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AbstractÐWe provide a detailed analysis of results from
a large-scale computational exploration of real and complex
(weighted) point configurations that minimize p-frame energies,
uncovering phase transition behavior exhibited by the minimiz-
ers. We utilize numerical linear programming methodologies to
offer complementary lower bounds that support our experimen-
tally obtained upper bounds on minimal energy values. Further-
more, we present the development of an exceptionally symmetric
weighted design consisting of 85 points, which outperforms the
current best known lower bounds for a minimal-sized weighted
design in the realm of five-dimensional complex projective space.
In conclusion, based on our thorough observations and in-depth
analysis, we conjecture that the support of this novel weighted
design is universally optimal.

Index TermsÐEquiangular tight frames, line packings, com-
plex projective codes, discrete geometry, manifold optimization,
MIMO.

I. INTRODUCTION

Point configurations that maximize the pairwise spherical

distances over all point sets of fixed size are called optimal

codes, reflecting their role in coding theory. Exact solutions

to the optimal packing problem are generally known only

for small numbers of points and in low dimensions, with the

exception of some highly symmetric point sets.

Examples of such highly symmetric spherical sets are the

vertices of the icosahedron on S
2 or the minimal vectors of the

Leech lattice Λ24 on S
23. These configurations appear not only

as optimizers of the harmonic energy, or maximizing pairwise

distances, but also for other energies, such as p-frame energies

[A], [BGMPV], [KY2], [KY1], [PSZ], [Y1], [Y2].

For a finite configuration of points on the sphere C ⊂ S
d−1

(also known as a code) the discrete f -potential energies are

given by

Ef (C) =
1

|C|2
∑

x,y∈C
f(⟨x, y⟩). (I.1)

Universally optimal point configurations are collections of

points C minimizing the discrete energies Ef among all point

sets of fixed cardinality |C|, for all absolutely monotonic

functions f on [−1, 1) [CK].

In this paper we detail the results of a numerical study

of p-frame energies. These energies are an example of a

continuous analog of the discrete energy where instead of

point configurations we optimize over measures. Given a

kernel function f ∈ C[−1, 1] and a Borel probability measure

µ ∈ P(Sd−1), our energy then takes the form

If (µ) =

∫

Sd−1

∫

Sd−1

f(⟨x, y⟩)dµ(x)dµ(y). (I.2)

So when we say that a configuration C minimizes the energy

If (µ) we mean a probability measure supported on the con-

figuration minimizes the energy. Taking f(t) = |t|p, p > 0, in

this equation yields the p-frame energies:

If (µ) =

∫

S
d−1

F

∫

S
d−1

F

|⟨x, y⟩|pdµ(x)dµ(y), (I.3)

where S
d−1

F
= {x ∈ F

d : ∥x∥ = 1} and F = R or C.

The discrete version of this energy for p = 2, known simply

as the frame energy or frame potential, was introduced by

Benedetto and Fickus [BeF] and has as minimizers precisely

unit norm tight frames. These configurations play an impor-

tant role in signal processing and other branches of applied

mathematics.

A finite collection of vectors C ⊂ F
d is a tight frame, if for

any x ∈ F
d, and some constant A > 0, one has an analog of

Parseval’s identity holding for C,
∑

y∈C
|⟨x, y⟩|2 = A∥x∥2. (I.4)

A phenomenon that is the central focus of this paper

is that discrete symmetric objects occur as minimizers of

the continuous energy (I.3) over measures. This incidentally

results in allowing us to make new conclusions about the

minimizing configurations of the discrete energies (I.1) for

certain values of the cardinality N .

Extensive numerical experiments were conducted in the

course of our investigations. The results of these experiments

are collected in Tables III and V for the real case and

Tables IV and VI for the complex case. Unlike the case

of tight designs (treated in [BGMPV]), optimal weights for

these configurations are generally not equal and thus must

be computed for each relevant value of p. Each table gives

the minimal support size of a conjectured or known optimal

point set: when a configuration on the sphere is origin-

symmetric, this minimal support size equals half of the size

of the named configuration. For example, the icosahedron has
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twelve vertices, however 6 vertices on one hemisphere suffice

to give a minimizer of the 3-frame energy on S
2. We give

additional details for these conjectured minimizers of the p-

frame energies. Notably several of these configurations are not

universally optimal, and further, several universally optimal

configurations are nowhere to be found in this table. We

discuss common features of minimizers in Section VI.

