
J
H
E
P
0
7
(
2
0
2
4
)
1
4
8

Published for SISSA by Springer

Received: September 8, 2023
Revised: May 12, 2024

Accepted: June 24, 2024
Published: July 16, 2024

Not all that is β0 is β-function: the DGLAP
resummation and the running coupling in NLO JIMWLK

Alex Kovner ,a Michael Lublinsky ,b Vladimir V. Skokov c and Zichen Zhao c

aPhysics Department, University of Connecticut,
196A Auditorium road, Storrs, CT 06269-3046, U.S.A.

bPhysics Department, Ben-Gurion University of the Negev,
Beer Sheva 84105, Israel

cDepartment of Physics, North Carolina State University,
Raleigh, NC 27695, U.S.A.

E-mail: alexander.kovner@uconn.edu, lublinm@bgu.ac.il, vskokov@ncsu.edu,
zzhao23@ncsu.edu

Abstract: We reanalyze the origin of the large transverse logarithms associated with the
QCD one loop β function coefficient in the NLO JIMWLK Hamiltonian. We show that some
of these terms are not associated with the running of the QCD coupling constant but rather
with the DGLAP evolution. The DGLAP-like resummation of these logarithms is mandatory
within the JIMWLK Hamiltonian, as long as the color correlation length in the projectile is
larger than that in the target. This regime in fact covers the whole range of rapidities at
which JIMWLK evolution is supposed to be applicable. We derive the RG equation that
resums these logarithms to all orders in αs in the JIMWLK Hamiltonian. This is a nonlinear
equation for the eikonal scattering matrix S(x). We solve this equation, and perform the
DGLAP resummation in two simple cases: the dilute limit, where both the projectile and
the target are far from saturation, and the saturated regime, where the target correlation
length also determines its saturation momentum.

Keywords: Deep Inelastic Scattering or Small-x Physics, The Strong Coupling, Algorithms
and Theoretical Developments, Effective Field Theories of QCD

ArXiv ePrint: 2308.15545

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2024)148

https://orcid.org/0000-0001-7332-3634
https://orcid.org/0000-0003-3594-2543
https://orcid.org/0000-0001-7619-1796
https://orcid.org/0009-0002-0251-7831
mailto:alexander.kovner@uconn.edu
mailto:lublinm@bgu.ac.il
mailto:vskokov@ncsu.edu
mailto:zzhao23@ncsu.edu
https://doi.org/10.48550/arXiv.2308.15545
https://doi.org/10.1007/JHEP07(2024)148


J
H
E
P
0
7
(
2
0
2
4
)
1
4
8

Contents

1 Introduction 1

2 JIMWLK at NLO and the large transverse logarithms 3
2.1 JIMWLK at leading order 3
2.2 JIMWLK Hamiltonian at NLO — the relevant terms 4
2.3 The “subtraction” method 5

3 The dressed gluon and the DGLAP splittings 7
3.1 The dressed gluon scattering matrix 8
3.2 The reorganized Hamiltonian 11

4 The resummation 13
4.1 The running coupling 13
4.2 The DGLAP corrections 14
4.3 Resummation in the dilute limit — the BFKL 16
4.4 The saturation regime 19

5 Including quarks 20
5.1 Dressed quarks and gluons 20
5.2 The resummation — saturated regime 22
5.3 The resummation: the dilute regime 23

6 Discussion 26

A The right and left charges 28

B Fourier transforming αQ 30

1 Introduction

At high energy, the energy evolution of hadronic cross sections (see e.g. [1] for review) is
governed by the Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
evolution equation [2–6]. The JIMWLK equation was derived at next-to-leading order (NLO)
almost ten years ago [7–9], following the earlier derivation of the NLO dipole model (Balitsky-
Kovchegov equation), see [10–13]. With the derivation, it became immediately apparent that
improvements are necessary due to the presence of large transverse logarithms in the NLO
kernel. Two types of terms contain large transverse logarithms in the NLO JIMWLK equation.
The first type is proportional to the one loop coefficient of the QCD β-function, β0; while the
second does not involve the β-function and is related to the lifetime ordering of fluctuations.

Different recipes for the resummation of both types of logarithms have been extensively
discussed in the literature in recent years [14–20]. In this paper, we will have nothing to say
about the second type of logarithms, which we will ignore from now on, with the realization
that the physics that goes into their resummation is very different from the one discussed here.
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The consensus for the β0-dependent logarithms has been that they should all be resummed
into the running of the QCD coupling constant [21, 22], see also [23]. Different recipes have
been advanced for the optimal scale setting in the running coupling.1

In this paper, we revisit the resummation of this type of logarithms. We show that not
all of the logarithms that contain β0 are of the same physical origin. While some of them
are associated with the running of the coupling for the emission of a soft gluon, the correct
understanding of an important subset of them is in terms of the DGLAP evolution [25–27]
of the projectile wave function. The latter logarithms are large if there is a large disparity
between the typical transverse momentum in the projectile and target wave functions, and
have to be resummed via solving a DGLAP evolution equation just like in DIS. We explicitly
set up the (transverse) evolution equation for the JIMWLK Hamiltonian that resums these
logarithms into the modified JIMWLK kernel. We also provide an approximate solution to
this equation in two simple cases: the dilute limit and the limit of dense saturated target.
The main qualitative result of this resummation is the smearing of the emission point of
the gluon in the JIMWLK Hamiltonian over the transverse resolution scale with a function
decreasing as a power of a distance. Physically this transverse resolution scale is provided
by the saturation momentum of the color fields in the target. Our analysis also suggests a
simple scale setting procedure for the QCD running coupling, which does not require any
elaborate considerations. Together with the DGLAP resummation, this simple scale setting
procedure takes care of all the large transverse logarithms.2

Our discussion is set explicitly in the context of a “dense” target and “dilute” projectile
in the following sense. We assume that the color fields in the target are correlated on a
transverse distance scale Q−1

T . In the projectile we also assume the existence of an analogous
scale Q−1

P , and we require that QT ≫ QP , i.e. that the correlation length of the color fields
in the target is much smaller than that in the projectile.

The existence of such correlation length is obvious in the saturation regime. In this
case we identify QT with the saturation momentum in the target, and analogously for the
projectile. The hierarchy of the correlation length then just means that the target has a
larger saturation momentum, and is therefore the denser of the two objects. Physically it is
clear that this situation must involve significant DGLAP evolution between the projectile
and the target saturation scale. The large target saturation momentum plays the role of
the transverse resolution scale Q2 in DIS, while the smaller projectile saturation momentum
is akin to ΛQCD in the proton wave function which determines typical transverse momenta
of the partons in the proton.

However our approach is also applicable when neither target nor projectile are saturated,
i.e. the eikonal scattering factors are perturbatively close to unity. In this case the scale Q−1

s

has the meaning of the transverse scale on which the color neutralization occurs in the wave
function. For example, for a single dipole projectile, Q−1

P would be of the order of the dipole
size. It then determines simultaneously the typical transverse momentum of the partons in
the projectile and the typical transverse size of the projectile hadron. Similarly, Q−1

T for a
single dipole target determines both, the target size and the transverse scale on which the

1As was investigated in ref. [24], these schemes violate the semi-positivity of the JIMWL K Hamiltonian.
2Again, in this statement, we do not include the logarithms associated with the lifetime ordering of

fluctuations.
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scattering resolves the transverse structure of the projectile. In this case the hierarchy of
scales means that the target “dipole” has smaller transverse size than the projectile “dipole”,
so that it is still true that the projectile is more dilute than the target on the relevant
resolution scale Q−1

T . Indeed we show that only in the case when there is a large separation of
scales QP and QT , the DGLAP evolution is significant, and only in this case the transverse
logarithms in question need to be resummed.

This paper is structured as follows. In section 2 we review the NLO JIMWLK Hamiltonian
and the common lore about the resummation of β0 dependent transverse logarithms. In
section 3 we introduce the physical interpretation in terms of transverse resolution scale and
formalize it by defining (in the JIMLWK framework) the analog of factorization scale in
DIS. We derive the RG equation for the JIMWLK Hamiltonian which imposes the overall
factorization scale independence of physical amplitudes, and discuss what is the best choice for
initial and final scales in this evolution. In section 4 we provide an approximate solution for
this equation and discuss its properties in the absence of quarks. In section 5 we generalize the
discussion to include quarks. Finally, we conclude in section 6 with a discussion of our results.

2 JIMWLK at NLO and the large transverse logarithms

The JIMWLK Hamiltonian is the operator that generates rapidity evolution of the hadronic
S-matrix at high energy. We take it here as acting on the projectile wave function (see ref. [28]
for a comprehensive introduction), or rather probability distribution WP , so that the rapidity
evolution of the scattering matrix of a hadronic projectile on a hadronic target is given by

d

dY
S = ⟨HJIMWLK[S, J ]WP [S]⟩T (2.1)

where S is the hadronic S-matrix, S-is an eikonal propagation factor (Wilson line) of a
projectile parton on a target field, J is a rotation operator (see below) and the averaging
on r.h.s. is performed over the ensemble of the target fields.

2.1 JIMWLK at leading order

At leading order the JIMWLK Hamiltonian (see e.g. ref. [9]) is given by

HLO
JIMWLK = αs

2π2

∫
x, y, z

X · Y

X2Y 2

[
Ja

L(x) Ja
L(y) + Ja

R(x) Ja
R(y) − 2Ja

L(x) Sab(z) Jb
R(y)

]
.

(2.2)
Here Xi ≡ xi − zi and Yi ≡ yi − zi. The LO kernel is a product of two Weizsacker-Williams
(WW) fields. S is the gluon’s eikonal scattering matrix, that is the Wilson line in adjoint
representation. The left and right rotation operators Ja

L(x) and Ja
R(x) generate left and right

rotations of the Wilson line S(x) at the same transverse point x.

Ja
R(x)Seb(y) = [S(y)T a]ebδ2(x−y); Ja

R(x)ST eb(y) =−[T aST (y)]ebδ2(x−y) . (2.3)

JR and JL are related by

Ja
R(x) = S†ab(x)Jb

L(x) . (2.4)

– 3 –
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2.2 JIMWLK Hamiltonian at NLO — the relevant terms

The NLO JIMWLK Hamiltonian deduced in refs. [7, 8] is:

HNLO
JIMWLK =∫

x,y,z
KJSJ(x,y,z)

[
Ja

L(x)Ja
L(y)+Ja

R(x)Ja
R(y)−2Ja

L(x)Sab(z)Jb
R(y)

]
+
∫

x,y,z,z′
KJSSJ(x,y,z,z′)

[
Ja

L(x)Dad(z,z′)Jd
R(y)−Nc

2 Ja
R(x)Ja

R(y)−Nc

2 Ja
L(x)Ja

L(y)
]

+
∫

x,y,z,z′
Kqq̄(x,y,z,z′)

[
2Ja

L(x) tr[V †(z) ta V (z′)tb]Jb
R(y)− 1

2Ja
R(x)Ja

R(y)− 1
2Ja

L(x)Ja
L(y)

]
+. . . (2.5)

where, to simplify notations, we introduced

Dab(z1, z2) = Tr[T aS(z1)T bS+(z2)] (2.6)

while ellipsis denotes terms that do not depend on β0 and do not play any role in our
discussion. In eq. (2.5), the rotation operators JL and JR do not act on the eikonal factors S

in the Hamiltonian itself, but only on those in the wave function WP [S] in eq. (2.1).
The kernels K in this equation are given by the following expressions.

