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Abstract—We provide a detailed analysis of results from
a large-scale computational exploration of real and complex
(weighted) point configurations that minimize p-frame energies,
uncovering phase transition behavior exhibited by the minimiz-
ers. We utilize numerical linear programming methodologies to
offer complementary lower bounds that support our experimen-
tally obtained upper bounds on minimal energy values. Further-
more, we present the development of an exceptionally symmetric
weighted design consisting of 85 points, which outperforms the
current best known lower bounds for a minimal-sized weighted
design in the realm of five-dimensional complex projective space.
In conclusion, based on our thorough observations and in-depth
analysis, we conjecture that the support of this novel weighted
design is universally optimal.

Index Terms—Equiangular tight frames, line packings, com-
plex projective codes, discrete geometry, manifold optimization,
MIMO.

I. INTRODUCTION

Point configurations that maximize the pairwise spherical
distances over all point sets of fixed size are called optimal
codes, reflecting their role in coding theory. Exact solutions
to the optimal packing problem are generally known only
for small numbers of points and in low dimensions, with the
exception of some highly symmetric point sets.

Examples of such highly symmetric spherical sets are the
vertices of the icosahedron on S? or the minimal vectors of the
Leech lattice Ao on S?3. These configurations appear not only
as optimizers of the harmonic energy, or maximizing pairwise
distances, but also for other energies, such as p-frame energies
[A], [BGMPV], [KY2], [KY1], [PSZ], [Y1], [Y2].

For a finite configuration of points on the sphere C C S?~!
(also known as a code) the discrete f-potential energies are
given by )

Ef(C) = e

S F(la,y)).
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(1L.1)

Universally optimal point configurations are collections of
points C minimizing the discrete energies £y among all point
sets of fixed cardinality |C|, for all absolutely monotonic
functions f on [—1,1) [CK].

In this paper we detail the results of a numerical study
of p-frame energies. These energies are an example of a
continuous analog of the discrete energy where instead of

point configurations we optimize over measures. Given a
kernel function f € C[—1,1] and a Borel probability measure
p € P(S?1), our energy then takes the form

ff(u)=/ /f((x,y>)du(w)du(y)~

gd—1gd—1
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So when we say that a configuration C minimizes the energy
I;(u) we mean a probability measure supported on the con-
figuration minimizes the energy. Taking f(¢) = [¢|P, p > 0, in
this equation yields the p-frame energies:

L) = / / |, ) Pdpu()dia(y),

d—1 gd—1
sd-tsd

where S&! = {z € F?: ||z = 1} and F =R or C.

The discrete version of this energy for p = 2, known simply
as the frame energy or frame potential, was introduced by
Benedetto and Fickus [BeF] and has as minimizers precisely
unit norm tight frames. These configurations play an impor-
tant role in signal processing and other branches of applied
mathematics.

A finite collection of vectors C C F? is a tight frame, if for
any = € F<¢, and some constant A > 0, one has an analog of
Parseval’s identity holding for C,

Y Nyl = Allz)®.
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1.3)
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A phenomenon that is the central focus of this paper
is that discrete symmetric objects occur as minimizers of
the continuous energy (I.3) over measures. This incidentally
results in allowing us to make new conclusions about the
minimizing configurations of the discrete energies (I.1) for
certain values of the cardinality V.

Extensive numerical experiments were conducted in the
course of our investigations. The results of these experiments
are collected in Tables III and V for the real case and
Tables IV and VI for the complex case. Unlike the case
of tight designs (treated in [BGMPV]), optimal weights for
these configurations are generally not equal and thus must
be computed for each relevant value of p. Each table gives
the minimal support size of a conjectured or known optimal
point set: when a configuration on the sphere is origin-
symmetric, this minimal support size equals half of the size
of the named configuration. For example, the icosahedron has



twelve vertices, however 6 vertices on one hemisphere suffice
to give a minimizer of the 3-frame energy on S?. We give
additional details for these conjectured minimizers of the p-
frame energies. Notably several of these configurations are not
universally optimal, and further, several universally optimal
configurations are nowhere to be found in this table. We
discuss common features of minimizers in Section VI.

