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Abstract: Ensemble Kalman filters are an efficient class of algorithms for large-scale ensemble data 1

assimilation, but their performance is limited by their underlying Gaussian approximation. A two- 2

step framework for ensemble data assimilation allows this approximation to be relaxed: The first 3

step updates the ensemble in observation space, while the second step regresses the observation state 4

update back to the state variables. This paper develops a new quantile-conserving ensemble filter 5

based on kernel density estimation and quadrature for the scalar first step of the two-step framework. 6

It is shown to perform well in idealized non-Gaussian problems, as well as in an idealized model of 7

assimilating observations of sea ice concentration. 8

Keywords: data assimilation; ensemble filter; sea ice concentration 9

1. Introduction 10

Data assimilation combines observations, both in situ and remotely sensed, with a 11

forecast model to estimate the state of a dynamical system. Ensemble Kalman Filters 12

(EnKFs; [1,2]) are a class of ensemble data assimilation methods that are widely used in 13

large-scale Earth science applications. Ensemble filters operate sequentially in time: Each 14

time that observations become available the ensemble forecast is adjusted, and the resulting 15

analysis ensemble is then forecast to the next time that observations become available. The 16

accuracy of EnKFs is limited (inter alia) by their underlying assumption of joint Gaussianity, 17

and there is a wide range of approaches to relaxing or removing this assumption. The class 18

of non-Gaussian extensions of the EnKF that is of interest here derives from the two-step 19

algorithm for implementing an EnKF developed by Anderson [3]. In the first step an EnKF 20

is used to update an ensemble of forecast observations; in the second step the ensemble 21

of observation increments is converted to an ensemble of state-variable increments using 22

linear regression. Both of these steps can be generalized, leading to non-Gaussian (i.e. 23

non-Kalman) ensemble filters [4]. 24

The focus here is on developing a non-parametric, non-Gaussian ensemble filter for 25

the first step of this two-step process, where we assume that the first step (the update 26

in observation space) is a scalar Bayesian estimation problem. The restriction to scalar 27

problems is not very restrictive in light of the well-known property of Bayesian estimation 28

that observations with independent errors can be assimilated serially, in any order; the 29

problem of assimilating many observations can therefore often be reduced to a sequence 30

of problems assimilating scalar observations. The approach adopted here is based on the 31

probability integral transform 32

Ha = F−1
a

(

Ff

(

H f
))

. (1)

In the above equation H f and Ha are random variables distributed according to the prior 33

(forecast) and posterior (analysis) in observation space, respectively, and Ff and Fa are 34
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action of a QCEF on a single ensemble member is illustrated in Figure 1. Figure 1 illustrates 59

a QCEF where the prior and posterior cdfs have jump discontinuities; the appropriate 60

definitions of these functions and their inverses in such a case is discussed in Appendix A. 61

This paper develops a new method for estimating the QCEF transform. The method 62

uses kernel density estimation to approximate the prior probability density function (pdf). 63

Extra care is taken with the kernel density estimation to handle random variables with 64

bounded ranges, as well as to handle situations with a nonzero total probability on one 65

or both boundaries. This estimate of the prior pdf is then integrated approximately using 66

quadrature to produce an approximation of the prior cdf Ff . Bayes Theorem states that, 67

up to a normalizing constant, the posterior pdf equals the prior pdf multiplied by the 68

likelihood function. The new method therefore again uses quadrature to approximate the 69

posterior cdf Fa; in addition to the approximation of the prior pdf, this only requires the 70

ability to evaluate the likelihood function. Finally, a rootfinding method is applied to the 71

equation 72

Fa(h
a
n)− Ff

(

h
f
n

)

= 0 (4)

to solve for the analysis ensemble members ha
n. 73

74

The details of the new, non-parametric QCEF method are described in Section 2. Sec- 75

tion 3 compares the new method to the Bounded Normal Rank Histogram Filter (BNRHF; 76

[6–8]) and to an EnKF in synthetic non-Gaussian DA problems where the posterior dis- 77

tribution is exactly known. Section 4 then compares these methods in the context of a 78

assimilating observations of sea ice concentration (SIC) into a single-column sea ice model 79

(Icepack). Conclusions are offered in Section 5. 80

2. Mixed delta-kernel distributions 81

This section describes the methods used to estimate the parameters in a mixed distri- 82

bution of the form 83

p(h) = plδ(h − hl) + pm pint(h) + puδ(h − hu) (5)

where δ denotes the Dirac delta distribution. Here the random variable H is assumed to 84

take values in the range h ∈ [hl , hu]. The constants p{l,m,u} are the total probabilities at the 85

lower bound hl , in the interior (hl , hu), and at the upper bound hu. As probabilities they 86

are non-negative and sum to one. If hl = −∞ then pl = 0, and if hu = ∞ then pu = 0. The 87

subscript l, m, and u stand for lower, middle, and upper, respectively, and the subscript int 88

on pint stands for interior. We assume that pint is a probability density function in its own 89

right, in particular that it integrates to one. 90

Bounded variables appear in many applications. For example, rainfall is never nega- 91

tive, and concentration mixing ratios are between zero and one. Bounded variables also 92

appear in the context of parameter estimation; for example microphysical parameters in 93

numerical weather prediction models or albedo parameters in snow and ice models are 94

bounded. Mixed distributions are also relevant to many applications; for example, one 95

might make a forecast with a nonzero probability of having no rain, while the remain- 96

ing probability is distributed across a continuous range of possible rainfall rates. These 97

distributions are also relevant to sea ice data assimilation, as seen in Section 4. 98

We assume that the likelihood function is available, up to a positive multiplicative 99

constant, i.e. 100

ℓ(h; y) ∝ pY|H=h(y) (6)

where pY|H=h(y) denotes the probability density of observing value Y = y given that 101

H = h, and the proportionality constant is positive and independent of h. 102

In the present context, Bayes’ theorem takes the following form 103

pa(h) = pH|Y=y(h) ∝ ℓ(h; y)p(h) (7)
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where the proportionality constant is independent of h and serves only to guarantee that 104

the total integrated probability is one. When the prior p(h) is a mixed distribution of the 105

form Equation (5), Bayes theorem implies that the posterior distribution will also be a 106

mixed distribution, with posterior density 107

pa(h) = pa
l δ(h − hl) + pa

m pa
int(h) + pa

uδ(h − hu). (8)

The posterior class weights are given by 108

pa
l =

p̃a
l

p̃a
l + p̃a

m + p̃a
u

, p̃a
l = plℓ(hl ; y) (9a)

pa
m =

p̃a
m

p̃a
l + p̃a

m + p̃a
u

, p̃a
m = pmEint[ℓ(h; y)] (9b)

pa
u =

p̃a
u

p̃a
l + p̃a

m + p̃a
u

, p̃a
u = puℓ(hu; y) (9c)

where Eint denotes expectation with respect to pint, i.e. 109

Eint[ℓ(h; y)] =
∫ hu

hl

ℓ(h; y)pint(h)dh. (10)

