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Open-Loop Chance Constrained Stochastic
Optimal Control via the One-Sided
Vysochanskij—Petunin Inequality

Isabella Pacula

Abstract—While many techniques have been developed
for chance constrained stochastic optimal control with
Gaussian disturbance processes, far less is known about
computationally efficient methods to handle non-Gaussian
processes. In this article, we develop a method for solv-
ing chance constrained stochastic optimal control prob-
lems for linear time-invariant systems with general additive
disturbances with finite moments and unimodal chance
constraints. We propose an open-loop control scheme for
multivehicle planning, with both target sets and collision
avoidance constraints. Our method relies on the one-sided
Vysochanskij—Petunin inequality, a tool from statistics used
to bound tail probabilities of unimodal random variables.
Using the one-sided Vysochanskij—-Petunin inequality, we
reformulate each chance constraint in terms of the expecta-
tion and standard deviation. While the reformulated bounds
are conservative with respect to the original bounds, they
have a simple and closed form, and are amenable to differ-
ence of convex optimization techniques. We demonstrate
our approach on a multisatellite rendezvous problem.

Index Terms—Arbitrary disturbances, chance con-
strained stochastic optimal control, multivehicle motion
planning, stochastic linear systems.

|. INTRODUCTION

UTONOMOUS systems that are high risk, expensive, or
A safety critical require assurances they will not enter unsafe
conditions that may lead to costly damage to property or loss
of life. Satellite constellations and self-driving cars are just two
examples where failure can be prohibitively expensive. Stochas-
ticity, such as that due to modeling errors, external forces, or
incomplete knowledge of the environment, complicates efforts
to provide formal assurances in autonomous systems. Proba-
bilistic assurances, while not as strong as those based in robust
approaches that presume a worst-case scenario [1], [2], allow
for assurances tailored to a desired level of confidence or risk.
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However, although many stochastic effects are non-Gaussian
(such as heavy tail phenomena in relative satellite dynamics),
few methods exist that can accommodate non-Gaussian stochas-
tic processes within a stochastic optimal control framework.

One of the primary challenges associated with stochastic opti-
mal control with non-Gaussian processes is the lack of analytic
expressions for the cumulative distribution function (CDF) of
the state as it evolves over time. This deficiency is relevant for
the evaluation of chance constraint probabilities, and typically
requires high dimensional and often intractable integration.
Characteristic function-based approaches utilize closed form
expressions in the Fourier domain to approximate the CDF with
numerical Fourier inversions, but are limited to evaluation of
chance constraints for convex sets [3], [4], [5]. Simulation-based
approaches [6], [7], [8] bypass the need for integration, but are
reliant upon on the quality and size of the samples. Further,
in practice, these approaches may be additionally limited by
computational memory, necessary for large samples, as well
as the need to sample the distribution. Sample reduction meth-
ods [8], [9], [10] decrease computational burden, by focusing on
scenario characteristics and comparing them with previous so-
lutions. However, the characteristic function approach requires
numerical approximations of the CDF or its inverse [5],  and
the sampling approaches produce confidence bounds on chance
constraint satisfaction [8], both of which weaken guarantees.

In contrast, methods that employ concentration inequalities
provide almost surely assurances of chance constraint satisfac-
tion through over-approximations. Chebyshev’s inequality [11]
and Cantelli’s inequality [11] have been used to develop chance
constraint reformulations that are an affine combination of a
constraint’s expectation and standard deviation [12], [13], [14],
[15]. These inequalities only require knowledge of the expecta-
tion and the standard deviation, which can be easily calculated
for linear constraints. However, reliance on these inequalities
typically provides quite conservative bounds [15].

Our approach also invokes concentration inequalities,  and
hence provides almost surely guarantees, but employs an in-
equality that is less conservative than those in [12], [13], [14],
and [15]. We use the one-sided Vysochanskij—Petunin inequal-
ity [16], arefinement of Cantelli’s inequality that is tailored
to unimodal distributions. Although it has less generality than
Cantelli’s inequality, the one-sided Vysochanskij—Petunin in-
equality typically results in far less conservatism in the over-
approximation. Indeed, its probabilistic bound is reduced by
a factor of 5/9, as compared with the bound from Cantelli’s
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inequality. Hence, we propose application of  the one-sided
Vysochanskij—Petunin inequality to chance constraint evalua-
tion that arises in multivehicle planning problems: that is, in
1) reaching a terminal target set and 2) avoiding collision with
obstacles in the environment as well as with other vehicles. The
main drawback in our approach is the need for unimodality

of each constraint, over the entire trajectory. Unimodality is
assured for convex constraints in linear time-invariant (LTT)
systems for certain classes of disturbance processes (such as
Gaussian, Laplacian, or uniform on a convex interval), however
for other disturbance processes, unimodality must be validated
empirically. A secondary drawback in our approach is the use of
an open-loop design. Open-loop controllers tend to be conserva-
tive with respect to their closed-loop counterparts, and often are
resilient to stability assurances [17], [18]. However, strategies,
such as prestabilization or augmented state vectors can be used
to mitigate these downsides [18], [19].

The main contribution of this article is a closed-form refor-
mulation of chance constraints, for polytopic target sets and
collision avoidance constraints, that is amenable to difference
of convex programming solutions. Our approach is relevant for
LTI systems with arbitrary distributions with finite moments,
and with chance constraints that are unimodal.

The rest of this article is organized as follows. ~ Section II
provides mathematical preliminaries and formulates the opti-
mization problem. Section III derives the difference of convex
functions optimization problem reformulation of  the chance
constraints. Section IV demonstrates our approach on two multi-
satellite rendezvous problems. Finally, Section V concludes this
article.

Il. PRELIMINARIES AND PROBLEM FORMULATION
A. Mathematical Preliminaries

We denote the interval that enumerates all natural numbers
from a to b, inclusively, as N, ). We denote vectors with an
arrow accent, asx €R". Random variables are indicated with a
bold case x . For a random variablex, we denote the expectation
as E[x], variance as Var(x), and standard deviation as Std (x) .
For a vector input, Vaf-) will reference the variance—covariance
matrix of the random vector. For two random variables x and y,
Cov(x, y) denotes the covariance between the two variables. We
denote the 2-norm of a matrix or vector by - . For a matrix A,
tr(A) will denote the trace ofA. Last, we denote a block diagonal
matrix with elements Ay, A, . .., 4 asdiag(A1, A, ..., 4).

