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1 Introduction

The investigation of dijet production in Deep Inelastic Scattering (DIS) is one of the key
measurements [1] of the upcoming Electron-Ion Collider (EIC), as it provides insights into
the phenomenon of gluon saturation at high energies [2-8].

Most of the studies so far, with rare exceptions [9], have been concerned with the nearly
back-to-back dijets [9-31]. Recently the dijet calculation in DIS in the Color Glass Condensate
(CGC) formalism was extended to NLO order in refs. [32-35] with particular attention to
understanding the interplay of high energy evolution and the Sudakov suppression.

In this paper we are interested in a particular aspect of dijet production, namely can
it be used as a probe of Bose enhancement of gluons in the nuclear wave function. This
prompts us to consider both inclusive and diffractive dijet production [9, 31, 36-45]; and
also to go beyond the back-to-back kinematics.

In two recent papers [46, 47], we have studied an observable that allows to directly probe
Bose-Einstein correlations between gluons in the nucleus [48-50]. These correlations are very
interesting since they provide nontrivial information about two particle correlations in the
nuclear wave function [51-55] which may significantly extend our understanding beyond the
conventional single particle distributions traditionally probed in DIS experiments [9, 18, 24, 38].
The observable we considered was rather challenging experimentally, as it requires the
measurement of three jets and correlations between them. In this work, we argue that gluon
Bose-Einstein correlations can be measured in a simpler setup in diffractive dijet production.

Quantum statistics that is responsible for the universal source of correlations between
(identical) gluons is Bose enhancement. In the hadron wave function this effect leads to the



amplification in the number of pairs of gluons with the same quantum numbers and small
relative momentum, see more in refs. [48-50].

The reason we expect dijet production to be sensitive to the Bose correlation is rather
transparent. At high energy, in the infinite momentum frame, the virtual photon fluctuates
into a quark-antiquark pair (dipole) with transverse momenta 4, and 4, which scatters
on the gluon field of the fast-moving hadron target. In the final state this leads to two
(quark-anti-quark) jets with the transverse momenta p, and p,. In the hadronic wave function
prior to the scattering gluons are correlated via Bose enhancement. That is, the probability
of finding two gluons is enhanced if they have the same color and transverse momentum
(ky =~ ky). Thus there is an enhanced probability that as a result of scattering, both the
quark and the antiquark absorb target gluons with the same transverse momentum k;.
Since the two gluons are also in the color singlet state, as is the original dipole one can
further isolate this contribution by considering diffractive dijet production. The two jets
may be away from the back-to-back regime and may even have almost the same transverse
momenta (while longitudinal momentum can be very different), if the exchange with the
target is due to hard gluons.

The dijet observable is much simpler and better experimentally accessible than the trijet
we have considered before. An additional advantage is that in the diffractive configuration,
there is a rapidity gap between the dijet and the target remnants. Thus the momentum
imbalance of the dijet is not affected by the Sudakov radiation [16, 56] and is determined
entirely by the momentum exchange with the target.

In this paper we study numerically the diffractive dijet production cross section as a
function of the relative angle between the transverse momenta of the two jets in the CGC
approach. We start with the dilute regime where the calculation can be done to lowest
order in the density of the target. We then study the full nonlinear case where the target
is evolved by the leading order JIMWLK evolution.

For perturbative calculation the target averaging is done utilizing the McLerran-
Venugopalan (MV) model [57, 58]. For comparison we also introduce an IR regulator
which enforces color neutralization in the target within a finite transverse distance 1/m. The
initial condition for JIMWLK evolution is given by the same MV model. JIMWLK evolution
generates the color neutralization scale dynamically. The inverse neutralization scale m grows
with rapidity proportionally to the saturation momentum.

In both cases we find an enhancement of the production for small relative angle. This
enhancement is most significant when the transverse momenta of the two jets are equal
in magnitude, and disappears when the ratio of the two momenta is of order 1.5-2. The
effect is enhanced when the nonvanishing color neutralization scale, and is more pronounced
for the JIMWLK evolved results.

