; lower values are better. Specifically, the CRPS is the L2 norm of the
difference between the empirical cdf associated with the ensemble and a Heaviside step
function centered on the reference value. The best possible CRPS is therefore zero, which
can only be attained if all of the ensemble members are equal to the reference value. It
bears noting that the true Bayesian posterior would not have a CRPS of zero except in the

very rare situation where the true posterior is a Dirac delta centered on the reference value.

CRPS values have the same units as the quantity of interest, in this case SIC. Thus, a CRPS
of 0.001 corresponds to a 0.1% SIC error, which is relatively small.

For a single experimental configuration (filter, N,, N.) we compute 58 CRPS values
from August 1 through September 28. (Outside this window there is little difference in
performance between the filters.) These 58 values come from different experiments: One
experiment has assimilation cycles on August 1, August 11, etc., while another experiment
has assimilation cycles on August 2, August 12, etc.
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Figure 8. Analysis CRPS performance profiles, as described in the text.

For each experimental configuration we effectively have assimilation cycles on 58
different days. On some days EAKF outperforms the other two filters, on other days
BNRHEF outperforms the other two, etc. To meaningfully compare these filters we use a
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performance profile plot. Each panel of Figure 8 corresponds to a different combination of  eos
ensemble size N, and observation number N,. The left edge of the panel shows, for each  eor
filter, the fraction of the time that it achieved the best CRPS out of the three filters. For eos
example, in the upper left panel (N, = 20, N, = 10), the KQCEF produced the best analysis oo
CRPS about 40% of the time, while the EAKF and BNRHF each produced the best CRPS 610
about 30% of the time. Naturally it doesn’t mean much to be second-best (or third-best) if 61
the difference between the results is small. The performance plot takes this into account by ez
adding a tolerance. In the same panel (N, = 20, N, = 10), if we look at the value 0.01 on  e:s
the horizontal axis, we see that the analysis CRPS produced by the KQCEF was within 0.01 614
of the best result about 70% of the time, while the EAKF and BNRHF were both within 0.01 s
of the best CRPS about 50% of the time. The left side of each panel shows how often each 6
filter is close to the optimal filter. The right side of the panel shows how often each filter is 617
far from optimal. 618

4.3.1. Analysis 619

The results of Figure 8 can be summarized as follows. The upper left panel shows that 2o
when the observation error variance is relatively large (N, = 10) and the ensemble is small 621
(N, = 20), the KQCEF analysis is usually close to optimal. EAKEF is slightly more robust 22
in the sense that the analysis CRPS produced by EAKEF is always within about 0.35 of the  e2s
best overall, whereas the analysis CRPS produced by KQCEEF is sometimes farther from e2s
optimal. In this panel BNRHF performs worst of the three filters. 625

The lower left panel shows that when the observation error variance is relatively large e26
(N, = 10) and the ensemble is large (N, = 79), the BNRHF and KQCEF are similar to each 627
other, and both better than EAKF. Both of the right panels show that when the observation ezs
error variance is relatively small (N, = 100), the EAKF is better than the KQCEF, which is e2e
better than the BNRHE. In these right panels the overall CRPS values are small though, so 630
all three filters are performing well overall. 631

There is an apparent contradiction between the results shown here for small observa- sz
tion error variance and the results from section Section 3. Here the EAKF outperforms the ess
other filters when the observation error variance is small (large N,) and the ensemble size is  e3a
large, whereas in Section 3.2 the ranking was KQCEF (best), EAKF, BNRHF (worst). These 35
results can be reconciled by noting the different way in which performance is measured in 36
these experiments. In Section 3.2 the null hypothesis might be rejected because the analysis es7
ensemble has the wrong shape despite being closely centered on the true value, whereas ess
in this section performance is measured using CRPS, which is small when the analysis s3s
ensemble is tightly clustered about the true state. 640