Our experimental results support the hypothesis that dis-
creteness of minimizers is a general phenomenon when p is
not an even integer.

Conjecture 1.1. In all dimensions d > 2 and for all p > 0
such that p ¢ 2N, the minimizing measures of the p-frame
energy (1.3) are discrete.

This conjecture is supported by the fact that discreteness of
minimizers is known for certain attractive-repulsive potentials
on R? and Riemannian manifolds [CFEP], [V1].

It is worth noting that the classical paper [Bj] shows that
for F(z,y) = —|lz — y||* with @ > 2 and any compact
domain 2 C R, the energy minimizers are discrete and their
support consists of at most d 4+ 1 points (just two antipodal
points if 2 = S?-1). Moreover, in [CFP] discreteness has
been established for mildly repulsive potentials, i.e. those
that behave as —[lz — y[|* with o > 2 when [z — y|
is small. Observe that for the p-frame potential, we have
[z, y)[P ~ 1— 5|z —y||* when z, y € S*! are close, hence
the p-frame energy falls into the endpoint case o = 2, and,
according to the discussion above, this case is more subtle.

While we have yet to establish Conjecture 1.1 and prove
discreteness, in our companion paper [BGM+] we show that
on S% 1 whenever p is not even, the support of the mea-
sure minimizing the p-frame potential necessarily has empty
interior.

In addition to the conjectured discreteness of minimizers our
initial study gave rise to surprisingly symmetric minimizers for
p-frame energies, suggesting that further investigation might
give new interesting spherical codes. While nearly all of the
minimizing configurations arising from our numerical exper-
iments have appeared before in the coding theory literature,
we did however discover a new code in C® of 85 vectors
which in turn gives a new bound for a minimal sized weighted
projective 3-design. We detail a construction of this code and
its properties in Section V-A.

We would like to point out that in many papers, the term p-
frame potential is usually used to denote the p-frame energy
(1.3) or its discrete counterpart. We find the term “energy”
to be more appropriate in this context and reserve the term
“potential” for the kernel f(t) of the energy I;.

II. BACKGROUND
A. Projective Spaces and Jacobi Polynomials
The projective spaces FP?~1, F = R,C,H, are the spaces
of lines passing through the origin in F¢,

oF = {z\ | A€ F\ {0}}. (IL1)

Using this identification, one can associate each element of
Fp—! (F = R,C) with a unit vector z € F¢, and we shall

often abuse notation by doing so. Each of these spaces can
be equipped with a geodesic metric ¢}, which takes values in
[0, 7], and a chordal metric, p.

Additionally, each of the spaces (FP*~! 4) is two-point
homogeneous, meaning that for any x1,22,y1,y2 € FP?-1
such that ¥(z1,22) = 9(y1,y2) there exists an isometry of
FPi—1, mapping x; to y;, ¢ = 1, 2.

The Jacobi polynomials C2#, normalized so that
C2B(1) = 1, are orthogonal polynomials.

B. Designs

We now discuss some basics of designs on our projective
spaces FP?~!. A finite, nonempty set (code) C C FP?~! with
a set of weights we = {w, : © € C} C [0,1], satisfying
> wec Wz = 1, is called a weighted M-design if

> weC(eos(d(a,y))) = /CS’B(COS(ﬁ(x,y)))dU(x) =0

zeC Q

(IL.2)
for all n € {1,..., M}. When the weights are all the same,
Wy = ﬁ, then these are simply referred to as M -designs.

The strength of a (weighted) design is the maximum value of
M for which identity (II.2) holds.

Any k design C corresponds to a minimizer of the 2k-frame
energy fic,we = Y ,cc Wa0z, though these are not the only
discrete minimizers.

A weighted M-design is called tight if its cardinality meets
an absolute lower bound, and in such cases, the weights must
all be equal (i.e. weighted tight designs are simply designs)
[T], [Le2].