The posterior probability density in the interior is 110

pa
int(h) =

ℓ(h; y)pint(h)

Eint[ℓ(h; y)]
. (11)

These expressions follow from Bayes’ theorem Equation (7) where the proportionality 111

constant, which is the denominator in Equation (9), is set to ensure unit total probability. 112

The remaining subsections of this section describe methods that use an ensemble 113

h
f
n, n = 1, . . . , Ne to estimate the prior and posterior class weights and interior pdf, to 114

approximate the application of the prior cumulative distribution function (cdf) to the 115

ensemble, and finally to approximate the application of the posterior quantile function to 116

produce an analysis ensemble ha
n, n = 1, . . . , Ne. 117

2.1. Class weights 118

The prior class weights are easy to estimate from the ensemble. Suppose that there 119

are Nl ensemble members on the left boundary (h f
n = hl), Nm in the middle, and Nu on the 120

upper boundary. Then the prior class weights are estimated as 121

p{l,m,u} ≈
N{l,m,u}

Ne
. (12)

The only subtlety in the estimation of the posterior class weights lies in the approxi- 122

mation of the expected value of the likelihood function ℓ(h; y) over the interior distribu- 123

tion. We approximate this using a simple Monte-Carlo approximation. Suppose that h
f
nj

124

j = 1, . . . , Nm are in the interior; then 125

Eint[ℓ(h; y)] ≈ 1
Nm

Nm

∑
j=1

ℓ

(

h
f
nj

; y
)

. (13)

The approximations given by Equations (12) and (13) are inserted into the definition 126

Equation (9) to obtain approximations for the posterior class weights. 127
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2.2. Interior probability density using kernel density estimation 128

Kernel density estimation (KDE) is a classic way of using an ensemble of realizations of 129

a random variable to approximate the probability density function of the random variable 130

[9]. Suppose that K is a function with non-negative output that integrates to unity, and that 131

h
f
nj

, j = 1, . . . , Nm are independent realizations of a random variable H with pdf pint. Then 132

pint(h) ≈ pKDE
int (h)

1
Nm

Nm

∑
j=1

1
wj

K





h − h
f
nj

wj



 (14)

where wj > 0 are called the bandwidths and K is the kernel. Kernel density estima- 133

tion theory addresses the choice of kernel function K and bandwidths wj that make the 134

approximation accurate. 135

We here choose to use the Epanechnikov kernel 136

K(h) =
3
4

(

1 − h2
)

+
(15)

where (·)+ is the so-called Rectified Linear Unit that returns zero for negative arguments, 137

and returns the argument for non-negative arguments. We choose this kernel primarily 138

because it has compact support and is computationally inexpensive to evaluate, though it 139

has some other optimality properties in the context of kernel density estimation [10]. 140

We set the bandwidths wj using the adaptive method described in [9, §5.3]. This 141

method proceeds as follows. First we use the standard rule of thumb to set a non-adaptive 142

bandwidth parameter 143

w0 =
2σ

N1/5
m

(16)

where σ is the standard deviation of the interior ensemble [9, §3.4]. The value 2 in this 144

equation is specific to the Epanechnikov kernel; other kernels have different constants (cf. 145

[4]). 146

Next a ‘pilot’ estimate of the density is obtained using the nearest-neighbor method [9, 147

§2.5] 148

p̃int(h) =
k

2Nmdk(h)
(17)

where dk(h) is the distance from h to the kth nearest neighbor in the ensemble. We set 149

k = ⌊
√

Nm⌋ where ⌊·⌋ rounds down to the nearest integer. 150

This pilot estimate of the density is then used to construct local bandwidth factors 151

λj =





p̃int

(

h
f
nj

)

g





−1/2

(18)

where g is the geometric mean of p̃int(h
f
nj
). These local bandwidth factors are finally used to 152

modulate the non-adaptive bandwidth w0, producing adaptive bandwidths 153

wj = w0λj. (19)

2.3. Boundary corrections on the interior probability density 154

The foregoing kernel density estimate of the probability density function is a consistent 155

approximation even when the data come from a bounded distribution, but the order of 156

accuracy is significantly reduced near boundaries. There are many approaches to updating 157

the kernel density approximation for bounded distributions. Two directions not pursued 158

here include reflecting the data around the boundaries, and transforming the data from a 159
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bounded to an unbounded distribution before performing kernel density estimation in the 160

unbounded domain. 161

The approach taken here is to locally modify the kernel near the boundary [11,12]. We 162

define the following two functions 163

l(t) =
−64(−2 + t(4 + 3t(t − 2)))
(1 + t)4(19 + 3t(t − 6))

, (20)

m(t) =
240(t − 1)2

(1 + t)4(19 + 3t(t − 6))
. (21)

(The argument t here is simply a dummy variable; it does not denote time.) The form 164

of these functions depends on the choice of kernel function as described in [12, §1]; the 165

expressions given above correspond to the Epanechnikov kernel. These functions are used 166

to modify the jth kernel in the approximation Equation (14) near the boundary. Specifically, 167

if the jth term is evaluated at a point h that is within a distance wj of the lower boundary, 168

then the kernel is multiplied by 169

l

(

h − hl

wj

)

+





h − h
f
nj

wj



m

(

h − hl

wj

)

. (22)

If the jth term is evaluated at a point h that is within a distance wj of the upper boundary, 170

then the kernel is multiplied by 171

l

(

hu − h

wj

)

−





h − h
f
nj

wj



m

(

hu − h

wj

)

. (23)

This correction returns the accuracy of the approximation near the boundary to the 172

same order of accuracy enjoyed by the approximation away from boundaries. In the 173

absence of boundaries the approximation Equation (14) integrates to unity, as required for 174

a probability density function. The correction breaks this property, so that the corrected 175

approximation no longer integrates to unity. It must therefore be scaled by an appropriate 176

factor, equal to the integral of the corrected approximation over the support of the pdf. 177

This scaling factor (inter alia) is approximated using quadrature as described in the next 178

subsection. 179

2.4. Cumulative distribution functions using quadrature and sampling 180

Applying the QCEF transform requires evaluating the approximations to the prior and 181

posterior cumulative distribution functions (cdfs) described in the foregoing sections. For 182

values in the interior, i.e. not on the boundaries, this is achieved using quadrature. Before 183

describing the quadrature, we discuss the application of the prior cdf Ff to values on the 184

boundary. 185

2.4.1. Boundary sampling 186

The formal definition of Ff as the cdf of the prior given by Equation (5) implies that 187

Ff (hl) = pl .