4.3.2. Forecast 641

Figure 9 is the same as Figure 8 except that Figure 9 shows the CRPS for the ensemble  es2
forecast on the 10" day, i.e. at the longest lead time, when the errors are largest. The s
left panels of Figure 9 shows that when the observation error variance is relatively large ess
(No = 10), the BNRHF and KQCEF both perform similarly, and are both significantly ess
better than the EAKF. The right panels show that the KQCEF is the best filter for small eas
observation error variance (N, = 100), though the difference compared to the other two es7
filters is reduced at larger ensemble sizes. sas

These results tell a slightly different story than the analysis CRPS results; in particular, ess
the EAKEF is never the best filter overall when considering forecast CRPS. In particular, eso
although the EAKF produces the best analysis when the observation error variance is small, es:
the analysis ensemble error grows faster for the EAKF than for the other filters, so that s
KQCEEF produces a better forecast. 653

5. Discussion 654

We have introduced a new approach, based on kernel density estimation and quadra- ess
ture, to approximating the cdf and quantile function needed to implement a QCEF. Previous ess
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Figure 9. Forecast CRPS performance profiles, as described in the text.

QCEFs include the Rank Histogram Filter and Bounded Normal Rank Histogram Filter
[6-8] and the improved Rank Histogram Filter [iRHF 4]. The iRHF also used kernel density
estimation; the approach developed here improves on the iRHF by using a quadratic kernel
rather than a piecewise-constant kernel, by enabling treatment of bounded distributions, by
enabling treatment of mixed distributions with nonzero total probability on the boundaries,
and by using quadrature to approximate the cdfs (whereas the iRHF interpolated the
likelihood function and then integrated analytically).

The results of Section 3.1 show that non-parametric QCEFs like the BNRHF and
KQCEF do not improve on EnKFs when the underlying distributions are Gaussian. Not
only do they not improve, they can in fact perform worse than the EAKF: Both BNRHF
and KQCEF perform worse than EAKF when the observation is in the tail of the prior,
and BNRHF also performs worse than EAKF when the observation error variance is much
smaller than the prior variance. This is an example of a broader principle that filters based
on parametric distributions — e.g. ensemble Kalman filters and filters based on Gamma and
Inverse Gamma distributions [19] — should be expected to outperform their nonparametric
counterparts whenever the forecast and likelihood approximately match the assumptions
of the parametric filters.

On the other hand, the results of Sections 3.2 and 3.3 show that BNRHF and KCQEF
perform significantly better than EAKF in non-Gaussian problems, as expected. In these
problems the KQCEF performs significantly better than BNRHF, especially when the
observation error variance is small compared to the prior variance. The treatment of mixed
distributions by KQCEF was shown to be better than BNRHF in Section 3.3, but this could
be easily amended within the implementation of BNRHF. One potential advantage of
BNRHF over KQCEF that was not explored here is that KQCEF can only handle mixed
distributions with delta distributions on the boundaries, whereas BNRHF can accommodate
delta distributions anywhere within the distribution [8]. A significant caveat on the results
of Sections 3.1-3.3 is that the filter performance is quantified using the Kolmogorov-Smirnov
test with the null hypothesis that the analysis ensemble is drawn from the known true
posterior distribution. This is a stringent test; failing this test does not necessarily imply
that the root mean squared error would be high, for example.

We applied EAKF, BNRHE, and KQCEF in an idealized model for data assimilation of
satellite observations of sea ice concentration. Broadly summarizing the results:
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e Both QCEF methods (BNRHF and KQCEF) outperform EAKF when the problem is eee
non-Gaussian, 690
¢  KQCEF and BNRHF produce similar results when the ensemble size is high, but se
KQCEEF tends to produce better results than BNRHF when the ensemble size is small, o2

and 693
¢ The gap between KQCEF and BNRHF is largest when the ensemble size is small and  ess
the observation error variance is also small compared to the prior variance. 695
5.1. Small ensembles and small observation errors 696
BNRHF KQCEF
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Figure 10. Forecast (blue) and analysis (yellow) pdfs of SIC for the BNRHF (left) and KQCEEF (right)
filters. The 20 ensemble members in both plots are drawn from a BNRHF forecast for September
27,2011; they are shown as black dots beneath the pdfs. The reference value used to generate the
observation is shown as a red dot beneath the pdfs. The true likelihood is shown in red in the
right panel; it corresponds to an observation with N, = 100 and k = 30. The piecewise-linear
approximation to the likelihood used by the BNRHF is shown in red in the left panel.