Our experimental results support the hypothesis that dis-

creteness of minimizers is a general phenomenon when p is

not an even integer.

Conjecture 1.1. In all dimensions d ≥ 2 and for all p > 0
such that p ̸∈ 2N, the minimizing measures of the p-frame

energy (I.3) are discrete.

This conjecture is supported by the fact that discreteness of

minimizers is known for certain attractive-repulsive potentials

on R
d and Riemannian manifolds [CFP], [Vl].

It is worth noting that the classical paper [Bj] shows that

for F (x, y) = −∥x − y∥α with α > 2 and any compact

domain Ω ⊂ R
d, the energy minimizers are discrete and their

support consists of at most d + 1 points (just two antipodal

points if Ω = S
d−1). Moreover, in [CFP] discreteness has

been established for mildly repulsive potentials, i.e. those

that behave as −∥x − y∥α with α > 2 when ∥x − y∥
is small. Observe that for the p-frame potential, we have

|⟨x, y⟩|p ≈ 1− p
2
∥x− y∥2 when x, y ∈ S

d−1 are close, hence

the p-frame energy falls into the endpoint case α = 2, and,

according to the discussion above, this case is more subtle.

While we have yet to establish Conjecture 1.1 and prove

discreteness, in our companion paper [BGM+] we show that

on S
d−1, whenever p is not even, the support of the mea-

sure minimizing the p-frame potential necessarily has empty

interior.

In addition to the conjectured discreteness of minimizers our

initial study gave rise to surprisingly symmetric minimizers for

p-frame energies, suggesting that further investigation might

give new interesting spherical codes. While nearly all of the

minimizing configurations arising from our numerical exper-

iments have appeared before in the coding theory literature,

we did however discover a new code in C
5 of 85 vectors

which in turn gives a new bound for a minimal sized weighted

projective 3-design. We detail a construction of this code and

its properties in Section V-A.

We would like to point out that in many papers, the term p-

frame potential is usually used to denote the p-frame energy

(I.3) or its discrete counterpart. We find the term ªenergyº

to be more appropriate in this context and reserve the term

ªpotentialº for the kernel f(t) of the energy If .

II. BACKGROUND

A. Projective Spaces and Jacobi Polynomials

The projective spaces FP
d−1, F = R,C,H, are the spaces

of lines passing through the origin in F
d,

xF = {xλ | λ ∈ F \ {0}}. (II.1)

Using this identification, one can associate each element of

FP
d−1 (F = R,C) with a unit vector x ∈ F

d, and we shall

often abuse notation by doing so. Each of these spaces can

be equipped with a geodesic metric ϑ, which takes values in

[0, π], and a chordal metric, ρ.

Additionally, each of the spaces (FPd−1, ϑ) is two-point

homogeneous, meaning that for any x1, x2, y1, y2 ∈ FP
d−1

such that ϑ(x1, x2) = ϑ(y1, y2) there exists an isometry of

FP
d−1, mapping xi to yi, i = 1, 2.

The Jacobi polynomials Cα,β
n , normalized so that

Cα,β
n (1) = 1, are orthogonal polynomials.

B. Designs

We now discuss some basics of designs on our projective

spaces FP
d−1. A finite, nonempty set (code) C ⊂ FP

d−1 with

a set of weights wC = {wx : x ∈ C} ⊂ [0, 1], satisfying∑
x∈C wx = 1, is called a weighted M -design if

∑

x∈C
wxC

α,β
n (cos(ϑ(x, y))) =

∫

Ω

Cα,β
n (cos(ϑ(x, y))) dσ(x) = 0

(II.2)

for all n ∈ {1, ...,M}. When the weights are all the same,

wx = 1

|C| , then these are simply referred to as M -designs.

The strength of a (weighted) design is the maximum value of

M for which identity (II.2) holds.

Any k design C corresponds to a minimizer of the 2k-frame

energy µC,wC
=
∑

x∈C wxδx, though these are not the only

discrete minimizers.

A weighted M -design is called tight if its cardinality meets

an absolute lower bound, and in such cases, the weights must

all be equal (i.e. weighted tight designs are simply designs)

[T], [Le2].