B. Problem Formulation

Consider a scenario, such as the one shown in Fig. 1, in which
three satellites rendezvous with a refueling station while avoid-
ing each other, other spacecraft, and debris. With potentially
non-Gaussian disturbances corrupting the satellite dynamics,
we seek to synthesize a controller to construct an optimal
rendezvous maneuver that meets probabilistic target set and
collision avoidance constraints.

We presume the evolution of N, vehicles are governed by the
discrete-time LTI system

Xi(k + 1) = A (k) + Bu;(k) +w (k) @8]

@ ® j%: ®
R@7\
% B
Fig. 1. Scenario in which three satellites need to rendezvous with a

refueling station while avoiding each other, other spacecraft, scientific
instruments, and debris.
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with state X;(k) €X <R”", input u;(k) €U <R™, and
w;(k) €R" that follows an arbitrary but known disturbance,
and initial condition x(0). We presume the initial conditions,
x(0), are known, the bounded control authority, U, is a convex
polytope, and that the system evolves over a finite time horizon
of N €N steps. We presume each disturbance, w;(k), has
probability space (Q, B(Q), Ry, () ) with outcomes €, Borel
o-algebra B(Q), and probability measure Py, () [20].

We write the dynamics at timek as an affine sum of the initial
condition and the concatenated control sequence and disturbance

X;(k) = A¥x;(0) + C(kY; + D(K)W ; 2
with
U =u;0) ...u(N-1) eV (3a)
W;= w;(0) ...w;(N-1) eRM (3b)
Ck)=A ¥1B... ABB 0 pxn-sm eR™N™ (3¢)
D(k)=A 1 . Al Opnsin eRMN
(3d)

We seek to minimize a convex performance objective J:
XNN v x NN v _, R, We presume desired polytopic target
sets that each vehicle must reach, known and static obstacles that
each vehicle must avoid, as well as the need for collision avoid-
ance between each pair of vehicles, all with desired likelihoods

N, N
P Xi(k) €Ti(k) =1-a (4a)
i=1 k=1
N, N
P S( xi(k)-o(k))=r  >1-8 (4b)
i=1 k=1
(N -1 N N \
p\ SO xi(k)-x;(K) =r ] =1-y. (4o

i=1 j=i+l k=1

We presume convex, compact, and polytopic sets T;j(k) =R",
positive semidefinite and diagonal matrix S €R?" , positive
scalar r €R 4, nonrandom object locations o(k) €R", and
probabilistic violation thresholds a, B, y €(0, 1/6)The prob-
abilistic violation thresholds are restricted as a condition for
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optimally of the solutions. Here, S is designed to extract the D)
position of the vehicle from the state vector. 1
Definition 1 (Reverse convex constraint): A reverse convex - Hgirfr%;nlﬁ((OZHZ))
constraint is the complement of a convex constraint, that is, — Laplace(0,2)
f (x) = ¢ for a convex functionf : R” - Randascalarc €R. — Exponential(1)
Note that the collision avoidance constraints inside the prob-
ability functions are reverse-convex as per Definition 1. / \
We seek to solve the following optimization problem:
4 -2 0 2 4 x
minimize J X q,... Xy, U, ... 4, (5a) dw)
Uy, Uny i
N — Uniform(2,2)
ject t Sy eV — Normal(0,1)
subject toU; W, (5b) ~ Lapioca(62)
Dynamics (2) with x1(0), ..., ¥,(0)  (5¢) — Exponential(1)
Probabilistic constraints (4) (5d)
where X ; = [x; (1) X; (N')] is the concatenated state } ; } }
-4 -2 0 2 4 x

vector for vehicle /.

For this problem to be tractable for arbitrary disturbances,
we make several key assumptions about the disturbance and its
resulting impact on the constraints.

Assumption 1: Disturbance vectors, W ;, are all pairwise
independent. Hence, for any / and j, where j = j, the joint
CDF, O, W (a, b) can be factored into the product  of the

marginal CDFs, (DW,-(a) and G)Wj (b). So, q)W/‘ij (a, b) =
o, (a)d)Wl (b).
Assumption 2: All components of the disturbance vec-

tor, W; = [w1 wp Winn ] are mutually independent.
Hence, for any set of unique integers S <Nj y 1, the subset

{wj |j €S} has ajoint CDF®y, ; jies; (- - . ., -dan be factored
into the product of the marginal CDFs, ®,,, (-) forj €S. So,
O sy (- ) = s Buy ()

Assumption 3: Each component of the disturbance vector,
W;=I[ws wp Winn ] has finite and well defined mo-
ments at least up to the fourth order,E[ijJ- <o forp €N g5

Statistically, pairwise and mutual independence can be as-
sumed in many cases without much consequence as most multi-
variate distributions can be constructed in this manner. =~ How-
ever, the multivariate Cauchy and the multivariate  t are the
most prominent examples that cannot meet Assumption 2 as
elements are not independent by construction. In many ways,
Assumption 2 is the most restrictive of these assumptions as
it restricts our approach to physical phenomena that disturb
each state independently. Assumption 3 is easily met as most
distributions have analytic expressions for moments.

Lastly, we consider the impact of W ; on the chance con-
straints in (4).

Definition 2 (Unimodal distribution [21]): A unimodal dis-
tribution is a distribution whose CDF is convex in the region
(-0, @) and concave in the region (a, ) for some a €R.

Definition 3 (Strong unimodal distribution [21]): A strong
unimodal distribution is one in which unimodality is preserved
by convolution. That is, for two independent strong unimodal
random variables, y and z, the random variable y + z is also
unimodal.

Assumption 4: The distribution that describes each proba-
bilistic constraint in (4) is marginally unimodal.

Fig. 2. PDFs (top) and CDFs (bottom) of unimodal distributions as per
Definition 2 with the mode at 0. Each of the distributions shown here

have a log concave PDF, which in turn implies a log concave CDF. Log

concavity of the PDF assures strong unimodality as per Definition 3.

Assumption 4 is required such that we can develop bounds on
the chance constraint probabilities. In rare cases, unimodality
can be verified analytically by properties of strong unimodality.
For example, Gaussian or exponential random variables are
strong unimodal and any affine summation of these random
variables will always be unimodal. One method to check for
strong unimodality is to establish that the probability density
function (PDF) is log concave as all distributions that are strong
unimodal also have a log concave PDF per the theorem of
Ibragimov [22]. Fig. 2 graphs the PDF and CDF of several
common strong unimodal distributions with PDFs that are easy
to show are log concave. As unimodality can be challenging to
show analytically, the easiest method to validate unimodality
is empirically. By numerically evaluating the empirical CDF
with a large enough sample size (we recommend at least on the
order of 10* samples), one can validate unimodality in terms of
Definition 2 via Algorithm 1 in Appendix A.

