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ARTICLE INFO ABSTRACT

Keywords: Energy justice advocates for the equitable and accessible provision of energy services, mainly focusing on
Machine learning marginalized communities. Adopting machine learning in analyzing energy-related data can unintentionally
Al

reinforce social inequalities. This perspective highlights the stages in the machine learning process where biases
may emerge, from data collection and model development to deployment. Each phase presents distinct chal-
lenges and consequences, ultimately influencing the fairness and accuracy of machine learning models. The
ramifications of machine learning bias within the energy sector are profound, encompassing issues such as in-
equalities, the perpetuation of negative feedback loops, privacy concerns regarding, and economic impacts
arising from energy burden and energy poverty. Recognizing and rectifying these biases is imperative for
leveraging technology to advance society rather than perpetuating existing injustices. Addressing biases at the
intersection of energy justice and machine learning requires a comprehensive approach, acknowledging the
interconnectedness of social, economic, and technological factors.

Data justice

Energy justice

Data bias

Consequences of data bias

1. Introduction steps towards minimizing biases in ML applications within the energy
sector.

Machine learning (ML) and Artificial Intelligence (AI) have become
integral tools for managing large datasets in energy consumption anal-
ysis, optimizing efficiency, and uncovering disparities in energy infra-
structure access and distribution. While these approaches offer rapid
solutions to researchers, they inadvertently introduce implicit bias. Bias
in ML, a subset of Al, refers to the systemic and unjust favoritism and
marginalization that can manifest during the conception, implementa-
tion, and application of ML systems. These biases may stem from various

sources, leading to significant ethical and societal implications. This tice [4,5]. Recognition justice highlights the necessity of acknowledging
perspective seeks to explore the nexus between ML bias and energy  which groups of society are overlooked or misrepresented. Distributive
justice, identify different types of biases, and propose solutions for justice revolves around the ethical principles that should guide resource
mitigating ML bias. In leveraging ML and AI for energy-related analyses, allocation among society members. Finally, procedural justice empha-
it is crucial to recognize and address the unintended biases that may sizes the integrity of the process leading to decisions [2]. Using ML to
permeate these technologies. Understanding the diverse sources of bias analyze energy-related data has the potential to introduce and amplify
in ML systems is essential for developing strategies that promote fairness biases, thereby deepening existing social inequalities. Bias can permeate

and justice. This perspective aims to contribute to the ongoing discourse the entire process, from data collection and model development to
by shedding light on the intricate relationship between ML bias and

energy justice, paving the way for informed discussions and concrete

1.1. Energy justice and machine learning bias

Energy justice has emerged as a recent focal point for researchers and
policymakers, aiming to bolster energy equity [1-3]. It advocates for
equal access to affordable and reliable energy supply and services for all,
particularly emphasizing the needs of underserved communities with
three main components — recognition, distributive, and procedural jus-

model deployment (Fig. 1). Mitigating bias in ML for energy analysis is
not merely a technical challenge but imperative for promoting social
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justice. Researchers and policymakers must be acutely aware of the
potential biases and their wide-ranging implications to tackle these
challenges effectively. This paper systematically examines various bias
types at different stages of ML applications for energy data analysis and
proposes future research directions. Furthermore, this paper un-
derscores the need for proactive measures to counteract bias in ML ap-
plications for energy analysis.

2. Overview of machine learning bias

As researchers delve deeper into the complexities of bias in ML for
energy systems, it becomes evident that biases can emanate from various
sources, spanning the entire data pipeline, algorithmic development,
and deployment process, as illustrated in Fig. 1. In the first hurdle, data
collection, bias can manifest in three primary stages: data collection,
integration, and preprocessing. During the data collection phase, bias
may arise from raw data acquisition and the utilization of secondary
data. Raw data may inherently contain biases due to measurement
inaccuracies, sampling, or selection processes. Similarly, secondary data
can introduce biases through sampling and selection procedures. Sub-
sequently, data integration can introduce aggregation bias, while data
preprocessing can potentially introduce measurement and aggregation
biases. If left unaddressed, these biases can culminate in representation
bias, impacting spatial and temporal scales within energy systems.

Moreover, these biases can propagate throughout the ML algorithm
development pipeline. The design of ML algorithms' loss and reward
functions can also exacerbate overall bias. Careful consideration is
needed to ensure these functions do not disproportionately penalize
certain groups, promoting unfairness in algorithmic decision-making.
Evaluation bias is another concern during model performance assess-
ment, mainly when using metrics like accuracy or imbalanced datasets.
During post-development, the ML models' deployment phase introduces
its own biases. Domain shift bias occurs when the data distribution of the
training model differs from its actual deployment environment.