For all the projective spaces, the vertices of a cross-polytope

always provide a tight 1-design. Tight M -designs on real

projective spaces correspond to (symmetric) tight (2M + 1)-
designs on the real unit spheres. In the complex setting, tight

2-designs, also known as symmetric, informationally complete,

positive operator-valued measures (SIC-POVMs), are known

to exist at least for d ≤ 16, d = 19, 24, 28, 35, 48, and numeri-

cal experiments suggest that they may exist in every dimension

[ABBEGL], [RBSC], [SG], [Z]. Explicit constructions of the

remaining designs in Table VII are given in [H1], [CKM]. In

all three settings, it is known that no tight M -designs exist

whenever M ≥ 4 and d ≥ 3, except for the Leech Lattice on

RP
23 [BD1], [BD2], [BH], [H2], [L].

C. Linear Programming

Both our numerical methods here as well as the theoretical

methods in [BGMPV] to determine optima of the p-frame

energies make use of linear programming. Our application of

the method can be summed up in the following lemma, which

is a measure-theoretic counterpart of the linear programming

bound of Delsarte and Yudin [De], [Y1].

Lemma 2.1. Let h ∈ C[−1, 1] be a positive definite function,

i.e. h(t) =
∞∑

n=0

ĥnC
α,β
n (t) and ĥn ≥ 0 for all n ≥ 0. (i)

(i) If h(t) ≤ f(t) for all t ∈ [−1, 1], then for any µ ∈
P(FPd−1),

If (µ) ≥ Ih(µ) ≥ Ih(σ) = ĥ0.
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(ii) Assume further that h is a polynomial of degree k
and that there exists a weighted k-design C ⊂ FP

d−1,

with weights wx, such that h(t) = f(t) for each t ∈
{cos(ϑ(x, y)) : x, y ∈ C}. Then for any µ ∈ P(FPd−1),

If (µ) ≥ If

(
∑

x∈C
wxδx

)
.

In [BGMPV], we constructed positive definite polynomials

as Hermite interpolants of the p-frame potentials at the points

of {cos(ϑ(x, y)) : x, y ∈ C} for tight designs C, and used

them as our h in 2 in order to show optimality of such

configurations. The requirements of equality of f and h on

{cos(ϑ(x, y)) : x, y ∈ C}, the positive definiteness of h, and

the constraint on the degree of h limits how much a method

could be used outside of tight designs. However, with 1, we

can determine bounds on the p-frame energy by bounding

from below by continuous positive definite functions, generally

using positive definite polynomials of bounded degree, and

optimizing over ĥ0, as we will discuss below.

III. NUMERICAL LP BOUNDS

If a suitable candidate is not available, one can still rely on

part (1) of Lemma 2.1 and attempt to optimize the value of

the energy Ih(σ) over auxiliary positive definite polynomials

h, obtaining a lower bound for the energy over all probability

measures. If the degree of an auxiliary function h is bounded

by D, we have D + 1 non-negative variables ĥi, 0 ≤ i ≤ D,

and infinitely many linear constraints h(t) ≤ f(t) for all t ∈
[−1, 1]. In order to get the best possible lower bound, we need

to maximize ĥ0 given these linear conditions.

This problem is, generally, intractable as a linear optimiza-

tion problem. However, when f is a polynomial, the condition

f(t) − h(t) ≥ 0 for all t ∈ [−1, 1] may be represented as a

finite-size positive semi-definite constraint on the coefficients

ĥi. In particular, the polynomial inequality may be rewritten

as a sum-of-squares optimization problem (see, for instance,

[N]) and thus solved as a semi-definite program.

By using sum-of-squares optimization described above, we

obtain lower bounds on the p-frame energies over measures

on projective spaces when p is an odd integer. A table of such

bounds for real projective spaces RP
d−1, 3 ≤ d ≤ 24, and

p = 3, 5, 7, is shown in Table VIII. The concrete bounds are

computed by a series of steps. For the first step, we fix the

degree D of the auxiliary polynomial and solve the sum-of-

squares problem. The numerical solver outputs a polynomial

which is feasible up to a small tolerance. By rounding coeffi-

cients, it is then possible to obtain polynomials which are less

than f and positive definite.

Since the choice of the maximal degree D is arbitrary, not

much is lost by rounding, and our bounds are thus rounded

down to four significant figures. The last condition f −h ≥ 0
can be checked using interval arithmetic, or by hand.

