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A central goal in experimental high energy physics is to detect new
physics signals that are not explained by known physics. In this paper we
aim to search for new signals that appear as deviations from known Standard
Model physics in high-dimensional particle physics data. To do this, we de-
termine whether there is any statistically significant difference between the
distribution of Standard Model background samples and the distribution of
the experimental observations which are a mixture of the background and
a potential new signal. Traditionally, one also assumes access to a sample
from a model for the hypothesized signal distribution. Here we instead in-
vestigate a model-independent method that does not make any assumptions
about the signal and uses a semisupervised classifier to detect the presence
of the signal in the experimental data. We construct three test statistics using
the classifier: an estimated likelihood ratio test (LRT) statistic, a test based
on the area under the ROC curve (AUC), and a test based on the misclassi-
fication error (MCE). Additionally, we propose a method for estimating the
signal strength parameter and explore active subspace methods to interpret
the proposed semisupervised classifier in order to understand the properties
of the detected signal. We also propose a score test statistic that can be used in
the model-dependent setting. We investigate the performance of the methods
on a simulated data set related to the search for the Higgs boson at the Large
Hadron Collider at CERN. We demonstrate that the semisupervised tests have
power competitive with the classical supervised methods for a well-specified
signal but much higher power for an unexpected signal which might be en-
tirely missed by the supervised tests.

1. Introduction. Statistical and machine learning tools have been extensively used over
the past few decades to answer fundamental questions in particle physics (Behnke et al.
(2013), Bhat (2011)). To answer these questions, one needs to experimentally test the pre-
dictions of the Standard Model which describes our current understanding of elementary
particles and their interactions. For example, the empirical confirmation of the Higgs boson
at CERN in 2012 was an essential step towards its inclusion in the Standard Model (ATLAS
Collaboration (2012), CMS Collaboration (2012)).

In this paper we develop statistical tools to address the problem of searching for evidence
of new particle physics phenomena in high-dimensional experimental data, which is beyond
what is explained by the Standard Model (SM). The goal is to search for a signal which rep-
resents any anomalous phenomenon that is unexplained by the Standard Model. On the other
hand, any event predicted by the Standard Model, including all the previously discovered
rich, structured signals predicted by the model, comprise the background. For example, for
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FIG. 1. Decision boundary using a supervised classifier to separate the signal (red rhombuses) from the back-

ground (grey): (a) The decision boundary of the classifier when trained on signal generated from the assumed

signal model. (b) When the signal model is misspecified, the classifier completely misses the actual signal data

when used on the experimental samples. We consider a two-dimensional example here for illustration purposes

only. The real data can be of much higher dimensionality. In the experiments considered in this paper, we have a

16-dimensional sample.

more recent searches, background would include Higgs signals which were only recently the
focus of attention. The search is performed on the observed unlabelled data, called here the
experimental data, which are a mixture of the background and a potential new signal.

In experiments conducted with large particle accelerators, such as the Large Hadron Col-
lider (LHC), the searches for new physics signals in the high-dimensional experimental data
have been primarily conducted using model-dependent data analysis methods. These searches
are generally structured as likelihood ratio tests based on a model assumption for the specific
new signal (ATLAS Collaboration and CMS Collaboration (2011), Cowan et al. (2011)). Due
to the high dimensionality of the data, tests based on classifiers that are optimized to detect
a particular hypothesized signal are preferred over density estimation or mixture model ap-
proaches. Specifically, tests based on supervised, multivariate classification algorithms, such
as neural networks and boosted decision trees, have proved beneficial. The training sam-
ples for the classifier are generated using Monte Carlo (MC) event generators which enable
sampling collision events from specific physics models. The classifier output is then used
to extract a signal enriched sample which is used to perform likelihood ratio tests for the
detection of the signal (ATLAS Collaboration (2012), CMS Collaboration (2012)).

But there are disadvantages to this approach. First, this approach may have trouble finding
novel, unexpected deviations from the background model. Second, a search targeting one
kind of new physics signal/scenario is not going to be powerful for finding a different new
physics signal/scenario. Figure 1 illustrates the problem. If a classifier is trained on training
signal data as shown in Figure 1(a), it gives the classification boundary as shown. But what
if the signal in the experimental data actually looks like Figure 1(b)? Then the classifier ends
up misclassifying the signal as background. So an algorithm trained on a misspecified signal
model might completely miss the actual signal. The two-dimensional example considered
here is for illustration purposes only. In reality, the data lie in a high-dimensional space which
further aggravates the problem.

In this paper we study model-independent tests, which do not assume a particular sig-
nal model, and compare them to more traditional model-dependent tests for search of new
physics signals. We use data from an event generator for background events together with
observed experimental data which are a mixture of background and a potential signal. But
we do not use data from signal simulations. In other words, we assume access to labeled
background data and unlabeled experimental data, where events may either have background
or signal labels. (Note that, in practice, systematic uncertainty in the background makes the
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FIG. 2. Data flow diagram presenting the signal detection approach, including the interpretability of the trained

classifier, from raw data to concluding whether there is any signal in the data. The colored boxes represent

our contributions presented in this paper. The raw data and data reduction steps are presented, for example, in

Adam-Bourdarios et al. (2015).

situation more complex than this. Please refer to Sections 2 and 7 for further discussion.)
We then use a semisupervised approach that trains a classifier to differentiate the background
data from the experimental data. Crucially, we do not assume availability of labelled signal
data which differentiates this approach from model-dependent or supervised methods.

In particular, we make the following three main contributions:

1. We propose and investigate several variants of classifier-based model-dependent and
model-independent tests to detect a new signal in the experimental data. These tests in-
volve four steps:
(a) Training a probabilistic classifier to differentiate between background events and po-

tential new signal events in the model-dependent mode and to differentiate between
background events and experimental events in the model-independent mode.

(b) Constructing classifier-based test statistics using the output of the probabilistic clas-
sifier. We construct four different test statistics, using two different strategies, and
compare them.

(c) Estimating the null distributions of the test statistics using asymptotic, nonparametric
bootstrap, and permutation methods, and comparing them.

(d) Testing for the presence of a new signal using the test statistics and their estimated
null distributions. We consider each combination of a test statistic and a method for
estimating its null distribution as a separate test method.

2. We develop a method for estimating the signal strength in the experimental data, which is
a challenging problem in model-independent searches, since we do not have information
about the signal model to characterize the signal.

3. We develop active subspace methods to interpret the signal detected by the semisupervised
classifier in the high-dimensional space.

The data flow diagram, presented in Figure 2, illustrates the signal detection approach in
four stages: training the probabilistic classifier, computing the test statistics, estimating the
null distribution of the test statistics, and finally performing the test. There is also the stage
where we use the fitted classifier to estimate the signal strength and interpret the classifier
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using active subspace methods. The colored boxes in the diagram represent our contributions
in this paper, namely, introducing the different test statistics, introducing methods to estimate
the null distribution, estimating the signal strength, and interpretability via active subspace
methods. The diagram also demonstrates how the dimensionality of the data reduces from
observations (16-D in our case) to the classifier outputs (1-D) which are then used to find the
scalar test statistics. Below we detail selected parts of our approach.

Training a probabilistic classifier. The approach we take is one introduced by particle
physicists in the model-dependent mode, where we first train a probabilistic classifier (h)
and then use its output to construct the test statistics. In the model-dependent (MD) mode,
the classifier (h) finds differences between the properties of simulated background data and
simulated signal data. The classifier (h) is then applied on the experimental data (Wi’s) and
the output (h(Wi)) is used to construct the test statistics. In the model-independent (MI)
mode, we do not make assumptions about the signal model, and hence do not have access
to simulated signal data. So, the classifier instead is trained to find differences between the
simulated background data and the experimental data, and if it is able to differentiate between
them, it indicates the presence of a signal component in the experimental data.

Constructing classifier-based test statistics. We propose two different strategies to con-
struct test statistics from the probabilistic classifier. Using each of the two strategies, we
then construct two test statistics. The first strategy, creating density ratio based test statistics,
takes advantage of the fact that, for a probabilistic classifier, the output h is the posterior
binary class probability. Now the posterior probability (h(w)) can be written as a one-to-one
function of the ratio (ψ(w)) of the probability densities of the two classes. Hence, the den-
sity ratio ψ(w) can be estimated using the classifier output h(w). Using these density ratio
estimates, we create two classical test statistics—the likelihood ratio test statistic (LRT) and
the score statistic. Note that the two classes are background and signal in the MD mode and
background and experimental in the MI mode. This strategy leverages the fact that classifiers
have been found to give accurate estimates of density ratios (Cranmer, Pavez and Louppe
(2015)).

The second strategy is to construct classification performance based test statistics. This
strategy, which is only applicable in the MI setting, takes advantage of the fact that, in the MI
mode, in the absence of a signal in the experimental data a classifier should not be able to dif-
ferentiate the experimental data from the background data since they have the same distribu-
tion. This is analogous to a high-dimensional two-sample testing problem where we compare
the distributions of the background and the experimental data using a classifier (Friedman
(2003), Kim, Lee and Lei (2019), Kim et al. (2021)). In this case the performance of the
classifier is indicative of whether there is any signal in the data. We measure the performance
in two ways, resulting in two test statistics—the area under the ROC curve (AUC) and the
misclassification error (MCE). The reason we include these test statistics is because they are
properties of the classifier itself, in contrast to the LRT which is being estimated using the
classifier.

The four test statistics according to the two strategies are presented in Table 1. In the
model-dependent mode, we cannot use classification performance based test statistics since
the classifier is trained on background and signal data. In the model-independent mode, we
cannot use the score statistic. This is because the score statistic is a function of the density ra-
tio of the signal data and the background data, whereas in the model-independent setting, we
only have an estimate for the density ratio of the experimental data and the background data.

One of our model-independent tests, based on the LRT statistic, is similar to the test pro-
posed by D’Agnolo and Wulzer (2019) and D’Agnolo et al. (2021). The other two model-
independent test statistics are the AUC and MCE statistics. To the best of our knowledge,
these two are novel in this application. Though the test that uses the LRT is similar to the test
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TABLE 1
Test statistics considered for model-dependent (MD) and model-independent (MI) searches.“X” marks cells that

do not have a corresponding test statistic

Test Statistics

Density Ratio Based Classification Performance
Based

LRT Score AUC MCE

Model-dependent MD-LRT MD-Score X X
Model-independent MI-LRT X MI-AUC MI-MCE

proposed by D’Agnolo and Wulzer (2019) and D’Agnolo et al. (2021), unlike them, we use
the nonparametric bootstrap as well as permutation methods to estimate the null distribution,
comparing the performance of the different re-sampling techniques. We also apply the tests
in a higher-dimensional setting than them. Additionally, since our test has a simple null vs.
a composite alternative, the LRT is not guaranteed to yield an optimal test in this setting.
Hence, it is important to compare the performance of the different test statistics.

Estimating the null distributions and Testing. We estimate the null distributions of the test
statistics using four different approaches—asymptotic, nonparametric bootstrap, permuta-
tion, and slow permutation. The bootstrap and permutation approaches are resampling meth-
ods that utilize the fact that, under the null, the experimental data and the background data
have the same distribution, and so the data can be resampled from a combination of the two
data sets and their labels can be permuted. The bootstrap and the regular permutation method
split the data into training and test data sets and resample the test data sets only, whereas
the slow permutation method resamples the entire data set and retrains the classifier on each
resampled data set which increases its computational complexity. A combination of a test
statistic and a null distribution estimation method forms a test. In principle, every test statis-
tic has a true null distribution, which these methods are trying to estimate. So, under the null,
these methods should give similar distributions. However, it is important to note that the es-
timated null distribution is a function of the experimental data, and hence only when there is
no signal in the experimental data (when null is true), it estimates the true null distribution.
So the power of the tests, when there is signal, is expected to be different for the different
null estimation methods. Hence, it is important to compare the performance of the different
null estimation methods for the different test statistics.