But with this formal definition the QCEF transform Equation (1) would not produce an 188

analysis ensemble distributed according to the true posterior distribution. As detailed in 189

Appendix A, in order for Equation (1) to work correctly for any pair of prior and posterior 190

distributions of the form Equation (5) and Equation (8), Ff should map values on the 191

lower boundary to a uniform distribution on [0, pl ], and it should map values on the upper 192

boundary to a uniform distribution on [1 − pu, 1]. 193
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We achieve this as follows. First draw a single random number u from a uniform 194

distribution on [0, 1], then set 195

v =
u

Ne
. (24)

Suppose that we have Nl prior ensemble members on the lower boundary hl = h
f
ns , 196

s = 1, . . . , Nl . Then we set 197

Ff

(

h
f
ns

)

= v +
s − 1

Ne
. (25)

Similarly, suppose that we have Nu prior ensemble members on the upper boundary 198

hu = h
f
nt

, t = 1, . . . , Nu. Then we set 199

Ff

(

h
f
nt

)

= 1 −
(

v +
t − 1
Ne

)

. (26)

Strictly speaking, Ff (h) is an abuse of notation, because the map defined above is multi- 200

valued, and is a function of an entire ensemble rather than a single argument, and is not 201

deterministic. Ultimately what matters is that we have a map from the forecast ensemble 202

h
f
n to a set of values that are uniformly distributed on [0, 1]. 203

The question of how to define Ff for boundary values was addressed in [8] in the 204

context of the bounded normal rank histogram filter (BNRHF). They chose to map all 205

members on the boundary to the middle of the corresponding interval; e.g. ensemble 206

members on the lower boundary map to the value pl/2. On the one hand this preserves the 207

property that identical ensemble members are all treated identically, where the approach 208

taken here arbitrarily separates identical ensemble members. On the other hand, as will 209

be seen in Section 3, this choice leads to an inability to correctly represent the posterior in 210

certain cases. 211

2.4.2. Quadrature 212

For any h ∈ [hl , hu], the kernel-density approximation to the interior prior cdf is 213

∫ h

hl

pKDE
int (t)dt. (27)

The kernel approximation to the interior pdf pKDE
int is piecewise-smooth, with discontinuous 214

derivatives at the points h
f
nj
± wj, where wj is the radius of kernel that is centered at h

f
nj

. 215

We begin by defining breakpoints hk that consist of the points h
f
nj
± wj and the points hl 216

and hu (if they are finite). These points are sorted, and any points outside the range [hl , hu] 217

are discarded. The remaining points define a set of subintervals Ik = [hk, hk+1]. If h ∈ Ik+1 218

then we have 219

∫ h

hl

pKDE
int (t)dt =

k

∑
i=1

∫

Ii

pKDE
int (h)dh +

∫ h

hk

pKDE
int (t)dt. (28)

In the absence of boundary corrections these integrals can be evaluated exactly by integrat- 220

ing the Epanechnikov kernel. In the presence of boundary corrections it is possible, but 221

tedious, to compute the integrals analytically; for the posterior interior cdf the integrand 222

is multiplied by the likelihood function ℓ(h; y), so none of the integrals can be computed 223

analytically. In these cases we approximate each of these integrals using Gauss-Legendre 224

quadrature with five-points, which is exact for polynomials up to degree nine [13, §5.3]. 225

The integrals pre-computed on each sub-interval using Gauss-Legendre quadrature to save 226

computational cost, so that a single evaluation of the cdf requires only computing the final 227

integral 228

∫ h

hk

pKDE
int (t)dt (29)
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and adding it to the sum of the pre-computed integrals. New integrals must be pre- 229

computed for each new forecast, so the savings are not as great as they would be if it were 230

possible to pre-compute values once and use them for all forecasts. 231

2.5. Application of the quantile function using rootfinding 232

The QCEF probability integral transform Equation (1) requires inverting the approxi- 233

mation to the posterior cdf. This is accomplished via rootfinding methods. We define the 234

function 235

f (h) = Fa(h)− Ff

(

h
f
n

)

. (30)

If f (ha
n) = 0 then ha

n = F−1
a (Ff (h

f
n)), as desired. 236

To obtain a first guess for the solution, we use the pre-computed values discussed in 237

the previous section to form a piecewise-linear approximation to f (h) between the points 238

hk. The root of this piecewise-linear approximation can be found analytically, and serves as 239

the first guess supplied to the rootfinding algorithm. 240

The rootfinding method starts with the secant method [13, §2.3], which produces a 241

sequence of approximations to the root. This continues until either (i) the tolerance (2−39) is 242

met, (ii) the max number of iterations (50) is reached, or (iii) two consecutive approximations 243

bracket the root. If (iii) occurs, i.e. if two approximations of ha
n are found that produce 244

values of f with opposite sign, then the algorithm switches to an improved bisection 245

method from [14] called the ‘Interpolation, Truncation, and Projection (ITP) method,’ which 246

terminates either when the tolerance is met, or the max number of iterations is reached. 247

The rootfinding problems that need to be solved to update the ensemble are independent 248

of each other and can therefore be carried out in parallel, but the implementation used here 249

does not make use of parallelism. 250

The worst-case performance of the combined secant-ITP method is that of the bisection 251

method, i.e. the error reduces by a factor of 2 at each iteration (linear convergence). The 252

method will therefore reach the tolerance before hitting the max number of iterations as 253

long as the initial error is less than 211. The best performance comes from the case where 254

the method never switches from secant to ITP; in this case the order of the method is 255

between linear and quadratic, with exponent (1 +
√

5)/2 ≈ 1.62 [13, Theorem 2.3]. Using 256

the configuration recommended in [14], the best-case performance of the ITP method is 257

convergence with order
√

2. 258

The computational bottleneck in a single iteration of the rootfinding method is the 259

evaluation of the cdf Fa. If the integrals on the sub-intervals were not pre-computed as 260

described in the foregoing section, then these integrals would have to be re-computed at ev- 261

ery step of the rootfinding iteration, and for every ensemble member; the pre-computation 262

thus leads to significant savings. With the pre-computation, the most expensive part of a 263

single evaluation of the cdf is the computation of the Gauss-Legendre approximation to the 264

integral on a single sub-interval Equation (29), which requires evaluating pKDE
int five times. 265

3. Non-cycling tests 266

This section compares three ensemble filters on three scalar problems where the answer 267

is known analytically. The three algorithms are 268

• The Ensemble Adjustment Kalman Filter [EAKF; 15], 269

• The Bounded Normal Rank Histogram Filter [BNRHF; 7,8], 270

• The Kernel-based QCEF (KQCEF) developed in the preceding section. 271

The ensemble size is varied through Ne = 20, 40, 60, 80, and at each ensemble size the test is 272

repeated 100 times. In all three problems the likelihood is normal 273

ℓ(h; y) = e
− 1

2

(

h−y
γ

)2

. (31)

The tests and their results are presented in the following subsections. 274
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In each test we generate an ensemble drawn from the prior, apply the three filters 275

above to the same prior ensemble, and use the Kolmogorov-Smirnov [KS; 16] test on the 276

null hypothesis that the analysis ensemble is drawn from the known posterior distribution. 277

A drawback of this (or any) test of the null hypothesis that the analysis ensemble is drawn 278

from the true posterior distribution is that the null hypothesis can be rejected even when the 279

analysis ensemble is drawn from a distribution that is close to the true posterior distribution. 280