We note that in this paper, as in the previous literature on the subject (e.g. [46, 47]), we do
not include effects of jet fragmentation. Since the calculation is done at the leading nontrivial
order, the jets are represented simply by bare partons. At higher orders one certainly would
need to take into account a nontrivial jet structure and define the jets consistently using an
appropriate definition of jet cone. One could worry that jet fragmentation could significantly
affect results for the configuration where the two jets have equal transverse momenta, and
thus the results could be sensitive to higher order perturbative corrections. However if the



rapidities of the two jets are very different, which is generically the case, the jets are spatially
separated and the fragmentation should not lead to large effects, especially for narrow jets.
We thus believe that qualitatively our results should not change with inclusion of these effects.

The paper is structured as follows. In section 2 we recap the calculation of the dijet
cross section within the CGC approach. In section 3 we review the Bose enhancement in
the CGC wavefunction as it appeared in calculations of particle production in CGC. In
section 4 we calculate the diffractive dijet production in the dilute limit. In section 5 we
present the results of the full nonlinear, JIMWLK evolved cross section. Finally in section 6
we briefly discuss our results.

2 Inclusive and incoherent diffractive dijet productions

In this section, we review the differential cross section of DIS dijet production within the
Color Glass Condensate (CGC) formalism [6-8]. As we alluded to in the introduction, in
this framework, the incident photon undergoes a fluctuation into a quark-antiquark pair,
which then interacts with the nucleus. We consider the photon to be right-moving while
the nuclear target moves to the left. We set the reference frame such that the photon has
a large longitudinal momentum p™ and zero transverse momentum; photon’s virtuality is
denoted by Q?. The target nucleus carries a large P~ component, that is, we have (neglecting

2
(@
pﬂ_( 72p+70>

P = (0.77,0)

for the nucleus. At high energy, it is convenient to work in the so-called dipole picture of DIS,
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where the photon splits into quark-anti-quark pair with the lifetime of the dipole being much
longer than the interaction time with the nucleus. We work in the eikonal approximation,
in which the transverse separation between the quark and antiquark remains unchanged
while the dipole traverses through the nucleus. Corrections to eikonal approximation are
suppressed by powers of collision energy +/s [59-62] and although this suppression is not
overwhelming at EIC we will not consider such corrections in the present work.

The expressions for the differential dijet production cross-sections can be found in ref. [12]:
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for the transverse (7') and
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for the longitudinal (L) polarizations. The variable z represents the momentum fraction
carried by the quark, and r = x; — x4 represents the transverse separation of the quark-
antiquark pair. The helicities of the (massless) quark and antiquark are denoted by «
and B. Additionally, it is convenient to introduce e} = 2z2Q?. The function K,, is the
modified Bessel function of the second kind of n*® order. Although Bose Enhancement will
be present for both longitudinal and transverse polarisation of the virtual photon (since
it is the property of the target), in what follows, for illustrational purposes, we will only
consider longitudinal polarization.

In eq. (2.1), NV is the factor expressing the dipole scattering off the nucleus. For inclusive
dijet production it is
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while for incoherent diffractive dijet production,
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The quadrupole and dipole terms arising in N of eq. (2.1), respectively, are as follows:
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where the Wilson lines V' (z) (and V'(z)) encode multiple scattering of the quark (anti-quark)
off the gluon field of the nucleus. Here (...) denotes averaging over the valence target ensemble.
The additional quantity that appears in the incoherent diffractive cross section is

53(532) (21,2927, 25) = % <Tr [VT(@)V(%)} Tr [VT@’I)V(@’Q)D ) (2.8)

3 Bose enhancement

3.1 Soft gluon density matrix and averaging over target configurations

CGC is an effective field theory based on the separation of the degrees of freedom into valence
and soft sectors as quantified by the fraction of the longitudinal momentum of the hadron
they carry. The valence charges are treated as static sources of faster soft degrees of freedom.

The conventional approach in CGC is to first average over the soft sector and then over
the valence target configurations — equations in the previous section were obtained in this
precise way. Although this approach is most convenient for practical calculations it is not
very illuminating as far as the quantum correlations in the target are concerned. To analyze
the latter, one, first, averages over valence sector and only then considers expectations values
of operators of interest in the soft sector.