Estimating the signal strength. Towards our second contribution of estimating the signal
strength, the problem is particularly challenging in the MI mode, since the classifier differ-
entiates between background and experimental data and hence cannot directly identify signal
events. We solve this by showing that estimating the signal strength is equivalent to estimating
a monotone univariate density over the interval [0,1] at the right boundary at 1. In particular,
we need to estimate the density of a statistic built by considering the quantile of a Neyman–
Pearson-style likelihood ratio. Similar to the estimator given by Storey (2002), which is a
special case of a boundary density estimator using histograms, we use histograms to estimate
the density and then use a Poisson regression (Nelder and Wedderburn (1972)) model of the
histogram bin counts to estimate the density at the boundary point. The additional use of Pois-
son regression makes the boundary estimate more stable. We also find confidence intervals
for the estimates using GLM regression intervals and three different bootstrap methods.

Active subspace methods. For our third contribution and to interpret the classifier and
characterize the signal, we propose using active subspace methods (Constantine (2015),
Constantine, Dow and Wang (2014)) to explore which aspects of the covariates are the most
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informative for the test. Active subspaces have been used as a form of sensitivity analysis to
quantify uncertainty in an output (Constantine et al. (2015)), and they have also been used to
analyze the internal structure and vulnerability of deep neural networks (Cui et al. (2020)).
Similar to these works, in this paper we propose active subspace methods to interpret the
variability in the classifier output in terms of its inputs. Our proposed methods identify the
directions that capture the most variability in the gradient of the classifier. These directions
are found using an eigen decomposition (PCA) of the gradients of the classifier surface at ob-
served points. These directions give us information about the combinations of the covariates
that most influence the classifier in distinguishing the experimental data from the background
data, hence giving us an idea of what the signal looks like. Importantly, this process helps us
better understand the classifier that detects the signal which otherwise would be a black box.

Alternative variable importance methods have been used to understand the intrinsic predic-
tiveness potential of the covariates (Lei et al. (2018), van der Laan (2006), Williamson et al.
(2019)) which identify the individual covariates that play an important role in the classifier.
Variable importance has been addressed extensively for random forests (Breiman (2001),
Grömping (2009), Ishwaran (2007), Strobl et al. (2008)) and neural networks (Bach et al.
(2015), Shrikumar, Greenside and Kundaje (2017), Sundararajan, Taly and Yan (2017)). But
contrary to the active subspace methods, these methods concentrate on finding the variables
that are individually the most important and potentially miss detecting combinations of co-
variates that might have more predictive power.

It is worth noting that the methods presented in this paper can also be applied more gen-
erally. In this paper we demonstrate an application of the methods to the search of new phe-
nomena in particle physics, but the methods presented here are applicable beyond particle
physics. In general, these methods can be applied whenever there is a need to search for,
detect, or characterize collective anomalies in a high-dimensional space, where a single data
point is not necessarily anomalous but a collection of data points is. For example, these meth-
ods could potentially be used to find anomalous weather changes in high-dimensional climate
science data sets, where individual weather events might themselves not be anomalous but a
collection of certain types of weather events over a period of time might be. Potential further
applications range from engineering to medicine and other areas of the physical sciences.

The rest of this paper is structured as follows. In the following section, we describe the
role of model-independent methods in the search for new physics phenomena and discuss
some existing literature on it. In Section 3 we introduce the problem setup mathematically.
We describe the MD methods in Section 3.1 and the proposed MI methods in Section 3.2.
We then discuss methods to estimate the signal strength in the experimental data in Section 4.
In Section 5 we describe active subspace methods to understand the subspace affecting the
classifier the most, leading to an understanding of the detected signal. Finally, in Section 6
we demonstrate the performance of the proposed MI methods and compare them to the MD
methods using publicly available simulated data from a machine learning data challenge that
includes events corresponding to the SM Higgs boson signal. We include concluding remarks
and possible future directions of research in Section 7. We also provide exploratory analysis
of the Higgs boson data set that is used to perform the experiments in Section 6 and include
some other experimental details in the Supplementary Material (Chakravarti et al. (2023)).
We defer the proofs of the theorems and some of the proposed algorithms to the Supplemen-
tary Material as well.

2. Overview of model-independent searches of new physics. In particle physics, be-
fore any search analysis is performed, the experimental data is typically filtered for specific
types of final-state particles. Different choices here specify different search channels. For
example, the search could be restricted to a decay channel where four muons are observed.
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The data set would then contain kinematic and other features of these particles observed us-
ing the particle detector which dictates the dimensionality of the data. The data set is further
restricted by selection cuts on these features that are used to remove data points that lie in
regions of the phase space that are believed to be signal-free. For example, one might choose
only those events where the particles have large transverse momenta (larger than some thresh-
old). These cuts are generally performed to increase the signal-to-background ratio in the final
experimental data that is considered in the analysis. Even after the selection cuts, a typical
data set that needs to be analyzed may have a sample size ranging from hundreds of thousands
of events to million or billions of events. All of the methods presented in this paper can han-
dle such large data sets (as demonstrated in Section 6). In the experiments performed in this
paper, we use a 16-dimensional data set which is also typical for the searches, although the
dimensionality can also be much larger for complex search channels or if low-level detector
information is used.

Most model-independent approaches find the signal in experimental data by comparing
it to a reference background dataset which is an essential requirement for these strategies.
Hence, it is necessary for these approaches to have a trustable reference dataset. As discussed
in D’Agnolo et al. (2022), it is conceptually unavoidable for these model-independent ap-
proaches to require a reference background dataset, since they search for “new” phenomena,
and hence require a necessary notion of “old” phenomena. The required reference back-
ground datasets are usually generated using Monte Carlo event generators which sample col-
lision events consistent with the equations of the Standard Model of particle physics. Some
recent approaches, such as ANODE (Nachman and Shih (2020)) and CWoLa (Classification
Without Labels) Bump Hunting (Collins, Howe and Nachman (2018), Collins, Howe and
Nachman (2019)), estimate the background from the data itself which requires assumptions
on the signal region and access to data not in the signal region. Here we do not make any as-
sumptions on the signal region, so we use Monte Carlo simulations from the Standard Model
as the reference background dataset. However, it is good to note that model-independent
approaches are not necessarily restricted to Monte Carlo backgrounds, as demonstrated by
ANODE and CWoLa.

Even though these model-independent approaches are dependent on the availability of a
reliable, trustable background dataset to find new phenomena, the key advantage of model-
independent approaches is that they can detect discrepancies between the background data
and the experimental data irrespective of the distribution of the signal events. Such capability
can be essential for ensuring the maximal reach of the LHC physics program. In the case that
a discrepancy is found, it should be investigated further in order to understand if it results
from: (a) an inaccurate background MC generator, (b) a particle detector defect or a lack
of understanding of the detector, or (c) a previously unknown physics process. The active
subspace methods proposed in this paper may provide a preliminary indication in this process.
A model-independent search indicating a significant discrepancy can also guide the selection
of new model-dependent analyses to further investigate the nature of the discrepancy.

It is important to note here that there is no one “right” approach to finding new physics sig-
nals. The different model-dependent and model-independent approaches are complementary
and not superior to each other. For example, when a reliable signal model is available, model-
dependent approaches should yield greater power since they use the information available
about the signal model to optimize the test. It is also good to note that there is no black-and-
white distinction between model-independent and model-dependent methods. Rather, there
is a continuum of methods that vary in terms of the strength of the assumptions involved.
Any “model-independent” method at minimum needs to make assumptions about the back-
ground. Furthermore, to perform the model-independent search, one would in practice use
some amount of physics knowledge to choose a particular decay channel (say, four muons)
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and to impose further cuts within that channel (e.g., to choose events where the particles have
large transverse momenta) to narrow down the search to a part of the phase space that is
believed to be fertile for new signals and where the background can be modeled sufficiently
well. One might then be willing to make further assumptions about the location or shape of
the signal region, and so on. At the far end of this spectrum are fully “model-dependent”
methods that assume a specific signal model.

Additionally, both model-independent and model-dependent methods are affected by sys-
tematic uncertainties in the background (Cranmer (2015), Dorigo and de Castro (2020),
Lyons and Wardle (2018)). Background systematics in high-energy physics are typically pa-
rameterized using nuisance parameters that affect, among other things, the rate and shape
of the background samples. In low-dimensional situations, a standard approach is to handle
these nuisance parameters using likelihood profiling (Cranmer (2015)), while recent work has
focused on incorporating nuisance parameters into classifier training for high-dimensional
data. Training a classifier on simulated data generated using specific values for the nuisance
parameters may not be optimal for handling background data generated using other values
of the nuisance parameters. Even if the classifiers are trained on data generated using the
most likely values of the nuisance parameters and their effect is accounted for in the calibra-
tion, the power of the methods to detect new signals may be affected (Dorigo and de Castro
(2020)). Some classifier-based model-dependent approaches have been recently suggested
to handle the nuisance parameters. For example, Ghosh, Nachman and Whiteson (2021)
profile the nuisance parameters by constructing classifiers that are explicitly dependent on
the different values of the nuisance parameters. Reviews of model-dependent approaches
that deal with nuisance parameters in classifier-based searches can be found in Nachman
(2020) and Dorigo and de Castro (2020). Overall, dealing with systematic uncertainties in
the background in the model-independent setting is a challenging problem that affects any
model-independent method and whose detailed treatment is beyond the scope of this paper.
However, we note there is no reason to believe that it would not be possible to extend exist-
ing approaches for handling background systematics from the model-dependent setting into
the model-independent case. D’Agnolo et al. (2022) is, to the best of our knowledge, a first
contribution toward this important goal.

Below, we present a nonexhaustive review of existing literature on model-independent
approaches and other related work.

2.1. Related literature. Due to their advantages, model-independent approaches have
been used for new physics searches (CDF Collaboration (2008), Knuteson (2000), Soha
(2008)) at the Tevatron (CDF Collaboration (2009), Choudalakis (2008), D0 Collaboration
(2012)), HERA (H1 Collaboration (2004)), and the LHC (ATLAS Collaboration (2019),
CMS Collaboration (2017), CMS Collaboration (2020)). These methods typically compare
a large set of binned distributions to the prediction from the background Monte Carlo sim-
ulation, in search for bins in the experimental data that exhibit a deviation larger than some
predefined threshold. For example, the approach of ATLAS Collaboration (2019), employed
by the ATLAS experiment, uses a (quasi-)model-independent method that considers some
generic features of the potential new physics signals. These approaches have two limitations:
(a) they do not consider the multivariate dependency structures between the variables in the
data, and (b) they might miss certain signals that do not show a localized excess in one of the
studied distributions.

More recent approaches like CWoLa (Classification Without Labels) Bump Hunting
(Collins, Howe and Nachman (2018), Collins, Howe and Nachman (2019)), ANODE
(Nachman and Shih (2020)), SALAD (Andreassen, Nachman and Shih (2020)) and simu-
lation augmented CWoLa (SA-CWoLa) (Kasieczka et al. (2021)) are also based on searching
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for anomalies by assuming that the signal is localized in a single feature. These approaches
use this weak assumption about the signal which causes them to have the second limitation
mentioned above, namely, they might miss signals that do not show a localized excess along
one of the features. Some of the algorithms additionally assume that the signal’s distribu-
tion for the other features is independent of the selected single feature that is being scanned.
Kasieczka et al. (2021) describe a variety of current methods for signal detection along with
results on the LHC Olympics 2020 datasets.

A different approach that uses a semisupervised nonparametric clustering algorithm is
presented by Casa and Menardi (2018). They assume that, in high energy physics, a new
particle manifests itself as a significant peak emerging from the background process. They use
nonparametric modal clustering to search for a signal that is expected to emerge as a bump in
the background distribution. BuHuLaSpa and Bump Hunter methods, presented in Kasieczka
et al. (2021), also use similar bump hunting ideas to find the signal. UCluster, presented in
Kasieczka et al. (2021), uses clustering to find the localized signal. These methods suffer
from the second problem mentioned above: they can only find localized signals.