Problem 1: Under Assumptions 1-4, solve the stochastic
optimization problem (5) with probabilistic violation thresholds
a, B, and y for open loop controllers Uy, . .., 4y, €UV.

The main challenge in solving Problem 1 is assuring (5d). In
this form, assuring (5d) requires the evaluation of high dimen-
sional and frequently intractable integrals. In addition, even if
these integrals could be evaluated and closed forms could be
found, the collision avoidance constraints (4b) and (4c¢) would
still be reverse convex.

IIl. METHODS

Our approach to solve Problem 1 involves reformulating each
chance constraint as an affine summation of the constraint’s
expectation and standard deviation, i.e., E[S( x ; (k)— X; (k))]
and Std (S( x;(k)— x; (k))) , respectively, for the collision
avoidance constraint. This form is amenable to the one-sided
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Vysochanskij—Petunin inequality [16], which allows for almost
surely guarantees of chance constraint satisfaction.

Theorem 1  (One-sided Vysochanskij—Petunin inequal-
ity [16]): Let X be a real valued unimodal random variable with
finite expectation E[x] and finite, nonzero standard deviation
Std(x) . Then, forA> 5/3

4
9(A2 + 1)

The one-sided Vysochanskij—Petunin inequality is applicable
only to unimodal distributions. It is based on Gauss’s inequality,
which provides a bound for one sided tail ~ probabilities of a
unimodal random variable to be sufficiently far away from the
expectation. Specifically, the bound encompasses values at least
A standard deviations away from the mean.

By applying (6) to the random variable —x , we get the lower
tail bound

P(x — E[x]=A Std(x)) < (6)

4
9N+ 1)
We first make use of (6) and (7) to bound the chance constraint

probabilities based on an affine summation of the expectation
and standard deviation.

P(x - E[x]<-A Std(x)) < 7

A. Polytopic Target Set Constraint

First, consider the reformulation of (4a). Without loss of gen-
erality, we presumeN, = land N = 1 for brevity. The polytope
T; (k) can be written as the intersection of Nt half-space

inequalities \
N7
PO (k) €Tik) =P\ Gu xi(K<hy | ®
j=1
where Gjx  €R" and hjx  €R define a half-space constraint

within the polytopic target set. We take the complement and
employ Boole’s inequality to separate the combined chance
constraints into a series of i?dividual chance constrair\ts

N1k
Pixi(k) €Ti(k) =P\ Guxi(K=hy ! ()
=1
N rix
< PG,‘/‘k X,‘(k)Zh,‘jk (9b)
j=1

Using the approach in [6], we introduce variablesyj to allocate
risk to each of the individual chance constraints

P Gijk Xi(k) >h ijk < Wik (10&)
N ik

Wi <a (10b)
j=1

wic 20, (10¢)

To find a solution to (10), we need to find an appropriate value
for wjc . As the probabilistic function in (10a) often lacks
a closed form, is intractable or nonconvex, we will need to

bypass computing this constraint
this computation, we observe that

directly. In order to bypass

PG,‘jk X,'(k)Zh,‘jk

<P G/’jk Xi(k)=E Gijk X (k) +A,'jk Std Gijk X (k)
11

can be enforced by the linear constraint

EG,‘jk X,'(k) +/\ijk Std G,'jk X,'(k) Sh,'jk. (12)
Then, (12), in conjunction with Theorem 1, allows us to upper
bound (11), and by association evaluate (10a). We can substitute
Wik with W%l) and change the risk allocation variable

ik

from @y to Aji . Further, enforcement of (12) makes (10a) an
unnecessary intermediary step between (12) and (10c). Hence,
we can remove (10a) from the system of equations to solve and
write (10)—(12) as

EG jik xi(k) + Ak Std Gy x;(k) <h j (13a)
N1k
—  _<a (13b)
2
o I +T)
)\ijk > g (130)

which is enumerated over the indices, /,j, and K.
Lemma 1: For the controllers U, . . ., , if there exists risk
allocation variables Aji satisfying (13) for constraints (4a), then

Uy, ..., W, satisty (5d).
Proof: Satisfaction of (13a) implies (11) holds. The
Vysochanskij—Petunin inequality upper bounds (11).  Boole’s

inequality and De Morgan’s law guarantee that if (13b) holds
then (5d) is satisfied.

Lastly, we show that the constraint reformulation (13) will
always be convex.

Lemma 2: The constraint (13) is convexin U; andin
(Ailkr' . rf))k)

Proof: We start by exploiting the properties of the expectation
and variance operator to write (13a) as

G,‘jk AkX,'(O) + C(kY; + D(KEW
+ )\ijk Gijk D ( k)Var W; D(k) Gijk <h iik (14)
which is affine, and hence convex, in U; and Ajic . Then
92 4 8 —3)\,-%( +1
2 2 = (15)
6/\,jk 9()\,jk + 1) 9 )\I]Zk i1

which is positive, and hence convex, whemjx = 3712 Hence,
with the restriction (13c), (13b) is a convex constraint. Thus, the
set over which Ajix, ..., A« is optimized is convex. Further,
in the problem formulation we defined the control authority to
be a closed and convex set. Hence, we can conclude the chance
constraint reformulation (13) is convex.
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B. 2-Norm-Based Collision Avoidance Constraints

Next, consider the reformulation of the constraints (4b)
and (4c). Here, we will derive the reformulation for (4c), but
the reformulation of (4b) is nearly identical. =~ Without loss of
generality, let

z = SA ¥ (x;(0) -x;(0)) + SC(k)U; - U;) (16a)
zZ = SD(k)( w i w /‘) (16b)
be the nonstochastic and stochastic element of S(x;(k) -

X (k)) from (4c), respectively. Then, we can write the norm
as

S( xi(k) - x;(k)) =z +z 17)
We start by observing
Ny,-1 N, N \
P\ z+zzr )
i=1 j=i+1 k=1
Ny,-1 N, N \
=P\ z+z 22r2) (18)

=1 j=i+1 k=1
Thus, we can write the 2-norm
N,-1 N, N \

p\ z+z 22r2) 21-y.
i=1 j=i+l k=1

as the norm is nonnegative.
constrai?t as

(19)

By taking the complement and applying Boole’s inequality

N,-1 N, N
p\ z+z 2<r?)
i=1 j=i+1 k=1

N,-1 N, N

< Pz+ z2<r? . (20)
i=1 j=i+l k=1
Using the approach in [6], we introduce risk variables @y to
allocate risk to each of the individual probabilities

Pz+z 2<r? <wjp (21a)

Ny-1 N, N
Wik <Y (21b)

i=1 j=i+l k=1
Wik 2 0. (21c)

In a similar fashion to Section III-A, we add an additional
reverse convex constraint based on the expectation and standard
deviation of Z + Z 2 to (21) such that the constraint becomes

Pz4+z 2<r? <sw (22a)

Ez+z 2 -ApStdz+z % =r 2 (22b)
N,-1 N, N

Wik <Y (220)
i=1 j=i+l k=1

wi = 0. (224d)

By adding constraint (22b), we can bypass the need to compute
the (22a) directly. We do so by observing that satisfaction of
(22b), also implies

Pz+z 2<r?