The CGC wave function [63, 64] is given by

W> = |5v> ® |U> ’ (3'1)

where |v) is the state vector characterizing the valence degrees of freedom and |s,) is the
vacuum of the soft fields in the presence of the valence source.
In the leading perturbative order
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where
¢i(k) = af (k) + ai(—k) (3.3)
is the soft gluon field operator with af, a; being the gluon creation and annihilation operators.
The background field % is determined by the valence color charge density p via:
i ik; 2
B (k) = gpa(k) 5 + O(p%). (34)
In this and the next section, for the sake of simplicity of presentation, we consider the dilute
approximation in the target, that is the leading contribution of the color charge density. At the
leading order in p(k), only gluons with the longitudinal polarization contribute to C and |s,).
The valence wave function |v) is customarily modeled in the so-called McLerran-
Venugopalan (MV) model as [57, 58]. The MV model can be formulated in terms of diagonal
matrix elements of the valence density matrix in the color charge density basis:

{plv) (v]p) = Ne~ S sz pa(®)ps (k)

where N is the normalization factor and the parameter ;> determines the average color

, (3.5)

charge density in the valence wave function.
The full hadron density matrix reads

p=1v) @ |sv)(so| © (v]. (3.6)

Integrating out the valence modes yields the reduced density matrix for the soft sector

b =Tesp= [ Dptplile) = [ Dplplv) s.) (sl (0lo). (3.7)

In the particle number representation it was derived in ref. [64]. The nonvanishing matrix
elements of p, between states in the momentum space Fock basis are
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with other elements being zero. The matrix elements are explicitly diagonal in color and
momentum. The state |n.(¢q), m.(—¢)) denotes n gluons with momentum ¢ and m gluons
with momentum —g.



3.2 Bose enhancement in the soft density matrix

Consider the correlator (only longitudinal polarization of gluons is included)

D(k,p) = Tr (praf (k)al (p)as(B)ac(p)) - (3.10)

This measures the correlation between two gluons drawn from the target.
This can be easily calculated in the MV model. Consider first
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The sum is computed in appendix A.
Additionally
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In ref. [65], it was shown that the density matrix p, is Gaussian, that is
pr = €exp {—fdzq ﬁw(g)c*’(g)c(g)} where ¢(g) is a linear combination of a™(¢) and a(—g).
Therefore we can use Wick theorem to find the expectation value of D(k,p). We should keep
in mind that in addition to the standard Wick contraction (a'a), also the contractions (a'a')
and (aa) are nonvanishing and are given by (3.12). We get

D(k, p) = (af (k)af (p)ay(k)ac(p))

= (af (K)as(k)) (al (Pac(p)) + (af (B)af (p)) (as(k)ac(p))

+ (af (B)ac(p)) (af (Pas(h)) - (3.13)

Here, as we are interested in density-enhanced terms, we can ignore the order of the operators,
that is we can treat the creation annihilation operators as commuting. We thus obtain

D(k,p) = (SJ_(NQ—l)ng ) (S (N2 — 1)9 i )

p?

n(k) n(p)
22\ 2
+(2m)2(N2 - 1)S, (9: ) 6@ (k+p) + 6D (k- p)] . (3.14)
The first term is the “classical” independent and factorizing contribution, while the last term
represents the non-trivial effect of Bose correlations. Note that the correlation contains the
sum of two delta functions. The first one leads to the enhancement of gluon correlations
for back-to-back kinematics. Although this term is important, in physical processes, it is



often overpowered by the stronger effect of the transverse momentum conservation. The later
term leads to the enhancement of gluons at the same momentum and this is the effect we are
interested in. Note that the sensitivity to the Bose enhancement starts from the observables
quartic in creation/annihilation operators or, in other words, from the order of ji*.

Additionally, the correlated contribution in eq. (3.14) is suppressed by the area factor
S|, and the color factor N2 as compared to the uncorrelated one (first term). The 1/N?2
suppression is associated with the probability of the two gluons to be in a color singlet
state. The area suppression is not an important factor in DIS. Although the contribution
of Bose enhancement to the field correlator is indeed area suppressed, this suppression
does not show up in DIS observables. In a DIS process, the transverse area probed by the
photon, i.e. the area of the dipole is of order ~ 1/Q?. Thus one is measuring uncorrelated vs
correlated particle numbers within the area ~ 1/Q? and not in the total area of the hadron.
The dimensionless suppression parameter is given by the product of 1/Q? and the “typical”
transverse momentum of gluons in the target, i.e. Q2. For large Q% > @2 this product is
small, which is to say that the gluons within the probed area are strongly correlated. In
this situation the area suppression does not exist, so that the only suppression of Bose
correlations is due to the color factor NZ.