The difference in accuracy between KQCEF and BNRHF when the observation error esr
variance is small compared to the prior variance can be seen in both the idealized tests of eos
Section 3 and Section 4. It can be traced back to the difference in how the likelihood function ees
is treated in the two filters. The BNRHF only evaluates the likelihood function at ensemble 700
members, so if the structure of the likelihood falls mainly between ensemble members then  7o:
the BNRHF will not resolve it. In contrast the KQCEF evaluates the likelihood with infinite 702
resolution, i.e. during the root finding phase of the algorithm it evaluates the likelihood  7os
wherever needed to obtain an accurate result. 704

Figure 10 illustrates this using a 20-member ensemble forecast of SIC from the BNRHF 705
filter on September 27, 2011. The BNRHEF prior pdf for this ensemble is shown in blue 706
in the left panel, while the KQCEEF prior pdf for this same ensemble is shown in blue in 707
the right panel. In both panels the 20 ensemble members are shown as black dots below 708
the pdfs, and the reference value of SIC is shown as a red dot. The forecast distribution is  7os
bimodal and the reference value lies between the two modes, where there are few ensemble 710
members. The red line in the right panel corresponds to the likelihood for N, = 100 and 712
k = 30. The KQCEF obtains its posterior pdf by multiplying its prior pdf by the likelihood 712
function (yellow line, right panel). The red line in the left panel evaluates the likelihood at 712
the ensemble members and linearly interpolates between these values. The BNRHF obtains 714
its posterior pdf by multiplying its prior pdf by this linearly-interpolated approximation 7s
of the likelihood (yellow line, left panel). In this example the reference value (and the s
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peak of the likelihood) is in a trough between two modes of the prior, where there are few
ensemble members. Because the BNRHF only evaluates the likelihood at the ensemble
members the peak of the likelihood is not correctly represented, and the BNRHF posterior
is incorrect: in this example the BNRHF posterior pdf is bimodal, with peaks on either
side of the reference value. With a larger ensemble there are fewer gaps, the BNRHF’s
piecewise-linear approximation of the likelihood is more accurate, and the result is more
accurate.

5.2. Forecast vs Analysis performance with Icepack

EAKF Analysis, August 5

BNRHF Analysis, August 5

e o0 o
0.85 0.9 0.95 1

SIC
EAKF Forecast, August 15 BNRHF Forecast, August 15

L L L L L L
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Figure 11. Top row: Ensemble members (black dots) for the analysis produced by the EAKF (left)
and BNRHF (right) on August 5, 2011. Bottom row: Ensemble members (black dots) for the forecast
produced by the EAKF (left) and BNRHEF (right) on August 15, 2011, initialized from the analysis
ensembles shown in the top row. In all panels the red dot indicates the reference value. The black
dotted line in the lower-right panel is the same as the blue line in the lower left panel, reproduced for
ease of comparison.

Figure 8 demonstrates that the EAKF outperforms the non-parametric methods when
the observation error is small (N, = 100), yet Figure 9 shows that KQCEF (and sometimes
BNRHEF) yield better forecasts in these cases. We attempt to explain this mismatch by
examining a single analysis/forecast pair.

The top row of Figure 11 shows the analysis ensemble (black dots) produced by EAKF
(left) and by BNRHF (right) on August 5, 2011; the blue line in each panel is a kernel-
density estimate of the analysis pdf, and the red dot shows the reference SIC value. The
BNRHEF distribution is more tightly centered than the EAKF distribution, and is biased
high compared to the true SIC value; as a result the CRPS associated with the EAKF is
better (0.0058) than the CRPS associated with the BNRHF (0.0099). Notice that the EAKF
produces an analysis ensemble with a longer tail towards low SIC values than the BNRHF.
In particular, the smallest ensemble member in the EAKF analysis is noticeably smaller
than the smallest ensemble member in the BNRHF analysis.