(Naturally, if the analysis distribution is close to the true posterior distribution, then it 281

takes a large ensemble to confidently reject the null hypothesis.) The KS test could, for 282

example, reject the null hypothesis in a situation where the analysis ensemble mean has 283

very small error, but the shape of the analysis ensemble clearly does not reflect the true 284

posterior distribution. 285

An alternative would be to directly estimate a distance (or divergence) between the 286

analysis and true posterior distributions, e.g. using the Kullback-Leibler (KL) divergence. 287

A strength of the KL divergence as compared to the KS test is that the KL divergence 288

provides a number representing the error in the analysis distribution (whereas the KS test 289

simple accepts or rejects the null hypothesis). A weakness of the KL divergence is that it 290

can be hard to interpret, whereas the KS test has a very clear meaning. Like the KS test, 291

sample-based estimates of the KL divergence are sensitive to ensemble size [17,18]. 292

3.1. Normal Prior 293

In this problem the prior is Gaussian, with mean zero and unit standard deviation. 294

The posterior is therefore also Gaussian, with known mean and variance. In addition to 295

varying the ensemble size, we also vary the value y of the observation and the observation 296

error standard deviation γ. If y is far from 0 then the observation is in the tail of the prior 297

distribution. If γ ≪ 1 then the observation error is small compared to the prior. 298

Each panel in Figure 2 shows the fraction of times that the KS test rejected the null 299

hypothesis at the 5% significance level. The horizontal axis shows the value of y, while the 300

vertical axis shows the logarithm of the observation error variance. Low values indicate 301

that the analysis ensemble produced by the ensemble filter was frequently consistent with 302

the true posterior distribution. The top row shows the EAKF results, the middle row shows 303

the BNRHF results, and the bottom row shows the KQCEF results. The columns show the 304

results for Ne = 20, 40, 60, and 80, from left to right. 305
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prior and moves all of the ensemble members close to the observed value y. The BNRHF 359

uses an approximation of the likelihood function and posterior pdf that is piecewise linear 360

between the ensemble members. If the likelihood is so tight that the structure of its peak 361

falls between ensemble members, then the BNRHF cannot correctly represent the posterior 362

pdf, which leads to errors. See Section 5.1 for further discussion of this issue. 363

When the observation error variance is close to the prior variance, the EAKF performs 364

very poorly. But more importantly, the EAKF errors increase as the ensemble size increases. 365

This is because the EAKF uses an affine transformation to update the ensemble members, 366

and this affine transformation preserves the equally-weighted bimodal structure of the 367

prior. As the ensemble size increases the KS test becomes more sensitive and can tell the 368

difference between the unequally-weighted bimodal structure of the true posterior and the 369

equally-weighted bimodal structure produced by the EAKF. 370

3.3. Mixed prior 371

In this problem the prior is a mixed distribution on [0, 1] consisting of delta distribu- 372

tions at h = 0 and h = 1 each with probability p0 and a truncated normal in the interior with 373

mean 1/2 and variance (of the un-truncated normal) 1/16. The observation error variance 374

is fixed at γ2 = 1/64, and the observation value y is varied between zero and one. The 375

posterior is therefore also a mixed distribution with delta distributions on the boundaries 376

and a truncated normal in the interior, and all of the class weights and truncated-normal 377

parameters can be computed in terms of the parameters of the prior and likelihood. 378

The EAKF can produce analysis ensemble members outside the range [0, 1]. It is 379

possible to update the EAKF so that it respects the bounds, e.g. by truncating values outside 380

the boundary back to the boundary. The ad-hoc updates amount to an unfair comparison 381

with the more sophisticated BNRHF and KQCEF though, so we refrain from testing the 382

EAKF on this problem, and compare only the BNRHF and KQCEF. 383

The value of p0 controls the initial number of ensemble members on the boundaries. 384

For p0 = 0 there are no forecast ensemble members on the boundaries, and neither BNRHF 385

nor KQCEF will move ensemble members onto the boundary when there are none there 386

initially, regardless of the value of y. The test with p0 = 0 simply tests the ability of BNRHF 387

and KQCEF to handle cases with bounded variables. 388

Figure 4. Division of the total posterior probability between the left boundary, interior, and right
boundary as a function of the observation value y for the test with mixed and bounded prior. Each
color corresponds to the prior probability on each boundary. The solid line indicates the posterior
probability on the left boundary; the distance between the solid and dashed lines indicates the
posterior probability in the interior; and the distance from the dashed line to 1 indicates the posterior
probability on the right boundary.
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As p0 increases from zero, the number of forecast ensemble members on the boundaries 389

increases. For a fixed positive value of p0, the value of y controls how many ensemble 390

members move off of or onto each boundary. This is illustrated in Figure 4. The value y 391

varies along the horizontal axis. At a fixed value of y, the posterior probability for each 392

class (lower boundary, interior, upper boundary) is indicated by the lines, which divide the 393

vertical axis between the three classes. Each color corresponds to a different value of p0; 394

the distance below the solid lines indicates the posterior probability on the left boundary; 395

the distance between the solid and dashed lines indicates the posterior probability in the 396

interior; and the distance above the dashed lines indicates the posterior probability on the 397

right boundary. For example, when y = 1/2 we see that the posterior probability is almost 398

entirely in the interior for all values of p0, meaning that all ensemble members on the left 399

and right boundaries should all move to the interior when y = 1/2. 400

As another example, suppose that p0 = 0.05, meaning that when Ne = 20 the prior 401

ensemble has one member on each boundary. If y = 0 then the posterior probability on 402

the left boundary is approximately 0.4, so we expect to have approximately 8 posterior 403

ensemble members on the left boundary. In this case the posterior probability on the upper 404

boundary is near zero, so the remaining 12 posterior ensemble members should be in the 405

interior. 406

407

In this problem we test two aspects of the posterior separately. The analysis ensemble 408

produced by each filter allocates a certain number of ensemble members to each class (left 409

boundary, interior, right boundary). This distribution of ensemble members between classes 410

should be statistically indistinguishable from a draw from a multinomial distribution, so we 411

begin by testing the null hypothesis that the analysis ensemble, condensed to just numbers- 412

per-class, is a draw from the multinomial distribution whose parameters correspond to the 413

true posterior. 414

Figure 5 shows the fraction of times that the multinomial test rejected the null hypoth- 415

esis at the 5% significance level. The horizontal axis shows the value of y, while the vertical 416

axis shows the value of p0. The KQCEF performs better than the BNRHF in this test. At 417

each ensemble size there are combinations of p0 and y where BNRHF fails the multinomial 418

test 100% of the time. The reason for these failures is that the BNRHF moves ensemble 419

members off the boundary all at once or not at all. For some combinations of p0 and y, 420

the true posterior requires some of the ensemble members on the boundary to move off 421

the boundary and into the interior. For other combinations of p0 and y, the true posterior 422

requires some of the ensemble members on the boundary to move into the interior and 423

some onto the other boundary. For these combinations of p0 and y the analysis ensemble 424

produced by the BNRHF either moves all or none of the members off the boundary, which 425

is different enough from the true posterior that it fails the test, especially when the prior 426

ensemble members on the boundary should be split in half. As the ensemble size grows the 427

difference between half and all (or between half and none) grows, making the error more 428

egregious. The KQCEF has some difficulty in similar regions of parameter space, but is still 429

very accurate. 430

We also use the KS test to determine the accuracy of the distribution of the interior 431

ensemble members. The true posterior distribution in the interior is a truncated normal 432

with known parameters, and we use the KS test to test the null hypothesis that the analysis 433

ensemble members in the interior (regardless of how many there are in the interior) are 434

drawn from the true posterior distribution in the interior. The results are shown in Figure 6. 435