KJSJ(x,y,z)≡ α2
s(µ)X ·Y

4π3X2Y 2

×
[
β0

( 1
2 ln[X2µ2]+ 1

2 ln[Y 2µ2]
)

+
(

67
9 − π2

3

)
Nc−

10
9 Nf

]
.

(2.7)

Here the UV cutoff µ2 is related to the normalization point in the MS scheme µ2
MS

(which

we consider as being taken in the far UV) as µ2 =
µ2

MS
4 e2γ and β0 is the first coefficient

of the QCD β-function:

β0 = βg
0 + βq

0 ≡ 11Nc − 2Nf

3 . (2.8)

Next:

KJSSJ(x, y, z, z′) =

α2
s(µ)

16π4

[
4

Z4 +
{

2X2(Y ′)2 + (X ′)2Y 2 − 4(X − Y )2Z2

Z4(X2(Y ′)2 − (X ′)2Y 2) + (X − Y )4

X2(Y ′)2 − (X ′)2Y 2

×
( 1

X2(Y ′)2 + 1
Y 2(X ′)2

)
+ (X − Y )2

Z2

( 1
X2(Y ′)2 − 1

Y 2(X ′)2

)}
ln
(

X2(Y ′)2

(X ′)2Y 2

)

−2I(x, z, z′)
Z2 − 2I(y, z, z′)

Z2

]
+ K̃(x, y, z, z′), (2.9)
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with Zi ≡ zi − z′i and

K̃(x, y, z, z′) = α2
s(µ)

16π4

(
(Y ′)2

(X ′)2Z2Y 2 − Y 2

Z2X2(Y ′)2 + 1
Z2(Y ′)2 − 1

Z2Y 2 + (X − Y )2

X2Z2Y 2

− (X − Y )2

(X ′)2Z2(Y ′)2 + (X − Y )2

(X ′)2X2(Y ′)2 − (X − Y )2

X2(X ′)2Y 2

)
ln
(

X2

(X ′)2

)
+ (x ↔ y) .

(2.10)

The term K̃ arises from a specific ordering of the rotation operators JR(L) in the terms
we omitted in eq. (2.5). Similarly to those terms, K̃ does not contain any physics related to
the QCD β-function and will not play any role in our discussion.

The terms involving I(x) and I(y) do not depend on one of the variables that is integrated
over, either x or y. These terms therefore vanish when the Hamiltonian acts on globally
color singlet states. The explicit form for them is given by

I(x, z, z′) ≡ 1
X2 − (X ′)2

(
X2 + (X ′)2

Z2 − X · X ′

X2 − X · X ′

(X ′)2 − 2
)

ln
(

X2

(X ′)2

)

= 1
X2 − (X ′)2

(
X2 + (X ′)2

Z2 + Z2 − X2

2(X ′)2 + Z2 − (X ′)2

2X2 − 3
)

ln
(

X2

(X ′)2

)
.

(2.11)

For further reference we note that at small values of |X| ≪ |Y |,∫
z′

[KJSSJ − K̃] ≈ α2
s

4π3
11
3

X · Y

X2Y 2 ln X2µ2 . (2.12)

Finally

Kqq̄(x, y, z, z′) = α2
sNf

8π4

(
2

Z4 − (X ′)2Y 2 + (Y ′)2X2 − (X − Y )2Z2

Z4 (X2(Y ′)2 − (X ′)2Y 2) ln
(

X2(Y ′)2

(X ′)2Y 2

)

−If (x, z, z′)
Z2 − If (y, z, z′)

Z2

)
, (2.13)

where the term that vanishes when acting on color singlet states is:

If (x, z, z′) ≡ 2
Z2 − 2X · X ′

Z2(X2 − (X ′)2) ln
(

X2

(X ′)2

)
. (2.14)

2.3 The “subtraction” method

Importantly, the term involving the kernel KJSJ has the very same structure as the LO
Hamiltonian. It has an explicit logarithmic UV divergence in the form of ln µMS . The
coefficient multiplying ln µMS is twice the value necessary to collect these logarithms into
the QCD β-function (see e.g. ref. [29]). However the kernel KJSSJ(x, y, z, z′) also leads
to logarithmic UV divergence when the distance between the two emitted gluons vanishes,
Z = z − z′ → 0 as was noted in refs. [21, 22]. The same is true for the qq̄ kernel Kqq̄. For
simplicity of presentation we will discuss explicitly only the gluon emission for now. The qq̄
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emission is treated in an identical way. Since at short distances S†(z′)S(z)
∣∣∣
z′→z

→ 1, one can
get rid of the divergence in the KJSSJ term by subtracting from it a linear term in S, and
adding the same term to KJSJ term. This results in a UV finite term involving the second
power of S at the expense of adding a piece to the KJSJ kernel. The coefficient of the ln µ2

MS
in the modified KJSJ is then exactly right to absorb this term into the β-function.

However there is arbitrariness in the way one can subtract the divergence form KJSSJ .
For example in ref. [21], the divergent subtraction term was multiplied by the Wilson line
at position S(z), while in ref. [22] the position of the Wilson line was determined by the
kinematics of DGLAP splitting in coordinate space. Since the subtracted term is then added
to KJSJ , the result is not universal. For example, in ref. [21], the result3 of the subtraction
(we write out explicitly only the β0-dependent terms) is4

KJSJ →KB
JSJ = α2

s(µ)β0
16π3

{
−(X−Y )2

X2Y 2 ln(X−Y )2µ2+ 1
X2 lnY 2µ2+ 1

Y 2 lnX2µ2
}

(2.15)

while in ref. [22]

KJSJ →KKW
JSJ = α2

s(µ)β0
8π3

X ·Y
X2Y 2

{
X2 lnX2µ2−Y 2 lnY 2µ2

X2−Y 2 −X2Y 2

X ·Y
ln X2

Y 2

X2−Y 2

}
. (2.16)

As the next step both in refs. [21] and [22] one chooses to absorb all logarithmic terms in
KJSJ into renormalized coupling constant αs(Λ). The scale in αs(Λ) is chosen in such a
way as to reproduce all the logarithms in KJSJ including their finite parts when expanding
αs(Λ) to NLO in αs(µ). The two subtraction prescriptions therefore result in different
resummations, corresponding to different finite NLO leftovers in KJSSJ (below with a slight
abuse of notations we use αs(X2) and αs(X−2) interchangeably for the same quantity):

KB
JSJ → αs((X−Y )2)

2π2
X ·Y
X2Y 2

+ αs(X2)
4π2

1
X2

(
1−αs((X−Y )2)

αs(Y 2)

)
+ αs(Y 2)

4π2
1

Y 2

(
1−αs((X−Y )2)

αs(X)

)
, (2.17)

KKW
JSJ → 1

2π2
αs(X2)αs(Y 2)

αs(R2)
X ·Y
X2Y 2 , (2.18)

where, in the latter, a rather complex scale was introduced in the denominator

R2 =
√

X2 Y 2

(
Y 2

X2

)Θ/2

, Θ = X2 + Y 2

X2 − Y 2 − 2X2Y 2

X · Y

1
X2 − Y 2 . (2.19)

3Note that in ref. [21] and ref. [22], the dipole kernel was considered, i.e. the action of JIMWLK on a dipole
color singlet. The kernels are trivially related through (see e.g. ref. [8])

Kdipole(X, Y ) = KJSJ (X, X) + KJSJ (Y, Y ) − 2KJSJ (X, Y ) .

4In terms of the kernels, the subtraction is given by (see ref. [9])

KJSJ → Ksub
JSJ (x, y, z) ≡ KJSJ (x, y, z) − Nc

2

∫
z′

KJSSJ (x, y, z, z′) − 1
2

∫
z′

Kqq̄(x, y, z, z′).

– 6 –
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The subtraction prescriptions described above are rather ad hoc. Although both render
the kernels finite, one can devise many more subtraction prescriptions that achieve the same
goal. Critically, there is no obvious reason for the resummation of the finite logarithmic
parts of KJSJ that do not contain the UV cutoff µMS into the running coupling in this
or that particular way.

As we explain below this ambiguity is rooted in the fact that the physics associated with
the resummation of the finite large logarithmic terms is not related to the physics of running
coupling. In the next section, we give a transparent physical argument that the correct way
to resum the transverse logarithms is rather different, and in addition to the QCD running
coupling it requires the resummation of DGLAP splittings in the JIMWLK Hamiltonian.

3 The dressed gluon and the DGLAP splittings

We start by reexamining the origin of the transverse logarithm in eq. (2.7).
As we alluded to earlier, in this term the coefficient of the UV divergent contribution

ln µ2
MS

is 2β0 (relative to the LO), and thus cannot be simply resummed into the running
QCD coupling in the LO term. The reason for this is easy to understand. Recall, that in QCD
one defines the running coupling as the matrix element of the interaction Hamiltonian between
physical dressed gluon states. On the other hand, KJSJ is calculated as the amplitude for
production of a bare gluon state from the valence charge [9]. To relate this amplitude to the
coupling constant one needs to multiply the gluon state by the wave function renormalization
factor Z1/2(Q2), which at one loop is given by

Z1/2(Q2) = 1 + αs

8π
β0 ln Q2

µ2 . (3.1)

The scale Q2 in eq. (3.1) is an arbitrary normalization scale at which one chooses to define
the renormalized gluon field

AQ
µ (x) = Z−1/2(Q)Aµ(x) . (3.2)

Thus to identify the UV logarithm associated with the running of the coupling one has to
express the bare gluon field (or state) in terms of the “renormalized” gluon field via eq. (3.2).
Technically within the JIMWLK Hamiltonian this procedure amounts to multiplying the LO
kernel by the factor Z1/2(Q), with the understanding that now the production and scattering
refer to the dressed renormalized gluon. This multiplication of the LO kernel absorbs some
of the NLO corrections and hence results in the modification of the NLO kernel5

KJSJ → α2
sX ·Y

4π3X2Y 2

(
β0

[
1
2 ln[X2µ2] + 1

2 ln[Y 2µ2]− 1
2 ln µ2

Q2

]
+
(

67
9 −π2

3

)
Nc −

10
9 Nf

)
.

(3.3)

This expression now clearly contains all the UV logs to be combined into the running coupling.
However now the question arises, what is the fate of the UV divergence in KJSSJ discussed

above? The answer is that this divergence should also cancel if one rewrites the JIMWLK
5In this discussion we only consider the coefficient of the real term (the JSJ term) for simplicity.
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Hamiltonian in terms of the physical dressed gluon amplitudes. The reason this has not
been apparent so far, is because in our discussion above we have only included the simple
multiplicative wave function renormalization factor into the “redefinition” of the dressed gluon.
However at NLO the physical dressed gluon state also contains a two gluon (and a quark-anti
quark) component due to gluon splitting, which we are well familiar with as part of the
DGLAP evolution. We have to include those additional components in the definition of the
dressed gluon state and its scattering amplitude. This is the goal of the rest of this section.