<Pz+z 2<E z+z ?2 A Std z+z 2

(23)

From Assumption 4 and Theorem 1, we know that the right-hand
side of (23) is upper bounded as per (7). Hence, we can use the
substitution

4
K = ——>——— 24
and determine the value for Ajx in terms of wy
4
Aji — =1 25
ijk 9 c’-&k ( )

solongas A=  5/3.This implies tj < 1/6 is a necessary
restriction on W . As y < 1/6, any solution will require that
wWjk < 1/6. Then, we can write (22) as

Pz+z 2<r? swjp (26a)
Ez+z 2 - -1-Std z+z 2 =2r 2  (26b)
90-)k
N,-1 N, N
Wik <Y (260)
i=1 j=i+1 k=1
wy €(0, 1/6).
(26d)

Since Theorem 1 guarantees that  satisfaction of (26b) also
satisfies (26a) for any value y €(0, 1/6) (26a) is redundant
and can be removed. The constraint is then

Ez+z 2 - 4 -1-Std z+z 2 2r ? (27a)
909);(
No-1 Ny N
Wk <Y (27b)
i=1 j=i+1l k=1
Wik E(O, 1/6).
(27¢)

Note that (27a) is a biconvex constraint [23].  For known risk
allocation values of wj , written as 6)jk , the final constraint is

4
A7

Ez+z 2 - -1-Std z+z 2 =2r? (28)

Lemma 3: 1If the controller Uj, ... ,{, satisfies (28) for
constraints (4b) and (4c), then Uy, . .. 4 satisfy (4).
Proof: Satisfaction of (28) implies (23) is satisfied forA; =

4 _

oy 1. Theorem 1 guarantees satisfaction of (4).
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Next, we find the expanded form of (28) and show that the
constraint is always a difference of convex function constraint.

Definition 4 (Difference of convex functions constraint): A
difference of convex functions constraint has the form

f(x)-gx)<0 (29)

in which f, g : R” - R are convex functions for x €R".
Lemma 4: The constraint (28) is a difference of convex func-
tion constraint in U; for the constraint (4b) in U; — U; for the
constraint (4c).
Proof: We first find the expectation and variance of the norm.
To find the expectation, we expand the norm

2

Ez+z =Ez z+2zz+2z 2z (30a)
=zz +2zE[]+Ez z (30b)
% 2
| E [z]
I z (300)

E 2] Ez z 1
Remember qis the dimension of the matrixS designed to extract
the position elements of ~ the state. Here, E[z + z 2] is the
squared norm of a vector matrix product. Hence, the expectation
is convex. We compute the variance in a similar manner to the
expectation

Varz +2z 2 (31a)

=Var z z+2zz+z z (31b)
=Var2zz +2Xov 222,z z +Var Z 2 (31c)
=4z Va(z) z+4z Cov z,Z z +Var z z (31d)
where
Cov 2,z z =Ezz z -E[z]EZz z . (32)

Assumptions 1-3 guarantees a closed form for (31). Thus, we
can write the standard deviation as the 2-norm

Std z+2z 2
[ :
4Var(z) 2Cov 2,z Z
= | 33)
2Cov 2,2 z Var 7z 7

Since the standard deviation is the 2-norm of an affine function,

the standard deviation is convex [24] We can now write (28) as

(34) shown at the bottom of this page. By multiplying both sides
of (34) by -1, (34) is the difference of two convex functions in

the control as per Definition 4.

C. Difference of Convex Functions Framework

Combining the results from Sections II1I-A and III-B, we
obtain a new optimization problem
minimize J X 1,...,Xn,, Ui, ..., 4, (35a)
Uy, Uny
Aijk

subject toUy, ..., W4, €U (35b)
Moments defined by dynamics (2) (35¢0)

with initial conditions x1(0), . .., 4, (0)
Constraints (13) and (34). (35d)

Reformulation 1: Under Assumptions 1-4, solve the stochas-
tic optimization problem (35) with probabilistic violation thresh-
olds a, B, and y for open loop controllers Uy, ..., 4, eUN
and optimization parameters Ajy .

Lemma 5: Solutions to Reformulation 1 are conservative
solutions to Problem 1.

Proof: Lemmas 1 and 3 guarantee the probabilistic con-
straints (4) are satisfied. The (6)—(7) are always conservative.
Hence, the reformulated constraints will be conservative with
respect to the chance constraint. The expectation and variance
terms in Reformulation 1 encompass and replace the dynamics
used in Problem 1. The cost function and input constraints
remain unchanged.

We note that (35) is a difference of convex functions optimiza-
tion problem. A difference of convex functions optimization
problem has the form

minixmize fo(x) = golx)

subject tof;i(x) —gi(x) <0 fori €N (36)

in whichfg, fi(-) : R” = Randgg, g(-) : R” - Rforx €R"
are convex. While (35a)—(35c¢) are convex, (35d) is difference
of convex due to the constraint (34).

We employ the convex—concave procedure [25] to solve (35).
By taking a first order approximation of the expectation of the
2-norm in (34), we can solve the difference of convex func-
tion optimization problem iteratively as a convex optimization
problem. By updating the first order approximation at each iter-
ation, the convex—concave procedure solves to a local optimum.
Here, the first order approximation transforms the difference of
convex function constraint (34) into the convex constraint (37)
shown at the bottom of the next page, where the superscript p
indicated the value from the previous iteration’s solution. The
main benefit of solving this problem with the convex—concave
procedure is the first order approximation makes the constraint
convex while maintaining the probabilistic assurances Since
feasibility of (36) is dependent on the feasibility of the initial
conditions, we use slack variables to accommodate potentially
infeasible initial conditions that can occur during the iterative

(NI

Iq El-Z] V4 4 L

E [z] E z z 1
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process [25], [26]. As we use a difference of convex functions
optimization framework, Lemma 3 guarantees that any solution
that is synthesized during iterative process will be a feasible but
locally optimal solution.