4 Dilute approximation
We now discuss averaging over the target in dilute approximation. The basic objects we have
to average are products of Wilson lines. The Wilson line in the fundamental representation is
+o0o
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In the covariant gauge
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In the MV model, the correlators of p are determined by a Gaussian distribution with
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For the field correlators this translates into
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In the dilute limit one expands in the number of gluon exchanges with the target, which
necessitates expansion of the Wilson line. As is clear from previous discussion, the lowest order
in which the effect of Bose enhancement is visible is the fourth order in y, which means that
in the expansion of a single Wilson line we need to keep terms up to fourth order in the field
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To make our notation compact, we introduce the averaged quantities,
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—00

We also notice that the cubic order in the field can only appear in the expectation values
when multiplied by the linear order. We thus can contract two remaining fields already in
the expansion of the Wilson line, that is
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Similar logic allows us to simplify the quartic term (here only one contraction survives
due to color structure):
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We thus effectively have
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Now, to evaluate the diffractive cross-section, it is also useful to compute the dipole operator
to pu* order
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The last term can be immediately simplified as we did for a single Wilson line. The cubic
term in A involves a trace of three Gell-Mann matrices and, to this order, will necessarily
involve one internal contraction leading to zero contribution. We thus can safely drop the
cubic terms. After this simplification, we obtain
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The diffractive cross-section envolves only a bilinear of the fluctuation of the dipole amplitude,
N%Tr Viy)V(z) - <N%Tr VT(Q)V(§)>. Thus when computing diffractive production we can

drop the first and the last term in eq. (4.13). For the leading contribution we get simply
4
g
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4
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or, evaluating, the averages (see figure 1 for diagrammatic representation)
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Similar Wilson line structures in the dilute regime have been analyzed in ref. [66].
The cross-section therefore is
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Here S, is the transverse area of the target.
In order to analyze angular correlations we consider the correlation function defined as
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at a constant value of z. The momentum-dependent normalization constant Ciopm is fixed
by requiring

/2
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The results are plotted in figure 2 as a function of the relative angle between the vectors
k; and k, and their magnitude. The target averaging was performed with two different
models: the original MV model, and an MV-like model modified to include a finite color
neutralization scale m (see discussion below). The latter is defined by the field-field correlator
modified in the IR:

L(g) = !

q ﬁ E+md) (4.18)

The “mass” m plays the role of the color neutralization scale modeled through the color
charge correlator (see refs. [46, 67, 68])

2
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which ensures that the correlator vanishes at momentum k& < m (or transverse separations
greater than 1/m) as k? (color neutralization) and that it approaches constant at larger |k|

,10,



(a) Independent scattering off the target. This (b) Single-gluon-correlated scattering propor-
contribution is proportional to L(z; —z)L(zo— tional to —L(z; — ab)L(z; — z}); this term
xbh) of eq. (4.15). somewhat suppresses the back-to-back peak.

|
Ty | T
|
|
T2 |
|
|
(¢) Two gluon correlated scattering L(z; — (d) Two gluon correlated scattering L?(x, — )
z5)L(zy — z}) with gluons having equal trans- with gluons having opposite transverse mo-
verse momenta. This contribution causes menta. This contribution causes additional
Bose Enchancement. enchancemnt of the back-to-back peak.

Figure 1. Sample of representative diagrams contributing to diffractive dijet production; note that
the final state dijet is required to be a color singlet.

(a more realistic model should include anomalous dimension at larger k). Equation (4.18)
follows from eq. (4.19). Although the original MV model does not possess the color neutral-
ization property, when evolved with the JIMWLK equation to a smaller x a nonvanishing
neutralization scale is generated dynamically. In this sense, the modified MV model should
be viewed as including some of the effects of the low x evolution. We use this model here
just for the illustration purposes. In the next section, we will use the MV model evolved
to low x by the JIMWLK evolution to compute this observable.

The figure 2 demonstrates the presence of the peak at the zero relative angle, with the
peak strength being the strongest for |k;| ~ |ko|. We expect that the numerics of the small
x evolution will lead to the transition from the pattern of the correlation in figure 2(a) to
the one in figure 2(b). Note that the approximate equality of the transverse momenta of
the jets does not necessitate the overlap of the jet cones as the jets are typically separated
in the longitudinal momenta (that is z # 1/2).