Technically we take the following route. At NLO a gluon can split into a two-gluon (or
quark-antiquark) pair. This splitting in collinear setting is described by the DGLAP splitting
function. The splitting amplitude is of course well known. The square of this amplitude
provides the real contribution to the g → gg (q̄q) DGLAP splitting functions. The virtual
part of the splitting function is given by the total probability that the initial bare gluon
state decays into a gg (or q̄q) state.

Our goal is to write the scattering amplitude of the dressed state which is resolved with
transverse resolution Q. In terms of Wilson renormalization group that would correspond
to “integrating out” modes with transverse momenta above the resolution scale Q which
defines the “renormalized” dressed states, as in the discussion above. Note, that although
we treat the kinematics of the DGLAP splitting exactly, we still assume that the individual
bare partons produced as a result are energetic enough so that they scatter on the target
eikonally. This is of course the only consistent way to include the scattering of these partons
in the JIMWLK evolution.

3.1 The dressed gluon scattering matrix

We consider first the splitting into two gluons, and in this section disregard the possibility
of splitting into q̄q for simplicity. It is straightforward to include the quarks, and we will
do it in section 5.

Within the DGLAP collinear splitting approximation a gluon splits into a gg pair with
the probability given by the real part of the gluon to gluon splitting function Pgg. The
S-matrix of the gluon state dressed at order αs with resolution Q then equals

Sab
Q (z) = Sab(z) + αs

2π2

∫ 1

0

dξ

ξ+(1 − ξ)+

(
ξ2 + (1 − ξ)2 + ξ2(1 − ξ)2

)
×

∫
µ−1<|Z|<Q−1

d2Z

Z2

[
Dab(z + (1 − ξ)Z, z − ξZ) − NcS

ab(z)
]

(3.4)

The first term (D) in the second line in (3.4) represents the real emission, while the second
term is the virtual correction which conserves the total normalization of the state. This
expression for the S-matrix follows from the kinematics of gluon splitting in coordinate space,
where the distance between the daughter gluons and the parent gluon is determined by the
longitudinal momentum fraction ξ carried by each gluon. Note that when coordinates in
D equal each other it simplifies to

Dab(z, z) = Tr[S+(z)T aS(z)︸ ︷︷ ︸
Saa′T

a′

T b] = NcS
ab(z) . (3.5)

– 8 –
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Importantly the plus prescription on the integral is defined with respect to both poles,
at ξ = 0 and ξ = 1, that is∫ 1

0

dξ

ξ+(1 − ξ)+
f(ξ) =

∫ 1

0
dξ

( 1
ξ(1 − ξ)f(ξ) − 1

ξ
f(0) − 1

1 − ξ
f(1)

)
. (3.6)

This is in contradistinction to the usual DGLAP splitting function, where only the ξ = 0
pole is treated with the plus prescription. The reason for this double subtraction of both
poles from the splitting function is that the pole at ξ = 1 is already included in the energy
evolution generated by the LO JIMWLK equation (in ref. [9] these poles are referred to as
LO2 terms because they arise from iterations of the LO JIMWLK). It is only the finite
remainder of the splitting function that has to be included in the “collinear splitting term” we
currently consider. This remainder completes the low x truncation of the splitting function
used in the standard JIMWLK formulation to the full splitting function necessary to properly
account for the correct DGLAP evolution. It is crucial to recognize this point, and we will
come back to it in the section 6. With this caveat in mind, in the rest of this paper we
will refer to the splitting encoded in eq. (3.4) as the DGLAP splitting.

As we will show later, this double subtraction indeed correctly accounts for the large
transverse logarithm in KJSSJ .

With the definition eq. (3.6) we have∫ 1

0

dξ

ξ+(1 − ξ)+

(
ξ2 + (1 − ξ)2 + ξ2(1 − ξ)2

)
= −11

6 = − βg
0

2Nc
(3.7)

which is proportional to the one loop gluon contribution to the β- function, βg
0 = 11Nc

3 .
The next step is now clear. We should perturbatively re-express all the eikonal factors

in the Hamiltonian in terms of SQ, using

Sab(z) = Sab
Q (z) − αs

2π2

∫ 1

0

dξ

ξ+(1 − ξ)+

(
ξ2 + (1 − ξ)2 + ξ2(1 − ξ)2

)
×

∫
|Z|<Q−1

d2Z

Z2

(
Dab

Q (z + (1 − ξ)Z, z − ξZ) − NcSab
Q (z)

)
, (3.8)

with

Dab
Q (z1, z2) = Tr[T aSQ(z1)T bS+

Q(z2)] . (3.9)

We note that

αsNc

2π2

∫ 1

0

dξ

ξ+(1 − ξ)+

(
ξ2 + (1 − ξ)2 + ξ2(1 − ξ)2

) ∫
|Z|<Q−1

d2Z

Z2 Sab(z) = −αsβg
0

4π
ln µ2

Q2S
ab(z) .

(3.10)
At this point, we will simplify our derivations in the following by neglecting the ξ

dependence in the coordinates of the Wilson lines in eq. (3.4). Recall that ξ = 0 and ξ = 1
do not play any special role in the integration over ξ due to the double plus prescription.
It is clear that with leading logarithmic accuracy in Q the exact location of the two points
z1 and z2 within the integration region in eq. (3.4) does not matter as long as the distance
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between them remains fixed. Since the distance between the two points in eq. (3.4) does
not depend on ξ, and since in this paper we only concern ourselves with leading logarithmic
contributions, we will simply set ξ to a fixed value in the arguments of the Wilson lines.
To preserve the symmetry between ξ and 1 − ξ we substitute ξ = 1/2 in the coordinates of
D in eq. (3.4) and onward. This allows us to perform explicitly the integral over ξ using
eq. (3.7). We stress that this approximation is not mandatory within our approach, and
can be easily relaxed without altering logarithmic in Q terms.

Thus from now on we use

Sab
Q (z) =

[
1 + αsβg

0
4π

ln µ2

Q2

]
Sab(z) − αsβg

0
4π2Nc

∫
|Z|<Q−1

d2Z

Z2 Dab(z + Z/2, z − Z/2) (3.11)

and

Sab(z) =
[
1 − αsβg

0
4π

ln µ2

Q2

]
Sab

Q (z) + αsβg
0

4π2Nc
Dab

Q (z) ,

where we have introduced the notation

Dab
Q (z) ≡

∫
|Z|<Q−1

d2Z

Z2 Dab(z + Z/2, z − Z/2) . (3.12)

Since at the moment, we work at fixed order α2
s, the substitution of SQ should be done

perturbatively, which in practice means that the O(αs) term in eq. (3.8) should only be kept
at HLO

JIMWLK, while in HNLO
JIMWLK all factors of S should be substituted by SQ.

Let us first consider the real term in HLO
JIMWLK. Substituting eq. (3.8) we obtain

αs

2π2

∫
x, y, z

X · Y

X2Y 2 2Ja
L(x) Sab(z) Jb

R(y) = (3.13)

αs

2π2

∫
x, y, z

X · Y

X2Y 2 2Ja
L(x) Sab

Q (z) Jb
R(y)

[
1 − αsβg

0
4π

ln µ2

Q2

]

+ α2
sβg

0
8π4Nc

∫
x, y, z

X · Y

X2Y 2 2Ja
L(x) Jb

R(y)Dab
Q (z) .

We observe that the logarithmic term linear in S in eq. (3.13) combines with the real part
of the kernel KJSJ to yield precisely the transverse logarithm in eq. (3.3). In addition the
quadratic in S term in eq. (3.13) combines with the real term of KJSSJ in eq. (2.9), so that
the UV divergence at z − z′ → 0 cancels. This is precisely what we set out to achieve by
introducing the dressed gluon state.

It is thus very convenient to re-express the JIMWLK Hamiltonian in terms of the dressed
gluon operators, as it achieves the cancellation of the UV divergence just like various
subtractions discussed above, but with clear physical justification.

There is one subtlety in the procedure just described. What we did is to introduce a
gluon state “dressed” by the DGLAP emissions with resolution Q2 irrespective of whether
the gluon in question is far away or close to the valence charge that it was emitted from.
Physically this is not right. Proximity to the emitter provides an infrared cutoff on possible
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DGLAP splittings. The collinear logarithm in the standard DGLAP cascade is formally
collinearly divergent for large distance or small transverse momentum emissions. This collinear
divergence however is there only as long as one assumes that the parton splits completely
independently of all other partons present in the hadronic wave function. The moment one
accounts for the fact that the gluon is not isolated in space, but is a part of hadronic wave
function with finite size R, the collinear divergence disappears. This size R can be a small
perturbative scale for a heavy quarkonium, or a nonperturbative scale of order Λ−1

QCD for a
nucleon etc. Either way the presence of this scale regulates the DGLAP emissions in the IR
by cutting off the phase space for splitting into pairs of the size larger than R.

The situation is very similar in the case at hand. To see this we should examine KJSSJ

which reflects the probability of DGLAP splittings present in JIMWLK at NLO. The
probability of emission from a single source at point x can be read off the integrand of KJSSJ

by setting y = x. Setting y = x and examining KJSSJ we find that for Z2 ≪ X2, the
kernel behaves as 1/Z2. Integration over Z in this range produces the UV divergence we
discussed. On the other hand, when the size of the pair is large relative to the distance
between the emitter and the center of mass of the pair, Z2 ≫ (X + Z

2 )2 we find that the
kernel (probability of splitting) behaves as (X + Z

2 )2/Z6. One can see this also from eq. (2.12)
which makes it explicit that the integration over the size of the gluon pair is cut off by the
distance to the closest source in the emission amplitude. This tells us that KJSSJ does not
allow DGLAP splittings of a gluon into pairs of transverse size larger than the distance
between the gluon in question and its “valence” emitter.

In this discussion, the hadronic size R is directly analogous to the distance |X − Z/2|
between the gluon and the closest parton in the wave function, most of the time, this closest
parton being the emitter of the gluon in question.

The procedure outlined in eq. (3.13) does not differentiate between the two regimes
Q−2 < (X − Z/2)2 and Q−2 > (X − Z/2)2 and therefore does not properly take into account
the suppression discussed above. Mathematically the consequence is that, although when
the last term in eq. (3.13) is combined with the KJSSJ term in NLO JIMWLK it does get
rid of the Z → 0 divergence, it produces a logarithmic term ln

(
X2Q2), for all values of

X, rather than only for X2 > Q−2. This spurious logarithm at small X may be large and
its introduction should be avoided.

It is not hard to modify our strategy sightly in order to avoid this difficulty. Let us define
the resolution scale that depends on the position of the gluon relative to the closest valence
charge. In the context of the real term in the LO JIMWLK, in terms of the coordinates
x, y, z we introduce:

Q̄2 = max
{

Q2,
1

X2 ,
1

Y 2

}
. (3.14)

We now express S(z) in terms of SQ̄(z) in HLO
JIMWLK.