The problem is particularly difficult when p0 is large, because in this case there are many 436

prior ensemble members on the boundaries, and few in the interior. BNRHF and KQCEF 437

both use the interior ensemble members to estimate the interior distribution, and when 438

there are few interior ensemble members the approximation of the interior distribution is 439

inaccurate. This is reflected in the results, particularly near y = 1/2, because when y is 440

near the middle of the interval the posterior probability is almost entirely in the interior 441

(cf. Figure 4). On the other hand, for values of p0 and y where the posterior has very few 442
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SIC. The likelihood function is therefore proportional to a beta distribution with parameters 496

k + 1 and No − k + 1: 497

ℓ(a0; No, k) ∝ ak
0(1 − a0)

No−k. (32)

The likelihood function is all that the BNRHF and KQCEF filters need to assimilate 498

the observational data; the EAKF requires a Gaussian approximation of the likelihood. The 499

likelihood, when viewed as a function of a0 has mean 500

y =
k + 1

No + 2
(33)

and variance [36, §25.3] 501

γ2 =
(k + 1)(No − k + 1)
(3 + No)(2 + No)2 . (34)

We provide these values to the EAKF as the observation value and observation error 502

variance. Note that in the limit No → ∞ the observation error variance goes to zero. As 503

described below, we use either No = 10 or No = 100. The former produces a larger 504

observation error variance, while the latter produces a smaller observation error variance. 505

The Gaussian approximation of the likelihood is accurate in the configuration with No = 506

100. (The red line in the right panel of Figure 10 shows the likelihood function when 507

N0 = 100 and k = 30.) 508

4.2. Experimental Design 509

We perform data assimilation over a single year (2011) at 75.54◦N, 174.45◦E. This 510

location is between the East Siberian and Chuckchi Seas; unlike areas nearer the center 511

of the Arctic icepack, this area experiences large changes in SIC over the course of the 512

year. Each ensemble member is forced by atmospheric conditions from distinct members of 513

the CAM6 + DART reanalysis [37]. Each ensemble member includes a slab ocean within 514

Icepack. The initial conditions and lateral heat flux convergence forcing are the same for all 515

ensemble members; they are derived from the ocean component output of a fully-coupled 516

historical simulation of the Community Earth System Model [38]. 517

Even with each member being forced by a different atmosphere, the ensemble spread 518

is small, as the dynamics are not chaotic, and variability associated with lateral processes 519

is missing in the single-column model. To introduce greater ensemble spread, three snow 520

parameters of the Icepack model are perturbed: 521

• The R_snw nondimensional snow-albedo parameter is varied between −2 and 0 522

• The rsnw_mlt melting snow-grain radius parameter is varied between 1.3×10−3 and 523

2.3×10−3 m 524

• The ksno parameter determining the thermal conductivity of snow is varied between 525

0.2 and 0.35 W/m/degree. 526

The left panel of Figure 7 shows the SIC for free-running (no DA) ensemble from July 527

through October. Outside of this window the SIC is near 100% for all ensemble members. 528

The icepack begins to melt in late July, and the freeze-up occurs between late September 529

and early October, depending on the ensemble member. The combination of perturbed 530

snow parameters and different atmospheric forcing produces a wide range of minimum 531

values for SIC, from less than 10% to more than 90%. 532

There are 80 ensemble members total because there 80 distinct atmospheric forcing 533

conditions in the CAM6 + DART reanalysis. The black line denotes the reference member 534

that is used to produce synthetic observations in an observing system simulation experi- 535

ment (OSSE). We run data-assimilating experiments with two ensemble sizes: 20 and 79; 536

the latter is the largest ensemble possible when reserving one of the 80 total members to be 537

the reference case. To reassure the reader that the 20 members of the smaller ensemble span 538

the full range of behaviors as seen in the full ensemble, the members of the ensemble of 539

size 20 are shown with slightly thicker lines in the left panel of Figure 7. 540
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Figure 7. Left panel: SIC as a function of time for a free-running ensemble of 79 members (grey) and
a reference member (black). Right panel: SIC as a function of time for an ensemble of size 20 using
the EAKF to assimilate observations of SIC every 10 days.

The right panel shows the results from an EnKF run with a 20 member ensemble 541

assimilating No = 10 observations every 10 days. When all of the ensemble members 542

have SIC close to 1, i.e. at the beginning and end of the plot, as well as in the time period 543

excluded from the plot, the analysis has very little impact on the ensemble. This is because 544

the forecast ensemble spread is very small compared to the uncertainty in the observations, 545

so the observations are effectively ignored. Ignoring the observations in this context is not 546

necessarily a bad thing, because the ensemble forecast is very close to the reference value 547

anyways. 548

Ice-observing satellites have a range of repeat periods; for example, ICESat-2 has a 549

91-day repeat period, and CryoSat-2 has a 369 day repeat period, but provides uniform 550

coverage of the Arctic approximately every 30 days. With a 30 day observation interval 551

we would have only 2 or 3 assimilation cycles within the window of time where SIC is 552

dynamically changing, and it would be hard, on the basis of only 2 or 3 assimilation cycles, 553

to discover statistically robust differences between the performance of different filters. We 554

use a 10 day window as a compromise. Although no single satellite is expected to pass 555

over a grid cell every 10 days, there are multiple satellites observing, and in a full model of 556

the Arctic there would be observations of nearby grid cells that would affect the grid cell 557

that is modeled here using Icepack. 558

With a 10 day window there are approximately 7 analysis cycles in the period between 559

the beginning of the summer melt and the fall freeze-up. Since this is still too few cycles to 560

obtain robust statistics, for each experimental configuration (described below) we run 10 561

experiments, where each experiment shifts the day of the first assimilation cycle by one 562

day. In this way we end up with data from assimilation cycles on every day of the year 563

while maintaining a 10 day window between cycles. 564

565

4.2.1. Experimental Configurations 566

We use two sets of ensemble sizes: Ne = 20 and Ne = 79. The 79-member ensem- 567

ble results from the fact that we only have 80 different atmospheric forcings from the 568

CAM6+DART reanalysis, and one of them serves as the reference. We assimilate either 569

No = 10 or No = 100 observations at each cycle. All experiments with No = 10 use a single 570

set of observations, and all experiments with No = 100 use a single set of observations. 571