Note that the Wilson line correlator entering into the inclusive cross-section to the

first nontrivial order is
2

Ninsive % 5 T0(2%4") () (2) (@0 )an(2)) —(a(z2) () +(aa(z2)an(23)

) (4.20)
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Figure 2. The correlation function (2.1) for the incoherent diffractive dijet for k; = 7Q, and
€f = 2Q5.

or

Nesve > LI (D — ) — 1w )~ Llaa —2) 4 Lo 2)) . (421)
9 Ty — T ] — T Ty — T Ty — T
As this expression demonstrates the inclusive production has a non-zero contribution already
at order of 12. This contribution is not sensitive to quantum gluon correlations. Now at
it order the correlations including Bose Enhancement in the target are present, however
they do not result to a peak structure in the angular correlation function at zero angle. The
reason why can be understood by considering the diagram in figure 1(c). The diffractive
contribution from this diagram is proportional to a quadratic combination of L times

Saby Opa [N% tr(t“tb)} [N% tr(t“/tb/)} = 2%,;’ while for the inclusive production we have the
same combination of L functions times d,4 0py [NLC tr(t“taltb/tb)} = _2Cch' We see that the

contribution of the same Bose enhancement term but with the sign flipped due to color
algebra. We thus conclude that Bose enhancement, which gives an enhancement of the zero
relative angle peak (k; = ky) in diffractive production, gives a dip in inclusive! The dip on
the background of falling back-to-back peak is impossible to distinguish in a real experiment
and this is why we did not pursue its numerical calculation in what follows.
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Figure 3. Incoherent Diffractive production as a function of relative angle k; = 7Q9, ¢; = 2QY.

5 Beyond dilute approximation and small x evolution

The analysis performed in the previous section relied upon the dilute approximation. In this
section, we present the results obtained by numerical simulations of the full MV model with
subsequent small-x evolution computed using leading-order fixed coupling JIMWLK equation.

JIMWLK is the renormalization group evolution towards smaller x, as conveniently
parametrized by asY = asln % We initialize the evolution with the MV model, generalized
to include the color neutralization scale mg = 1/4QY in (4.18), where Q9 is the saturation
momentum at zero rapidity. We follow the widely accepted definition of the saturation
scale in the numerical calculation through the fundamental dipole scattering matrix S(rs =
V2/Qs) = exp(~1/2).

As discussed above, the conventional MV model does not incorporate color neutralization.
However the JIMWLK evolution generates a color neutralization scale dynamically even
if it is not present in the initial condition. This scale turns out to be proportional to the
saturation momentum with the proportionality coefficient of order unity, see ref. [69]. With
this in mind we include such a scale in the initial condition as well albeit with a smaller
proportionality factor.

Numerical procedures for MV and JIMWLK are identical to those described in ref. [70]
and ref. [71] correspondingly. As in the previous section, we fixed the value of z (although it can
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Figure 4. Incoherent Diffractive production for collinear configuration A¢ = 0 as a function o f ks:
ki =7Q% er =2Q°.

be chosen arbitrary), in order to compute the correlations functions defined in eq. (4.17). The
details of the numerical calculation of the diffractive observable are presented in appendix B.
The results are presented in the plots, see figures 3 and 4.

6 Conclusions

Let us discuss our numerical results.

First consider figure 2. The correlator plotted exhibits the features expected from the
Bose enhancement. Both, for m = 0 and m = @ the correlator has a maximum at zero
angle as long as the momenta of the two gluons are close to each other. The maximum is
most pronounced when ki = ko and disappears when the ratio of the two momenta becomes
roughly 1.5. Introduction of the color neutralization scale makes the maximum more robust,
both in terms of it being more pronounced and surviving for wider range of momenta. This
feature was observed also in our earlier work on trijet production [46, 47]. Qualitatively,
the origin of this behavior is that finite color neutralization scale suppresses gluons with
small transverse momenta. These gluons mostly contribute to the correlator at A¢ = m,
and suppressing them makes the peak at A¢ = 0 more pronounced. Thus the presence of
a large saturation (or color neutralization) scale is a welcome feature from the perspective
of observing the Bose enhancement effects.