3.2 The reorganized Hamiltonian

The resulting Hamiltonian can be organized in the convenient way into two parts HJSJ
Q and

HJSSJ
Q . To do so we first introduce an auxiliary scale

Q̃2 = max
{ 1

X2 ,
1

Y 2

}
. (3.15)

– 11 –



J
H
E
P
0
7
(
2
0
2
4
)
1
4
8

We now split the virtual term in HLO
JIMWLK as follows∫

x,y,z

X ·Y
X2Y 2 [Ja

L(x)Ja
L(y)+Ja

R(x)Ja
R(y)] =

∫
x,y,z

X ·Y
X2Y 2

{[
1− αsβg

0
8π

(lnX2µ2+lnY 2µ2)+ αsβg
0

8π
(lnX2Q̃2+lnY 2Q̃2)

]
[Ja

L(x)Ja
L(y) +Ja

R(x)Ja
R(y)]

+ αsβg
0

4π
ln µ2

Q̃2 [Ja
L(x)Ja

L(y) + Ja
R(x)Ja

R(y)]
}

. (3.16)

The logic of this splitting will become clear in a short while.6
It is convenient to reorganize the Hamiltonian as

HJIMWLK = HJSJ
Q + HJSSJ

Q + . . . (3.17)

where

HJSJ
Q =∫
x,y,z

αs

2π2
X ·Y

X2Y 2

{(
1+ αsβg

0
8π

[
ln[X2µ2]+ ln[Y 2µ2]

])[
Ja

L(x)Ja
L(y)+Ja

R(x)Ja
R(y)−2Ja

L(x)Sab
Q̄

(z)Jb
R(y)

]
+ αsβg

0
8π

[
(lnX2Q̃2+lnY 2Q̃2) [Ja

L(x)Ja
L(y) + Ja

R(x)Ja
R(y)]

−2(lnX2Q̄2+lnY 2Q̄2)Ja
L(x)Sab

Q̄
(z)Jb

R(y)
]}

. (3.18)

HJSSJ
Q =∫
x,y,z,z′

KJSSJ(x,y,z,z′)Ja
L(x)Dad

Q̄
(z,z′)Jd

R(y)− α2
sβg

0
4π3

∫
x,y,z

X ·Y
X2Y 2 D

ab
Q̄

(z)Ja
L(x)Jb

R(y)

−
[

Nc

2

∫
x,y,z,z′

KJSSJ(x,y,z,z′)− α2
sβg

0
8π3

∫
x,y,z

X ·Y
X2Y 2 ln µ2

Q̃2

]
[Ja

R(x)Ja
R(y)+Ja

L(x)Ja
L(y)] . (3.19)

Note that eq. (3.18) exhibits explicitly real-virtual cancellations. As X → 0, we have
Q̃ = Q̄ = 1/|X|, SQ̄(z) = S(z) ≃ S(x), and therefore the real and virtual terms cancel
for points z such that |X| < Q−1

T .
Eq. (3.19) has some appealing properties. First, it is UV finite. The integral over Z in

the definition of DQ̄(z) cancels the UV divergence in the first term. The UV cancellation also
occurs between the two virtual terms in the second line of eq. (3.19).

Moreover, eq. (3.19) contains no large finite logarithms if the target is dense, i.e. if QT

is in fact a saturation momentum.
For the real term we argue as follows. The JIMWLK approach is valid for scattering

of a dilute projectile on a dense target. Let us assume that the target field distribution
is characterized by a saturation momentum QT . Two eikonal scattering factors within a

6One may wonder if one needs also to express the right and left rotation operator in terms of rotations
associated with the dressed S-matrices SQ. It turns out, however, that even if done, this procedure is purely
perturbative and does not contribute to the resummation of large logarithms, see appendix A. It is therefore
optional, and in a sense can be regarded as simply “fixing the factorization scheme” for DGLAP resummation.
For simplicity, we choose not to do it here.
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transverse distance |Z| ≪ (QT )−1 are practically the same, while if |Z| ≫ (QT )−1, the two
eikonal factors fluctuate independently and therefore the product averages to zero. As we
will explain shortly, we are interested in Q < QT . Under these assumptions, the integral
over the region |Z| < (QT )−1 cancels between the first two terms in the first line by the
same token as does the UV cutoff µ. For the distances Q−1 > |Z| > (QT )−1 there is no
algebraic cancellation, however each one of the terms is small since it contains two eikonal
factors separated by a large distance, and this product averages to zero. This range of
Z therefore does not give a logarithmic contribution to the hadronic S-matrix. Thus the
contribution only comes from a small region in the phase space |Z| ∼ (QT )−1 and cannot
be logarithmically large for any Q < QT .

As for the virtual term, integrating KJSSJ over Z, for X2 < Y 2 one obtains ln µ2X2, since
the integration is cut off in the IR by |X|.7 The coefficient of this logarithm is exactly the same
as in the second virtual term, and the two logarithms cancel between the two virtual terms.

One could worry that eq. (3.18) contains ln Y 2

X2 , which for Y 2 ≫ X2 is large and may
require special attention. However this potential logarithm is harmless. It arises in the term
responsible for emission of a virtual gluon very close to one of the valence charges in the
wave function. The probability of emission of a gluon at any point z is given by the square
of the sum of the emission amplitudes from all the valence charge. If z is much closer to
one valence charge than to any of the others, the emission amplitude is dominated by the
amplitude of emission from this particular valence charge, and the contribution of the other
charges can be neglected. The same of course is also true for the conjugate amplitude. Thus
the conjugate amplitude of such (virtual or real) emission is dominated by the emission from
the same charge as in the amplitude. In other words, if z is very close to a given charge x, the
integral over Y in the conjugate amplitude will be dominated by Y ≈ X simply due to the
structure of the WW field in the kernel. Thus one does not expect the region of Y 2 ≫ X2 to
be of any practical importance and ln

(
Y 2

X2

)
should not be considered large.

So far we have just rewritten the NLO JIMWLK Hamiltonian in a convenient way. As
argued above, the term HJSSJ

Q is UV finite and does not contain any large logarithms. All
the large logarithms are now explicit in HJSJ

Q . These logarithms come in two types. The
first one is the UV divergent term in the first term of HJSSJ

Q , and the second one is the
finite log of the type ln

(
Y 2Q2) in the last term.

4 The resummation

The two large logarithms, ln
(
X2µ2) and ln

(
X2Q2) need to be resummed. The physical

origin of the two is quite clear: the UV logarithm is associated with setting the scale of the
running coupling, while the Q2 dependent logarithm is associated with setting the resolution
scale for DGLAP splittings.

4.1 The running coupling

The resummation of the UV logarithm is equivalent to choosing the scale in the running
coupling. The simplest and the most natural scale choice for a Coulomb field at the distance

7The cutoff is actually |Y | if |Y | < |X|, but these are mapped into each other by a simple change of
variables x → y.
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X from the source that creates it, is of course just X itself. That is how things work in the
textbook examples in QED and QCD. Indeed, eq. (3.18) suggests precisely this simple scale
choice. In principle of course there are infinite number of scale choices that reproduce the NLO
expression upon expansion. For example, any combination of running couplings of the form

αλ
s (X−2) αλ

s (Y −2)α1−2λ
s ((XY )−1)

2π2 (4.1)

with λ — an arbitrary real number, yields the same O(g4) expansion in the bare coupling.
The choice λ = 1 leads to the “triumvirate” form, see refs. [30–32]. The most natural choice
that we adopt here is λ = 1/2. Given that the LO JIMWLK describes a simple emission of
a gluon at a fixed transverse distance from the valence source, we do not see any physical
reason to choose anything but this distance as a physical renormalization scale.

Defining as usual, the running QCD coupling constant αs(µ2) as the solution of the one
loop renormalization group equation, we can rewrite eq. (3.18) in terms of the effective QCD
charge g(µ2), defined as always via αs(µ2) = g2(µ2)/4π,

HJSJ
Q =

∫
x,y,z

g(X−2)g(Y −2)
8π3

X · Y

X2Y 2 (4.2)

×
{ (

1 + αsβg
0

8π

[
ln X2Q̃2 + ln Y 2Q̃2

])
[Ja

L(x) Ja
L(y) + Ja

R(x) Ja
R(y)]

− 2
(

1 + αsβg
0

8π

[
ln X2Q̄2 + ln Y 2Q̄2

])
Ja

L(x) Sab
Q̄

(z) Jb
R(y)

}
.

4.2 The DGLAP corrections

We rewrote the Hamiltonian in terms of SQ in the fixed order in perturbation theory. This
eliminated the original UV divergences, but introduced dependence on an arbitrary scale
Q. This scale plays the role identical to that of the factorization scale in the standard
collinear treatment of DIS. The physics ( the JIMWLK Hamiltonian) eventually does not
depend on this scale, but choosing a convenient value for it has the potential of simplifying
calculations considerably.

Varying the scale Q does not change physics, but shifts large perturbative corrections
between the Q dependence of the Hamiltonian and the Q dependence of the S-matrix of
the dressed gluon. In particular, if we can choose the scale Q such that the logarithm in
eq. (4.2) is not large, the Hamiltonian has a simple form that only perturbatively differs
from the LO Hamiltonian (modulo the running coupling effects). The price we pay is that
at this scale the dressed gluon is very different from the bare gluon state, as its S-matrix,
SQ(z) is very different from the original eikonal factor S(z).

This is closely analogous to DIS or jet production, where changing the resolution scale
shifts large corrections between the PDF and the hard part of the scattering. In fact, the
Hamiltonian HJIMLWK is very similar to TMD PDF: in the leading order, the square of the
WW field is precisely the number of soft gluons at point z emitted from the valence charges.
The scattering matrix, on the other hand, is similar to the hard part. With high resolution
SQ=µ = S, which is analogous to the situation in DIS where choosing the factorization scale
close to UV cutoff eliminates large corrections from the hard scattering part. While for
lower resolution scale Q ≪ µ, the dressed gluon scattering matrix, similarly to the hard
scattering part, acquires large corrections.

– 14 –



J
H
E
P
0
7
(
2
0
2
4
)
1
4
8

In DIS and similar processes, the optimal choice of factorization scale is determined
by the external scale furnished by the observable, e.g. the momentum transfer Q2. In the
case of JIMWLK evolution, as discussed in the introduction the role of this scale is played
by the saturation momentum of the target, QT . This is perfectly natural since the target
saturation momentum is a scale external to the evolution of the projectile wave function
resulting in the JIMWLK equation. Since the eikonal scattering factors S(z1) and S(z2)
do not differ from each other as long as |z1 − z2| < Q−1

T , for any choice of factorization
scale Q2 ≥ Q2

T the scattering matrix of a dressed gluon (which in coordinate space has a
transverse size ∼ Q−1) is the same as the bare eikonal factor S up to small perturbative
corrections. The most convenient choice of Q is, therefore, Q2 = Q2

T , since it eliminates the
necessity to evolve the dressed gluon density matrix. The Hamiltonian of course, has to
be evolved to this scale, in a complete analogy to the DGLAP evolution of parton PDF’s.
Calculating this evolution is our next goal.

Before doing so, however, we must generalize the evolution of the dressed gluon scattering
matrix to account for possible further gluon emissions, which are essential if the evolution
interval is logarithmically large.