Model-independent semisupervised searches were also proposed by Kuusela et al. (2012)
and Vatanen et al. (2012) who use multivariate Gaussian mixture models to estimate the
densities of the background and the experimental data. They test for the significance of the
additional Gaussian components which quantify the anomalous contribution. The drawback
of this method is that Gaussian mixture models are very difficult to fit in a high-dimensional
setting. Additionally, since the signal strength is typically very small, the quality of the fit
influences the power of the test in detecting the signal.

These drawbacks of the mixture modeling methods along with the fact (as mentioned
before) that classification algorithms have demonstrated excellent performance in detecting
signals in the model-dependent approaches, especially in the high-dimensional setting, moti-
vates us to use classifiers, instead of mixture modeling, to find the deviations of the experi-
mental data from the background.

The problem of comparing the distributions of the background and the experimental data is
also analogous to a high-dimensional two-sample testing problem (Kim, Lee and Lei (2019),
Kim et al. (2021)), where the signal events appear as a collective anomaly (Chandola, Baner-
jee and Kumar (2009)) in a cluster close to each other. Hence, we also compare the methods
proposed in this paper to nearest-neighbor two-sample tests, introduced in Schilling (1986)
and Henze (1988), for a subsample of the data. In the experiments we observe that methods
that use a semisupervised classifier have much higher power to detect the signal than the
nearest-neighbor two-sample tests.

3. Classifier-based tests for signal detection. In this section we introduce both model-
dependent and model-independent approaches to signal detection in the experimental particle
physics data. Both approaches use background data from MC event generators for back-
ground events, based on the Standard Model, together with experimental data which are a
mixture of background and a potential signal. First, we discuss the model-dependent ap-
proach that additionally assumes access to signal data that are generated using MC event
generators for a hypothesized signal model. Then we describe the model-independent ap-
proach that does not assume access to the signal data. We now introduce formal notation to
discuss the two different approaches.

The background, signal, and experimental data are samples from Poisson point processes
(Cranmer (2015), Reiss (1993)). We condition on the sample sizes of the individual datasets
so that the data in all three of the cases may be treated as independent samples from a density
(i.e., from a binomial point process). Specifically, we have three datasets,

Background : X = {X1, . . . ,Xmb
}, Xi ∼ pb,
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Signal : Y = {Y1, . . . , Yms }, Yi ∼ ps,(1)

Experimental : W = {W1, . . . ,Wn}, Wi ∼ q = (1 − λ)pb + λps,

where pb,ps are the densities of the background and signal data, respectively, q is the density
of the experimental data, and λ is a scalar parameter representing the signal strength.

The likelihood function for λ, given the experimental data (W) (treating pb and ps as
known for the moment), is

(2) L(λ) =
∏

i

(
(1 − λ)pb(Wi) + λps(Wi)

)
.

The null hypothesis (H0) that there is no signal corresponds to λ = 0. So the goal is to test
H0 : λ = 0 vs. H1 : λ > 0. We additionally have the likelihood ratio.

(3)
L(λ)

L(0)
=

∏

i

(
1 − λ + λψ(Wi)

)
,

where ψ(w) = ps(w)/pb(w). Note that the function ψ can be seen as an infinite dimensional
nuisance parameter.

In the idealized case where pb and ps are known, we could use the usual likelihood ratio
test (LRT) statistic

(4) T = −2 log
(
L(0)/L(λ̂)

)
= 2

∑

i

log
(
1 − λ̂ + λ̂ψ(Wi)

)
,

where λ̂ is the maximum likelihood estimator (MLE) of λ based on the experimental data W .
Alternatively, we could use the score test statistic

(5) T = 1

n

∑

i

(
ψ(Wi) − 1

)
.

In practice, the densities pb and ps are unknown. The two different approaches, described in
this section, show how a classifier can be used to estimate the desired statistics directly. We
prefer estimating the density ratio required for the desired statistics directly instead of taking
the ratio of the estimated densities. This is due to the high-dimensionality of the data which
makes estimating the high-dimensional density with limited data very difficult.

3.1. The model-dependent (supervised) case. In this case we make use of the signal data
Y , where Y1, . . . , Yms ∼ ps are generated using a MC event generator for a hypothized signal
model. Such approach is standard in most new physics searches at the LHC and serves here
as a point of comparison against the model-independent methods. The strategy underlying
our implementation of this approach is to use a classifier to estimate ψ = ps/pb and then use
the LRT or the score test with the estimated ψ .1 Since ψ is estimated, we cannot rely on stan-
dard asymptotics to get the null distribution. Instead, we use permutation or nonparametric
bootstrap methods.

Before we train a classifier, we first combine the background and signal data into a single
dataset

{Z1, . . . ,Zmb+ms } =X ∪Y = {X1, . . . ,Xmb
, Y1, . . . , Yms },

1In most LHC analyses, ψ is currently used to extract a signal-enriched subset of the data which is then used
in a low-dimensional parametric fit to form a test statistic (Radovic et al. (2018)). Here we use instead the ψ -
based high-dimensional LRT or score test to provide an apples-to-apples comparison with the model-independent
methods.
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and we define Si = 1 if Zi is from the signal data Y and Si = 0 otherwise. We treat (Zi, Si)

as a sample from a density p(z, s) with π0 := P(S = 1) = ms/(mb + ms), the probability of
any sample being from the signal distribution.

Let h0(z) := P(S = 1|Z = z) denote the probability of a sample being from the signal
distribution given Z = z. Then using Bayes’s rule,

(6) h0(z) = P(S = 1|Z = z) = π0ψ(z)

π0ψ(z) + (1 − π0)
.

Inverting this,

(7) ψ(z) =
(

1 − π0

π0

)(
h0(z)

1 − h0(z)

)
.

This leads to our estimate of ψ ,

(8) ψ̂(z) =
(

1 − π0

π0

)(
ĥ0(z)

1 − ĥ0(z)

)
,

where ĥ0(z) is a classifier that separates the signal data Y from the background data X . In
this paper we take ĥ0 to be a random forest, but in principle, any classifier can be used.

To use ψ̂(z) to calculate the LRT statistic in (4), we estimate λ using its MLE as follows.
We can write the likelihood of the experimental data as

(9) L(λ) =
∏

i

pb(Wi) ×
∏

i

(
1 − λ + λψ(Wi)

)
.

The first term does not involve λ, so we can ignore it. Hence,

(10) L(λ) ∝
∏

i

(
1 − λ + λψ(Wi)

)
.

We then define the estimated likelihood

(11) L̂(λ) ∝
∏

i

(
1 − λ + λψ̂(Wi)

)
,

and we define λ̂ to be the maximizer of L̂(λ). We can now use λ̂ and ψ̂ to estimate the LRT
and the score test statistics, as given in (4) and (5).

To see the effect of maximizing the estimated likelihood, using the estimated ψ instead of
maximizing the actual likelihood, let �(λ) = logL(λ), let �̂(λ) = log L̂(λ), and note that, for
small λ,

(12) �(λ) = λ
∑

i

(
ψ(Wi) − 1

)
− λ2

2

∑

i

(
ψ(Wi) − 1

)2 + oP

(
λ2)

+ C,

where C = ∑
i log(pb(Wi)) is just a constant and can be ignored. A similar relation holds for

�̂(λ) and ψ̂ . So

(13)
1

n
�̂(λ) − 1

n
�(λ) = λ

n

∑

i

(
ψ̂(Wi) − ψ(Wi)

)
+ oP (λ),

which shows how the accuracy of the classifier affects the log-likelihood. The maximizer λ̃

of �(λ) and the maximizer λ̂ of �̂(λ) are

(14) λ̃ =
[ ∑

i(ψ(Wi) − 1)
∑

i(ψ(Wi) − 1)2

]

+
+ oP (λ), λ̂ =

[ ∑
i(ψ̂(Wi) − 1)

∑
i(ψ̂(Wi) − 1)2

]

+
+ oP (λ).
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Hence, λ̂ − λ̃ = OP ( 1
n

∑
i(ψ̂(Wi) − ψ(Wi))), emphasizing again the importance of an accu-

rate classifier. Note that, in practice, instead of using the above approximation, we evaluate
the MLE of λ by performing a grid search on [0,1].

As n → ∞, the usual likelihood ratio test statistic (Böhning et al. (1994), Ghosh and Sen
(1985)),

(15) T = 2
∑

i

log
(
(1 − λ̂) + λ̂ψ(Wi)

) d
�

1

2
δ0 + 1

2
χ2

1 ,

where δ0 is a degenerate distribution at 0. But when ψ̂ is substituted for ψ , the asymptotic
distribution is unknown, so the null distribution needs to be estimated by simulating from the
background model. If the available background data is limited, we can use permutation or
nonparametric bootstrap methods; see Section 6.2.

Similar remarks apply to the score statistic T = n−1 ∑
i(ψ(Wi) − 1) and its estimated

version T̂ = n−1 ∑
i(ψ̂(Wi) − 1). There are conditions under which T̂ has a tractable distri-

bution. Suppose that ψ̂ is estimated on part of the data and T̂ on another. Now

(16)
√

nT̂ =
√

nT +
√

n

(
1

n

∑

i

(
ψ̂(Wi) − ψ(Wi)

))
.

The first term converges to N(0, σ 2), where σ 2 = Epb
[(ψ(W) − 1)2]. If ψ is in a Hölder

class of smoothness index β and β > d/2, then it can be shown that 1
n

∑
i(ψ̂(Wi)−ψ(Wi)) =

OP (n−2β/(2β+d)), where d is the dimension of the Wi ’s. Hence, if β > d/2, the second term
is negligible so that

√
nT̂ � N(0, σ 2). However, we have found that the Normal approxima-

tion is poor in practice, and instead we use permutation and bootstrap methods to approxi-
mate the null distribution. Similar to the LRT, the null distribution can also be estimated by
simulating from the background model.

To use nonparametric bootstrap or permutation methods, we randomly split the available
background data X into two sets X1 and X2. We use the first set X1 along with the signal
data Y to train the classifier ĥ0. We use the second set X2 along with the experimental data
W to approximate the null distributions of the LRT and the score statistics. Note that, under
the null H0 : λ = 0, the experimental data W and background data X2 have the same distri-
bution pb. In the case of nonparametric bootstrap, we approximate the null distributions by
repeatedly sampling with replacement from X2 ∪W and computing the test statistics. For the
permutation test, we do the same using sampling without replacement.

3.2. Model-independent (semisupervised) case. In this case we assume that we do not
have access to (or do not completely trust) the signal training sample Y = {Y1, . . . , Yms }.
So the data available are X = {X1, . . . ,Xmb

} and W = {W1, . . . ,Wn}, where Xi ∼ pb and
Wi ∼ q = (1 − λ)pb + λps , with pb, ps and λ unknown. We want to test H0 : λ = 0 vs.
H1 : λ > 0 which is equivalent to testing H0 : pb = q vs. H1 : pb �= q . Hence, we are in a
two-sample testing scenario (Kim, Lee and Lei (2019), Kim et al. (2021)).

Again, we want to leverage the fact that classifiers have been found to give accurate esti-
mates of density ratios (Hastie, Tibshirani and Friedman (2009), Ch.14) (Cranmer, Pavez and
Louppe (2015), Goodfellow et al. (2014)). One strategy is to use a classifier like before to
obtain a likelihood ratio test statistic, but this time we estimate the density ratio ψ† = q/pb.
To do this, we train a classifier to differentiate between the experimental (W) and background
events (X ), instead of the signal (Y) and background events (X ). As mentioned in the Intro-
duction, this strategy is similar to the one taken by D’Agnolo et al. (2021) and D’Agnolo and
Wulzer (2019), who use a neural network to estimate the likelihood ratio test statistic.
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A second strategy is to use the area under the curve statistic (AUC) (Hanley and McNeil
(1982)) or the misclassification error/misclassification rate (MCE) to evaluate the perfor-
mance of the classifier. The intuition behind the second strategy is that, in the absence of
signal under the null, a classifier should not be able to differentiate between the background
and the experimental data. We discuss both the strategies below.