For all the projective spaces, the vertices of a cross-polytope
always provide a tight 1-design. Tight M -designs on real
projective spaces correspond to (symmetric) tight (2M + 1)-
designs on the real unit spheres. In the complex setting, tight
2-designs, also known as symmetric, informationally complete,
positive operator-valued measures (SIC-POVMs), are known
to exist at least for d < 16, d = 19, 24, 28, 35, 48, and numeri-
cal experiments suggest that they may exist in every dimension
[ABBEGL], [RBSC], [SG], [Z]. Explicit constructions of the
remaining designs in Table VII are given in [H1], [CKM]. In
all three settings, it is known that no tight M-designs exist
whenever M > 4 and d > 3, except for the Leech Lattice on
RP?® [BD1], [BD2], [BH], [H2], [L].

C. Linear Programming

Both our numerical methods here as well as the theoretical
methods in [BGMPV] to determine optima of the p-frame
energies make use of linear programming. Our application of
the method can be summed up in the following lemma, which
is a measure-theoretic counterpart of the linear programming
bound of Delsarte and Yudin [De], [Y1].

Lemma 2.1. Let h € C[—1,1] be a positive definite function,
ie. h(t) = 3. hnCB(t) and hy > 0 for all n > 0. (i)
0

W If h(tn)zg (t) for all t € [—1,1], then for any pu €
P(FP* 1),

Ir(p) = In(p) = In(o) = ho.



(i) Assume further that h is a polynomial of degree k
and that there exists a weighted k-design C C FPY™ 1,
with weights w,, such that h(t) = f(t) for each t €
{cos(V(x,y)) : xz,y € C}. Then for any p € P(FP*™1),

If(u) > Iy (wa(sm) .

zeC

In [BGMPV], we constructed positive definite polynomials
as Hermite interpolants of the p-frame potentials at the points
of {cos(¥(z,y)) : z,y € C} for tight designs C, and used
them as our h in 2 in order to show optimality of such
configurations. The requirements of equality of f and h on
{cos(¥(z,y)) : =,y € C}, the positive definiteness of h, and
the constraint on the degree of h limits how much a method
could be used outside of tight designs. However, with 1, we
can determine bounds on the p-frame energy by bounding
from below by continuous positive definite functions, generally
using positive definite polynomials of bounded degree, and
optimizing over hg, as we will discuss below.

IIT. NUMERICAL LP BOUNDS

If a suitable candidate is not available, one can still rely on
part (1) of Lemma 2.1 and attempt to optimize the value of
the energy I, (o) over auxiliary positive definite polynomials
h, obtaining a lower bound for the energy over all probability
measures. If the degree of an auxiliary function h is bounded
by D, we have D + 1 non-negative variables h;, 0 < i < D,
and infinitely many linear constraints h(t) < f(¢) for all ¢t €
[-1,1]. In order to get the best possible lower bound, we need
to maximize ho given these linear conditions.

This problem is, generally, intractable as a linear optimiza-
tion problem. However, when f is a polynomial, the condition
f(t) —h(t) > 0 for all t € [—1,1] may be represented as a
finite-size positive semi-definite constraint on the coefficients
h;. In particular, the polynomial inequality may be rewritten
as a sum-of-squares optimization problem (see, for instance,
[N]) and thus solved as a semi-definite program.

By using sum-of-squares optimization described above, we
obtain lower bounds on the p-frame energies over measures
on projective spaces when p is an odd integer. A table of such
bounds for real projective spaces ]R]P’d_l, 3<d< 24, and
p = 3,5,7, is shown in Table VIII. The concrete bounds are
computed by a series of steps. For the first step, we fix the
degree D of the auxiliary polynomial and solve the sum-of-
squares problem. The numerical solver outputs a polynomial
which is feasible up to a small tolerance. By rounding coeffi-
cients, it is then possible to obtain polynomials which are less
than f and positive definite.

Since the choice of the maximal degree D is arbitrary, not
much is lost by rounding, and our bounds are thus rounded
down to four significant figures. The last condition f —h > 0
can be checked using interval arithmetic, or by hand.