Including additional DGLAP emissions in the dressed gluon scattering matrix is quite
straightforward. We go back to eq. (3.11) and write it in the differential form. We also use
the fact that for an infinitesimal variation of Q, the change in the scattering matrix on the
right-hand side of the equation can be neglected. We thus arrive at the DGLAP equation8

∂

∂ lnQ2S
ab
Q (z) =−αsβg

0
4π

[
Sab

Q (z)− 1
Nc

∫
dϕ

2π

(
Dab

Q

(
z+ 1

2Q−1eϕ,z− 1
2Q−1eϕ

))]
(4.3)

where eϕ is the unit vector in the tangential direction ϕ. The solution of this equation, in
principle, sums all DGLAP emissions of the initial gluon within the transverse radius Q−1.

The resummation of the DGLAP logarithms is achieved by requiring that the resummed
Hamiltonian does not depend on the arbitrary scale Q that we have introduced above:

d

d ln Q2 HJIMLWK = ∂H

∂ ln Q2 +
∫

u

[
δH

δSQ(u)
∂SQ(u)
∂ ln Q2

]
= 0 . (4.4)

To resum the DGLAP logarithms we need to solve the RG equation for the Hamiltonian.
We will do this in two simple case below. But first, we have to understand the initial condition
and the interval of the evolution in Q over which we need to evolve.

As discussed above, the target is characterized by the correlation length Q−1
T .9 Clearly,

if Q > QT , the DGLAP cascade we resum in SQ is localized inside the single correlation
length, the scattering amplitude of all gluons (and quarks) inside the cascade are the same,
the cascade is not resolved by scattering on the target, and its scattering amplitude is equal

8In eq. (4.3) the object for which the equation is solved does not depend on the longitudinal momentum
fraction ξ. This of course is the consequence of the high energy limit, in which the scattering matrix of a
gluon in eikonal approximation does not depend on its longitudinal momentum. This is also the reason why
only the ξ-integral of the splitting function, and not the splitting function itself enters eq. (4.3). To relax
this approximation one would have to go beyond eikonal, and assign additional longitudinal momentum label
to the S-matrix. This would lead to a modification of eq. (4.3) where S itself would now depend on the
longitudinal momentum fraction, and would make the equation visually more similar to the usual form of the
DGLAP equation. This would be the right step in the direction of including subeikonal corrections, but is far
beyond the purpose of the present work.

9Solution of the LO JIMWLK shows that in the saturated regime, the color correlation length is about 2.5
times larger than the inverse saturation momentum [33].
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to the single eikonal factor S. Thus it is useless to consider Q greater than QT . Therefore
the evolution in Q starts from Q = QT with the initial condition

SQT
(x) = S(x) . (4.5)

As for the interval of the evolution, clearly we should stop the evolution at the value of Q for
which the Hamiltonian, when expressed in terms of SQ does not contain large logarithms. At
this point HJIMWLK will be a nice function of SQ with coefficients in the expansion in powers
of αs being all numbers of order unity not enhanced by large transverse logs.

With this in mind let us examine the expressions eq. (3.18), (3.19). The large logarithms
present there are of the type ln X2Q2 or ln Y 2Q2. Typically the distance between the emitter
and the emission point of the gluon, |X| (and |Y |) is of order of the average distance between
the charges in the projectile wave function. This in turn is precisely the scale QP that
we have introduced previously. Thus clearly if we choose Q = QP , no large transverse
logarithms will be present in the Hamiltonian. Notice that the scale QP is dynamical, that
is it evolves with rapidity.

We thus conclude that we should evolve from Q = QT down to Q = QP . In fact, we can
do a little better than that. We can in principle, choose the interval of the evolution for SQ(z)
to depend on X and Y . This makes sense, especially for points z which are significantly closer
to some valence charges than the average distance. Again, examining eqs. (3.18) and (3.19)
we see that the optimal choice for the end point of the evolution is simply Q(z) = Q̃. This
choice is naturally of order QP for most of the emissions but avoids generating spurious
logarithms for emission points too close to one of the emitters.

Thus the resummation of DGLAP logs is achieved by the following straightforward
procedure. We solve the RG equation (4.3) for S(z) with the initial condition eq. (4.5) to
find SQ̃(z) (for fixed x, y). We then substitute the solution into eq. (3.18), (3.19). With
SQ̃ expressed in terms of S via the solution of RG equations, this yields the resummed
Hamiltonian which satisfies eq. (4.4) and is free of large logarithms. Keeping all terms
in eqs. (3.18) and (3.19) gives, in addition to the resummation, some genuine small O(α2

s)
corrections. In the following, we will not keep these corrections for simplicity, which is
then equivalent to only working with the (running coupling) LO Hamiltonian where S(z)
is substituted by SQ̃(z).

The solution of the RG equation eq. (4.3) in general is not trivial, but under reasonable
assumptions, the equation can be solved analytically in two limits: the dilute limit and
the saturation limit.

4.3 Resummation in the dilute limit — the BFKL

Let us first consider the situation where the projectile and the target are both dilute. In
this case, the S matrix is close to unity

S(x) = 1 + iT aαa(x) , SQ(x) = 1 + iT aαa
Q(x) . (4.6)

To linear order in αQ the RG equation (4.3) becomes
∂

∂ ln Q2 αc
Q(z) = αsβg

0
8π2

∫
dϕ

(
αc

Q

(
z + 1

2Q−1eϕ

)
− αc

Q(z)
)

. (4.7)
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Fourier transforming this into momentum space, we obtain

∂

∂ ln Q2 αc
Q(p) = αsβg

0
8π2

∫
dϕ
(
ei 1

2 Q−1p·eϕ − 1
)

αc
Q(p) = R(p, Q) αc

Q(p) (4.8)

with
R(p, Q) = αsβg

0
4π

[
J0

(
p

2Q

)
− 1

]
. (4.9)

The solution is

αc
Q(p) = exp

[
−
∫ QT

Q

dQ2

Q2 R(p, Q)
]

αc(p) . (4.10)

The result of the integral is qualitatively easy to understand. Let us rewrite the ex-
ponential factor in eq. (4.10) in the form

∫ QT

Q

dQ2

Q2 R(Q, p) = αsβg
0

4π2

|xQ|= 1
2Q∫

|xQ|= 1
2QT

d2xQ

x2
Q

(
eip·xQ − 1

)
(4.11)

where we introduced a two dimensional vector xQ ≡ 1
2Qeϕ.

For p very small, p ≪ Q, the two terms in eq. (4.11) cancel, and the integral vanishes.
For p very large, p ≫ QT the first term vanishes upon integration. Thus for such p the
integral is given by the second term

−αsβg
0

4π
ln Q2

T

Q2 . (4.12)

For intermediate values 2Q < p < 2QT the two terms essentially cancel in the range
|xQ| < 1/p, whereas for |xQ| > 1/p only the unity contributes. A good approximation
to the result is then

−αsβg
0

4π
ln p2

4Q2 . (4.13)

With the logarithmic accuracy, the factor of 4 can be ignored under the logarithm, which
we will consistently do in what follows.

Thus qualitatively, we have∫ QT

Q

dQ2

Q2 R(Q, p) ≈ −αsβg
0

4π

[
ln p2

Q2 θ(Q2
T − p2)θ(p2 − Q2) + ln Q2

T

Q2 θ(p2 − Q2
T )
]

. (4.14)

In momentum space the solution for the field αQ is approximated by

αa
Q(p) =

θ(Q2 − p2) +
(

p2

Q2

)αsβ
g
0

4π

θ(Q2
T − p2)θ(p2 − Q2) +

(
Q2

T

Q2

)αsβ
g
0

4π

θ(p2 − Q2
T )


× αa(p) . (4.15)
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The above is obtained at a fixed coupling constant. Of course it is clear that higher
order corrections to JIMWLK, in addition to the contribution resummed by eq. (4.15), will
also bring in terms associated with the running of the coupling at the DGLAP splitting
vertices. This is in addition to the running of the coupling in the LO JIMWLK discussed
in the beginning of this section. Physically, it is obvious that the scale in the coupling that
enters the splitting must be taken as Q. The argument here is standard and is identical
to the one that we used to determine the scale of the coupling constant in eq. (4.2): the
DGLAP splitting at resolution Q is emission of a gluon at the distance 1/Q from the emitter
and this distance determines the scale of the coupling constant. This is of course what is
routinely done in the standard solution of DGLAP equation. Thus to include these running
coupling corrections we should take

αs(Q) = 4π

βg
0

1
log Q2

Λ2
QCD

(4.16)

in eqs. (4.8), (4.9). The r.h.s. of eq. (4.14) is then modified to

≈ −

ln
ln p2

Λ2
QCD

ln Q2

Λ2
QCD

θ(Q2
T − p2)θ(p2 − Q2) + ln

ln Q2
T

Λ2
QCD

ln Q2

Λ2
QCD

θ(p2 − Q2
T )

 . (4.17)

This modification is formally of the higher order in αs and we will not consider it further here.
We only note that including running αS as in eq. (4.17) does not present any fundamental
difficulties and follows the same route as accounting for the running of the coupling in
the standard DGLAP evolution.

Since the JIMWLK Hamiltonian is customarily written in the coordinate space, we
need to Fourier transform eq. (4.15) back into coordinate space. To that end we need to
compute the 2-d Fourier transform

GQ(x) ≡
∫

d2p

(2π)2 eip·x
∫ QT

Q

dQ2

Q2 R(Q, p) ≃
∫

d2p

(2π)2 eip·x (4.18)

×

θ(Q2 − p2) +
(

p2

Q2

)αsβ
g
0

4π

θ(Q2
T − p2)θ(p2 − Q2) +

(
Q2

T

Q2

)αsβ
g
0

4π

θ(p2 − Q2
T )

 .

This is relatively straightforward. The Fourier transform can be calculated exactly in terms
of a hyper geometric function. However, given the fact that our calculation in the momentum
space itself was approximate, it is much more instructive to write the result in the approximate
form, which however exhibits all the important properties of the solution. The details of
this derivation are present in appendix B. The final result is (we partially expand to order
αs, but keep all powers of αs ln Q2

T
Q2 )

• For small |x|: |x| < 1
QT

GQ(x) =
(

Q2
T

Q2

)αsβ
g
0

4π

δ(2)(x) + αsβg
0

4π

Q2

π

1 −
(

Q2
T

Q2

)1+
αsβ

g
0

4π

 , (4.19)
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• For intermediate |x|: 1
QT

< |x| < 1
Q

GQ(x) = αsβ0
4π

Q2

π

1 −
( 1

Q2x2

)1+
αsβ

g
0

4π

 , (4.20)

• At large |x|, |x| > 1
Q the function behaves as

GQ(x) ∝ αsβg
0

4π

1
(Q|x|)5/2 → 0 . (4.21)

One can check that the function GQ(x) satisfies (up to corrections of order O(α2
s)) the

“sum rule”
∫

d2x GQ(x) = 1 as required by eq. (4.18). An additional consistency check is
that GQ(x) → δ2(x) when either αs = 0 or Q = QT .