D. Generalizability

The work presented in this section can easily be general-
ized beyond motion planning problem. The work presented in
Sections III-A and III-B rely on constraint forms that are not
unique to the motion planning problem. For example, Section II-
I-A only relies on the linear form of the constraint to provide a
reformulation that can meet safety violation thresholds. Linear
chance constraints are common in many controls applications
including finance [16], [27], power generation [28], [29], and
resource management [30]. However, the work in Section I1I-B
relies on the 2-norm and reverse convex form, making it less
broadly applicable outside of motion planning problems.  For
any application that can use a generalization of this method will
require Assumptions 1-4, as is appropriate for the problem in
question.

IV. RESULTS

We demonstrate our method on a multisatellite rendezvous
problem with two different disturbances that impact the relative
satellite dynamics. All computations were done on a 1.80 GHz
i7 processor with 16 GB of RAM, using MATLAB, CVX [31],
Gurobi [32], and Mosek [33]. Polytopic construction and plot-
ting was done with MPT3 [34].

Consider a scenario, in which N, satellites, called the
deputies, are stationed in geostationary Earth orbit, and tasked
to rendezvous with a refueling spacecraft, called the chief. The
satellites are tasked with reaching a new configuration repre-
sented by polytopic target sets. Each deputy must avoid other
deputies while navigating to their respective target ~ sets. The
relative planar dynamics of each deputy, with respect to the po-
sition of the chief are described by the Clohessy—Wiltshire—Hill
(CWH) equations [35]

. . F
X - 30X - 2ay'= = (38a)
C
.. . F
y+2a=-L (38b)
[
with inputu; = ;—XC r% , and orbital ratecw = RIS’ Earth’s

gravitational parameter p/, orbital radius R, and mass of the
deputy m.. For demonstration purposes, we assume Ry =

35 62%mand m; = 1500kg. This approximates the size
of aBoeing’s 702SP communication satellite. =~ We discretize
(38) under impulsive thrust assumptions, with sampling time
At= 60s. The sampling time is meant to reflect the speed
as which a satellite can preform a maneuver with an electric
propulsion system, such as an ion thruster [36], [37]. We insert
a disturbance process that captures uncertainties in the model
specification, so that dynamics of each deputy are described by

Xi(k + 1) = A;(k) + Bu;(k) +w (k). (39)

We assume that the disturbances adhere to Assumptions 1-2.

A. Exponential Disturbance

Exponential disturbances are the type of distribution that is a
big motivator for our approach. They exist in real systems but
very few methods can handle them. We presume, for the purpose
of demonstration, that we have an exponential disturbance. This
could occur because of inaccuracies in the impulsive thrust
model, drag forces in low Earth orbit, or third body gravity.

The exponential distribution is defined as follows.

Definition 5 (Exponential distribution): An exponential dis-
tribution is one which elicits the PDF

P(x) = re™ (40)

with rate parameter A > 0 and x = 0.

The exponential distribution presents several challenges for
existing methods. We define the following two distributions to
analyze these challenges.

Definition 6 (Hypoexponential distribution): An hypoexpo-
nential distribution is one which elicits the PDF

o(x) = —ae*® 01 (41)

with probability row vector@, subgenerator matrix®, andx = 0.
Definition 7 (Weibull distribution): An Weibull distribution
is one which elicits the PDF
_k x okt o)
A A
with scale parameter A > O, shape parameter K > 0, and x = 0.
First, a linear sum of independent  but not identically dis-
tributed exponential random variables, as the case for the
polytopic target set constraint, results in a hypoexponential
distribution. While a closed form expression of the CDF exists, a
closed form expression of the constraint would result in a reverse
convex constraint. Further, as the CDF is not invertible, quantile
methods cannot be used.

@(x) (42)

[ ]
4 |. 4Var(z) 2Cov 2,z z J
9k 2Cov 2,z 7 Var z 7
( ; )
Iq E &] 2 zP
E [z] Ez z 1

! "

+2(2+EED) SCk U-U - U+ Js—r 2,

[N

z
1

\
(37)

$

First order approximation of E[z+ z 2]based on previous iteration’s solution.
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Second, the squared difference of exponential random vari-
ables, as is the case with the collision avoidance constraint,
results in the sum of Weibull random variables. The PDF, CDF,
and characteristic function of a sum of Weibull random variables
can only be expressed as an infinite summation [38], [39]. Thus,
closed form evaluations of the chance constraint probabilities are
practically impossible. At present, methods that create bounds
based on moments are the only methods that allow for almost
surely satisfaction of each chance constraint.

1) Experimental Setup: Inthis experiment, we demon-
strate the proposed methodology for Ny, taking values of both
3 and 4. We presume the admissible control set for each deputy
isU =1[-0.2, O.?l’g—, corresponding to an 5 N ion thruster,
and time horizon N = 8, corresponding to 8 min of operation.
The performance objective is based on fuel consumption

Ny
(43)

The terminal sets T; (N )are 5m x 5 m boxes centered around
desired terminal locations in X, ¥ coordinates with velocity
bounded in both directions by ~ [-0.5, 0.5#/s. For collision
avoidance, we presume that each deputy must remain at least

0, to extract

the positions. Violation thresholds for terminal sets and collision
avoidance are a and Yy, respectively. The chance constraints are
defined as

r = 10m away from each other, henceS = /5

Ny
P Xxi(N) €Ti(N) 21-a (44)
/ \
8 N,
Pl S(xik)-x;k)=r | =1-y. @)
k=1 ij=1

We will demonstrate the proposed method with o = y taking
values of 0.05, 0.075, and 0.1. Fig. 1 provides a graphic repre-
sentation of the demonstration presented.

As has been established [6], [23], biconvexity associated
with having both risk allocation and control ~ variables can be
addressed in an iterative fashion, by alternately solving for
the risk allocation variables, then for the control. However,
for our demonstration, to isolate the impact of the one-sided
Vysochanskij—Petunin inequality, we presume a fixed risk allo-
cation. We uniformly allocate risk such that
Vi, j, k

P(S(xi(k)-x;(k)=r=z=1-"y (46)

where § = 5L =32 =3.125x 16 when N, =3
and § = gt =:12=15625x10 when N, =4
These values remain constraint throughout the iterative solution
finding process.