It is interesting to compare the values of conjectured energy
minimizers with the lower bounds obtained using the approach
above. We make comparison of these bounds in Table I below
for all conjectured optimizers from Tables III, IV, V, and VI:
observe that the values are indeed close, which motivates our

conjectures about the minimizers. Tight designs are excluded
from this table since for them the lower and the upper bounds
coincide.

TABLE I: Comparison of p-frame energies for conjectured
optimal configurations on RPY~! and CP*~! with LP lower
bounds. Energies are evaluated at the odd integer midpoint of
the conjectured optimality interval.

d F Energy  LP bound p Name

3 R 0.1249 0.1248 7 icosahedron and dodecahedron
4 R 0.09628 0.09607 5 Dy root vectors

5 R 0.1183 0.1170 3 hemicube

5 R 0.06184 0.06169 5 Stroud design

6 R 0.09056 0.08970 3 cross-polytope and hemicube
6 R 0.04249 0.04240 5 Eg and Eg roots

7 R 0.03065 0.03060 5 E7 and EJ roots

8 R 0.05910 0.05852 3 mid-edges of regular simplex
3 C 0.01261 0.01258 5 union equiangular lines

5 C  0.04200 0.04184 5 O10 and W(K35) minimal vectors

A. Other weighted designs

1) 11 points in R3: It seems that as p goes to 6 from
below, the limiting minimizing configuration on the sphere
S? is of the following form. Concisely, the system consists of
all combinations of signs of the 6 vectors below,

0
1 0
1
0

s}
w

1

0

0

2

Vi

2 \/i
V7 7
\/I 3 3

7

7 7

with the weights,
2 1 1 49 49 49

on each line. The off-diagonal inner products are then
1/7,=1/7,5/7,=5/7,/3/7,—/3/7,0,\/1/7, —+/1/7,
4/7, =47,/ 47, —\/4]7

appearing in number, (10, 18,10, 10,14, 10, 14,6, 2,4, 4,6, 2)
respectively. From these facts, one may check that the 11
lines defined by these vectors forms a projective 3-design.
Notably, this is the same extremal code, which forms a
minimal cubature formula and is found also in [Rez, page
135].

2) 16 points in R3: Lines through antipodal points in the
union of a regular icosahedron with its dual dodecahedron.
The frequencies of absolute values of inner products are

N(/E(5—2v5)) = 60, N(YT5H0Y5) _ 60, N(1) = 60,

15

N(L) = 30, N(\/g) — 30, and N(1) = 60. The weights

making this configuration a projective 4-design are w; = 5/84




TABLE II: The Gram matrix of the weighted projective 2-
design in RPP? which appears as a minimizer as p — 4~ along
with ordered weights, with each weight corresponding to the
vector with inner products given in the adjacent row. In the

matrix, a and b are @ and £1/(6 — 2v/5), respectively.

2 V6 |3

1 -3 a a a b b b b % |10
f% 1 -6 b b -b —a —a —-a -—a % 4%
a —b 1 1 1 1 _v2 _v2 V2 V2 V6|3
3 3 3 3 3 3 3 6 |32

a —b 1 1 -1 1 V2 V2 V2 V2 V6|3
3 3 3 3 3 3 3 6 |32

e —b L _1 1 1 _¥2 V2 _¥2 ¥2 V6|3
3 3 3 3 3 3 3 6 |32

e —b —L 1L 1 4 ¥2 V2 _v2 _ V2 V6|3
3 3 3 3 3 3 3 6 |32

b —q M2 ¥2 _¥2 ¥v2 1 1 1 _1 _s6|3
3 3 3 3 3 3 3 6 |32

b —q M2 _v2 ¥v2 v2 1 1 _1 1 _y6|3
3 3 3 3 3 3 3 6 |32

b —q ¥2 2 _¥2 _¥2 L _1 1 1 _y6|3
3 3 3 73 3 3 3 6 |32

b o—aq M2 _V2 v2 _v2 1 1 1 1 _v6|3
3 3 3 3 3 3 3 6 |32

V6 V6 V6 N6 M6 V6 _v6 _ V6 _ V6 _¥6 g | L
- 6 6 6 6 6 6 6 6 6 6 10 -
and wp = 9/140 for the icosahedron and dodecahedron

vertices respectively.