As before, let h denote a classifier in the combined (background and experimental) sample,
then

(17) ψ†(z) =
(

1 − π

π

)(
h(z)

1 − h(z)

)
,

where now π = n/(n + mb). This leads to our estimate of ψ†

(18) ψ̂†(z) =
(

1 − π

π

)(
ĥ(z)

1 − ĥ(z)

)
,

where ĥ(z) is the trained classifier.
The likelihood ratio, as given in (3), can be rewritten as

(19)
L(λ)

L(0)
=

∏

i

ψ†(Wi).

Hence, the LRT statistic is given by

(20) T = 2
∑

i

log ψ̂†(Wi).

Similar to the arguments presented in the model-dependent case, since we are estimating ψ†

using ψ̂†, usual asymptotics do not hold for the LRT statistic. Instead, we propose a condi-
tional asymptotic test. We split the background and the experimental data into training and
test data and estimate ĥ on the training data. We then use the test experimental data to calcu-
late the test statistic T and use the test background data to approximate the null distribution.
Unlike the chi-squared null distribution, considered by D’Agnolo et al. (2021) and D’Agnolo
and Wulzer (2019), we instead use an asymptotic Normal distribution to approximate the
null distribution. In this paper the split of the data into training and test data sets is performed
roughly equally. The reason for this is that if the size of the training data is small, we might
not have sufficient signal samples in the training data for the classifier to recognize them, and
if the size of the test data is small, there might not be enough signal samples in the test set
for the test to give a significant result. We additionally propose nonparametric bootstrap and
permutation methods to approximate the null distribution as well.

For the second strategy that uses the performance of the classifier (ĥ) in separating the
background data from the experimental data, we consider two statistics—AUC (area under
the curve) statistic and MCE (misclassification error) statistic.

A conventional summary of the ROC curve is the area under the curve, or AUC. The
ROC curve (Hanley et al. (1989), Metz (1978)) demonstrates the performance of a classifier
by plotting the true positive rate (TPR) vs. the false positive rate (FPR) at various thresh-
old settings of the classifier output. For example, for our classifier ĥ(z), given a threshold
parameter t , an instance Z is classified as experimental (“positive”) if ĥ(Z) > t and back-
ground (“negative”) otherwise. Now Z ∼ q if Z actually belongs to the experimental class,
and Z ∼ pb if Z actually belongs to the background class. Therefore, the TPR is given by
TPR(t) = Pq(ĥ(Z) > t), and the FPR is given by FPR(t) = Ppb

(ĥ(Z) > t), where Pq is the
probability when Z ∼ q and Ppb

is the probability when Z ∼ pb. Since the ROC curve plots
TPR(t) (y-axis) vs. FPR(t) (x-axis) with varying t , the AUC θ is given by

(21) θ =
∫ 1

0
TPR

(
FPR−1(x)

)
dx = P

(
ĥ(W) > ĥ(X)

)
,
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by standard derivation. So the AUC can also be interpreted as the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative one.
Hence, we can estimate it using

(22) θ̂ = 1

mbn

∑

i

∑

j

I
{
ĥ(Wj ) > ĥ(Xi)

}
.

Under the null H0 : λ = 0, we have that q = pb, that is, X and W have the same dis-
tribution. So under H0, θ = 0.5 and an AUC that is significantly greater than 0.5 provides
evidence of q �= pb. In other words, testing H0 : λ = 0 vs. H1 : λ > 0 is equivalent to testing
H0 : θ = 0.5 vs. H1 : θ > 0.5.

We can also use the MCE (misclassification error/classification error rate) to measure the
performance of the classifier (Kim et al. (2021)), where we define the MCE as

(23) M = 0.5P
(
ĥ(X) > π

)
+ 0.5P

(
ĥ(W) < π

)
.

Note that this is the average of the false positive rate (first term) and the false negative rate
(second term) for threshold π = n/(n + mb). This can be estimated using

(24) M̂ = 1

2

[
1

mb

∑

i

I
{
ĥ(Xi) > π

}
+ 1

n

∑

j

I
{
ĥ(Wj ) < π

}]
.

Under the null, H0 : λ = 0, and as a result, q = pb; that is, Xi
d= Wj . Hence, M = 0.5 under

the null. The classifier will have a true accuracy significantly above half (and hence M below
half), only if q �= p. Hence, we can use M̂ as a test statistic and test H0 : M = 0.5 vs. H1 :
M < 0.5.

As with the LRT statistic, the tests using the AUC and the MCE statistics can also be per-
formed using asymptotic, bootstrap and permutation methods. The asymptotic AUC method,
unlike the asymptotic LRT and MCE methods, does not use a conditional test. For the AUC
we derive the asymptotic distribution of the statistic using results presented in Newcombe
(2006). These methods also use data splitting, where we use the training data to fit the clas-
sifier (ĥ) and use the test data to perform the test. We detail the nonparametric bootstrap and
one of the permutation methods in Method 3.1 below. We provide algorithms for the other
methods, including the asymptotic methods using the three statistics LRT, AUC, and MCE,
and the slower in-sample permutation method in the Supplementary Material (Chakravarti
et al. (2023)).

REMARK.

1. All the model-independent methods presented in this section, except the in-sample per-
mutation method, use data splitting of the background and the experimental data into training
and test data, to approximate the null distribution and to perform the test. This has the benefit
that the classifier can be kept fixed when estimating the null distribution. Here splitting a
sample means randomly splitting the sample into two disjoint subsamples. The training data
is used to train the classifier ĥ, and the test data is used to perform the signal detection test.
The in-sample permutation method, on the other hand, retrains the classifier on permuted
background and experimental data when approximating the null. This has the advantage of
using all the data to train the classifier, but the computing time is much longer due to the
classifier retraining required when obtaining the null distribution.

2. It is also important to note that here we used the random forest (RF) classifier to predict
posterior probabilities. However, the “vote tallies” produced by RF classifiers are not poste-
rior probabilities from a generative model and very often are uncalibrated when interpreted
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as such. To calibrate the random forest classifier outputs, one can use methods to improve
the calibration by using Platt scaling or other more sophisticated methods (Boström (2008),
Niculescu-Mizil and Caruana (2005)) on the random forest outputs before performing the
tests. We performed several experiments for the model-independent asymptotic tests using
Platt scaling on the random forest outputs for calibration and the results were similar to the
uncalibrated random forests used here. So we leave the decision of whether to further cali-
brate the random forest outputs before using the tests to the discretion of the user.

METHOD 3.1. Bootstrap and permutation methods—faster than the in-sample permuta-
tion method, but slower than the asymptotic methods:

1. Split background data X = {X1, . . . ,Xmb
} into X1 and X2 of sizes m1 and m2, respec-

tively.
2. Split experimental data W = {W1, . . . ,Wn} into W1 and W2 of sizes n1 and n2, respec-

tively, with n2 = m2
3. Train the classifier ĥ on X1 and W1.
4. Evaluate the LRT statistic T on W2 using (18) and (20) as

(25) T̃ = T

2n2
= log

(
1 − π

π

)
+ 1

n2

∑

Wi∈W2

log
(

ĥ(Wi)

1 − ĥ(Wi)

)
,

where π = n1/(m1 +n1). Similarly, evaluate the AUC statistic θ̂ , as defined in equation (22),
and the MCE statistic M̂ , as defined in equation (24), on X2 and W2 as

θ̂ = 1

m2n2

∑

Xi∈X2

∑

Wj∈W2

I
{
ĥ(Wj ) > ĥ(Xi)

}
,(26)

M̂ = 1

2

[
1

m2

∑

Xi∈X2

I
{
ĥ(Xi) > π

}
+ 1

n2

∑

Wj∈W2

I
{
ĥ(Wj ) < π

}]
,(27)

respectively.
5. Estimate the null distribution of T̃ , θ̂ and M̂ , by repeatedly drawing m2 + n2 random

observations from X2 ∪W2 (with replacement for bootstrap and without replacement for per-
mutation) and randomly labelling m2 of them as X’s and n2 of them as W ’s before computing
T̃ , θ̂ and M̂ on them. (Note that, under the null, q = pb, implying that the X’s and the W ’s
have the same distribution.)

6. Calculate the p-values based on the estimated null distributions.

4. Estimating λ in the model independent scenario. Here we discuss the problem of
estimating the signal strength λ in the semisupervised setting. As we have seen in Section 3.2,
the ratio of the densities ψ† = q/pb can be written as

ψ†(z) =
(

1 − π

π

)(
h(z)

1 − h(z)

)
,

where π = n/(n + mb) and h is the classifier differentiating the experimental data from the
background data. Since

(28) ψ†(z) = q(z)

pb(z)
= (1 − λ)pb(z) + λps(z)

pb(z)
= 1 − λ + λψ(z),

we see that, for any z such that ψ(z) �= 1, we have

(29) λ =
1 − (1−π

π
)( h(z)

1−h(z)
)

1 − ψ(z)
.
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Hence, if we can find any z for which ps(z) = 0 (no signal), then we can estimate λ by

(30) λ̂ = 1 −
(

1 − π

π

)(
ĥ(z)

1 − ĥ(z)

)
,

where ĥ(z) is the trained semisupervised classifier. The problem is that the search for such a
z may not be obvious.

Instead, we take a different approach. To ensure identifiability, we assume infz ps(z)/

pb(z) = 0. We believe this is true in most high-energy physics problems. To simplify the
discussion, we also assume pb, q > 0 everywhere.

Next, we show that the problem of estimating λ can be transformed into a problem of
estimating gq(1), where gq is the density of a univariate random variable supported on [0,1].
We define for any t ≥ 0, Ct = {z ∈ Rd : ps(z) ≥ tpb(z)}. Then for any z ∈ Rd , we define the
Neyman–Pearson quantile transform of z as

(31) ρ(z) = PX∼pb

(
ψ†(X) ≥ ψ†(z)

)
= PX∼pb

(
h(X) ≥ h(z)

)
.

Let g0, g1, and gq be the density functions of ρ(Z) when Z ∼ pb, Z ∼ ps , and Z ∼ q ,
respectively. Then we can show, as stated in Theorem 4.1 below, that gq(1) = 1 − λ, and,
therefore, λ = 1 − gq(1). So, we can estimate λ using

(32) λ̂ = 1 − ĝq(1),

where ĝq is a density estimate based on the ρ̂(Wi)’s defined as

(33) ρ̂(Wi) = 1

mb

∑

j

I
{
ĥ(Xj ) ≥ ĥ(Wi)

}
.

THEOREM 4.1. Assuming ρ(Z) has continuous density under either Z ∼ pb or Z ∼ ps ,
then the following hold:

1. g0(u) = 1 for all u ∈ [0,1]. That is, ρ(Z) ∼ Unif(0,1) if Z ∼ pb.
2. g1(u) = tu where tu satisfies PX∼pb

(X ∈ Ctu) = u. In particular, g1(1) = 0.
3. gq(1) = 1 − λ.

We detail the proof of the theorem in Section 1 of the Supplementary Material (Chakravarti
et al. (2023)).

Now the problem of estimating λ reduces to estimating a monotone density at a boundary
point. We can estimate the density gq(1), based on the ρ̂(Wi)’s, using a simple histogram
based estimator,

(34) ĝq(1) = 1

nb

∑

i

I
{
ρ̂(Wi) ∈ (1 − b,1]

}
,

where b is the bin-width of the histogram estimator. But, since the density is a monotonically
decreasing function, the density estimates at points close to 1 could also be indicative of the
estimate at 1.

We, therefore, propose using a Poisson regression on bins close to 1 in order to estimate the
density at 1. We fit a Poisson regression f̂ (t) = exp(β0 + β1t), with β1 ≤ 0 to the histogram
estimates

(35) Ht =
∑

i

I
{
ρ̂(Wi) ∈ (t − b, t]

}
, T ≤ t − b ≤ t ≤ 1,
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where b is the bin-width of the histogram estimator and T determines the neighborhood of 1
that is used to estimate the density at 1. Then the estimated density at 1 is given by

(36) ĝq(1) = f̂ (1),

the estimate given by the Poisson regression at 1.