We define the solution convergence thresholds for the convex—
concave procedure as both the difference of sequential perfor-
mance objectives as less than10® and the sum of slack variables
as less than 1078 . Difference of convex programs were limited
to 100 iterations. The first order approximations of the reverse
convex constraints were initially computed assuming no system
input.

For arandom variable
parameter

X ~Exp(A), where A is the rate

I
E[)(7]=% Vn eN. (47)
Hence, Assumption 3 is valid. For brevity, the derivation of
expectation, variance, and covariance terms for the collision
avoidance constraint (37) can be found in Appendix B.

For the target set constraint, we can determine that the
chance constraint is unimodal as the exponential distribution
is a strongly unimodal distribution, as per Definition 3. Hence,
the affine constraint is unimodal. However, the Weibull random
variables that result in the collision avoidance constraint —are
not strong unimodal. Here, unimodality of the constraint was
validated numerically via Algorithm 1 for ~ each vehicle pair
and each time step after computing the solution. Validation was
completed with randomly sampled 50 000 disturbances.

2) Comparison Methodology: We compare our method
against the method in [15], the predecessor of the method pro-
posed in this work based on Cantelli’s inequality. This approach
is effective for and has been demonstrated on systems,  which
have target constraints and can be solved via convex optimiza-
tion. We extend this method to accommodate 2-norm-based
collision constraints (as in Section III-B) for the purpose of
comparison with our own approach. We do not consider methods
based on Chebyshev’s inequality because they have shown to be
less effective than [15] in a target constraint problem [13].

Theorem 2 (Cantelli’s inequality [11]):Let X be a real valued
random variable with finite expectation E[x] and finite, nonzero
standard deviation Std (x) . Then, for any A > O

P(x — E [x] = A Std (x)) < (48)

1
A2+ 1
3) Experimental Results: We see in Table I that the pro-
posed method was able to find a solution in all six cases,
where as the stochastic optimal control approach with Cantelli’s
inequality was only able to find a solution in three cases. This is
one of the key benefits of the proposed methodology. The pro-
posed method uses a significantly less conservative inequality
in comparison to Cantelli’s inequality. This allows us to solve
more challenging problems, such as tighter safety thresholds or
more vehicles, while maintaining the almost surely guarantees

of chance constraint satisfaction.

Further, when both methods did find a solution, the solution
cost of the proposed method was about ~ 10% less, on aver-
age. This can also be observed as for all  cases, the post-hoc
satisfaction of the target set constraint was consistently lower
for the proposed method. Again, these results were expected,
as the method benefits from a less conservative concentration
inequality.

Further, the lower solution cost of the proposed method’s
solution is directly attributable to the decrease in conserva-
tiveness of the one-sided Vysochanskij—Petunin inequality over
Cantelli’s inequality. This can easily be seen in Fig. 3, where
we have plotted the expectation of the trajectory when there
are four vehicles and the probability violation threshold is
o =y = 0.1 In the left subfigure, we see that the expected
position of the proposed methodology is closer to its nearest
hyperplane constraint within each target set. Since the one-sided
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TABLE |
COMPARISON OF SOLUTION, COMPUTATIONTIME, AND POST-HOC EMPIRICAL ESTIMATES OF CHANCE CONSTRAINT PROBABILITIES BETWEEN PROPOSED
METHOD AND THE STOCHASTIC OPTIMAL CONTROL METHOD UTILIZING CANTELLI'S INEQUALITY (SOC WITH CANTELLI'S INEQUALITY)

a=vy=0.05 a=~=0.075 a=v=0.1
Ny | Metric Proposed  SOC with Cantelli’s | Proposed  SOC with Cantelli’s | Proposed  SOC with Cantelli’s
Method Inequality [15] Method Inequality [15] Method Inequality [15]
Solve Time (s) 8.2337 6.9137 6.8533 6.8555 6.3414
Iterations 12 No 9 10 9 9
3 Solution Cost in (%)2 0.0443 Solution 0.0431 0.0460 0.0425 0.0446
Satisfaction of (44) 0.9999 Found 0.9994 1.0000 0.9971 1.0000
Satisfaction of (45) 1.0000 1.0000 1.0000 1.0000 1.0000
Solve Time (sec) 30.6113 21.1406 17.9908 30.7663
Iterations 25 No 17 No 15 26
4 Solution Cost in (x5 )2 0.0813 Solution 0.0755 Solution 0.0726 0.0833
Satisfaction of (44) 1.0000 Found 0.9999 Found 0.9992 1.0000
Satisfaction of (45) 1.0000 1.0000 1.0000 1.0000

Problem formulation includes CWH dynamics with exponential disturbance for number of vehicles (V,) equal to 4 and 5 and probability violation thresholds (o and y) taking values 0.05, 0.75, and
0.1. Post-hoc empirical estimates of chance constraint probabilities is measured as the ratio of 10 samples that did not satisfy the constraint.

~Dep1 = Dep?2 ~Dep3 —+Depd
Target Set = Initial Location ——Proposed ~o-Cantelli MPC

10
5k
10
s |8 |
=
= 10 L_)"‘ |:-| 0
-20 A5r
120 . X y . . ) ‘
-10 0 10 -20 0 20 40 60 80 100 120
x (in meters) x (in meters)
Fig. 3. Plot of the expectation of the trajectories between the proposed

method (solid line with filled in markers),  and the stochastic optimal
control method using Cantelli’s inequality [15] (dotted line with white
markers). Trajectories were generated with four satellites with planar
CWH dynamics disturbed by an exponential  disturbance, and proba-
bilistic violation thresholds a =y = 0.1. The full trajectory is displayed
on the right and the terminal state is on the left. ~ We see the two
methods had similar trajectories but notice the stochastic optimal control
method using Cantelli's inequality is further from its nearest hyperplane
constraint of the target set for each vehicle. This is a direct consequence
of the additional conservativeness of Cantelli’s inequality over the one-
sided Vysochanskij—Petunin inequality used in the proposed method.
While the trajectories may look similar, the proposed method has an
approximately 13% lower solution cost than the comparison method.

Vysochanskij—Petunin inequality is less conservative, ~we are
able to find a lower solution cost ~ with a trajectory nearer to
the target set hyperplane boundaries while still ~satisfying the
probabilistic violation thresholds.

As this example demonstrates, we can find solutions and
make probabilistic guarantees for disturbances that may arise
in common circumstances, despite tight safety thresholds. As
discussed earlier, these distributional assumptions made in this
example result in complicated distributions that lack analytical
form. It is in examples like this, where the model assumptions
result in complex but unimodal distributions, we believe this
method provides a novel means to find a solution.