3) 11 points in R*: See Table II for what appears to be the
limiting minimizing configuration as p goes to 6 from below
when minimizing over S3.

4) 24 points in R*: The regular 24 cell, or alternatively
the D, root system. The frequencies of absolute values of
inner products are N(0) = 216, N(%) = 144, N(3) =
192, and N(1) = 24. The configuration is unweighted as a
projective 3-design.

5) 16 points in R®: Lines through antipodal points
in the following construction. Take all permutations of
iﬁ(—5,1,1,17171,1) and %(1,1,17—17—17—1) and
consider these as vectors in the copy of S* in S° on the
plane perpendicular to (1,1,1,1,1,1). The frequencies of
absolute values of inner products are N(3) = 90, N(3) =
30, N(%) = 120, and N(1) = 16. The weights making
this a projective 2-design are w; =
above parts respectively.

6) 41 points in R®: An example of a design construc-
tion appearing in [Str]. The configuration comprises of lines
through antipodal points in the following construction. Let A
be the set of vectors which are permutations of (+1, 0,0, 0,0),

5 - 9
a4 and we = 7 0 for the

B permutations of (+4/3,+4/%,0,0,0), and C permutations

of (£ %,:ﬁ: %,j: %,:I: %,:l:\/%). The frequencies of
absolute values of inner products are N(0) = 600, N (i) =

160, N(2) =80, N(/1, N(1/2) =320, and N(1) = 41.
The weights making this a projective 3-design are w; =
wa = 35, and w3 = 222, on A, B, and C respectively.

7) 22 points in R°: Lines through antipodal points in a
hemicube/cross polytope compound, where the hemicube is
within the cube dual to the cross polytope. The frequencies of
absolute values of inner products are N(0) = 30, N (%) =
192, N(3) = 240, and N(1) = 22. The weights making
this a projective 2-design are w; = 3/64 on the hemicube and
wo = 1/24 on the cross-polytope.

2
105°

8) 63 points in RS: Lines through antipodal points in the
union of minimal vectors of Eg and its dual lattice, Ef.
The frequencies of absolute values of inner products are
N(0) = 1620, N(}) = 432, N(}) = 990, N(}/%) =
864, and N(1) = 63. The weights making this a projective
3-design are w; = 1/60 and we = 2/135 on the minimal
vectors of Ejg and its dual, respectively.

9) 91 points in R7: The configuration is projectively
composed of the union of the minimal vectors of E; and
its dual lattice, 5. The frequencies of absolute values of
inner products are N(0) = 3906, N(3-) = 756, N(3) =
2016, N(?) = 1512, and N(1) = 91. The weights making
this a projective 3-design are w; = 8/693 and ws = 3/308 on
the E; part and its dual, respectively. The cubature formula
appears also in [NoS].

10) 36 points in R8: The edge midpoints of a regular
simplex. The frequencies of absolute values of inner products
are N(2) =756, N()=>504, and N(1) = 36. This code
is a projective 1-design with equal weights.

11) 21 points in C3: A structured union of a maximal
(tight) simplex (equiangular tight frame, or ETF) of 9 vectors
and 4 mutually unbiased bases (a 4-MUB) of 12 vectors. The
frequencies of absolute values of inner products are N(0) =
96, N(3) =172, N(%) = 108, N(%) =144, N(1) = 21.
The weights making this a projective 3-design are w; = 4/90
on the 9-ETF and w; = 55 on the 4-MUB.