It is interesting to compare the values of conjectured energy

minimizers with the lower bounds obtained using the approach

above. We make comparison of these bounds in Table I below

for all conjectured optimizers from Tables III, IV, V, and VI:

observe that the values are indeed close, which motivates our

conjectures about the minimizers. Tight designs are excluded

from this table since for them the lower and the upper bounds

coincide.

TABLE I: Comparison of p-frame energies for conjectured

optimal configurations on RP
d−1 and CP

d−1 with LP lower

bounds. Energies are evaluated at the odd integer midpoint of

the conjectured optimality interval.

d F Energy LP bound p Name

3 R 0.1249 0.1248 7 icosahedron and dodecahedron

4 R 0.09628 0.09607 5 D4 root vectors

5 R 0.1183 0.1170 3 hemicube

5 R 0.06184 0.06169 5 Stroud design

6 R 0.09056 0.08970 3 cross-polytope and hemicube

6 R 0.04249 0.04240 5 E6 and E∗
6 roots

7 R 0.03065 0.03060 5 E7 and E∗
7 roots

8 R 0.05910 0.05852 3 mid-edges of regular simplex

3 C 0.01261 0.01258 5 union equiangular lines
5 C 0.04200 0.04184 5 O10 and W (K5) minimal vectors

A. Other weighted designs

1) 11 points in R
3: It seems that as p goes to 6 from

below, the limiting minimizing configuration on the sphere

S
2 is of the following form. Concisely, the system consists of

all combinations of signs of the 6 vectors below,




1 0 0
0 1 0
0 0 1
2√
7

√
3

7
0

2√
7

0
√

3

7√
1

7

√
3

7

√
3

7




with the weights,

2

27
,
1

10
,
1

10
,
49

540
,
49

540
,
49

540

on each line. The off-diagonal inner products are then

1/7,−1/7, 5/7,−5/7,
√

3/7,−
√

3/7, 0,
√

1/7,−
√
1/7,

4/7,−4/7,
√
4/7,−

√
4/7

appearing in number, (10, 18, 10, 10, 14, 10, 14, 6, 2, 4, 4, 6, 2)
respectively. From these facts, one may check that the 11
lines defined by these vectors forms a projective 3-design.

Notably, this is the same extremal code, which forms a

minimal cubature formula and is found also in [Rez, page

135].

2) 16 points in R
3: Lines through antipodal points in the

union of a regular icosahedron with its dual dodecahedron.

The frequencies of absolute values of inner products are

N(
√

1

15
(5− 2

√
5)) = 60, N(

√
75+30

√
5

15
) = 60, N( 1

3
) = 60,

N( 1√
5
) = 30, N(

√
5

9
) = 30, and N(1) = 60. The weights

making this configuration a projective 4-design are ω1 = 5/84
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TABLE II: The Gram matrix of the weighted projective 2-

design in RP
3 which appears as a minimizer as p→ 4− along

with ordered weights, with each weight corresponding to the

vector with inner products given in the adjacent row. In the

matrix, a and b are
√
5+1

6
and 1

6

√
(6− 2

√
5), respectively.























































1 − 2
3

a a a a b b b b
√
6
6

3
40

− 2
3

1 −b −b −b −b −a −a −a −a
√
6
6

3
40

a −b 1 1
3

1
3

− 1
3

−
√
2
3

−
√

2
3

√
2

3

√
2

3

√
6

6
3
32

a −b 1
3

1 − 1
3

1
3

√
2

3
−

√
2

3

√
2

3
−

√
2

3

√
6

6
3
32

a −b 1
3

− 1
3

1 1
3

−
√
2
3

√
2

3
−

√
2

3

√
2

3

√
6

6
3
32

a −b − 1
3

1
3

1
3

1
√
2

3

√
2

3
−

√
2

3
−

√
2

3

√
6

6
3
32

b −a −
√
2
3

√
2

3
−

√
2
3

√
2

3
1 1

3
1
3

− 1
3

−
√
6

6
3
32

b −a −
√
2
3

−
√
2

3

√
2

3

√
2

3
1
3

1 − 1
3

1
3

−
√
6

6
3
32

b −a
√
2
3

√
2

3
−

√
2
3

−
√
2

3
1
3

− 1
3

1 1
3

−
√
6

6
3
32

b −a
√
2
3

−
√
2

3

√
2

3
−

√
2

3
− 1

3
1
3

1
3

1 −
√
6

6
3
32√

6
6

√
6
6

√
6
6

√
6

6

√
6

6

√
6

6
−

√
6
6

−
√

6
6

−
√
6

6
−

√
6

6
1 1

10























































and ω2 = 9/140 for the icosahedron and dodecahedron

vertices respectively.