The bottom row of Figure 11 shows the ensembles (black dots) that result from fore-
casting the analysis ensembles in the top row 10 days forwards to August 15, 2011; the blue
line in each panel is a kernel-density estimate of the forecast pdf, and the red dot shows the
reference SIC value. The black dotted line in the lower right panel shows the forecast pdf
associated with the EAKE, for easier comparison with the forecast pdf associated with the
BNRHEF (blue). The atmospheric forcing and perturbed parameters of the reference case
conspire to keep its SIC value high throughout the 10-day forecast, but the atmospheric
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forcing and perturbed parameters of the ensemble cause many of the ensemble members to  7as
melt out to values of SIC much lower than the reference case. The main difference between 746
the EAKF and BNRHF forecasts is that the EAKF forecast has a longer tail towards low SIC 747
values and has fewer ensemble members close to the large reference SIC value. This results 74s
in a larger CRPS for the EAKF forecast (0.0443) compared to the BNRHF forecast (0.0391). 74

This behavior is common across the time window of interest. The smallest analysis 7so
ensemble member produced by the EAKF is almost always significantly smaller than the s
smallest analysis ensemble members produced by BNRHF and KQCEEF across the time sz
window of interest, which is indicative of a longer tail towards low SIC values in the EAKF s
analysis. This can be traced back to the way in which the filters update the ensemble. The 754
EAKEF shifts and scales the ensemble, but does not otherwise change its shape. Thus, if the 7ss
atmospheric forcing and perturbed parameters conspire to create a forecast with a long  7se
tail towards small SIC values, the EAKF analysis will also have a tail towards small SIC  7s7
values. In contrast both BNRHF and KQCEF change the shape of the ensemble, e.g. moving  7ss
from a bimodal forecast to a unimodal analysis as shown in the right panel of Figure 10. In  7s0
this specific context of the Icepack model with perturbed parameters, the result is poorer 7o
performance of EAKF. 761

5.3. Computational Cost 762

The computational cost of these filters is negligible compared to the forecast step, 7es
even when the forecast is an extremely low-cost single-column ice model. On a simple 764
workstation the forecast step with 79 ensemble members took approximately 8 seconds. s
The typical time required to run a single assimilation cycle was computed by using the 76
free-running forecast from Figure 7 on September 27, 2011 as the forecast ensemble. The 76
ensemble size was varied from 10 to 79 by selecting the first N, members of the free-running  zes
ensemble. The likelihood used N, = 100 and varied k from 20 through 80. The median 7
time to perform the assimilation was computed across these values of k, and the results are 770
shown as a function of ensemble size in Figure 12. Both EAKF and BNRHF have total cost 77
approximately independent of ensemble size at a value near 0.007 seconds per assimilation 772
cycle. The code is not parallelized, so the independence with respect to ensemble size 77
means that the total cost is dominated by overhead costs. KQCEF has total cost that scales 774
approximately linearly with N, from being comparable to the cost of EAKF and BNRHF at 775
N, = 10 to being a little more than three times more expensive at N, = 79. Evenat N. =79 76
though, the total cost of the filter is negligible compared to the cost of the ensemble forecast. 777
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KQCEF
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Figure 12. Median time for a single assimilation cycle for each filter as a function of ensemble size.

The focus here has been on the first step of the two-step framework, i.e. the analysis 7
in observation space. Anderson [7] recently advocated using the bounded normal rank 77
histogram approximation to the prior cdf as part of a generalized linear regression approach  7so
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to the second step (regression from observation space back to state variables). The KQCEF
approximation of the prior cdf could similarly be used in such a context.