We can now write the solution for αQ as

αQ(z) =
∫

d2x GQ(z − x)α(x) (4.22)

≈
(

Q2
T

Q2

)αsβ
g
0

4π

α(z) +
∫

1/QT <|x−z|<1/Q

d2xαsβg
0

4π

Q2

π

1 −
( 1

Q2(x − z)2

)1+
αsβ

g
0

4π

α(x) .

Here in the second line, we neglected terms of order αs not enhanced by transverse logarithms.
Note, that we keep the second term in the second line, even though formally it has an explicit
prefactor of αs. The reason is that the integrand is a very slowly decreasing function of
|x− z| so that for slowly varying α(x) it integrates to a quantity of order unity. In particular,
this term is crucial to satisfy the sum rule

∫
d2z GQ(z) = 1.

To write the resummed Hamiltonian in the dilute limit we need only to keep the LO term,
since the NLO terms now become genuinely small corrections. For consistency, in the LO
term we have to expand the left and right charge operators as well as the S-matrix S(z) in
α(x). This procedure is well known and it leads to the BFKL limit. The only modification in
our case is that all the factors α(z) have to be substituted by the resummed amplitude αQ̃(z).
Thus in the dilute limit the DGLAP resummation results in the following Hamiltonian

Hresummed
BFKL =

∫
x,y,z

g(X−2)g(Y −2)
8π3

X · Y

X2Y 2

×
[

(α(x) − αQ̃(z)) (α(y) − αQ̃(z))
]ab δ2

δαa(x)δαb(y) , (4.23)

with αQ̃(z) given by eq. (4.22) with Q̃(z) defined in eq. (3.15).

4.4 The saturation regime

Now let us consider the saturated regime. Here the momentum QT of the target plays a dual
role. First, it provides the correlation length for the Wilson lines like before. But now it
also provides the saturation scale. This means that a Wilson line separated from any object
composed of other Wilson lines by a distance greater than 1/QT , is small. Although this
smallness does not hold configuration by configuration, but only in the sense of averaging
over the target ensemble, in practice we can neglect terms that involve products of Wilson
lines separated by distances larger than 1/QT .
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If we do this, the evolution simplifies greatly. Recall, that we are evolving from 1/|X| ≫
QT to QT , so that the distance between the Wilson lines in the nonlinear term in the evolution
equation (4.3) is always greater than the correlation length, and therefore the quadratic term
is much smaller than the linear term. We can therefore neglect the quadratic term in eq. (4.3)
altogether. Then the equation becomes linear, and is dominated entirely by the virtual term:

∂SQ(z)
∂ ln Q2 = −αsβg

0
4π

SQ(z) (4.24)

with the solution

SQ(z) =
[

Q2
T

Q2

]αsβ
g
0

4π

SQT
(z) ≈

[
Q2

T

Q2

]αsβ
g
0

4π

S(z) . (4.25)

The resummed Hamiltonian in this regime is

Hresummed
JIMWLK =

∫
x,y,z

g(X−2)g(Y −2)
8π3

X · Y

X2Y 2 (4.26)

×

 Ja
L(x) Ja

L(y) + Ja
R(x) Ja

R(y)

− 2Ja
L(x)

θ
(
QT − Q̃(z)

) [ Q2
T

Q̃2(z)

]αsβ
g
0

4π

+ θ
(
Q̃(z) − QT

)Sab(z) Jb
R(y)


with Q̃ defined as before eq. (3.15), Q̃(z) = max

{
1

X2 , 1
Y 2

}
.

Equations (4.26) and (4.23) conclude our derivation in the two simple limits. Our
remaining task is to include the DGLAP logarithms due to the presence of the quarks and
antiquarks. We will do this in the following section.

5 Including quarks

Including quarks into our framework is fairly straightforward. We need to add the process
of a gluon splitting into a qq̄ pair, and additionally to allow a quark to split into a quark
and a gluon. The first process already appears in the NLO JIMWLK. The second process
appear only at NNLO, because at leading order we do not include quarks into the hadronic
wave function. The quarks are generated only at NLO via emission from gluons, and thus
can split only at the NNL order. Nevertheless this process is important and affects the
DGLAP resummation at leading order.

5.1 Dressed quarks and gluons

The bare quark (antiquark) at the transverse point x scatters with the eikonal scattering
matrix V (x) (V †(x)) in the (anti) fundamental representation of the SU(Nc) group. As
a unitary matrix, it of course, satisfies V †V = 1. In addition the gluon and the quark
eikonal factors are related by

Sab(x) = 2 Tr[V †(x)τaV (x)τ b] (5.1)

where τa are generators of SU(Nc) in the fundamental representation.
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An important thing we have to be aware of, is that these simple properties do not hold for
the S matrices of dressed quarks and gluons. Thus for the DGLAP dressed quark states, which
we will define in a short while analogously to dressed gluon states we have discussed so far

V†
Q(x)VQ(x) ̸= 1; Sab

Q (x) ̸= 2 Tr[V†
Q(x)τaV(x)Qτ b] . (5.2)

This is important since the dressed quark S-matrix cannot be inferred automatically from
the dressed gluon S-matrix, and thus can (and does) satisfy an independent DGLAP evo-
lution equation.

Keeping this in mind, we can immediately generalize the equation for the dressed gluon
scattering matrix. To leading perturbative order it reads

Sab
Q (z) =

[
1 + αsβ0

4π
ln µ2

Q2

]
Sab(z) − αsβg

0
4π2Nc

∫
|Z|<Q−1

d2Z

Z2 Dab(z + Z

2 , z − Z

2 ) (5.3)

− αsβq
0

4π2Nc

∫
|Z|<Q−1

d2Z

Z2 DF ab(z + Z

2 , z − Z

2 )

where βq
0 = −2NF

3 is the quark contribution to the one loop QCD β-function, and we
have defined

DF ab(z + Z/2, z − Z/2) = 2 Tr[τaV (z + Z/2)τ bV +(z − Z/2)] . (5.4)

As before, we can rewrite the complete NLO JIMWLK Hamiltonian as

HJIMWLK = HJSJ
Q + HJSSJ

Q + H q̄q
Q + . . . (5.5)

where now

HJSJ
Q =

∫
x,y,z

αsX ·Y
2π2X2Y 2

{(
1+ αsβ0

8π

[
ln[X2µ2] + ln[Y 2µ2]

])
×
[

Ja
L(x)Ja

L(y) + Ja
R(x)Ja

R(y)− 2Ja
L(x)Sab

Q̄ (z)Jb
R(y)

]
+ αsβ0

8π

[
(lnX2Q̃2+lnY 2Q̃2) [Ja

L(x)Ja
L(y) + Ja

R(x)Ja
R(y)]

−2(lnX2Q̄2+lnY 2Q̄2)Ja
L(x)Sab

Q̄ (z)Jb
R(y)

]}
, (5.6)

HJSSJ
Q =

∫
x,y,z,z′

KJSSJ(x,y,z,z′)Ja
L(x)Dad

Q̄ (z,z′)Jd
R(y)−α2

sβg
0

4π3

∫
x,y,z

X ·Y
X2Y 2D

ab
Q̄ (z)Ja

L(x)Jb
R(y)

−
[∫

x,y,z,z′

Nc

2 KJSSJ(x,y,z,z′)−α2
sβg

0
8π3

∫
x,y,z

X ·Y
X2Y 2 ln µ2

Q̃2

]
[Ja

R(x)Ja
R(y)+Ja

L(x)Ja
L(y)]

(5.7)

and

H q̄q
Q =

∫
x,y,z,z′

Kqq̄(x, y,z,z′)Ja
L(x)DF ab

Q̄
(z,z′)Jb

R(y)−α2
sβq

0
4π3

∫
x,y,z

X ·Y
X2Y 2D

F ab
Q̄

(z)Ja
L(x)Jb

R(y)

−
[∫

x,y,z,z′

1
2Kqq̄(x,y,z,z′)−α2

sβq
0

4π3

∫
x,y,z

X ·Y
X2Y 2 ln µ2

Q̃2

]
[Ja

R(x)Ja
R(y)+Ja

L(x)Ja
L(y)] .

(5.8)
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For the dressed quark scattering matrix guided by exactly the same considerations, we
have at the leading perturbative order

Vαβ
Q (z) =

[
1 + 3

2
αsCF

4π
ln µ2

Q2

]
V αβ(z)− 3

2
αs

4π2

∫
|Z|<Q−1

d2Z

Z2

[
τaSab(z + Z/2)V (z − Z/2)τ b

]αβ

(5.9)
where we have used the fact that for the quark-gluon splitting function∫ 1

0
dξ

[
1 + (1 − ξ)2

ξ

]
+

= −3
2 (5.10)

and
CF = N2

c − 1
2Nc

. (5.11)

Given these perturbative expressions we can write down the DGLAP equations which now
include quarks. For the adjoint scattering matrix we have

∂

∂ lnQ2S
ab
Q (z) =−αs

4π

[
β0Sab

Q (z) (5.12)

− 1
Nc

∫
dϕ

2π

(
βg

0D
ab
Q (z+ 1

2Q−1eϕ,z− 1
2Q−1eϕ)+βq

0D
F ab
Q (z+ 1

2Q−1eϕ,z− 1
2Q−1eϕ)

)]
and for the fundamental scattering matrix

∂

∂ ln Q2V
αβ
Q (z) = −3

2
αs

2π

[
CFVαβ

Q (z) −
∫

dϕ

2π
D(F A)αβ

Q (z + 1
2Q−1eϕ, z − 1

2Q−1eϕ)
]

(5.13)

where

DF ab
Q (z + Z/2, z − Z/2) ≡ 2Tr [τaVQ(z + Z/2)τ bV+

Q(z − Z/2)] ,

D(F A)αβ
Q (z + Z/2, z − Z/2) ≡

[
τaSab

Q (z + Z/2)VQ(z − Z/2)τ b
]αβ

. (5.14)

The interesting albeit not unexpected property of these equations is that the evolution of
the adjoint and fundamental scattering matrices mix. This means that, although we only
need to find the adjoint SQ in order to perform the DGLAP resummation of the JIMWLK
Hamiltonian at NLO, we have to consider also the Q2 evolution of VQ. This is so even
though the terms in the JIMWLK Hamiltonian in which we would have to use the solution
of eq. (5.13) appear only starting at NNLO.

5.2 The resummation — saturated regime

As just mentioned, to resum the transverse logarithms at leading order we do not need to know
VQ, but only SQ. This makes the resummation in saturation regime very straightforward.
In eq. (5.12) we can neglect, as before the “real” DQ terms which involve the product of
two scattering matrices. The solution is then exactly the same as eq. (4.25) but with the
complete one loop β-function

SQ(z) =
[

Q2
T

Q2

]αsβ0
4π

SQT
(z) ≈

[
Q2

T

Q2

]αsβ0
4π

S(z) . (5.15)
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For completeness, we can also straightforwardly solve for VQ, even though it is not needed
to obtain the resummed Hamiltonian

VQ(z) =
[

Q2
T

Q2

] 3αs(N2
c −1)

8πNc

VQT
(z) ≈

[
Q2

T

Q2

] 3αs(N2
c −1)

8πNc

V (z) . (5.16)

The resummed JIMWLK Hamiltonian is then

Hresummed
JIMWLK =

∫
x,y,z

g(X−2)g(Y −2)
8π3

X · Y

X2Y 2

{
Ja

L(x) Ja
L(y) + Ja

R(x) Ja
R(y) (5.17)

− 2Ja
L(x)

θ
(
QT − Q̃(z)

) [ Q2
T

Q̃2(z)

]αsβ0
4π

+ θ
(
Q̃(z) − QT

)Sab(z) Jb
R(y)

}
.