3) 11 points in R
4: See Table II for what appears to be the

limiting minimizing configuration as p goes to 6 from below

when minimizing over S3.

4) 24 points in R
4: The regular 24 cell, or alternatively

the D4 root system. The frequencies of absolute values of

inner products are N(0) = 216, N( 1√
2
) = 144, N( 1

2
) =

192, and N(1) = 24. The configuration is unweighted as a

projective 3-design.

5) 16 points in R
5: Lines through antipodal points

in the following construction. Take all permutations of

± 1√
30
(−5, 1, 1, 1, 1, 1, 1) and 1√

6
(1, 1, 1,−1,−1,−1) and

consider these as vectors in the copy of S
4 in S

5 on the

plane perpendicular to (1, 1, 1, 1, 1, 1). The frequencies of

absolute values of inner products are N( 1
3
) = 90, N( 1

5
) =

30, N( 1√
5
) = 120, and N(1) = 16. The weights making

this a projective 2-design are ω1 = 5

84
and ω2 = 9

140
for the

above parts respectively.

6) 41 points in R
5: An example of a design construc-

tion appearing in [Str]. The configuration comprises of lines

through antipodal points in the following construction. Let A
be the set of vectors which are permutations of (±1, 0, 0, 0, 0),
B permutations of (±

√
1

2
,±
√

1

2
, 0, 0, 0), and C permutations

of (±
√

1

5
,±
√

1

5
,±
√

1

5
,±
√

1

5
,±
√

1

5
). The frequencies of

absolute values of inner products are N(0) = 600, N( 1
5
) =

160, N( 3
5
) = 80, N(

√
1

5
, N(

√
2

5
) = 320, and N(1) = 41.

The weights making this a projective 3-design are ω1 = 2

105
,

ω2 = 8

315
, and ω3 = 25

1008
, on A,B, and C respectively.

7) 22 points in R
6: Lines through antipodal points in a

hemicube/cross polytope compound, where the hemicube is

within the cube dual to the cross polytope. The frequencies of

absolute values of inner products are N(0) = 30, N( 1√
6
) =

192, N( 1
3
) = 240, and N(1) = 22. The weights making

this a projective 2-design are ω1 = 3/64 on the hemicube and

ω2 = 1/24 on the cross-polytope.

8) 63 points in R
6: Lines through antipodal points in the

union of minimal vectors of E6 and its dual lattice, E∗
6 .

The frequencies of absolute values of inner products are

N(0) = 1620, N( 1
4
) = 432, N( 1

2
) = 990, N(

√
3

8
) =

864, and N(1) = 63. The weights making this a projective

3-design are ω1 = 1/60 and ω2 = 2/135 on the minimal

vectors of E6 and its dual, respectively.

9) 91 points in R
7: The configuration is projectively

composed of the union of the minimal vectors of E7 and

its dual lattice, E∗
7 . The frequencies of absolute values of

inner products are N(0) = 3906, N( 1

27
) = 756, N( 1

8
) =

2016, N(
√
3

9
) = 1512, and N(1) = 91. The weights making

this a projective 3-design are ω1 = 8/693 and ω2 = 3/308 on

the E7 part and its dual, respectively. The cubature formula

appears also in [NoS].

10) 36 points in R
8: The edge midpoints of a regular

simplex. The frequencies of absolute values of inner products

are N( 2
7
) = 756, N( 5

14
) = 504, and N(1) = 36. This code

is a projective 1-design with equal weights.

11) 21 points in C
3: A structured union of a maximal

(tight) simplex (equiangular tight frame, or ETF) of 9 vectors

and 4 mutually unbiased bases (a 4-MUB) of 12 vectors. The

frequencies of absolute values of inner products are N(0) =
96, N( 1

2
) = 72, N( 1√

3
) = 108, N( 1√

2
) = 144, N(1) = 21.