REMARK.

1. Note that the bins (t − b, t] for T ≤ t − b ≤ t ≤ 1 form a partition of [T ,1], and we
regress on the bin end points for the Poisson regression model.

2. We constrain β1 ≤ 0, since we know that gq is a monotonically decreasing function. In
practice, we implement this condition by setting β̂1 = 0, when the Poisson regression models
estimates β̂1 > 0 and fit f̂ (t) = exp(β0).

3. In practice, we additionally perform data-splitting in order to get out-of-sample esti-
mates of λ. It’s important to consider out-of-sample estimates since the Poisson regression
model is conditioned on the trained classifier and computing the signal strength estimates on
the same data that is used to train the classifier could give biased estimators.

4. Instead of fitting a Poisson regression model on the histogram estimates Ht , we ad-
ditionally tried using just the mean of the density estimates, given by the histogram above
a threshold T , to estimate f̂ (1). We also tried using a simple linear regression on log(Ht ).
These methods experimentally gave poorer estimates compared to the Poisson model.

We compute the out-of-sample estimate of λ, as mentioned in Method 4.1 below. We can
additionally use nonparametric bootstrap to understand the stability of the signal strength
estimates to perturbations in the data. We detail the bootstrap process below in Method 4.2.
The method provides standard error estimates as well as bootstrapped confidence intervals
that characterize the stability of the estimated signal strength λ.

METHOD 4.1. Estimating the signal strength λ:

1. Split background data X = {X1, . . . ,Xmb
} into X1 and X2 of sizes m1 and m2, respec-

tively.
2. Split experimental data W = {W1, . . . ,Wn} into W1 and W2 of sizes n1 and n2 = m2,

respectively.
3. Train the classifier ĥ on X1 and W1.
4. Compute ρ̂(Wi) for all Wi ∈W2, as defined in (33), based on ĥ and X2 as

(37) ρ̂(Wi) = 1

m2

∑

Xj∈X2

I
{
ĥ(Xj ) ≥ ĥ(Wi)

}
, Wi ∈ W2.

5. Get histogram estimates Ht of ρ̂(Wi)’s for bins larger than T with bin-width b using
equation (35).

6. Use Poisson regression to estimate the density at 1 as ĝq(1). Then λ̂ = 1 − ĝq(1).

METHOD 4.2. Bootstrapped uncertainty intervals for λ̂:

1. Repeatedly draw with replacement mb background samples from X and n experimental
samples from W , and split them into X ∗

1 , X ∗
2 , W∗

1 and W∗
2 of sizes m1,m2, n1, and n2 at

random ensuring no overlap between the training and test data sets. That is, X ∗
1 ∩ X ∗

2 = φ

and W∗
1 ∩W∗

2 = φ. m1, n1,m2 and n2 are same as ones used in Method 4.1 above.
2. Find λ̂∗ in each case using steps 3–6 in Method 4.1. Note that the classifier is retrained

on X ∗
1 ∪W∗

1 for every random sample.
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3. We can then use the empirical standard deviation or quantiles of the λ̂∗’s to create
bootstrap confidence intervals that will give estimates of the stability of the estimator λ̂ to
perturbations in the data.

REMARK. Since the data are split to consider an out-of-sample estimate of λ, it is also
necessary in the bootstrapped samples for the training set to be disjoint of the test set to avoid
problems caused by considering an in-sample estimate.

5. Interpreting the classifier. The signal detection test relies on the classifier; here we
use random forest. So to understand, characterize and interpret the new physics signal de-
tected by the test, it is useful and necessary to find a way to interpret the fitted classifier. In
this section we propose two methods to help interpret the random forest classifier.

The methods are based on understanding how the gradient of the classifier surface (ĥ(z))
varies. The underlying idea is that directions in which the surface is sloped or changes a lot
contain useful information for the classification, while directions in which the surface is flat
do not. For the first method, we look at the density of the gradients of the classifier marginally
along each of the variables. For the second method, we find multivariate dependencies that
jointly affect the gradient of the classifier via finding the active subspace (Constantine (2015))
of the classifier surface. The active subspace is found by looking at the leading eigenvectors
of the standardized gradients of the classifier surface by performing PCA on the standardized
gradients.

Figure 3 demonstrates the active subspace method on a two-dimensional example for sim-
plicity, where the data (X1,X2) ∈ [−1,1] × [−1,1] and the signal lies around lines parallel
to the line X1 + X2 = 0. We then train a classifier ĥ(X1,X2) to separate the signal from the
background. We notice that the classifier output does not appear to have any relationship with
either X1 or X2 marginally, as shown in Figure 3a. But the smoothed classifier surface detects
the signal around lines parallel to the line X1 + X2 = 0, as can be seen by the ridges along
those lines in Figure 3b. So looking at the standardized gradients of the classifier surface gives
us information about the direction in which the surface changes. As seen in Figure 3c, the first
eigenvector of the standardized gradients reflects the direction in which the classifier surface
changes the most which is along the X1 − X2 = 0 line. Identifying this subspace helps us
understand the directions in the feature space that separate the signal from the background.
Note that we consider a two-dimensional example here for illustration purposes only. The
real data can be of much higher dimensionality.

In what follows, instead of directly looking at the classifier ĥ(z), we look at logit(ĥ(z)) =
log(ĥ(z)/(1 − ĥ(z))). In practice for computational purposes, we add a small noise (e.g.,
10−10) to ĥ(z) when ĥ(z) ∈ {0,1} to ensure that logit(ĥ(z)) stays finite. We notice that tak-
ing the logit transformation provides more stable estimates of the gradients of the surface.
Henceforth, we will instead look at the gradients of H(z) := logit(ĥ(z)).

To find the gradient ∇zH(z), we fit a local linear smoother to the logit of the random forest
output. That is, we fit the logit of the classifier outputs H(Zi) = logit(ĥ(Zi)) locally around
z∗ using

(38) Ĥ (z) = α
(
z∗)

+ β
(
z∗)T (

z − z∗)
+ o

(∥∥z − z∗∥∥2
2

)
.

Then β̂(Zi) provides estimates of the gradient of the logit classifier output on the
data. We furthermore replace the gradient estimates β̂j (Zi) by their standardized versions
β̂j (Zi)/sd(β̂j (Zi)) at every data point Zi to get more stabilized values. So henceforth, β̂(Zi)

will be used to indicate the standardized gradient estimates for notational simplicity.
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FIG. 3. We demonstrate the active subspace method on a two-dimensional example, as shown in (a), where

grey circles denote the uniformly distributed background and the green triangles denote the signal. The signal lies

around lines parallel to the line X1 +X2 = 0. Additionally, (a) also shows the output of the classifier that separates

the signal from the background, ĥ(X1,X2), as a function of X1 and X2 individually. Neither of these variables

marginally has separation power for the signal. (b) shows the smoothed classifier surface as a function of both X1
and X2. The active subspace method then performs PCA on the standardized gradients of the smoothed classifier

output in (b). (c) shows a scatter plot of the standardized gradients of the smoothed classifier output as well as the

two eigenvectors. We see that, as expected, the first eigenvector picks the direction in which the classifier output

varies the most, namely, X1 − X2 = 0. We consider a two-dimensional example here for illustration purposes

only. The real data can be of much higher dimensionality.

REMARK. The data used for estimating the gradient can either be the background data
or the experimental data or a combination of both. We use a combination of both, since
experimentally we see that using the combination captures the classifier surface better.

We can then look at:

(i) The density of β̂j (Z), the estimated standardized gradient of H(Z) along the j th
variable.

(ii) The active subspace found using the estimated standardized gradients β̂(Z), as de-
tailed in Section 5 below.

The density of β̂j (Z) explains how the classifier behaves marginally along each variable,
whereas the active subspace identifies relationships between multiple variables that cause the
most change in the classifier. We now describe the active subspace method in detail below.
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5.1. Active subspace of the classifier. In this section we find the active subspace of the
classifier ĥ, which is assumed to be fixed, and all the expectations in this section are with
respect to the inputs of the fixed classifier. Let us consider the mean and the covariance
matrix of ∇zH(z). We define

(39) C = Ef

[(
∇zH −E[∇zH ]

)(
∇zH −E[∇zH ]

)T ]
,

where Ef is the expectation with respect to the density f = cpb + (1 − c)q , where c =
m2/(m2 +n2) gives the proportion of background data in the combined sample of background
data X2 of size m2 and experimental data W2 of size n2 and q = (1−λ)pb +λps . We consider
expectations with respect to f since, as explained in the remark above, we use a combination
of the experimental data and the background data to find the active subspace of the classifier.

The mean Ef [∇zH ] gives the expected slope of the surface of H(z). For example, a posi-
tive mean gradient along the j th variable indicates an increasing trend in the classifier output
with that variable, meaning that increasing that variable increases the probability of an exper-
imental data point and decreases the probability of a background data point. The covariance
matrix C, on the other hand, encodes the variable relationships that cause variability in the
classifier surface.

Consider the real eigenvalue decomposition of C,

(40) C = M�MT , � = diag(λ1, . . . , λd), λ1 ≥ · · · ≥ λd ≥ 0,

where M has columns {M·1, . . . ,M·d}, the normalized eigenvectors of C. Then the vector
M·1, corresponding to λ1, gives the association between the variables (i.e., the direction
in the input space) that best captures the changes in H(z) around the expected slope, fol-
lowed by M·2 and so on. Therefore, the eigenvectors corresponding to the leading eigenval-
ues λ1, λ2, . . ., give us an idea about the directions along which the classifier output changes
the most. These are directions that contain meaningful information for separating the exper-
imental data from the background data and, therefore, enable us to characterize how the ex-
perimental data differs from the background data. Towards this end, we propose Method 5.1
that uses the gradient estimates β̂(Z) derived from a local linear smoother.

METHOD 5.1. Active subspace for the classifier ĥ:

1. Split background data into X1 and X2 of sizes m1 and m2, respectively. Split experi-
mental data into W1 and W2 of sizes n1 and n2 = m2, respectively. Train the classifier ĥ on
X1 and W1.

2. Fit a local linear smoother that estimates H(Zi) = logit(ĥ(Zi)) for Zi ∈X2 ∪W2 using
the model given in (38).

3. Consider the coefficients of the local linear smoother β̂(Zi) for Zi ∈ X2 ∪ W2. They
provide an estimate of the gradient ∇zH at Zi , that is, ̂∇zH(Zi) = β̂(Zi) for Zi ∈X2 ∪W2.

4. Standardize the estimated gradients β̂j (Zi) to β̂j (Zi)/
̂

sd(β̂j (Zi)) by using the esti-

mated ̂
sd(β̂j (Zi)) given by the local linear smoother.

5. Then, instead of C, we can use the estimate

(41) Ĉ = 1

N

∑

Zj∈X2∪W2

(
β̂(Zj ) − β̂(Z)

)(
β̂(Zj ) − β̂(Z)

)T
,

where β̂(Z) = ∑
Zj∈X2∪W2

β̂(Zj )/N and N = m2 + n2.

6. Find the eigenvalue decomposition of Ĉ as

Ĉ = M̂�̂M̂T ,

which gives the estimates M̂ and �̂ of M and �, as defined in (40), respectively. We find the
eigenvectors by performing PCA on the standardized gradients.
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7. Then β̂(Z) and the estimated eigenvectors M̂·1, M̂·2, . . .,given by the columns of M̂ ,
best capture the slope and variations in H(·) and hence the classifier surface, respectively.

We can additionally construct bootstrapped uncertainty intervals by repeatedly drawing
with replacement mb background samples from X and n experimental samples from W and
split them into X ∗

1 , X ∗
2 , W∗

1 and W∗
2 of sizes m1,m2, n1 and n2 at random, ensuring no

overlap between the training and test data sets. That is, X ∗
1 ∩X ∗

2 = φ and W∗
1 ∩W∗

2 = φ. In

each case we first retrain the classifier on the new training data X ∗
1 ∪W∗

1 and then find β̂(Z)

and the estimated eigen values M̂·1, M̂·2, . . . on the new test data X ∗
2 ∪W∗

2 . Here m1,m2, n1,
and n2 are the same as in Method 5.1. We can then use the standard deviation or quantiles of
the bootstrapped estimates to create bootstrap confidence intervals that will give estimates of
the stability of the estimators, given by the algorithm, to perturbations in the data.