B. Gaussian Disturbance

In this example, we make two simplifying assumptions. First,
we only consider a convex joint chance constraint with a time-
varying target set, asin Section III-A.  Second, we assume

—%

Fig. 4. Graphic representation of the problem posed in Section IV-B.
Here, the dynamics of the deputy is perturbed by additive Gaussian
noise. We attempt to find a control sequence that allows the deputy to
rendezvous with the chief while meeting probabilistic time varying target
set requirements.

the disturbance is Gaussian. = Combined, these two simplify-
ing assumptions allow us to compare the proposed approach
with more traditional approaches, including sample-based ap-
proaches, quantile-based approaches, and moment-based ap-
proaches, while preserving theoretical ~guarantees of chance
constraint satisfaction.

1) Experimental Setup: For this experiment, we presume
there is a single deputy, N, = 1 that must stay within a pre-
defined line of sight cone and reach a terminal target set, as
shown in Fig. 4. We presume the admissible control  set is
U =1[-0.1, O.fl’g—, corresponding to a 2.5 N ion thruster,
and time horizon N = 5, corresponding to 5 min of operation.
The performance objective is based on fuel consumption

J (L) = U, Us. (49)
The line-of-sight cone is defined by the inequalities
X+ 2y<0
-x-2y<0
x<10. (50)

The terminal sets T (N )isa 2 x 1 m 2 near the origin with
velocity bounded in both directions by
violation thresholds for joint target set constraint is

[-0.1, 0.11/s. The
a=0.05
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TABLE Il
COMPARISON OF SOLUTION, COMPUTATION TIME, AND POST-HOC EMPIRICAL ESTIMATES OF CHANCE CONSTRAINT PROBABILITIES FOR CWH DYNAMICS
WITH MULTIVARIATE GAUSSIAN DISTURBANCE FOR VARYING VALUES OF O

o Metric Proposed Method ~ SOC with Cantelli’s ~ Quantile Method  Scenario Approach  Particle Control
Inequality [15] [40], [41] [71, [10] [42]

Solve Time (s) 0.1794 No 1.0414 3.6287 14.9423

0.05 | Solution Cost in (%)% | 6.0075x10~* Solution 5.1885x 1074 5.3572x107%  5.1597x107*
Satisfaction of (51) 1.0000 Found 0.9505 0.9954 0.8785
Solve Time (s) 0.1694 0.1611 2.3789 1.2991 58.5369

0.1 | Solution Cost in ({%)? | 5.4625x10~* 6.3025x 104 5.1420x 104 5.3807x 10~4 5.1375x 104
Satisfaction of (51) 0.9996 1.0000 0.9053 0.9982 0.9025

Post-hoc empirical estimates of chance constraint probabilities is measured as the ratio of 10* samples that did not satisfy the constraint.

The chance constraint is defined as

5
P x1(k) €eT1(k) =21-a (51)
k=1
where a will take values of 0.05 and 0.1.
We presume the disturbance is Gaussian
wi(k) ~N 0,diag 107, 10°, 10°, 10° (52)

Using the properties of the Gaussian disturbance, we know that
all moments exist such that Assumption 3 is valid. Further, affine
summations of Gaussian disturbances are still Gaussian. Hence,
each target set constraint is unimodal, validating Assumption 4.

2) Comparison Methodologies: Here, we compare the
proposed methodology against a broader field of chance con-
strained stochastic optimal control methods. Several methods
exist to solve convex chance constraints in a Gaussian regime.
Hence, we select comparison methodologies that have been
used extensively to solve chance constrained problems with
Gaussian disturbances but can also handle non-Gaussian distur-
bances. Specifically, we compare the proposed method with the
moment-based approach with Cantelli’s inequality [15] outlined
in Section IV-A, quantile approach in [40] and [41], the scenario
approach in [7] and [10], and the particle control  approach
in [42].

The quantile approach results in a reformulation that is a con-
vex in the input and the Gaussian quantile function. The quantile
method allows for almost surely guarantees of chance constraint
satisfaction as the disturbance is Gaussian. The particle control
approach relies on sample disturbances and the chance constraint
reformulation results in a mixed integer linear program.  The
particle control approach can only guarantee chance constraint
satisfaction asymptotically as the number of samples goes to
infinity. To minimize computational complexity, we select 100
samples as the sample size of our disturbance to compute the
optimal control trajectory with the particle control approach.
Like the particle control approach, the scenario approach relies
on samples to compute an optimal controller. The reformulation
of the scenario approach results in a linear program. The scenario
approach can guarantee chance constraints up to a probabilis-
tic confidence bound &. By setting the confidence bound to
a sufficiently small value, the probabilistic guarantees of the
scenario approach closely resemble that of the proposed method.
We compute the number of samples required for the scenario

approach with the formula [43]

%
Nes 2 mlin
S—a 6 [0}

&
(53)

where N is the number of samples required and N, is the num-
ber of optimization variables. Here, N, = 1Q and we choose
S = 10%. Hence, Ns = 937when a = 0.05and Ns = 469
when a = 0.1

We expect the proposed method to result in more conservative
solutions compared with the quantile-based and sample-based
approaches. This stems from the conservative nature of the one-
sided Vysochanskij—Petunin inequality [16]. However, we also
expect to see the proposed method compute solutions in less time
than the comparison methods. We expect this as the proposed
method does not rely on samples as the scenario and particle
control method, and the simplicity of the proposed reformulation
in comparison to the quantile approach. In comparison to the
stochastic optimal control method with Cantelli’s inequality,
we expect to see similar results to Section IV-A,  where the
proposed approach resulted in less conservative solutions while
maintaining similar solve times and post-hoc estimates of chance
constraint probabilities.

3) Experimental Results: As Table II tabulates, the pro-
posed method preformed as expected in comparison to the panel
of methods we tested. In comparison to the stochastic optimal
control method with Cantelli’s inequality, we saw similar results
to Section IV-A, whereas the proposed method was able to find a
solution in both cases, and provided a less conservative solution
when o = 0.1 In comparison to the quantile approach, we see
the proposed solution resulted in a more conservative and costly
solution but up to an order of magnitude faster to compute. How-
ever, the need to to know or estimate the quantile is often a barrier
for many distributions that the proposed method does not have.
Finally, in comparison to the two sample-based methods, we see
significantly lower solution times for the proposed methodology,
up to two order of magnitude. Both the proposed method and
the scenario approach were able to consistently meet ~ chance
constraint safety thresholds, whereas the particle control method
was only able to meet the safety threshold in one case.