Moving on to figure 3 we see the confirmation of the same trend. Evolution in energy
generates color neutralization scale [69]. This scale quickly grows beyond QO present in the
initial condition. As a result evolving from oY = 0 to agY = .4 significantly increases
the Bose enhancement signal. This is clearly seen moving from figure 3(a) to figure 3(b).
Interestingly, further evolution to asY = .8 and beyond changes the picture very little.
Although there is marginal enhancement of the signal, it is much less noticeable than the
initial change starting with the MV model. This suggests that there is importance not only to
the value of the saturation scale, but also to the shape of the gluon distribution in the hadron.

To summarize, we have shown that one can probe Bose enhancement with a simpler
observable than discussed earlier — the diffractive dijet production. To do that one needs to
go away from the correlation limit into regime where the total momentum and the momentum
imbalance of the two jets are close.
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Our calculation is performed in the framework of the eikonal approximation which
is strictly valid for low values of = of the target gluons. For the momenta of the jets
and the virtuality considered in this work, the relevant gluon x can be estimated using
T = W%JPQQ (Q2 +q% + ﬁPf), see e.g. ref. [24]. This gives values of order 0.01 for the
EIC energies (the center of mass collision energy in the photon-nucleus system W = 120 GeV,
z=1/4 and Qs = 0.8 GeV). These values are at the limit of the applicability of the eikonal
approximation. In future it is important to include subeikonal corrections to access their
relative importance.

We note that since our calculation is at leading order in «y it does not include some
effects the importance of which should be better understood. As we have mentioned in
the introduction, one such effect is collinear fragmentation. This, as explained above, we
believe will not have significant impact for z sufficiently different from 1/2. Additionally our
calculation does not take into account the Sudakov radiation. Diffractive dijet production is
not accompanied by Sudakov radiation outside the dijet. However there still is such radiation
emitted between the two jets. Part of the Sudakov gluons will simply fill the jet cones of the
two jets, and thus will not affect the total momentum and momentum imbalance of the jets.
Radiation outside the jet cones will broaden the momentum distribution and therefore broaden
the Bose enhancement peak further around the point k; = k2. However in the kinematics we
consider the phase space for this radiation is small and it should not be a significant effect.
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A Useful sums

Using the identity

o0
(n+m)! = /O ste~tgntm (A1)
we get
B (n+m)! (R\"™™ o 1 (Rt\"~ 1 (R\"
(1—R)R/°° ~1(1-R) R g’
— = = . A2
> )y e 2B-1) & (A.2)

,15,



The sum

(n+m+1)' (R)n+m+l
+1vVn+lppmnitimi1=(1—R +1vn+1 —
%\/m V+1ppmnt1m+1 = ( );:n\/m Vn NS CES YA

- “‘R)Zw (R)n+m+1

et nlm! 2
B (n+m)| R n+m

reduces to eq. (A.2).

B Numerical evaluation of the incoherent diffractive cross-section

The main difficulty in computing the expectation value for both diffractive and inclusive
cross section is in computing the integrals of the term involving four Wilson lines

d? d2 | d?z, d? N :
T = / xl L1 x) o 96)2 e~ (@=2h) o =ika (@-25) [ (e |2y — o)) Koer|z) — b))
7T

x [v*@z)wzl)}ij ViV, (B.1)

To proceed define the amplitude

Py Pz ipow iks
Mgl ko) = [ b o2 bmbn Kyl - o)) Vi@V (B2

which can be efficiently evaluated using the fast Fourier transform.
Once the amplitude is known, we can find the compination

T= Mij(E17E2)Mkl(_E27 —El) (B-3)
and thus for the diffractive we simply
T = trM(ky, ko) trM (—ky, —k1) (B.4)

which requires storing a four dimensional matrix trM (k;, k,) as enumerates by the momentum
components. For inclusive one has to store full M;;(ky,ky). That is computing the inclusive
cross section requires a factor of N2 — 1 more operating memory and thus is more challenging.

Finally, the diffractive cross section boils down to evaluating the averages over the
target proportional to

(trM (ky, ko) trM (—ko, —k1)) — (trM (ky, ko) ) (trM (—ko, —k,)) - (B.5)
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