We use a two-step assimilation cycle. In the first step we use EAKF, BRNHF, or KQCEF 572

to assimilate the open water fraction a0. Whenever EAKF produces an a0 outside of [0, 1] 573

we map the offending value back to the nearest edge of the allowable interval. 574
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In the second step we update the area fraction and ice volume for each ice category in 575

the same, simple way: If a−0 is the open water fraction in the forecast and a+0 is the open 576

water fraction after assimilation, then the area fraction for each category is multiplied by 577

(1 − a+0 )/(1 − a−0 ). I.e. if the open water fraction increases then the area fractions for all 578

of the ice thickness categories decrease by a fixed factor, and vice versa. The ice thickness 579

and snow thickness for each category are not changed by the analysis. More sophisticated 580

methods for updating the ice and snow thicknesses are important research topics (cf. [22]); 581

the method used here is designed to put all of the models on an even footing, and to focus 582

attention on the first step - the update in observation space. 583

4.3. Results 584

With three filters, two observing systems (No = 10 or 100), two ensemble sizes (Ne = 20 585

and 79), and 10 experiments for each configuration, we eventually run 120 years of cycling 586

data assimilation. To assess the performance of the filters, we compute the continuous 587

ranked probability score [CRPS 39,40] using the forecast and analysis ensembles at each 588

assimilation cycle. The CRPS measures the accuracy of the probabilistic estimate provided 589

by the ensemble; lower values are better. Specifically, the CRPS is the L2 norm of the 590

difference between the empirical cdf associated with the ensemble and a Heaviside step 591

function centered on the reference value. The best possible CRPS is therefore zero, which 592

can only be attained if all of the ensemble members are equal to the reference value. It 593

bears noting that the true Bayesian posterior would not have a CRPS of zero except in the 594

very rare situation where the true posterior is a Dirac delta centered on the reference value. 595

CRPS values have the same units as the quantity of interest, in this case SIC. Thus, a CRPS 596

of 0.001 corresponds to a 0.1% SIC error, which is relatively small. 597

For a single experimental configuration (filter, No, Ne) we compute 58 CRPS values 598

from August 1 through September 28. (Outside this window there is little difference in 599

performance between the filters.) These 58 values come from different experiments: One 600

experiment has assimilation cycles on August 1, August 11, etc., while another experiment 601

has assimilation cycles on August 2, August 12, etc. 602

Figure 8. Analysis CRPS performance profiles, as described in the text.

For each experimental configuration we effectively have assimilation cycles on 58 603

different days. On some days EAKF outperforms the other two filters, on other days 604

BNRHF outperforms the other two, etc. To meaningfully compare these filters we use a 605
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performance profile plot. Each panel of Figure 8 corresponds to a different combination of 606

ensemble size Ne and observation number No. The left edge of the panel shows, for each 607

filter, the fraction of the time that it achieved the best CRPS out of the three filters. For 608

example, in the upper left panel (Ne = 20, No = 10), the KQCEF produced the best analysis 609

CRPS about 40% of the time, while the EAKF and BNRHF each produced the best CRPS 610

about 30% of the time. Naturally it doesn’t mean much to be second-best (or third-best) if 611

the difference between the results is small. The performance plot takes this into account by 612

adding a tolerance. In the same panel (Ne = 20, No = 10), if we look at the value 0.01 on 613

the horizontal axis, we see that the analysis CRPS produced by the KQCEF was within 0.01 614

of the best result about 70% of the time, while the EAKF and BNRHF were both within 0.01 615

of the best CRPS about 50% of the time. The left side of each panel shows how often each 616

filter is close to the optimal filter. The right side of the panel shows how often each filter is 617

far from optimal. 618

4.3.1. Analysis 619

The results of Figure 8 can be summarized as follows. The upper left panel shows that 620

when the observation error variance is relatively large (No = 10) and the ensemble is small 621

(Ne = 20), the KQCEF analysis is usually close to optimal. EAKF is slightly more robust 622

in the sense that the analysis CRPS produced by EAKF is always within about 0.35 of the 623

best overall, whereas the analysis CRPS produced by KQCEF is sometimes farther from 624

optimal. In this panel BNRHF performs worst of the three filters. 625

The lower left panel shows that when the observation error variance is relatively large 626

(No = 10) and the ensemble is large (Ne = 79), the BNRHF and KQCEF are similar to each 627

other, and both better than EAKF. Both of the right panels show that when the observation 628

error variance is relatively small (No = 100), the EAKF is better than the KQCEF, which is 629

better than the BNRHF. In these right panels the overall CRPS values are small though, so 630

all three filters are performing well overall. 631

There is an apparent contradiction between the results shown here for small observa- 632

tion error variance and the results from section Section 3. Here the EAKF outperforms the 633

other filters when the observation error variance is small (large No) and the ensemble size is 634

large, whereas in Section 3.2 the ranking was KQCEF (best), EAKF, BNRHF (worst). These 635

results can be reconciled by noting the different way in which performance is measured in 636

these experiments. In Section 3.2 the null hypothesis might be rejected because the analysis 637

ensemble has the wrong shape despite being closely centered on the true value, whereas 638

in this section performance is measured using CRPS, which is small when the analysis 639

ensemble is tightly clustered about the true state. 640

4.3.2. Forecast 641

Figure 9 is the same as Figure 8 except that Figure 9 shows the CRPS for the ensemble 642

forecast on the 10th day, i.e. at the longest lead time, when the errors are largest. The 643

left panels of Figure 9 shows that when the observation error variance is relatively large 644

(No = 10), the BNRHF and KQCEF both perform similarly, and are both significantly 645

better than the EAKF. The right panels show that the KQCEF is the best filter for small 646

observation error variance (No = 100), though the difference compared to the other two 647

filters is reduced at larger ensemble sizes. 648

These results tell a slightly different story than the analysis CRPS results; in particular, 649

the EAKF is never the best filter overall when considering forecast CRPS. In particular, 650

although the EAKF produces the best analysis when the observation error variance is small, 651

the analysis ensemble error grows faster for the EAKF than for the other filters, so that 652

KQCEF produces a better forecast. 653

5. Discussion 654

We have introduced a new approach, based on kernel density estimation and quadra- 655

ture, to approximating the cdf and quantile function needed to implement a QCEF. Previous 656
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Figure 9. Forecast CRPS performance profiles, as described in the text.