The weights making this a projective 3-design are ω1 = 4/90
on the 9-ETF and ω2 = 1

20
on the 4-MUB.

IV. PROPOSED METHOD

We give additional details on how we made the conjec-

tures found in Tables III, IV, V, and VI. The numerical

method employed to find conjectured minimizers involved

two steps. Initially we used conjugate gradient method to

minimize energies. Afterwards we implemented an arbitrary

precision library with a second order method, Limited Memory

Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [LN]

to check our conjectures and test endpoint behavior. L-BFGS

stores a modified version of the Hessian to avoid prohibitive

memory storage costs.

Algorithm 1 L-BFGS [NW][Alg. 7.5]

Choose starting point x0, integer m > 0;

k ← 0;

repeat

choose H0
k (²)

compute pk ← −Hk∇fk (²²)

(using two-loop recursion, alg. 7.4 in [NW])

compute xk+1 ← xk + αkpk
(where αk is chosen to satisfy the Wolfe conditions)

if k > m then

Discard the vector pair {sk−m, yk−m} from storage;

Compute and save sk ← xk+1−xk, yk = ∇fk+1−∇fk;

end if

until convergence.

(²): H0
k = γkI , γk = sTk−1yk−1/y

T
k−1yk−1 scaling factor

(²²): Hk inverse hessian approximation
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We note that the Wolfe conditions in L-BFGS are given

below

f(xk + αkpk) ≤ f(xk) + c1αk∇fT
k pk,

∇f(xk + αkpk)
T ≥ c2∇fT

k pk,

with 0 < c1 < c2 < 1. The first condition gives that αk

gives sufficient decrease in the objective function while the

second is a curvature condition.

V. EXPERIMENTAL DATA AND RESULTS

TABLE III: Dimension and support size for optimal and

conjectured optimal configurations for p-frame energies on

RP
d−1. The energies are evaluated at odd integers.

d N Energy p

2 N (∗) 2N − 3
d d 1/d 1
3 6 0.241202265916660 3
3 11 0.142857142857143 6−
3 16 0.124867143799450 7
4 11 0.125000000000000 4−
4 24 0.096277507157493 5
4 60 0.047015486159502 9
5 16 0.118257675970387 3
5 41 0.061838820473855 5
6 22 0.090559619406078 3
6 63 0.042488105634495 5
7 28 0.071428571428571 3
7 91 0.030645893660944 5
8 36 0.059098639455782 3
8 120 0.022916666666667 5
23 276 0.011594202898551 3
23 2300 0.002028985507246 5
24 98280 0.000103419439357 9

TABLE IV: Dimension and support size for optimal and

conjectured optimal configurations for p-frame energies on

CP
d−1. The energies are evaluated at odd integers.

d N Energy p

d d 1/d 1
3 9 0.222222222222223 3
3 21 0.012610934678518 5
4 16 0.146352549156242 3
4 40 0.068301270189222 5
5 25 0.105319726474218 3
5 85 0.041997097378053 5
6 36 0.080272843473504 3
6 126 0.027777777777778 5

d d2
1+(d2−1)(1/(d+1))3/2

d2
3

Table VIII collects linear programming lower bounds corre-

sponding to small values of d and odd values p for the p-frame

energy on S
d−1.

TABLE V: Optimal and conjectured optimal configurations

for p-frame energies on RP
d−1. Energies are evaluated in

most cases at the odd integer which is the midpoint of the

interval given. The range q− configurations are obtained as

limiting configurations as p tends to q from below. For these

configurations, the energy is evaluated for the even limit value.

Among the configurations which are not tight, the 600-cell is

the only configuration which is proved to be optimal in the

table. The corresponding dimension and support size of the

optimizers appear in Table III.

Range of p Tight Name

[2N − 4, 2N − 2] t regular 2N -gon
[0, 2] t orthonormal basis
[2, 4] t icosahedron
6− Reznick design
[6, 8] icosahedron and dodecahedron
4− small weighted design
[4, 6] D4 root vectors
[8, 10] 600-cell
[2, 4] hemicube
[4, 6] Stroud design
[2, 4] cross-polytope and hemicube
[4, 6] E6 and E∗

6 roots
[2, 4] t kissing E8

[4, 6] E7 and E∗
7 roots

3 mid-edges of regular simplex
[4, 6] t E8 roots
[2, 4] t equiangular lines
[4, 6] t kissing Leech lattice
[8, 10] t Leech lattice minimal vectors

TABLE VI: Optimal and conjectured optimal configurations

for p-frame energies on CP
d−1. Similar to the real table the

corresponding dimension and support size of the optimizers

appear in Table IV.