The KQCEF has been implemented in DART [41,42] so that it can be available to the
data assimilation research community.
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Abbreviations

The following abbreviations are used in this manuscript:

BRNHF Bounded Normal Rank Histogram Filter

EAKF Ensemble Adjustment Kalman Filter

EnKF Ensemble Kalman Filter

KDE Kernel Density Estimation

KS Kolmogorov-Smirnov

KL Kullback-Leibler

KQCEF  Kernel-based Quantile Conserving Ensemble Filter
QCEF Quantile Conserving Ensemble Filter

Appendix A
Suppose that

X

Fx(x) =P[X < x] = /mpx(s)ds (A1)

is the cdf of a scalar random variable X. Then U = Fx(X) is a random variable with
uniform pdf on [0, 1]:

P[U = Fx(X) < u] = P[X < Fy'(u)] = Fx(Fx'(u)) = u (A2)

for 0 < u < 1. Since the cdf is linear on [0, 1], the pdf is constant on [0, 1], which shows that
U has a uniform distribution. The derivation above assumes that Fx is invertible in the
sense that Fy L(Fx(x)) = x for every x in the range of X (the first equality), and also that

Fx <F§1 (u)) = u for every u € [0,1] (the last equality).

Suppose that U is uniform on [0, 1] and Fy is the cdf of a random variable X. Then the
distribution of X = F;!(U) is the same as the distribution of X:

P[X = FN(U) < x} = P[Px (Fgl(u)) =< Fx(x)] = Fx(x). (A3)

The last step in this derivation assumes that Fx(Fy ! (U)) = U is a uniformly-distributed
random variable on [0, 1]. Note that it does not require Fx (F)E ! (u)) = uforevery u € [0,1].

The probability integral transform Equation (1) acts in two steps: First transform from
the prior distribution to a uniform distribution using the prior cdf, then transform to the
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posterior distrbution using the posterior quantile function. What happens when the prior
cdf has a jump discontinuity at x,? Let the limit from below be

lim Fx(x) =u_ (A4)
X=Xy
and from above be
lim Fx(x) =u4. (A5)
x—x;

If we define Fy ! (1) = x, forevery u € [u_,u.], then we will be able to satisfy Fy ! (Fx(x)) =
x for every x, as long as Fx (x«) € [u_,uy]. Butif we define Fx(x.) to be any single value in
[u_,u4], then we will not be able to satisfy Fx(Fy ' (u)) = u for every u € [0,1]. In this case
we cannot directly use Equation (1) to transform from the prior to a uniform distribution.

But in order to sample from the posterior distribution, we only need to sample from
a uniform distribution and then apply the posterior quantile function. In fact, we could
completely skip the first step (transforming from the prior to a uniform) and instead just
sample from the posterior directly using the posterior quantile function. The problem with
such an approach only appears in the second step of two-step ensemble filters, i.e. the step
where observation space increments are regressed back to state variables. A completely
random sampling in observation space scrambles the ensemble increments of the state
variables, which can lead to dynamical imbalances.

To avoid this while still making use of the probability integral transform, we need
to define a map from the prior (in observation space) to a uniformly-distributed random
variable. We can achieve this by defining Fx so that Fx(x,) is a random variable uniformly
distributed on [u_, u, ]. With this definition Fx is no longer a deterministic function, but
Fx(X) is uniformly distributed on [0, 1].

The foregoing analysis was focused on mapping from the prior to a uniform distri-
bution when the prior cdf has a jump. What if the posterior cdf has a jump discontinuity
at x = x.? The second step in the transform, from uniform to posterior, does not re-
quire Fx (F;l (u)) = u for every u € [0,1]. It simply requires that Fx(Fy'(U)) = Uisa
uniformly-distributed random variable on [0, 1]. We can define the cdf Fx to be a random
map, as above, which satisfies this requirement. From a practical standpoint this is not nec-
essary, since the second step does not actually use the cdf Fy; it uses the quantile function
Fy ! Tt suffices to define Fy ' (1) = x, for every u € [u_,u.].
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