QCEFs include the Rank Histogram Filter and Bounded Normal Rank Histogram Filter 657

[6–8] and the improved Rank Histogram Filter [iRHF 4]. The iRHF also used kernel density 658

estimation; the approach developed here improves on the iRHF by using a quadratic kernel 659

rather than a piecewise-constant kernel, by enabling treatment of bounded distributions, by 660

enabling treatment of mixed distributions with nonzero total probability on the boundaries, 661

and by using quadrature to approximate the cdfs (whereas the iRHF interpolated the 662

likelihood function and then integrated analytically). 663

The results of Section 3.1 show that non-parametric QCEFs like the BNRHF and 664

KQCEF do not improve on EnKFs when the underlying distributions are Gaussian. Not 665

only do they not improve, they can in fact perform worse than the EAKF: Both BNRHF 666

and KQCEF perform worse than EAKF when the observation is in the tail of the prior, 667

and BNRHF also performs worse than EAKF when the observation error variance is much 668

smaller than the prior variance. This is an example of a broader principle that filters based 669

on parametric distributions – e.g. ensemble Kalman filters and filters based on Gamma and 670

Inverse Gamma distributions [19] – should be expected to outperform their nonparametric 671

counterparts whenever the forecast and likelihood approximately match the assumptions 672

of the parametric filters. 673

On the other hand, the results of Sections 3.2 and 3.3 show that BNRHF and KCQEF 674

perform significantly better than EAKF in non-Gaussian problems, as expected. In these 675

problems the KQCEF performs significantly better than BNRHF, especially when the 676

observation error variance is small compared to the prior variance. The treatment of mixed 677

distributions by KQCEF was shown to be better than BNRHF in Section 3.3, but this could 678

be easily amended within the implementation of BNRHF. One potential advantage of 679

BNRHF over KQCEF that was not explored here is that KQCEF can only handle mixed 680

distributions with delta distributions on the boundaries, whereas BNRHF can accommodate 681

delta distributions anywhere within the distribution [8]. A significant caveat on the results 682

of Sections 3.1–3.3 is that the filter performance is quantified using the Kolmogorov-Smirnov 683

test with the null hypothesis that the analysis ensemble is drawn from the known true 684

posterior distribution. This is a stringent test; failing this test does not necessarily imply 685

that the root mean squared error would be high, for example. 686

We applied EAKF, BNRHF, and KQCEF in an idealized model for data assimilation of 687

satellite observations of sea ice concentration. Broadly summarizing the results: 688
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• Both QCEF methods (BNRHF and KQCEF) outperform EAKF when the problem is 689

non-Gaussian, 690

• KQCEF and BNRHF produce similar results when the ensemble size is high, but 691

KQCEF tends to produce better results than BNRHF when the ensemble size is small, 692

and 693

• The gap between KQCEF and BNRHF is largest when the ensemble size is small and 694

the observation error variance is also small compared to the prior variance. 695

5.1. Small ensembles and small observation errors 696

Figure 10. Forecast (blue) and analysis (yellow) pdfs of SIC for the BNRHF (left) and KQCEF (right)
filters. The 20 ensemble members in both plots are drawn from a BNRHF forecast for September
27, 2011; they are shown as black dots beneath the pdfs. The reference value used to generate the
observation is shown as a red dot beneath the pdfs. The true likelihood is shown in red in the
right panel; it corresponds to an observation with No = 100 and k = 30. The piecewise-linear
approximation to the likelihood used by the BNRHF is shown in red in the left panel.

The difference in accuracy between KQCEF and BNRHF when the observation error 697

variance is small compared to the prior variance can be seen in both the idealized tests of 698

Section 3 and Section 4. It can be traced back to the difference in how the likelihood function 699

is treated in the two filters. The BNRHF only evaluates the likelihood function at ensemble 700

members, so if the structure of the likelihood falls mainly between ensemble members then 701

the BNRHF will not resolve it. In contrast the KQCEF evaluates the likelihood with infinite 702

resolution, i.e. during the root finding phase of the algorithm it evaluates the likelihood 703

wherever needed to obtain an accurate result. 704

Figure 10 illustrates this using a 20-member ensemble forecast of SIC from the BNRHF 705

filter on September 27, 2011. The BNRHF prior pdf for this ensemble is shown in blue 706

in the left panel, while the KQCEF prior pdf for this same ensemble is shown in blue in 707

the right panel. In both panels the 20 ensemble members are shown as black dots below 708

the pdfs, and the reference value of SIC is shown as a red dot. The forecast distribution is 709

bimodal and the reference value lies between the two modes, where there are few ensemble 710

members. The red line in the right panel corresponds to the likelihood for No = 100 and 711

k = 30. The KQCEF obtains its posterior pdf by multiplying its prior pdf by the likelihood 712

function (yellow line, right panel). The red line in the left panel evaluates the likelihood at 713

the ensemble members and linearly interpolates between these values. The BNRHF obtains 714

its posterior pdf by multiplying its prior pdf by this linearly-interpolated approximation 715

of the likelihood (yellow line, left panel). In this example the reference value (and the 716
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peak of the likelihood) is in a trough between two modes of the prior, where there are few 717

ensemble members. Because the BNRHF only evaluates the likelihood at the ensemble 718

members the peak of the likelihood is not correctly represented, and the BNRHF posterior 719

is incorrect: in this example the BNRHF posterior pdf is bimodal, with peaks on either 720

side of the reference value. With a larger ensemble there are fewer gaps, the BNRHF’s 721

piecewise-linear approximation of the likelihood is more accurate, and the result is more 722

accurate. 723

5.2. Forecast vs Analysis performance with Icepack 724

Figure 11. Top row: Ensemble members (black dots) for the analysis produced by the EAKF (left)
and BNRHF (right) on August 5, 2011. Bottom row: Ensemble members (black dots) for the forecast
produced by the EAKF (left) and BNRHF (right) on August 15, 2011, initialized from the analysis
ensembles shown in the top row. In all panels the red dot indicates the reference value. The black
dotted line in the lower-right panel is the same as the blue line in the lower left panel, reproduced for
ease of comparison.

Figure 8 demonstrates that the EAKF outperforms the non-parametric methods when 725

the observation error is small (No = 100), yet Figure 9 shows that KQCEF (and sometimes 726

BNRHF) yield better forecasts in these cases. We attempt to explain this mismatch by 727

examining a single analysis/forecast pair. 728

The top row of Figure 11 shows the analysis ensemble (black dots) produced by EAKF 729

(left) and by BNRHF (right) on August 5, 2011; the blue line in each panel is a kernel- 730

density estimate of the analysis pdf, and the red dot shows the reference SIC value. The 731

BNRHF distribution is more tightly centered than the EAKF distribution, and is biased 732

high compared to the true SIC value; as a result the CRPS associated with the EAKF is 733

better (0.0058) than the CRPS associated with the BNRHF (0.0099). Notice that the EAKF 734

produces an analysis ensemble with a longer tail towards low SIC values than the BNRHF. 735

In particular, the smallest ensemble member in the EAKF analysis is noticeably smaller 736

than the smallest ensemble member in the BNRHF analysis. 737

The bottom row of Figure 11 shows the ensembles (black dots) that result from fore- 738

casting the analysis ensembles in the top row 10 days forwards to August 15, 2011; the blue 739

line in each panel is a kernel-density estimate of the forecast pdf, and the red dot shows the 740

reference SIC value. The black dotted line in the lower right panel shows the forecast pdf 741

associated with the EAKF, for easier comparison with the forecast pdf associated with the 742