In Fig. 5, we plot the expectation of the solution trajectories
from each method and a subplot of each time step zoomed in
to the local region around the solutions. We see that as the tra-
jectories evolve, there are three distinct groupings of solutions.
The important takeaway of this graph is that the trajectory of
the proposed method lies approximately in the middle of the
other methodologies. We expect the proposed method to be less
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Fig. 5. Plot of the expectation of trajectories between the proposed
method (red, circle), stochastic optimal control method utilizing Can-
telli's inequality [15] (blue, diamond), quantile-based approach [40], [41]
(green, triangle pointing up), the scenario approach [7], [10] (purple,
6-pointed star), and the particle control approach [42] (black, triangle
pointing down). Trajectories were generated for one satellite with CWH
dynamics disturbed by a multivariate Gaussian disturbance, and proba-
bilistic violation threshold a = 0.1. Here, we observe the trajectories are
very similar. Below the primary plot, a subplot is included for each time
step to better view the dispersion of the methods at that time step. In the
time step plots, we see that the trajectories of the proposed approach is
similar to that of the scenario approach but distinct from the rest of the
comparison methods.

conservative than the method employing Cantelli’s inequality
but more conservative than the quantile approach. Conversely,
since our method does not rely on sample datasets, such as the
scenario approach and particle control, whose trajectories would
change given different sample sets, we know we can expect
consistent and reproducible results.

This example illustrates that the proposed method has mer-
its when comparing to a panel  of commonly used stochastic
optimal control methods. The proposed method offers computa-
tional efficiency, interpretability, and almost surely guarantees
of chance constraint satisfaction, while only requiring validation
of unimodality, and knowledge of moments. this is particularly
true when moment-based methods are the only option,  as the
one-sided Vysochanskij—Petunin inequality is currently the least
conservative concentration inequality that will result in a convex,
tractable reformulation [16].

V. CONCLUSIONS AND FUTURE WORK

We proposed a  framework to solve  chance-constrained
stochastic optimal control problems for LTI systems subject
to arbitrary disturbances under moment  and unimodality as-
sumptions. This work focuses on probabilistic requirements
for polytopic target sets and 2-norm-based collision avoidance

constraints. Our approach relies on the one-sided Vysochanskij—
Petunin inequality to reformulate joint chance constraints into a
series of inequalities that can be readily solved as a difference
of convex functions optimization problem. = We demonstrated
our method on a multisatellite rendezvous scenario under ex-
ponential and Gaussian disturbance assumptions and compare
with an stochastic optimal control approach using Cantelli’s
inequality (the predecessor of this work), a quantile-based ap-
proach, the scenario approach, and the particle control approach.
We showed that this approach is amenable to disturbances that
prove challenging or impossible to solve with other methods and
demonstrated the proposed method has computational benefits
in comparison to other commonly used methods.
Methodologically, we are interested in exploring probabilistic
inequalities that result in less conservative bounds. For cases in
which the disturbance in unknown and samples are available, we
are currently exploring moment-based approaches that rely on
sample approximations of moments and provide probabilistic
guarantees.

APPENDIX A

A. Numerical Evaluation of Unimodality

Algorithm 1 is constructing an affine approximation of empir-
ical CDF then testing whether there is a single inflection point
by comparing the slopes of the affine segments.

B. Derivation of Norm Expectation and Variance in
Exponential Case

We keep with the notation used in Section III-B.  Since we
assumed the disturbances are independent and identically dis-
tributed, from (47) we find

E z] = O
Var(z) = 2SD(k) Var W; D ( k)S (54)
where
Var W ;
=diag 202 15, 108 -15,..., 28 -1, 108 -1, . (55)
Next, from (54)
Ez z =u(Val(z)). (56)

Next, we find Var(z z). For brevity, we denote W ; - W ; as
W . Then

Var z z
=Var WD (k)SSD (kW (57a)
Nn  Nn
= Var apgW ,W ¢ (57b)
p=1g=1
Nn Nn Nn Nn
= Cov(apgW pW 4, as W W)  (57¢)

p=1qg=1r=1 s=1
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Algorithm 1: Numerical Check for Unimodality.

Input: Empirical cumulative distribution function
points (x;, F'(x;)) for samples x; with i € N~
and maximum error threshold &.

Qutput: 1 if unimodal or O if not unimodal

i+0

S+«o

while : < N, do

for j = Nstoi+1by —1 do

Bay)—F(w:)

Q<—13‘(xj)—xj X m

for k=i+1to j—1by1do

ex = F(xr) — (py x m +b)
if ¢, > ¢ then

| next j
end

end

S+ Su{m}

break

m <

end
14 ]

end
w <0
N, + card(S)
for i =2to N. by 1 do
#S, is the i*" element of S
if Sl > Si—l then

if w =1 then

| return O
end

else
| w1

end

# cardinality of set S

end
return 1

where @pq is the (p, g}h element of D ( k)S SD (k). Then

Nn Nn Nn Nn
Cov aW ,W g, as W, W s
p=1 g=1r=1 s=1
Nn

2
= Var ap W

p T4

1<p<g<Nn

Var apgW pW 4
p=1
(58)

Here, all remaining covariance terms is zero as each element is
mutually independent by Assumptions 1 and 2, and the first and
third moments being zero. So

Nn
2
Var ap, W, +4 Var a,gW ,W 4
p=1 1<p<q<Nn
Nn % &
- &2 Ew’ Ew?’ 59
= & P P (59a)
p=1

2 2 2
+ 4 anE W, E W,
1<p<q<Nn
Nn > Nn Nn
=3 aEW . +2 2EW - EW
PP p pa P
p=1 p=1g=1

(59b)

as in this example E[W z] = 6EW Fz,]z. Then, let a be a vec-

tor consisting of the diagonal elements of D ( k)S SD (k).
So

Nn , Nn  Nn
3 aEW . +2 Z2EW > EW 60
op p bq p (60a)
p=1 p=1g=1
2
=12aVar W; a
% 2&
+ 8 D (k)S Var W; SD(k) (60b)
Finally, we find Co\(z, z Zz)
Cov z,z z =Ezz z -E[z]EZz Z (61)

The second term is zero by (54). For arandom vector, the
expectation is a vector of the expectations of each element. Then,
for the ith element

Nn
=Ez ,3 + E[z]E z]-2
j=1
J=1

Ez z z (62)

Since the first and third moments of Z are zero, then the sum is
zero. Thus, Cov(z, z z) = 0.
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