Range of p Tight Name

[0, 2] t orthonormal basis
[2, 4] t SIC-POVM
[4, 6] union equiangular lines
[2, 4] t SIC-POVM
[4, 6] t Eisenstein structure on E8

[2, 4] t SIC-POVM
[4, 6] O10 and W (K5) minimal vectors
[2, 4] t SIC-POVM
[4, 6] t Eisenstein structure on K12

[2, 4] t SIC-POVM (conjectured)

A. New small weighted projective design

We now collect facts on the 85 vector system which

was found while numerically minimizing the p = 5 frame

potential in C
5. This system of vectors forms a weighted

design of strength 3, or equivalently, for the functional∑
i,j |⟨vi, vj⟩|6ωiωj , the weighted system takes the value

1/35, thus minimizing this quantity over all probability mea-

sures µ =
∑

i δvi
ωi,

∑
i ωi = 1 supported on unit vectors

∥vi∥ = 1 in C
5 [We]. The above construction appears to be

new especially when comparing its size to previously obtained

bounds from [LS] for smallest known 3 weighted designs in

C
5.

One part of the system is well studied, given by the root
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TABLE VII: A list of parameters for which projective tight

designs are known to exist (besides designs in FP
1 for F ̸= R).

Here M denotes the strength of the design, d the dimension

of the ambient space F
d, and N is the size of the design. For

SIC-POVMs, these configurations exist for certain values of

d, and may or may not exist for all values.

d N M F Name

d d+ 1 1 R cross-polytope/ONB
2 N N − 1 R regular 2N -gon
3 6 2 R icosahedron
7 28 2 R kissing configuration for E8

8 120 3 R roots of E8 lattice
23 276 2 R equiangular lines
23 2300 3 R kissing configuration for Λ24

24 98280 5 R minimal vectors of Λ24

d d+ 1 1 C cross-polytope/ONB

d d2 2 C SIC-POVM
4 40 3 C Eisenstein structure on E8

6 126 3 C Eisenstein structure on K12

TABLE VIII: Numeric linear programming lower bounds for

odd-valued p-frame energies.

d p = 3 p = 5 p = 7
3 0.2412 0.1655 0.1248
4 0.1612 0.09607 0.06454
5 0.1170 0.06169 0.03740
6 0.08970 0.04240 0.02344
7 0.07142 0.03060 0.01556
8 0.05852 0.02291 0.01080
9 0.04902 0.01770 0.007768
10 0.04180 0.01401 0.005750
11 0.03616 0.01131 0.004360
12 0.03166 0.009290 0.003375
13 0.02801 0.007737 0.002658
14 0.02499 0.006524 0.002125
15 0.02248 0.005561 0.001721
16 0.02035 0.004785 0.001413
17 0.01853 0.004152 0.001171
18 0.01696 0.003630 0.0009813
19 0.01559 0.003195 0.0008280
20 0.01440 0.002830 0.0007054
21 0.01335 0.002520 0.0006047
22 0.01242 0.002256 0.0005217
23 0.01159 0.002028 0.0004529
24 0.01085 0.001832 0.0003952

vectors corresponding to the 45 2-reflections which generate

the unitary reflection group W (K5) of 51840 elements [LT].

This group is alternatively described as the group G3(10) ≃
(C6 × SU4(2)) : C2, one of the maximal finite irreducible

subgroups of GL10(Z) [So]. SU4(2) here is just the special

linear group of 4×4 matrices, unitary matrices over F22 , with

determinant one.