IV. PROPOSED METHOD

We give additional details on how we made the conjec-
tures found in Tables III, IV, V, and VI. The numerical
method employed to find conjectured minimizers involved
two steps. Initially we used conjugate gradient method to
minimize energies. Afterwards we implemented an arbitrary
precision library with a second order method, Limited Memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [LN]
to check our conjectures and test endpoint behavior. L-BFGS
stores a modified version of the Hessian to avoid prohibitive
memory storage costs.

Algorithm 1 L-BFGS [NW][Alg. 7.5]

Choose starting point x, integer m > 0;
k<« 0;
repeat
choose H,g )
compute py < —HpV fi (1)
(using two-loop recursion, alg. 7.4 in [NW])
compute Tpy1 < Tk + QP
(where «y, is chosen to satisfy the Wolfe conditions)
if £ > m then
Discard the vector pair {Sx—m, Yx—m} from storage;
Compute and save si < Ti+1—Tks Y = V fetr1—V [
end if
until convergence.
): HY = VeI, v = sf_lyk_l/y,{_lyk_l scaling factor
(T1): Hy inverse hessian approximation




We note that the Wolfe conditions in L-BFGS are given
below

f(@p + arpr) < k) + craxV il pr,

Vf(k + arpe)” = 2V i,

with 0 < ¢; < c2 < 1. The first condition gives that ay
gives sufficient decrease in the objective function while the
second is a curvature condition.

V. EXPERIMENTAL DATA AND RESULTS

TABLE III: Dimension and support size for optimal and
conjectured optimal configurations for p-frame energies on
RP?1. The energies are evaluated at odd integers.

d N Energy p

2 N (%) 2N -3
d d 1/d 1
3 6 0.241202265916660 3
3 11 0.142857142857143 6—
3 16 0.124867143799450 7
4 11 0.125000000000000 4—
4 24 0.096277507157493 5
4 60 0.047015486159502 9
5 16 0.118257675970387 3
5 41 0.061838820473855 5
6 22 0.090559619406078 3
6 63 0.042488105634495 5
7 28 0.071428571428571 3
7 91 0.030645893660944 5
8 36 0.059098639455782 3
8 120 0.022916666666667 5
23 276 0.011594202898551 3
23 2300  0.002028985507246 5
24 98280 0.000103419439357 9

TABLE 1IV: Dimension and support size for optimal and
conjectured optimal configurations for p-frame energies on
CP?"!. The energies are evaluated at odd integers.

d N

Energy p
d d 1/d 1
3 9 0.222222222222223 3
3 21 0.012610934678518 5
4 16 0.146352549156242 3
4 40 0.068301270189222 5
5 25 0.105319726474218 3
5 85 0.041997097378053 5
6 36 0.080272843473504 3
6 126 0.0277777TT7777778 5
d a2 1+<d2—1>(;2/<d+1))3/2 3

Table VIII collects linear programming lower bounds corre-
sponding to small values of d and odd values p for the p-frame
energy on S¢1,

TABLE V: Optimal and conjectured optimal configurations
for p-frame energies on RPY~!. Energies are evaluated in
most cases at the odd integer which is the midpoint of the
interval given. The range g— configurations are obtained as
limiting configurations as p tends to g from below. For these
configurations, the energy is evaluated for the even limit value.
Among the configurations which are not tight, the 600-cell is
the only configuration which is proved to be optimal in the
table. The corresponding dimension and support size of the
optimizers appear in Table III.

Range of p Tight Name
2N —4,2N — 2] t regular 2N-gon
[0,2] orthonormal basis
(2,4] t icosahedron
6— Reznick design
6, 8] icosahedron and dodecahedron
4— small weighted design
4, 6] Dy root vectors
(8, 10] 600-cell
2,4 hemicube
4,6 Stroud design
2,4 cross-polytope and hemicube
4,6 Eg and E¢ roots
2,4 t kissing E'g
4,6 E7 and EZ roots
3 mid-edges of regular simplex
4,6 t FE roots
2,4 t equiangular lines
4,6 t kissing Leech lattice
(8, 10] t Leech lattice minimal vectors

TABLE VI: Optimal and conjectured optimal configurations
for p-frame energies on CP~!. Similar to the real table the
corresponding dimension and support size of the optimizers
appear in Table IV.