BNRHF (blue). The atmospheric forcing and perturbed parameters of the reference case 743

conspire to keep its SIC value high throughout the 10-day forecast, but the atmospheric 744
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forcing and perturbed parameters of the ensemble cause many of the ensemble members to 745

melt out to values of SIC much lower than the reference case. The main difference between 746

the EAKF and BNRHF forecasts is that the EAKF forecast has a longer tail towards low SIC 747

values and has fewer ensemble members close to the large reference SIC value. This results 748

in a larger CRPS for the EAKF forecast (0.0443) compared to the BNRHF forecast (0.0391). 749

This behavior is common across the time window of interest. The smallest analysis 750

ensemble member produced by the EAKF is almost always significantly smaller than the 751

smallest analysis ensemble members produced by BNRHF and KQCEF across the time 752

window of interest, which is indicative of a longer tail towards low SIC values in the EAKF 753

analysis. This can be traced back to the way in which the filters update the ensemble. The 754

EAKF shifts and scales the ensemble, but does not otherwise change its shape. Thus, if the 755

atmospheric forcing and perturbed parameters conspire to create a forecast with a long 756

tail towards small SIC values, the EAKF analysis will also have a tail towards small SIC 757

values. In contrast both BNRHF and KQCEF change the shape of the ensemble, e.g. moving 758

from a bimodal forecast to a unimodal analysis as shown in the right panel of Figure 10. In 759

this specific context of the Icepack model with perturbed parameters, the result is poorer 760

performance of EAKF. 761

5.3. Computational Cost 762

The computational cost of these filters is negligible compared to the forecast step, 763

even when the forecast is an extremely low-cost single-column ice model. On a simple 764

workstation the forecast step with 79 ensemble members took approximately 8 seconds. 765

The typical time required to run a single assimilation cycle was computed by using the 766

free-running forecast from Figure 7 on September 27, 2011 as the forecast ensemble. The 767

ensemble size was varied from 10 to 79 by selecting the first Ne members of the free-running 768

ensemble. The likelihood used No = 100 and varied k from 20 through 80. The median 769

time to perform the assimilation was computed across these values of k, and the results are 770

shown as a function of ensemble size in Figure 12. Both EAKF and BNRHF have total cost 771

approximately independent of ensemble size at a value near 0.007 seconds per assimilation 772

cycle. The code is not parallelized, so the independence with respect to ensemble size 773

means that the total cost is dominated by overhead costs. KQCEF has total cost that scales 774

approximately linearly with Ne from being comparable to the cost of EAKF and BNRHF at 775

Ne = 10 to being a little more than three times more expensive at Ne = 79. Even at Ne = 79 776

though, the total cost of the filter is negligible compared to the cost of the ensemble forecast. 777

Figure 12. Median time for a single assimilation cycle for each filter as a function of ensemble size.

The focus here has been on the first step of the two-step framework, i.e. the analysis 778

in observation space. Anderson [7] recently advocated using the bounded normal rank 779

histogram approximation to the prior cdf as part of a generalized linear regression approach 780
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to the second step (regression from observation space back to state variables). The KQCEF 781

approximation of the prior cdf could similarly be used in such a context. 782

The KQCEF has been implemented in DART [41,42] so that it can be available to the 783

data assimilation research community. 784
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Appendix A 799

Suppose that 800

FX(x) = P[X < x] =
∫ x

−∞
pX(s)ds (A1)

is the cdf of a scalar random variable X. Then U = FX(X) is a random variable with 801

uniform pdf on [0, 1]: 802

P[U = FX(X) < u] = P[X < F−1
X (u)] = FX(F−1

X (u)) = u (A2)

for 0 ≤ u ≤ 1. Since the cdf is linear on [0, 1], the pdf is constant on [0, 1], which shows that 803

U has a uniform distribution. The derivation above assumes that FX is invertible in the 804

sense that F−1
X (FX(x)) = x for every x in the range of X (the first equality), and also that 805

FX

(

F−1
X (u)

)

= u for every u ∈ [0, 1] (the last equality). 806

Suppose that U is uniform on [0, 1] and FX is the cdf of a random variable X. Then the 807

distribution of X̂ = F−1
X (U) is the same as the distribution of X: 808

P
[

X̂ = F−1
X (U) < x

]

= P
[

FX

(

F−1
X (U)

)

= Ũ < FX(x)
]

= FX(x). (A3)

The last step in this derivation assumes that FX(F−1
X (U)) = Ũ is a uniformly-distributed 809

random variable on [0, 1]. Note that it does not require FX

(

F−1
X (u)

)

= u for every u ∈ [0, 1]. 810

811

The probability integral transform Equation (1) acts in two steps: First transform from 812

the prior distribution to a uniform distribution using the prior cdf, then transform to the 813



Version June 12, 2024 submitted to Remote Sens. 25 of 27

posterior distrbution using the posterior quantile function. What happens when the prior 814

cdf has a jump discontinuity at x∗? Let the limit from below be 815

lim
x→x−∗

FX(x) = u− (A4)

and from above be 816

lim
x→x+∗

FX(x) = u+. (A5)

If we define F−1
X (u) = x∗ for every u ∈ [u−, u+], then we will be able to satisfy F−1

X (FX(x)) = 817

x for every x, as long as FX(x∗) ∈ [u−, u+]. But if we define FX(x∗) to be any single value in 818

[u−, u+], then we will not be able to satisfy FX(F−1
X (u)) = u for every u ∈ [0, 1]. In this case 819

we cannot directly use Equation (1) to transform from the prior to a uniform distribution. 820

But in order to sample from the posterior distribution, we only need to sample from 821

a uniform distribution and then apply the posterior quantile function. In fact, we could 822

completely skip the first step (transforming from the prior to a uniform) and instead just 823

sample from the posterior directly using the posterior quantile function. The problem with 824

such an approach only appears in the second step of two-step ensemble filters, i.e. the step 825

where observation space increments are regressed back to state variables. A completely 826

random sampling in observation space scrambles the ensemble increments of the state 827

variables, which can lead to dynamical imbalances. 828

To avoid this while still making use of the probability integral transform, we need 829

to define a map from the prior (in observation space) to a uniformly-distributed random 830

variable. We can achieve this by defining FX so that FX(x∗) is a random variable uniformly 831

distributed on [u−, u+]. With this definition FX is no longer a deterministic function, but 832

FX(X) is uniformly distributed on [0, 1]. 833

834

The foregoing analysis was focused on mapping from the prior to a uniform distri- 835

bution when the prior cdf has a jump. What if the posterior cdf has a jump discontinuity 836

at x = x∗? The second step in the transform, from uniform to posterior, does not re- 837

quire FX

(

F−1
X (u)

)

= u for every u ∈ [0, 1]. It simply requires that FX(F−1
X (U)) = Ũ is a 838

uniformly-distributed random variable on [0, 1]. We can define the cdf FX to be a random 839

map, as above, which satisfies this requirement. From a practical standpoint this is not nec- 840

essary, since the second step does not actually use the cdf FX ; it uses the quantile function 841

F−1
X . It suffices to define F−1

X (u) = x∗ for every u ∈ [u−, u+]. 842
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