If we wanted to keep nonlogarithmic O(α2
s) terms in the resummed Hamiltonian, we

would need to use the solutions eqs. (5.15), (5.16) and substitute them into the O(α2
s) terms

in the Hamiltonian, but we will not concern ourselves with this here.

5.3 The resummation: the dilute regime

Here we again assume that both, SQ and VQ are close to unity:

SQ(x) = 1 + iT aαa
Q(x); VQ(x) = 1 + iτaαF a

Q (x) . (5.18)

Note, that due to eq. (5.2), we are not assuming that αQ is equal to αF
Q. The evolution

equation now becomes a little more complicated, since it mixes αQ with αF
Q.

The equations for the Q2 evolution now are

∂

∂ ln Q2 αc
Q(z) = αsβg

0
8π2

∫
dϕ

(
αc

Q

(
z + 1

2Q−1eϕ

)
− αc

Q(z)
)

+ αsβq
0

8π2

∫
dϕ

(
αF c

Q

(
z + 1

2Q−1eϕ

)
− αc

Q(z)
)

(5.19)

and
∂

∂ lnQ2 αF c
Q (z) = 3

2
αs

4π2

∫
dϕ

(
Nc

2 αc
Q

(
z+ 1

2Q−1eϕ

)
− 1

2Nc
αF c

Q

(
z+ 1

2Q−1eϕ

)
−CF αF c

Q (z)
)

.

(5.20)

To solve these equations we follow the same route as in the previous section, i.e. transform
into momentum space. Introducing the function

R̃(p, Q) = J0

(
p

2Q

)
− 1 (5.21)

we obtain local equations in momentum space

∂

∂ lnQ2 αc
Q(p) = αsβg

0
4π

R̃(p,Q)αc
Q(p)+ αsβq

0
4π

{[
R̃(p,Q)+1

]
αF c

Q (p)−αc
Q(p)

}
, (5.22)

∂

∂ lnQ2 αF c
Q (p) = 3

2
αs

2π

{[
R̃(p,Q)+1

](Nc

2 αc
Q(p)− 1

2Nc
αF c

Q (p)
)
−CF αF c

Q (p)
}

. (5.23)
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These are still pretty complicated. We now however employ the same simplification we
used to analyze the no-quark case. Our calculation in eq. (4.14) amounts to the following
simple approximation for R̃

R̃(p, Q) ≈ 0; p < Q; R̃(p, Q) = −1; p > Q . (5.24)

Then for p < Q we have

∂

∂ ln Q2 αc
Q(p) = αsβq

0
4π

[
αF c

Q (p) − αc
Q(p)

]
,

∂

∂ ln Q2 αF c
Q (p) = 3

2
αsNc

4π

[
αc

Q(p) − αF c
Q (p)

]
. (5.25)

While for p > Q

∂

∂ ln Q2 αc
Q(p) = −αs

4π
β0αc

Q(p) ,

∂

∂ ln Q2 αF c
Q (p) = −3

2
αs

2π
CF αF c

Q (p) . (5.26)

These equations are easily solved. Recall that the interval of the evolution is from Q̃ to QT .
Thus for p < Q̃ we only need to solve the first set of equations. Their diagonalized form is

∂

∂ ln Q2

[
αc

Q(p) − αF c
Q (p)

]
= −αs

4π

(
βq

0 + 3Nc

2

) [
αc

Q(p) − αF c
Q (p)

]
,

∂

∂ ln Q2

[3Nc

2 αc
Q(p) + βq

0αF c
Q (p)

]
= 0 . (5.27)

Our initial condition is αQT
= αF

QT
= α. The solution of eq. (5.27) with this initial condition

is simply

αQ(p < Q) = αF
Q(p < Q) = α(p < Q) . (5.28)

It is equally straightforward to solve for p > QT . For that, we need to solve eq. (5.26),
which is straightforward. The solution is

αc
Q(p > QT ) =

[
Q2

T

Q2

]αs
4π

β0

αc(p > QT ); αF c
Q (p > QT ) =

[
Q2

T

Q2

]αs
4π

3CF

αc(p > QT ) . (5.29)

Finally, we consider momenta QT > p > Q. For these momenta while evolving from Q to
QT , we should evolve α according to eq. (5.26) between Q and p, and then according to
eq. (5.27) between p and QT . The first part of the evolution results in the same expressions
as eq. (5.29) but with QT substituted by p

α̃c
Q(QT > p > Q) =

[
p2

Q2

]αs
4π

β0

αc(QT > p > Q); (5.30)

α̃F c
Q (QT > p > Q) =

[
p2

Q2

]αs
4π

3CF

αc(QT > p > Q)
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where α̃ denotes the solution evolved from Q to p. This α̃ now serves as the initial condition
for the evolution from p to QT according to eq. (5.27). Eventually, we find the solution:

αc
Q(p) − αF c

Q (p) =
[

p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ]

[
p2

Q2

]αs
4π

β0

−
[

p2

Q2

]αs
4π

3CF

αc(p)

3Nc

2 αc
Q(p) + βq

0αF c
Q (p) =

3Nc

2

[
p2

Q2

]αs
4π

β0

+ βq
0

[
p2

Q2

]αs
4π

3CF

αc(p) (5.31)

from which it follows

αc
Q(p) = 1

βq
0 + 3Nc

2


3Nc

2 + βq
0

[
p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

β0

+βq
0

1 −
[

p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

3CF

αc(p) , (5.32)

αF c
Q (p) = 1

βq
0 + 3Nc

2

3Nc

2

1 −
[

p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

β0

+

βq
0 + 3Nc

2

[
p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

3CF

αc(p) . (5.33)

The last expression we present for completeness, since as mentioned above we only need
αQ to perform the resummation in JIMWLK at leading order. Thus for all values of
momentum, we find

αc
Q(p) = αc(p)θ(Q − p) (5.34)

+ 1
βq

0 + 3Nc
2


3Nc

2 + βq
0

[
p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

β0

+βq
0

1 −
[

p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

3CF

αc(p)θ(p − Q)θ(QT − p)

+
[

Q2
T

Q2

]αs
4π

β0

αc(p)θ(p − QT ) ,

αF c
Q (p) = αc(p)θ(Q − p) (5.35)

+ 1
βq

0 + 3Nc
2

3Nc

2

1 −
[

p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

β0

+

βq
0 + 3Nc

2

[
p2

Q2
T

]αs
4π [βq

0+ 3Nc
2 ][ p2

Q2

]αs
4π

3CF

αc(p)θ(p − Q)θ(QT − p)

+
[

Q2
T

Q2

]αs
4π

3CF

αc(p)θ(p − QT ) .
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Fourier transformation of these expressions into coordinate space does not present any
additional difficulties and can be performed in the same way as in the previous section.
We obtain

αQ(z) ≈
(

Q2
T

Q2

)αsβ0

4π
α(z) (5.36)

+
∫

1
QT

<|x−z|< 1
Q

d2x
βq

0 + 3Nc
2


3Nc

2 +βq
0Q2

T

[
1

(x−z)2Q2
T

]αs

4π

[
βq

0 +
3Nc

2

]
+1
Q2

[
1

(x−z)2Q2

]αs

4π
β0+1

+βq
0

1−Q2
T

[
1

(x−z)2Q2
T

]αs

4π

[
βq

0 +
3Nc

2

]
+1
Q2

[
1

(x−z)2Q2

]αs

4π
3CF +1

 α(x)

and

αF
Q(z) ≈

(
Q2

T

Q2

)αs

4π
3CF

αF (z) (5.37)

+
∫

1
QT

<|x−z|< 1
Q

d2x
βq

0 + 3Nc
2


βq

0 + 3Nc

2 Q2
T

[
1

(x−z)2Q2
T

]αs

4π

[
βq

0 +
3Nc

2

]
+1
Q2

[
1

(x−z)2Q2

]3αs

4π
CF +1

+ 3Nc

2

1−Q2
T

[
1

(x−z)2Q2
T

]αs

4π

[
βq

0 +
3Nc

2

]
+1
Q2

[
1

(x−z)2Q2

]αs

4π
β0+1

}αF (x) .

The resummed Hamiltonian is now given by eq. (4.23) with αQ̃(z) given by eq. (5.36) with
Q̃(z) defined in eq. (3.15).

6 Discussion

In this paper we considered a partial resummation of transverse logarithms in the NLO
JIMWLK equation. We have shown that some of these logs, which are proportional to the
one-loop coefficient of the QCD β-function are not associated with the renormalization of
the coupling constant, but instead encode DGLAP corrections to the low x evolution. These
DGLAP corrections are large whenever there is a large disparity between the correlation
lengths (or saturation momenta) in the projectile and the target.

The small target correlation length Q−1
T plays the role of the external scale on which the

projectile structure is resolved. This is in direct analogy to the hard scale Q2 in DIS. In the
presence of large QT the scattering is dominated by the projectile configurations with typical
distance between partons of order Q−1

T , and therefore the projectile wave function needs to be
evolved up to this scale. This is so even though JIMWLK describes the evolution of the total
cross section, and not a small fraction of it, as in DIS at high Q. The DGLAP evolution inside
JIMWLK resums the powers of αs ln Q2

T

Q2
P

. If the ratio of the two scales is not large, there is
in principle no need in this resummation. However as is well known, JIMWLK equation is
applicable for the scattering of a dilute object on a dense one, and therefore, resumming the
DGLAP corrections is indeed essential in the region of validity of JIMWLK equation.
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We showed how to resum these corrections by solving DGLAP equation that describes the
scale evolution of the scattering matrix of dressed gluons and quarks. The S matrix needs to
be evolved from the scale of the target’s correlation length (saturation momentum) to that of
the projectile. We solved these equations explicitly in two limiting cases. The first is when the
target is dilute, and the correlation length is not associated with the saturation momentum.
In this case, both real and virtual corrections are important in the DGLAP evolution. The
second case is when the target is saturated with large saturation momentum. In this case,
the evolution is dominated by the virtual term and the solution has a simple scaling form.

The running coupling corrections of course are also there and also need to be resummed.
However the physics of these corrections is simple and there is no need for an elaborate
choice for the scale of the coupling constant. Although, of course, strictly speaking, one
needs higher order corrections to make sure that the scale of the coupling is set properly, we
observe that the simplest physically motivated choice, i.e., the distance between the emitter
and the emitted gluon, is a perfectly good scale for the running strong charge in the emission
amplitude. Choosing this scale and including the DGLAP resummation takes care of all
large logarithms associated with the one loop β-function in the NLO JIMWLK.