6. Experiments: Search for the Higgs boson. We demonstrate the performance of the
proposed semisupervised classifier tests on the Higgs boson machine learning challenge data
set available on the CERN Open Data Portal at http://opendata.cern.ch/record/328 (ATLAS
Collaboration (2014)). The data set consists of simulated data provided by the ATLAS exper-
iment at CERN’s Large Hadron Collider to optimize the search for the Higgs boson.

Our goal is to demonstrate the performance of the proposed tests in identifying the pres-
ence of the Higgs boson particle, without assuming an a priori ansatz of the signal, and
demonstrate their applicability to model-independent searches of new physics signals in ex-
perimental particle physics.

6.1. Data description. The Higgs boson has many different ways through which it can
decay in an experiment and produce other particles. This particular challenge, from which our
data set originates, focuses on the collision events where the Higgs boson decays into two tau
particles (Adam-Bourdarios et al. (2015)). The data provided for the challenge consist of
collision events labelled as background and signal. The signal class is comprised of events
in which a Higgs boson (with a fixed mass of 125 GeV) was produced and then decayed
into two taus. The events are simulated using the official ATLAS full detector simulator.
The simulator yields simulated events with properties that mimic the statistical properties of
the real events of the signal type as well as several important backgrounds. For the sake of
simplicity, background events generated from only three different background processes were
included in the challenge data set. Our objective is to show that semisupervised classifier tests
are able to identify the Higgs signal without any prior knowledge.

The data set has 818,238 observations, where each observation is a simulated proton-
proton collision event in the detector. Each of these collision events produces clustered show-
ers of hadrons which originate from a quark or a gluon produced during the collision. These
showers are called jets. The data contain information on the measured properties of the jets
as well as the other particles produced during the collision. There are d = 35 features whose
individual details can be found on CERN’s Open Data Portal or in Appendix B of Adam-
Bourdarios et al. (2015). Here we give some insight into the most important characteristics
of the features.

The features whose names start with PRI are primitive variables that record the raw quan-
tities, as measured by the detector. The features, whose names start with DER, are derived
variables which are evaluated as functions of the primitive variables. Since all collision events
do not produce the same number of jets, the number of jets produced in the collisions, denoted
by PRI_jet_num, ranges from zero to three (events with more than three jets are capped at
three). Note that it is possible for the collisons to not produce any jets (PRI_jet_num= 0),
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TABLE 2
Descriptions of the variables used in the analysis of the Higgs boson machine learning challenge data set

(Adam-Bourdarios et al. (2015)). We drop the prefix PRI from the variable names and further shorten some of

the variable names intuitively for convenience

Variable Description

tau_pt The transverse momentum of the hadronic tau.
tau_eta The pseudorapidity η of the hadronic tau.
tau_phi The azimuth angle φ of the hadronic tau.
lep_pt The transverse momentum of the lepton (electron or muon).
lep_eta The pseudorapidity η of the lepton.
lep_phi The azimuth angle φ of the lepton.
met The missing transverse energy.
met_phi The azimuth angle φ of the missing transverse energy.
met_sumet The total transverse energy in the detector.
lead_pt The transverse momentum of the leading jet, that is, the jet with the largest transverse

momentum (undefined if PRI_jet_num = 0).
lead_eta The pseudorapidity η of the leading jet (undefined if PRI_jet_num = 0).
lead_phi The azimuth angle φ of the leading jet (undefined if PRI_jet_num = 0).
sublead_pt The transverse momentum of the subleading jet, that is, the jet with the second largest

transverse momentum (undefined if PRI_jet_num ≤ 1).
sublead_eta The pseudorapidity η of the subleading jet (undefined if PRI_jet_num ≤ 1).
sublead_phi The azimuth angle φ of the subleading jet (undefined if PRI_jet_num ≤ 1).
all_pt The scalar sum of the transverse momentum of all the jets in the event.
Weight The event weight.
Label The event label (string) (s for signal, b for background).

and hence there are structurally absent missing values in the data that relate to the jets pro-
duced in the collisions. To avoid these missing values in the data, we only consider events
that have two jets (PRI_jet_num= 2). This results in 165,027 events, 80,806 background
events, and 84,221 signal events. Since the derived quantities are functions of the primitives,
we use just the primitive variables (d = 16) for our analysis. Since we only use the primitive
variables, we drop the prefix PRI from the variable names and further shorten some of the
variable names intuitively for convenience. Descriptions of the primitive variables used are
provided in Table 2.

Among the primitive features, five of them provide the azimuth angle φ of the particles
generated in the event (variables ending with _phi). These features are rotation invariant in
the sense that the event does not change if all of them are rotated together by the same angle.
Hence, to interpret these variables more easily using the active subspace method, we remove
the invariance of the azimuth angle variables by rotating all the φ’s so that the azimuth angle
of the leading jet at 0 (lead_phi= 0). lead_phi can then be removed from the analysis,
leading to a 15-dimensional feature space.

Additionally, we take logarithmic transformations of the variables that give the transverse
momentum of the particles produced (variables ending with _pt), the missing transverse
energy (met), and the total transverse energy in the detector (met_sumet). Exploratory
analysis of the data as well as details and justifications for the transformations considered
above can be found in the Supplementary Material (Chakravarti et al. (2023)).

Experimental setting: In all the following experiments on the Higgs boson data set, we
randomly sample without replacement background and signal events from the original data
set to form background data with mb = 40,403 events, signal data with ms = 20,403 events,
and experimental data with n = 40,403 events. In this manner we generate 50 replicates of
each of these data sets for use in our power studies.
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Recall that the experimental data is a mixture of background and signal data, where the
proportion of signal data is given by λ, the signal strength. So the number of signal events in
the experimental data is decided according to λ by randomly generating from Bin(n,λ). For
methods that require data-splitting, the data-splitting is done by randomly splitting the back-
ground data into m1 = 20,403 training and m2 = 20,000 test background samples and by
randomly splitting the experimental data into n1 = 20,403 training and n2 = 20,000 test ex-
perimental samples. We construct the splits so the number of signal events in the training and
test experimental samples are randomly generated from Bin(n1, λ) and Bin(n2, λ), respec-
tively. Additionally, when randomly generating the experimental data, events are selected in
a weighted fashion using the Weight variable provided in the data set, as described in Table 2.
Note that the classifiers for the model-dependent approaches are trained on m1 = 20,403
background and ms = 20,403 signal training samples, and the classifiers for the model-
independent approaches are trained on m1 = 20,403 background and n1 = 20,403 experi-
mental training samples. Hence, all the classifiers are trained on balanced datasets. For each
of the bootstrap and permutation methods, we consider 1000 bootstrap and permutation cy-
cles respectively.

In the following sections, we first explore the power of the classifier tests, described in
Section 3, to detect the presence of the Higgs boson signal in the experimental data. We then
estimate the signal strength (λ) using the methods introduced in Section 4 and then use the
active subspace method introduced in Section 5 to characterize the signal. All the code used
for this section is available at https://github.com/purvashac/MIDetectionClassifierTests.

6.2. Anomaly detection using the classifier tests. We compare the power of the model-
dependent supervised methods and the model-independent semisupervised methods, intro-
duced in Section 3 in detecting the Higgs boson signal, by varying the signal strength from
λ = 0.15 to λ = 0.01. We also check that the tests have the right error control under the null
case (λ = 0). We demonstrate the performance of the different methods—asymptotic, boot-
strap, permutation (using out-of-sample statistics), and slow permutation (using in-sample
statistics), used along with the different test statistics—Likelihood Ratio Test statistic (LRT),
Score statistic, Area Under the Curve (AUC), and Misclassification Error (MCE).

For the model-dependent methods, since we have only finitely many samples from the
background available, and not the background generator itself, we split the available back-
ground data into training and test sets, as described above. We then use the training set for
fitting the classifier and the test set for estimating the null distribution of the test statistic by
bootstrapping or permuting as described in Section 3. In real life, since the background MC
generator is known, we should, in many cases, be able to generate more training background
samples for estimating the null distribution of the test statistic.

6.2.1. Anomaly detection when data has a correctly specified signal. We first compare
the methods when the signal model is correctly specified. The tests are run on 50 random
samplings of the data, and the percentage of times each of the tests rejects the null that there
is no signal is given in Table 3. “Permutation” indicates the faster permutation method from
Section 3.2, that uses out-of sample test statistics for testing, and “Slow Perm” indicates the
slower permutation method from Section 3.2 that uses in-sample test statistics for testing and
retrains the classifier in every permutation cycle. The significance level for all the tests is
considered at α = 0.05.

As seen in Table 3, among the supervised methods the permutation tests outperform all
the other supervised methods in terms of power. The permutation test with the score statistic
has the most power for smaller values of λ. However, it is worth noting that it might be anti-
conservative for λ = 0 and hence might not have the right significance level. Conversely, as
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TABLE 3
Power of detecting the signal in the Higgs boson data for each method in percentages. We consider 50 random

samplings of the data and 1000 bootstrap and permutation cycles. We perform each test at α = 5% significance

level. The last column (λ = 0) represents the Type I error of the methods

Signal Strength (λ)

Model Method 0.15 0.1 0.07 0.05 0.03 0.01 0

Supervised LRT Asymptotic 100 100 96 62 18 18 6
Bootstrap 100 96 78 58 6 0 0
Permutation 100 98 98 86 28 6 0

Supervised Score Bootstrap 64 66 74 50 18 0 0
Permutation 94 92 100 92 80 24 12

Semisupervised LRT Asymptotic 100 98 74 38 16 6 2
Bootstrap 100 98 48 10 2 2 0
Permutation 100 98 72 38 16 6 2
Slow Perm 82 8 0 4 2 0 4

Semisupervised AUC Asymptotic 100 96 78 32 14 4 2
Bootstrap 100 98 70 32 20 6 2
Permutation 100 98 68 32 20 4 2
Slow Perm 100 100 94 56 20 8 4

Semisupervised MCE Asymptotic 100 92 60 28 14 2 2
Bootstrap 100 96 52 28 16 6 4
Permutation 100 96 52 30 14 6 6
Slow Perm 100 98 86 58 16 6 2

Table 3 and Figure 4 show, the supervised tests that use the LRT statistic appear to be overly
conservative for smaller values of λ, because the LRT statistic uses an estimate of the den-
sity ratio ps/pb using the classifier. This problem mainly appears when two conditions are
both in effect: (1) the classifier for background vs. signal overfits the class probabilities, by
overfitting to the data, and (2) when λ = 0, that is, when the experimental data has no signal.
Under this situation and with probability higher than expected, almost the entire experimen-
tal data is classified as background with ĥ(Zi) = 0, and p̂s/pb = 0. This makes λ̂MLE the
maximum likelihood estimator of λ, also zero, making the LRT statistic zero as well. This is
also observed when we use the permutation or bootstrap methods to estimate the null distri-
bution. The estimated distributions have a point mass at zero that is much higher than 0.5 (as
given by the asymptotic distribution in equation (15) when true ps/pb is used). Note that we
additionally leave out the asymptotic score test both in Table 3 and Figure 4 since we tried
the test for a subsample of the data and decided to not consider that test for the larger data set
due to the poor quality of the asymptotic approximation.

Among the semisupervised approaches, the AUC and MCE slow permutation methods
(slow perm) have power that is only slightly worse than that of the supervised methods, as
shown in Table 3. Importantly, the semisupervised methods achieve this without having ac-
cess to the labeled signal sample during training. Among the asymptotic and the faster permu-
tation methods, using LRT or MCE gives similar performance to AUC in the semisupervised
approaches. We also observe that the slow permutation method using the LRT statistic has
very low power. This is due to bias in estimating the LRT using an in-sample estimate which
is influenced by over-fitting.