Range of p  Tight Name
0,2 t orthonormal basis
2,4 t SIC-POVM
4,6 union equiangular lines
2,4 t SIC-POVM
4,6 t Eisenstein structure on Eg
2,4 t SIC-POVM
4,6 O10 and W(K5) minimal vectors
2,4 t SIC-POVM
4,6 t Eisenstein structure on Kio
2,4 t SIC-POVM (conjectured)

A. New small weighted projective design

We now collect facts on the 85 vector system which
was found while numerically minimizing the p = 5 frame
potential in C°. This system of vectors forms a weighted
design of strength 3, or equivalently, for the functional
> |(vi,v;)|®w;w;, the weighted system takes the value
1/35, thus minimizing this quantity over all probability mea-
sures (4 = » . 0y,wi, » . w; = 1 supported on unit vectors
|lvi]l = 1 in C® [We]. The above construction appears to be
new especially when comparing its size to previously obtained
bounds from [LS] for smallest known 3 weighted designs in
C°.

One part of the system is well studied, given by the root



TABLE VII: A list of parameters for which projective tight
designs are known to exist (besides designs in FP! for F # R).
Here M denotes the strength of the design, d the dimension
of the ambient space F¢, and N is the size of the design. For
SIC-POVMs, these configurations exist for certain values of
d, and may or may not exist for all values.

d N M F Name

d d+1 1 R cross-polytope/ONB

2 N N-1 R regular 2N-gon

3 6 2 R icosahedron

7 28 2 R kissing configuration for Eg
8 120 3 R roots of Fg lattice

23 276 2 R equiangular lines

23 2300 3 R kissing configuration for Aoy
24 98280 5 R minimal vectors of Aoy

d d+1 1 C cross-polytope/ONB

d d? 2 C SIC-POVM

4 40 3 C Eisenstein structure on F'g
6 126 3 C  Eisenstein structure on Ki9

TABLE VIII: Numeric linear programming lower bounds for
odd-valued p-frame energies.

d p=3 p=>5 p=7

3 0.2412 0.1655 0.1248
4 0.1612 0.09607 0.06454
5 0.1170 0.06169 0.03740
6 0.08970 0.04240 0.02344
7 0.07142 0.03060 0.01556
8 0.05852 0.02291 0.01080
9 0.04902 0.01770 0.007768
10  0.04180 0.01401 0.005750
11 0.03616 0.01131 0.004360
12 0.03166  0.009290 0.003375
13 0.02801 0.007737 0.002658
14 0.02499 0.006524 0.002125
15 0.02248 0.005561 0.001721
16  0.02035 0.004785 0.001413
17 0.01853 0.004152 0.001171
18 0.01696 0.003630 0.0009813
19 0.01559 0.003195 0.0008280
20 0.01440 0.002830 0.0007054
21 0.01335 0.002520 0.0006047
22 0.01242 0.002256 0.0005217
23 0.01159 0.002028 0.0004529
24 0.01085 0.001832  0.0003952

vectors corresponding to the 45 2-reflections which generate
the unitary reflection group W (K5) of 51840 elements [LT].
This group is alternatively described as the group G5(10) ~
(Cs x SU4(2)) : Co, one of the maximal finite irreducible
subgroups of GL1o(Z) [So]. SU4(2) here is just the special
linear group of 4 x 4 matrices, unitary matrices over Fo2, with
determinant one.