There is one important point we need to realize about the DGLAP corrections discussed
here. Although we have been referring throughout this paper to “dressed gluons” and
“dressed quarks”, these are actually not the same normalized dressed states one encounters
usually in QCD calculations. The dressed parton states are created by DGLAP emission
with the complete splitting function. In the context of JIMWLK evolution, the situation is
different. The low x part of the splitting function is associated with the JIMWLK evolution in
rapidity, rather than the DGLAP splittings. As we noted earlier, this is the reason for the plus
prescription that subtracts the contribution of both poles at ξ = 0 and ξ = 1 in eqs. (3.4), (3.6)
and those following. This subtraction compensates for the inclusion of the low x part of the
splitting function, which the standard low x evolution (be it JIMWLK or BK) uses formally
at all values of x. As a result, whereas the (real contribution to the) usual splitting function is
positive since it has the meaning of emission probability, in our case, the analogous quantity
is negative, e.g., the coefficient in front of the second (“real”) term in eq. (5.3).

This negativity has a very stark consequence on our final results. Consider for example,
eq. (4.25) which gives the solution for the scattering matrix of our “dressed gluon” at the
resolution scale Q. If this were the physical dressed gluon state, one would, of course, expect
that for Q < QT , the spatial extent of this state is large, and the scattering matrix is smaller
than S since the scattering amplitude should be larger for a spatially extended state. However
eq. (4.25) behaves in exactly the opposite way. As Q gets smaller, SQ increases, i.e. becomes
less saturated. This is precisely the effect of subtracting the low x part from the DGLAP
splitting function. The low x evolution, therefore, partitions the DGLAP logarithms in a
rather amusing way. In the Hamiltonian itself, only a single gluon emission with the low
x part of the splitting function appears since the Hamiltonian is extracted from terms in
the S-matrix, which are linear in the longitudinal phase space ∆Y . However, calculating
HJIMWLK at higher orders in αs brings an arbitrary number of emissions with the finite part
of the splitting function (with the low x poles subtracted), which look like emissions with
negative probability. These are the logarithms that we showed how to resum in the present
paper. If we were to look at the second order in ∆Y contribution to the scattering matrix,
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i.e. the second iteration of the JIMWLK Hamiltonian in the evolution, we would find two
eikonal emissions, i.e. two emissions with the low x part of the splitting function. Thus at
this order we should be able to reconstruct the full splitting function for two emissions, but
the rest would still look like emissions with negative probability. And so it goes.

By what time do we recover the complete positive probability (splitting function) at
all orders in the DGLAP part of the evolution? It looks natural that one would need to
evolve in Y by the interval that is of the same order as the interval of the DGLAP evolution,
i.e. ∆Y ≈ ln Q2

T

Q2
P

to restore the positivity of probabilities for all splittings. Interestingly,
parametrically by the end of this evolution in Y we expect Q2

P (Y ) ≈ Q2
T (Y ). In principle, to

evolve the system in Y any further, we need to go beyond the JIMWLK approximation since
our projectile is not anymore dilute relative to the target. It is not clear to us at this point
whether this observation has any significance, apart from strengthening the point that within
the JIMWLK evolution per se, resumming the DGLAP corrections is a must.

For the future there are two obvious directions in which one should extend our results.
First, it would be interesting to solve the full RG equation beyond the dilute and dense
limits. The equation itself has a form somewhat similar to the BK equation, with the obvious
difference that the basic object is a matrix rather than a scalar amplitude. It may not be
possible to solve this equation analytically, but it is certainly worth a try.

Second, in the present paper we have only dealt with the resummation of DGLAP
logarithms at leading order. Correspondingly, we did not keep genuinely perturbative O(α2

s)
corrections in the resummed Hamiltonian. For precision applications one certainly would
need to do that. In principle it is a straightforward matter, as one would just need to keep
O(α2

s) in HJIMWLK after substitution of SQ̄. However, as always in going beyond leading
order, one has to be careful about details and implement a consistent factorization scheme
throughout the calculation, including more careful solution for αQ and SQ. At this level of
accuracy one also needs to include the running of the QCD coupling constant in the DGLAP
evolution along the lines indicated in eq. (4.17).

In the regime where neither projectile nor target are saturated, the JIMLWK equation
reduces to the BFKL equation. Various schemes that include both BFKL and DGLAP
logarithms have been considered in the literature [34–47]. None of these approaches however
are applied in coordinate space which is natural for the JIMWLK equation. Consequently at
this stage we were unable to relate our procedure to those in the above papers, although we
note that the “restoration” of the full DGLAP splitting function within the energy evolution
is the central point of refs. [34–39].

We note that in recent years attempts have been, and are being made to unify the low
and intermediate x physics including the saturation ideas [48–50]. Although technically our
approach here is very different, the physics problem we address has the same origin and we
hope these various approaches will converge in future.

A The right and left charges

We may want to express HJIMWLK entirely in terms of the dressed gluons scattering matrix
SQ. This would require also expressing the left- and right rotation operators as operators
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acting on functions of SQ rather than S. We consider the right charges first. Recall that

Ja
R(x)Seb(y) = [S(y)T a]ebδ2(x − y); Ja

R(x)ST eb(y) = −[T aST (y)]ebδ2(x − y) . (A.1)

Thus
Ja

R(x) = −Tr
[

∂

∂S(x)T aST (x)
]

. (A.2)

In principle the problem is algebraic. We should just use the chain rule to express
the charges in terms of SQ

Ja
R(x) = −Tr

[
∂

∂S(x)T aST (x)
]

= −
∫

y
Tr
[

∂Seb
Q (y)

∂S(x)
∂

∂Seb
Q (y)

T aST (x)
]

=
∫

y

[
Ja

R(x)Seb
Q (y)

] ∂

∂Seb
Q (y)

. (A.3)

Using the definition we have

∂Seb
Q (y)

∂Scd(x) =
[
1 + αsβg

0
4π

ln µ2

Q2

]
δecδbdδ2(y − x) (A.4)

−2 αsβg
0

4π2Nc

1
(x − y)2

[
T eS(2y − x)T b

]
cd

Θ[(2Q)−2 − (x − y)2] .

So that

Ja
R(x) = −Tr

[
∂

∂SQ(x)T aST
Q(x)

]
+ αsβg

0
4π2Nc

∫ 1
2Q

y−x

1
(x − y)2

×
[
Tr
[
T eSQ(2y − x)T bT aST

Q(x) − T eSQ(x)T aT bST
Q(2y − x)

] ∂

∂Seb
Q (y)

−Tr
[
T eSQ(2x − y)T cST

Q(y)
] ∂

∂Seb
Q (x)

T a
bc

]
. (A.5)

We can easily check that this expression is UV finite. To see this we need to show that
the sum of the integrands in the last two terms vanish for y → x. This is obviously the
case, since the SU(N) generators in the penultimate line in this limit combine into [T a, T b],
and exactly cancel the term in the last line.

Now for the left charge

Ja
L(x) = −Tr

[
∂

∂S(x)ST (x)T a
]

. (A.6)

The same algebra as above yields

Ja
L(x) = −Tr

[
∂

∂SQ(x)S
T
Q(x)T a

]
+ αsβg

0
4π2Nc

∫ 1
2Q

y−x

1
(x − y)2

×
[
Tr
[
T aT eSQ(2y − x)T bST

Q(x) − T eT aSQ(x)T bST
Q(2y − x)

] ∂

∂Seb
Q (y)

−Tr
[
T cSQ(2x − y))T bST

Q(y)
] ∂

∂Seb
Q (x)

T a
ce

]
. (A.7)
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Again, it is easy to check that this expression is UV finite.
It is natural to define the “ dressed color charge” operators that measure the charge

of the dressed gluons:

Ja
Q,R(x) = −Tr

[
∂

∂SQ(x)T aST
Q(x)

]
; Ja

Q,L(x) = −Tr
[

∂

∂SQ(x)S
T
Q(x)T a

]
. (A.8)

As alluded to in the text, one can use these operators, rather than the original Ja
R(L)

to write the resummed form of HJIMWLK. Although this may look natural in a certain
sense, it does not make any difference in perturbation theory. The fact that eqs. (A.5)
and (A.7) are free from the UV divergences means that the relation between the “bare charge”
operators and the “dressed charge” operators in purely perturbative and does not contain
large logarithms. Thus the choice of which charge operators to use in the perturbatively
resummed Hamiltonian is equivalent to the choice of the factorisation scheme. At the leading
order, at which we work in this paper, the choice is immaterial. However if one would want
to keep all O(α2

s) terms, including those that are not enhanced by the transverse logarithms,
this choice has to be explicitly specified.

B Fourier transforming αQ

To calculate αQ(z) we need to calculate the following two dimensional Fourier transform:

GQ(x) =
∫

d2p

(2π)2 eipx (B.1)

×

θ(4Q2 − p2) +
(

p2

Q2

)αsβ0
4π

θ(Q2
T − p2)θ(p2 − Q2) +

(
Q2

T

Q2

)αsβ0
4π

θ(p2 − Q2
T )

 .

We split the integral into three contributions corresponding to the order of terms in eq. (B.1).
The first integral can be analytically computed

I1 =
∫

d2p

(2π)2 eipxθ(Q2 − p2) = QJ1(Qx)
πx

. (B.2)

Its asymptotics for small and large argument Qx are

I1

(
x ≪ 1

Q

)
≈ Q2

π
, (B.3)

I1

(
x ≫ 1

Q

)
≈ −

Q1/2 cos
(
Qx + π

4
)

π3/2x3/2 . (B.4)

The corrections to the latter are of order O(x−5/2).
The third integral reduces to delta function and the same analytic integral as in I1

I3 =
∫

d2p

(2π)2 eipx
(

Q2
T

Q2

)αsβ0
4π

θ(p2 − Q2
T ) =

(
Q2

T

Q2

)αsβ0
4π

δ(2)(x) −
(

Q2
T

Q2

)αsβ0
4π QT J1(QT x)

πx
.

(B.5)
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The integral of the second term in eq. (B.1) leads to hypergeometric functions and is not
very useful. Here we will only consider its assymptics. For small argument,

I2

(
x ≪ 1

QT

)
≈ Q2

π

∫ (QT /Q)2

1
dyy

αsβ0
4π = Q2

π

1
1 + αsβ0

4π

[Q2
T

Q2

]1+ αsβ0
4π

− 1


≈ Q2

π

[Q2
T

Q2

]1+ αsβ0
4π

− 1

 . (B.6)

For large argument Qx ≫ 1,

I2

(
x≫ 1

Q

)
≈

Q1/2 cos
(
Qx+ π

4
)

π3/2x3/2 −
(

Q2
T

Q2

)αsβ0
4π Q

1/2
T cos

(
QT x+ π

4
)

π3/2x3/2 (B.7)

with corrections of order O(x−5/2). And finally, for the intermediate values, 1
QT

≪ x ≪ 1
QT

,

I2

(
x≫ 1

Q

)
≈−Q2

π
−αsβ0

4π

Q2

π(Q2x2)1+ αsβ0
4π

−
(

Q2
T

Q2

)αsβ0
4π Q

1/2
T cos

(
QT x+ π

4
)

π3/2x3/2 . (B.8)

From this set of results, one obtains G(x) in different regions as presented in eqs. (4.19),
(4.20), and (4.21).
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