Figure 5 shows the empirical distributions of the p-values produced by the semisupervised
tests for different λ values. All the tests appear to have correct (or at least almost correct)
type I error control, as indicated by the close to uniform CDFs in the λ = 0 case. We also
notice that none of the tests have much power to detect signals that are less than 3% of the



SIGNAL DETECTION USING INTERPRETABLE SEMISUPERVISED CLASSIFIER TESTS 2783

FIG. 4. Empirical CDF of the p-values given by the supervised tests for different signal strengths (λ). The

columns in the grid of plots represent the different methods of testing (asymptotic, bootstrap, and permutation),
and the rows represent the use of the different test statistics (LRT and Score). Note that the plot for the asymptotic

test using the score statistic is missing since we do not consider that test due to the poor quality of the asymptotic

approximation.

experimental data (λ < 0.03). We omit the plot for the slow permutation method using the
LRT, as it has anomalously low power for most λ values due to the reasons mentioned above.

We additionally compared these methods to nearest neighbor (NN) two-sample tests, as
introduced in Schilling (1986) and Henze (1988). We considered the nearest neighbor tests,
as opposed to other tests, since the signal that we are trying to detect appears as a collec-
tion of nearby data points. Hence, tests based on neighborhoods should have better power
to detect it. We compared the methods presented in this paper to the NN tests (asymptotic
and permutation versions) for a subsample of the data set. We observed that the asymptotic
version especially had very poor power. The permutation version performed better but was
outperformed by the semisupervised AUC, MCE and LRT methods. Additionally, it was not
scalable to extend it to the larger data set. Hence, we concluded that it was computationally
impractical to apply it to the larger full data set.

In conclusion, we see that slow permutation method when using the AUC and MCE statis-
tics outperforms the other semisupervised methods and additionally gives comparable per-
formance to the supervised methods in detecting the signal in the experimental data. Note
that the power of the slow permutation method using the AUC and MCE statistics is much
better than the one using the LRT statistic which is the statistic used by D’Agnolo and Wulzer
(2019) and D’Agnolo et al. (2021). So these methods give an improvement over using just
the LRT statistic.

6.2.2. Anomaly detection when data has a misspecified signal. As mentioned in the In-
troduction, a model-dependent search that targets one kind of new physics signal will not be
powerful to detect a different signal which might actually be present in the data. This is one
of the main motivations for model-independent methods. In this section we demonstrate that
if the signal model is misspecified in just one dimension, model-independent methods are
still able to detect the signal, whereas the model-dependent methods fail to detect the signal.
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FIG. 5. Empirical CDF of the p-values, given by the semisupervised tests, for different signal strengths (λ).
The columns in the grid of plots represent the different methods of testing (asymptotic, bootstrap, permutation,
and slow permutation), and the rows represent the use of the different test statistics (LRT, AUC, and MCE). We

leave out the plot for slow permutation test using the LRT statistic since, in practice, it demonstrates very poor

performance. It suffers from bias caused by overfitting since for slow permutation we consider the in-sample LRT.

We transform the signal in the experimental data to intentionally make it different from
the signal model which makes the signal model misspecified. We consider a transformation
in just one variable, transforming

(42) tau_pt
∗ = tau_pt− 0.7

(
tau_pt− min(tau_pt)

)

in the experimental data. Meanwhile, we do not transform the signal data used by the su-
pervised methods for training the classifier. This simulates a misspecified signal situation,
where the signal in the experimental data is not from the same distribution as the signal used
by the supervised methods for training. This is to emulate a situation where the signal in
the experimental data is different from the signal that the signal model specifies in just one
dimension.

We chose this particular transformation for multiple reasons. First, it transforms the vari-
able that has the most marginally different means for the background and the signal data,
as demonstrated by Figure 4 in the Supplementary Material (Chakravarti et al. (2023)). Sec-
ond, the marginal distribution of the signal along this variable is different from the marginal
distribution of the background. These two reasons make tau_pt a variable that potentially
influences the classifier. By transforming the variable, we lower the mean tau_pt for the
signal in the experimental data, causing the model dependent methods to lose power in de-
tecting the transformed signal.

We now compare the power of the supervised and the semisupervised methods in detecting
the transformed signal in the experimental data. The tests are run on 50 random samplings of
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TABLE 4
Power of detecting the misspecified signal in the Higgs boson data for each model in percentages. We consider

50 random samplings of the data and 1000 bootstrap and permutation cycles. We perform each test at α = 5%
significance level. The last column (λ = 0) represents the Type I error of the methods

Signal Strength (λ)

Model Method 0.15 0.1 0.07 0.05 0.03 0.01 0

Supervised LRT Asymptotic 2 10 2 8 8 6 4
Bootstrap 0 0 0 0 0 0 0
Permutation 0 0 0 0 0 2 0

Supervised Score Bootstrap 0 0 0 0 0 0 0
Permutation 0 0 0 0 0 2 8

Semisupervised LRT Asymptotic 100 100 100 82 18 4 4
Bootstrap 100 100 100 60 4 2 0
Permutation 100 100 100 82 18 4 2
Slow Perm 100 100 78 22 2 4 6

Semisupervised AUC Asymptotic 100 100 100 78 16 8 4
Bootstrap 100 100 100 82 20 10 0
Permutation 100 100 100 80 20 8 2
Slow Perm 100 100 100 100 34 10 4

Semisupervised MCE Asymptotic 100 100 100 66 24 6 4
Bootstrap 100 100 100 62 16 6 4
Permutation 100 100 100 62 14 6 4
Slow Perm 100 100 100 98 22 8 2

the data, and the percentage of times each of the tests rejects the null that there is no signal,
is given in Table 4. As before, “Permutation” indicates the faster permutation method from
Section 3.2 that uses out-of-sample test statistics for testing, and “Slow Perm” indicates the
slower permutation method from Section 3.2, that uses in-sample test statistics for testing
and retrains the classifier in every permutation cycle. The significance level for all the tests is
considered at α = 0.05.

As seen in Table 4, as expected, the supervised methods have no power at all in detecting
the transformed signal. An interesting observation from the table is that it appears that the
supervised methods are more conservative when there is some signal present compared to
when there is no signal present. This occurs as the signal labels that the supervised models
are trained on are inconsistent with the signal in the experimental data, when the signal is
present.

The semisupervised methods, on the other hand, still have power to detect the transformed
signal since they are not trained on the misspecified signal training data. In fact, the semisu-
pervised methods appear to have higher power with the transformed signal than with the
original signal, indicating that the transformed signal is somewhat easier to disentangle from
the background than the original signal. Comparing the semisupervised methods, we again
observe that the slow permutation method, using AUC, has the highest power. We also no-
tice that the asymptotic and permutation tests that use LRT demonstrate power comparable
to the AUC. The slow permutation method with MCE also performs comparably to the slow
permutation method with AUC. The slow permutation method with LRT has again anoma-
lously low power for smaller λ, due to the bias caused by using the in-sample LRT as the test
statistic.

In conclusion, semisupervised methods continue to demonstrate power similar to the pre-
vious case where the signal model was not misspecified. On the other hand, the supervised
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FIG. 6. Power of the asymptotic model-independent tests using AUC, LRT, and MCE statistics to detect different

signal strengths (λ = 0,0.001,0.005,0.01,0.05) in 50 simulations with samples of sizes n,10n,20n, and 100n,
where n = 2 × 104. λ = 0 represents the Type I error rate. The error bars represent the 95% Clopper–Pearson

confidence intervals for the power. We note that, for all of the three statistics, the power increases in larger sized

samples for λ = 0.005,0.01,0.05. For λ = 0.001, none of the tests appear to have power to detect the signal, but

further increases in the sample size should provide power in this case as well.

models do not have any power to detect the transformed signal in the misspecified model case
which motivates the use of semisupervised models in such a case.

6.2.3. Anomaly detection with smaller signal strengths. So far, the signal strengths that
we have considered in this paper have been in the order of 10−2, and the sample sizes have
been in the order of 104. But in many high-energy physics searches, the signal strengths that
the physicists are looking for are in the order of 10−3 − 10−4, and they have much larger
sample sizes as well. For example, the true signal strength of the Higgs boson signal in the
data set where the two jets are produced is λ = 0.0035. In this section we show that the power
of the model-independent methods to detect signal for smaller signal strengths increases as
the sample size increases.

We perform the asymptotic model-independent tests on equally sized background and ex-
perimental data sets whose sample sizes vary from 2×104 to 2×106, with signal strengths λ

varying from 0.001–0.05. To make this experiment feasible (due to the lack of availability of
sufficient background samples in our original data set), we fit a mixture of eight multivariate
Normals to the background data and a mixture of nine multivariate Normals to the signal
data in the Higgs boson data set. We then generate samples from the estimated mixtures of
Normals to create our simulated data sets for this experiment.

Figure 6 shows that for smaller signal strengths, for example, λ = 0.005, the power of the
model-independent tests increases as the sample size increases. We see that for the largest
sample size, 100n = 2 × 106, the model-independent tests have good power, even for λ =
0.005, which is comparable to the true Higgs boson signal strength (0.0035) in the two jets
channel. Whereas, for the sample size that we used in our previous experiments, n = 2× 104,
the model-independent tests have small power for λ = 0.01 and no power for λ = 0.005. This
demonstrates that when larger data sets are available, the model-independent methods have
power to detect even smaller signal strengths. In many search channels, LHC data sets are
of the order of millions or billions of events, so these tests should have power for detecting
reasonably small signals in those channels.
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6.3. Estimating the Higgs boson signal strength. In this section we demonstrate the per-
formance of the methods proposed in Section 4 to estimate the signal strength (λ) using the
Higgs boson data set. We vary the signal strength from λ = 0.5 to λ = 0 and look at the
estimates of the signal strength as well as the bootstrapped uncertainty intervals given by
Method 4.1 in Section 4.

We consider 100 bootstrap cycles to get the 95% bootstrapped uncertainty intervals. For
the estimates we consider T ∈ {0.8,0.5} and b ∈ {0.01,0.005}, where T is the threshold
that indicates the neighborhood of 1 where we fit the Poisson regression model and b is
the bin-width of the histogram that we use to estimate the densities. Note that bin-width
b ∈ {0.01,0.005} is equivalent to the number of bins, Bins ∈ {100,200}. To construct the
bootstrapped uncertainty intervals, we use three different methods, using α = 5%, and com-
pare them in Figure 7 below.

First, we use the basic bootstrap confidence interval, also known as the reverse percentile
interval, which uses empirical quantiles of the bootstrap distribution of λ̂ in a reverse order
to construct the confidence interval (see Davison and Hinkley (1997), equation (5.6), p. 194):
(2λ̂−λ∗

(1−α/2), 2̂λ−λ∗
(α/2)), where λ∗

(1−α/2) denotes the 1−α/2 quantile of the bootstrapped
estimates λ∗.

Second, we use the bootstrapped quantiles to form percentile bootstrap confidence inter-
vals (see Davison and Hinkley (1997), equation (5.18), p. 203, Efron and Tibshirani (1993),
equation (13.5), p. 171): (λ∗

(α/2), λ
∗
(1−α/2)).

Third, we use bootstrapped standard errors and normal distribution’s quantiles to create
bootstrap confidence intervals: (̂λ − z1−α/2ŝeλ∗, λ̂ + z1−α/2ŝeλ∗), where z1−α/2 denotes the
1 − α/2 quantile of the standard normal distribution, and ŝeλ∗ is the standard error estimated
using the empirical standard deviation of the bootstrapped estimates λ∗.

We additionally present the confidence intervals given by the GLM model (Dobson and
Barnett (2018)) itself in Figure 7.