Choosing the representation of the root vectors in W (K5)
as X1 = {σ((1, 0, 0, 0, 0))} ∪ {σ( 1

2
(0, 1,±ω,±ω,±1))} un-

der cyclic coordinate permutations, σ, the new weighted

design arises when this system is joined with some other

40 vectors. The second system may be described as Ψ =
{σ( 1√

3
(1, 0,±ω,±ω, 0))} ∪ {σ( 1√

3
(1,±ω,±1, 0, 0))} also

generated under cyclic coordinate permutations. The projective

design is finally given by assigning weights to the W (K5)
system joined with the 40 vector system after giving Ψ the

TABLE IX: Table of inner products between vectors in parts

X1, X2 of the new cubature formula of 85-vectors. N counts

the number of times a value occurs as an entry in |X ′
iXj |,

i, j = 1, 2.

|⟨x, y⟩| N
|X′

1X1| 0, 1/2, 1 540, 1440, 45

|X′
2X2| 1/3, 1/

√
3, 1 1080, 480, 40

|X′
1X2| 0, 1/

√
3 720, 1080

|X′
2X1| 0, 1/

√
3 720, 1080

orientation X2 = UΨ, where

U =
1

2




1 −ω −ω 1 0
−1 1 −ω2 0 −ω2

ω2 0 −ω2 1 1
0 1 ω −ω −1
ω2 ω 0 −ω ω2



, (V.1)

is unitary (ω = e2πi/3). With the above orientation the 40
points in X2 appear to fit so that each point is a maximizer

of the projective distance from each of the 45 vectors in the

W (K5) system and vice versa. If so, the additional 40 points

satisfy that they are the points at greatest distance from the

original 45, in particular.

To form a weighted 3-design, the corresponding weights for

X1, the 45 vector system, are ω1 = 4

315
, and for the remaining

40 vectors in X2, the weights are ω2 = 3

280
. In total the

distribution of absolute values of inner products that appears

in the unweighted 85 vector system is given in Table IX.

The above construction hides the relation between its two

parts. The 85 vectors in C
5 may be seen, after canonically

embedding the vectors in R
10, as the weighted union of

vectors coming from two 10 dimensional lattices. Under this

identification, the 45 vectors in the W (K5) system may be

selected as, up to projective equivalence (modulo multiples of

sixth roots of unity), the 270 minimal vectors of the lattice

called (C6 × SU4(2)) : C2 in the database [NS], and the

other 40 points are taken one from each antipodal pair of the

80 minimal vectors of the shorter Coxeter-Todd lattice, O10

detailed in [RS]. The relationship between these two lattices

is that (C6 × SU4(2)) : C2 is similar to the maximal even

sub-lattice of O10. In our tables, we choose to name these

the W (K5) and O10 lattices. We prefer an alternative name

for the first since the automorphism group of each lattice is

(C6 × SU4(2)) : C2.

Altogether, upon splitting the weights across minimal vec-

tors in appropriately scaled and oriented copies of these lattices

and then complexifying everything, one arrives at the cubature

formula, which when viewed projectively, is a system of 85
vectors improving on the best previous known bound of size

320 for such a formula (see [Sh]). Some experiments suggest

this might be the smallest sized weighted projective 3-design

in CP
4. Expecting that this code might be optimal in a few

other settings, we conjecture:

Conjecture 5.1. The code constructed in this section of 85
points in C

5 is universally optimal.

This is an example of one of the ‘highly symmetric tight

frames’, as was later demonstrated in [MW].
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VI. FURTHER REMARKS

We have many remaining questions about the p-frame

energies, and many curiosities were brought to our attention

through our numerical study. One immediate question con-

cerns uniqueness of the 600-cell as a minimizer for RP3 and

p ∈ (8, 10), which we expect to hold. Note that tight designs,

generally, are not unique (not even up to unitary equivalence).

It is interesting whether it is more often the case that infinite

families arise or that such configurations are isolated, as is

known to be the case when d = 2 [Z].

An interesting observation is that some configurations min-

imize p-frame energies for a range of p (the 600-cell for

example), while others, like the p = 3 minimizer in RP
7, do

not minimize on an entire range between even integers. When

minimizers have the same support for a range p ∈ (2k−2, 2k),
it indicates that the supporting configuration has to be a

weighted k-design.

This suggests another phenomenon similar to the notion of

universal optimality, and we are tempted to conjecture that

in the real case for d > 2 there are only finitely many

configurations which optimize the p-frame energy on a whole

range of p ∈ [2k − 2, 2k].
Looking at the tables, one can note that as the value of

p increases, for p not even, the support size of a candidate

appears to be monotonically increasing. Further, for a fixed

dimension, the support size seems to grow polynomially in p.

We do not have an explanation for this phenomenon.
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