Choosing the representation of the root vectors in W (K5)
as X1 = {0((1,0,0,0,0))} U {o(3(0,1, +w, tw, £1))} un-
der cyclic coordinate permutations, o, the new weighted
design arises when this system is joined with some other
40 vectors. The second system may be described as ¥ =
{U(%(l,o,iw,iw,o))} U {a(%(l,iw,il,o,o))} also
generated under cyclic coordinate permutations. The projective
design is finally given by assigning weights to the W (Kj5)
system joined with the 40 vector system after giving U the

TABLE IX: Table of inner products between vectors in parts
X1, X5 of the new cubature formula of 85-vectors. N counts
the number of times a value occurs as an entry in | X/X;],
i,j=1,2.

| Kzw)l | N
[XTX1] 0,1/2,1 540, 1440, 45
|X5Xa| | 1/3,1/4/3,1 | 1080, 480,40
| X X2 0,1/V3 720, 1080
| X5 X1 | 0,1/v/3 720, 1080

orientation X5 = UV, where

1 —w —w 1 0
-1 1 —w? 0 —w?
1 2 2
U= 3 w 0 —w 1 1 , (V.1)
0 1 w —w -1
w2 w 0 —w  w?

is unitary (w = e?>7%/3). With the above orientation the 40
points in X, appear to fit so that each point is a maximizer
of the projective distance from each of the 45 vectors in the
W (K5) system and vice versa. If so, the additional 40 points
satisfy that they are the points at greatest distance from the
original 45, in particular.

To form a weighted 3-design, the corresponding weights for
X, the 45 vector system, are wy = %, and for the remaining
40 vectors in Xo, the weights are wy = %. In total the
distribution of absolute values of inner products that appears
in the unweighted 85 vector system is given in Table IX.

The above construction hides the relation between its two
parts. The 85 vectors in C° may be seen, after canonically
embedding the vectors in R0, as the weighted union of
vectors coming from two 10 dimensional lattices. Under this
identification, the 45 vectors in the W (K5) system may be
selected as, up to projective equivalence (modulo multiples of
sixth roots of unity), the 270 minimal vectors of the lattice
called (Cg x SU4(2)) : Cy in the database [NS], and the
other 40 points are taken one from each antipodal pair of the
80 minimal vectors of the shorter Coxeter-Todd lattice, O1g
detailed in [RS]. The relationship between these two lattices
is that (Cs x SU4(2)) : Cy is similar to the maximal even
sub-lattice of O1g. In our tables, we choose to name these
the W(K5) and Oqq lattices. We prefer an alternative name
for the first since the automorphism group of each lattice is
(C@ X SU4(2)) : CQ.

Altogether, upon splitting the weights across minimal vec-
tors in appropriately scaled and oriented copies of these lattices
and then complexifying everything, one arrives at the cubature
formula, which when viewed projectively, is a system of 85
vectors improving on the best previous known bound of size
320 for such a formula (see [Sh]). Some experiments suggest
this might be the smallest sized weighted projective 3-design
in CPP*. Expecting that this code might be optimal in a few
other settings, we conjecture:

Conjecture 5.1. The code constructed in this section of 85
points in C° is universally optimal.

This is an example of one of the ‘highly symmetric tight
frames’, as was later demonstrated in [MW].



VI. FURTHER REMARKS

We have many remaining questions about the p-frame
energies, and many curiosities were brought to our attention
through our numerical study. One immediate question con-
cerns uniqueness of the 600-cell as a minimizer for RP? and
p € (8,10), which we expect to hold. Note that tight designs,
generally, are not unique (not even up to unitary equivalence).
It is interesting whether it is more often the case that infinite
families arise or that such configurations are isolated, as is
known to be the case when d = 2 [Z].

An interesting observation is that some configurations min-
imize p-frame energies for a range of p (the 600-cell for
example), while others, like the p = 3 minimizer in ]R]P’7, do
not minimize on an entire range between even integers. When
minimizers have the same support for a range p € (2k—2, 2k),
it indicates that the supporting configuration has to be a
weighted k-design.

This suggests another phenomenon similar to the notion of
universal optimality, and we are tempted to conjecture that
in the real case for d > 2 there are only finitely many
configurations which optimize the p-frame energy on a whole
range of p € [2k — 2, 2k].

Looking at the tables, one can note that as the value of
p increases, for p not even, the support size of a candidate
appears to be monotonically increasing. Further, for a fixed
dimension, the support size seems to grow polynomially in p.
We do not have an explanation for this phenomenon.
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