We observe from Figure 7 that the estimates of λ do not vary much with the number of bins
used for the histogram estimate of the density. We also notice that thresholding at T = 0.8,
which is closer to 1, as compared to T = 0.5, gives better estimates of λ. We additionally tried
T = 0.9 on a subsample of the data set. But the estimates in that case were not very stable, and
hence we decided to not consider them for the final larger data set. The uncertainty intervals
created using bootstrapped quantiles and bootstrapped standard errors appear to be relatively
well calibrated when T = 0.8, that is, they include the true value of λ, given by the dotted
diagonal line, in each of the plots. The uncertainty intervals, given by the GLM model and
basic bootstrap, on the other hand, do not contain the true λ for some smaller values of λ.
So λ̂, using T = 0.8 with the number of bins either 100 or 200, accompanied with either
bootstrapped quantile or bootstrapped standard error uncertainty intervals, appears to give
the best performance in estimating and quantifying the uncertainty of the signal strength λ.
An additional advantage of the uncertainty intervals using bootstrapped standard errors is that
they are centered about the estimate λ̂.

6.4. Interpreting the classifier using active subspace methods. We demonstrate the ap-
plication of the active subspace methods for a random simulation (one of the 50 simulations
in Section 6.2), which detects the signal at significance level α = 0.05, when λ = 0.15, that
is, 15% of the experimental data is from the signal sample. We consider λ = 0.15, since
the random forests demonstrate good power in detecting the signal for that signal strength
(Table 3).

We then use Method 5.1, presented in Section 5, to find the active subspace of the fitted
semisupervised classifier. The second step of the algorithm requires us to choose a linear
smoother as well as a smoothing parameter for it. We choose a Gaussian kernel smoother



2788 CHAKRAVARTI, KUUSELA, LEI AND WASSERMAN

FIG. 7. Estimates of the signal strength (λ), along with the 95% uncertainty intervals, of the Higgs boson in the

experimental data. The true λ, given by the dotted diagonal line, varies from 0 to 0.5. T specifies the threshold that

controls the size of the neighborhood of 1 that is considered in the Poisson regression model, and Bins specifies

the number of bins considered in the histogram when estimating the density of ĝq (1), as described in Section 4.

as the linear smoother and h = 0.5 as the smoothing parameter. The smoothing parameter h

is used to scale the standard deviations of the variables, which is then used as the standard
deviation of the multivariate Gaussian kernel, that is, ˆsd(Z)/h is considered as the standard
deviation of the multivariate Gaussian kernel. The smoothing parameter selection process is
described in the Supplementary Material (Chakravarti et al. (2023)).

Figure 8 gives us the active variables given by the mean standardized gradient, the first
eigenvector, and the second eigenvector. The higher eigenvectors do not contain much infor-
mation and have been included in the Supplementary Material (Chakravarti et al. (2023)).
The figure additionally gives the distribution of the bootstrapped active subspace estimates as
violin plots. These help us construct 95% uncertainty intervals for the active subspace vari-
ables using the bootstrapped empirical percentiles. We consider 500 bootstrap cycles to get
the 95% bootstrapped uncertainty intervals.

Figure 8(a) additionally provides the violin plots of the standardized gradient estimates

β̂j (Zi)/
̂

sd(β̂j (Zi)) given by the local linear smoother at every point in the combined test
data Zi ∈ X2 ∪W2. We notice that the violin plots are not very informative since they are all
symmetric about zero; that is, they don’t appear to give any information about the slope of
the classifier surface.

The mean standardized gradient in Figure 8(b) gives the direction in which the classifier
output changes most rapidly on average. We see that jointly higher transverse momentums
of the hadronic tau (tau_pt) and the remaining lepton (lep_pt) contribute the most to an
increase in the classifier output. Increase in these transverse momentums, combined with a
decrease in the transverse momentum of the leading jet (lead_pt) and the scalar sum of the
transverse momentum of all the jets (all_pt), leads to an increase in the classifier output.
This implies that the detected signal events display higher momentums of the hadronic tau and
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FIG. 8. The active subspace variables for the classifier trained on data with signal strength λ = 0.15 computed

using a local linear smoother that uses the gaussian kernel with smoothing parameter h = 0.5. (a) gives the

distribution of the standardized gradients β̂j (Zi)/
̂

sd(β̂j (Zi)), given by the local linear smoother at every point

in the combined test data Zi ∈ X2 ∪ W2. The dots denote the mean. In (b), (c), and (d), the violin plot and the

dashes give the bootstrapped empirical distribution and the bootstrapped uncertainty intervals computed using

the empirical quantiles, respectively, for the standardized mean, the first eigenvector, and the second eigenvector.
In (b) the dots give the mean standardized gradient similar to (a). In (c) and (d), the dots represent the first

eigenvector and the second eigenvector computed on the combined test data, respectively.
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the other lepton, lower momentums of the leading jet and lower scalar sum of the momentums
of all the jets, as compared to background events. Note that the mean gradient vector not only
captures the dependency of the classifier on each variable individually but also characterizes
the multivariable dependencies that influence the classifier.

The first eigenvector gives the first principal component of the gradients which demon-
strates the relationship between the variables that causes the most variability in the gradients
of the classifier. The first eigenvector, as seen in Figure 8(c), indicates that when all_pt,
the scalar sum of the transverse momentums, lead_pt, the transverse momentum of the
leading jet, sublead_pt, the transverse momentum of the subleading jet, and met, the
missing transverse energy, jointly change in the same direction, it causes the most variation
in the classifier. This means that these variables together, help the classifier separate the sig-
nal from the background. The second eigenvector, that is, the second principal component of
the gradients, as seen in Figure 8(d), appears to capture the relationship between the azimuth
angle φ of the different objects in the event that most influences the classifier. Recall that the
φ values of the objects have been transformed to denote the difference in the angle between
each object and the leading jet. So the second eigenvector indicates that the φ angle between
the leading jet and all the other four objects (the subleading jet, the hadronic tau, the lepton,
and the missing transverse energy) influences the classifier. This has an appealing physical
interpretation in that it indicates that the azimuthal orientation between the leading jet and
the rest of the event is a useful feature for separating the signal from the background.

REMARK. Note that, for any eigenvector M·j of the standardized gradients of the trained
classifier, −M·j is also an eigenvector. This causes the violin plots of the bootstrapped eigen-
vectors to be systematically symmetric about zero. To solve this problem, we first take the
variable that has the largest absolute eigenvector value, that is, kj = arg maxi |M̂ij |. Then
we fix the sign of the bootstrapped eigenvectors M̂∗

·j such that the sign of the kj th variable

matches, that is, sgn(M̂∗
kj j ) = sgn(M̂kj j ). This process has been followed in Figures 8(c) and

8(d) to handle the problem.

So the active subspace methods provide an algorithm to interpret the semisupervised clas-
sifier once it has detected a signal in the experimental data. The methods imply that the
classifier that detects the Higgs boson is positively influenced by tau_pt and lep_pt and
negatively influenced by all_pt and lead_pt. Additionally, it is also influenced by joint
changes in the values of all_pt, lead_pt, lsubead_pt, and lmet. The classifier is
also influenced by the difference between the azimuth angle φ of the leading jet and those
of the other four objects, indicating that this might be an important feature for detecting the
signal events. Finally, we note that, without techniques like these, it would have been very
difficult to understand what kind of a signal the semisupervised classifier has detected within
the high-dimensional feature space.

7. Conclusion. In this paper we studied model-independent anomaly detection tests, us-
ing semisupervised classifiers, that can detect the presence of signal events hidden within
background events in high energy particle physics data sets. Additionally, we proposed meth-
ods to estimate the signal strength and to identify the active subspace affecting the classi-
fier most strongly, leading to an understanding of the detected signal. We demonstrated the
performance of the methods and also compared the proposed tests with comparable model-
dependent supervised methods as well as nearest neighbor two-sample tests on a data set
related to the search for the Higgs boson at the Large Hadron Collider.

We presented multiple model-independent methods that search for the signal without as-
suming any knowledge of the signal model. By not assuming any signal model, we retain
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the ability to detect unknown and unexpected signals. This is an important capability for fu-
ture searches at the Large Hadron Collider, where model-dependent searches have so far not
yielded evidence of physics beyond the Standard Model. We used a semisupervised classifier
to distinguish the experimental data from the background data and used the performance of
the classifier to perform a test to detect a significant difference between the two data sets. We
proposed three test statistics that can be used for the test: the likelihood ratio test (LRT) statis-
tic, the area under the curve (AUC) statistic, and the misclassification error (MCE) statistic.

We compared the use of the different test statistics as well as the use of different techniques
for obtaining the null distribution in building the test that has the most power in detecting
the signal. We compared the power of the methods to detect the Higgs boson at different
signal strengths and showed that a version of the proposed AUC method has power that is
competitive with the model-dependent methods. So even when the signal model is correctly
assumed by the model-dependent methods, the proposed model-independent methods appear
to still have competitive power to detect the presence of the signal. However, when the signal
model is incorrectly assumed or misspecified, the model-dependent methods can totally miss
the signal, whereas the proposed model-independent ones are still able to detect the signal, as
demonstrated in our experiments. In particular, the proposed methods demonstrate the ability
to find new particles without specific a priori knowledge of their properties.

As described in Section 3.1, model-dependent methods currently in use in experimental
high-energy physics, are slightly different from the ones presented in Section 3.1. In this pa-
per to make the model-dependent methods comparable to the proposed model-independent
ones, we consider high-dimensional model-dependent tests. In current practice though, a
threshold is placed on the supervised classifier output to select a subset of the experimen-
tal data that is richer in signal events. Then the high-dimensional data set is transformed into
a univariate one, and the transformed data are fitted using a one-dimensional mixture model
consisting of signal and background components. This is used to construct a profile likeli-
hood ratio test (ATLAS Collaboration and CMS Collaboration (2011)), where some of the
nuisance parameters are related to the one-dimensional background model. Dauncey et al.
(2015) proposed a discrete profiling method for this test, based on considering the choice
of the background functional form as a discrete nuisance parameter which is profiled in an
analogous way to continuous nuisance parameters.

These considerations motivate multiple avenues for future exploration. We could construct
an analogous model-independent version of the approach described above, where we first use
the semisupervised classifier output to select a signal-rich subset of the experimental data,
then transform the selected data to a one-dimensional space, and finally perform a test in the
one-dimensional space using a mixture model. For well-chosen transformations, this could
increase the power of the test. More interestingly, for many signals the signal distribution
corresponding to a transformation into the invariant mass variable is predicted by quantum
mechanics to be the Cauchy distribution (also known as the Breit–Wigner distribution in par-
ticle physics; see Chapter 49 in Particle Data Group (2020)), whose parameters, under the
model-independent scenario, are unknown to us. It would be interesting to build this knowl-
edge into the semisupervised method. A straightforward approach would be to simply use the
Cauchy distribution, convolved with a model for detector smearing, in the one-dimensional
mixture model, but it might also be possible to incorporate this knowledge into the training
of the high-dimensional semisupervised classifier.

Another important avenue of future work would be to find ways to account for system-
atic uncertainties in the background training data. As described above, the current supervised
techniques account for systematics using profile likelihoods for one-dimensional summary
statistics, with the systematic variations in the one-dimensional space parameterized using
potentially hundreds or thousands of nuisance parameters. This should also be feasible for
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one-dimensional semisupervised tests. However, it might also be possible to use profiling in
the high-dimensional semisupervised likelihood ratio tests. For example, if we had two plau-
sible background samples from two different MC generators, we could use optimal transport
(Peyré, Cuturi et al. (2019)) to find the geodesic between the samples. We could then profile
over the parameter corresponding to the location on the geodesic which would account for
the systematic uncertainty corresponding to the envelope of background models spanned by
the two MC generators.
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Supplement to “Model-independent detection of new physics signals using inter-

pretable semisupervised classifier tests” (DOI: 10.1214/22-AOAS1722SUPPA; .pdf). The
supplementary material contains the proof of Theorem 4.1, some of the proposed algorithms
from Section 3.2, and details about the exploratory data analysis of the Higgs boson data
used in the experiments in Section 6. It additionally describes the selection of the smoothing
parameter for the active subspace methods.

R code (DOI: 10.1214/22-AOAS1722SUPPB; .zip). R code files for the algorithms and
the experiments in the paper.
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