Additionally, explanation bias can arise from many ML models'
inherent ‘black box’ nature, making their decision-making processes
opaque. Encouraging interpretable and explainable models and doc-
umenting model decisions can help address this concern. In the
following section, this paper explains each type of bias and explores
their impacts and potential strategies to overcome them. As the diagram
in Fig. 2 was constructed qualitatively, the weights of each bias and the
width of each flow are represented equally and illustrate a high-level
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mapping of critical bias points and their potential propagation paths.

2.1. The impacts of data collection bias

This perspective summarizes four types of bias during the data
collection that can impact energy justice: sampling, measurement, se-
lection, aggregation, and representation.

2.1.1. Sampling bias

Sampling bias emerges when the collected data fails to comprehen-
sively capture and reflect the characteristics of the entire population,
thereby yielding flawed or partial outcomes. For instance, exclusively
gathering data on energy consumption in households equipped with
smart meters might result in underestimating energy usage within low-
income communities lacking such technology. Notably, sampling bias is
accentuated in datasets reliant on non-representative sampling, as seen
in the U.S. Department of Energy's Building Performance Database [6].
These datasets may inadvertently emphasize specific regions or markets,
limiting their representativeness [7]. Sampling bias can also manifest
during data preprocessing, particularly when handling missing data.
Various methods, such as mean imputation (using the mean in place of
missing data), omission or removal of missing data, and experience-
based assumptions about the randomness of missing data (filling
missing data based on past knowledge or experience), are employed to
address this issue. However, these methods can inadvertently introduce
bias. For instance, mean imputation replaces missing values with the
variable's mean from available data, potentially introducing bias if the
missing data are neither randomly distributed nor accurately repre-
sented. For example, higher-income groups may be more hesitant to
disclose their income, leading to a sampling bias. This can result in the
misallocation of resources and misalignement of policies intended to
improve energy affordability and accessibility. Such misallocation may
lead to inefficient use of subsidies and support programs, failing to reach
the households most in need and thus undermining the objectives of
energy justice. Likewise, sampling bias can adversely impact equitable
planning of clean transportation technologies. When city planners uti-
lize surveys to gauge the need for electric vehicle (EV) charging in-
frastructures, they often unintentionally target EV owners and higher-
income individuals who have more access to the technology. This ten-
dency can skew the survey findings, potentially failing to capture the
broader communities' needs, especially those of lower-income house-
holds. Research has demonstrated that EV charging stations are

Hurdles to Overcoming ML Bias in Energy Justice

Data collection

The first hurdle involves the challenge of
addressing bias during data collection.
Biased data collection practices, such as
limited data access or sampling errors,
can lead to incomplete or skewed
datasets that perpetuate existing
inequities in energy analysis.

V. &

evaluation metrics.

Model development
The second hurdle involves the challenge of ~The third hurdle involves the challenge of
addressing bias during model development.
Issues can arise due to how a model is
designed, feature selection, and the chosen

Model deployment

addressing bias during model deployment.
When the attributes of subjects in the
deployment environment differ from those in
the training data, the ML model may yield
unreliable predictions.
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Fig. 1. Three main hurdles to overcoming ML bias relating to energy justice: Data collection, model development, and model deployment.
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Fig. 2. Connecting hurdles, their origins, and their impacts throughout the ML cycle.

markedly underrepresented in low-income, Black-identifying, and
underinvested neighborhoods, thereby limiting access to EV technology
for these communities [8]. Hence, such sampling bias might lead city
planners to overestimate the demand for EV charging infrastructures for
wealthier neighorhoods based on the responses of higher-income par-
ticipants. This could result in an unequal allocation of resources towards
EV infrastructures, diverting funds from vital public transportation
projects that are crucial for lower-income residents who depend heavily
on them. Inadequate investment in public transportation can severely
limit their mobility, making it harder to access jobs, educational op-
portunities, and essential services. Therefore, sampling bias not only
hinders the generalization of results to a broader population but also
underscores the necessity to address and mitigate bias at the data
collection and processing stages.

2.1.2. Selection bias

Selection bias is a broader concept encompassing various biases
arising from how subjects are chosen or included in a study. It includes
not only sampling bias but also other biases that may occur during the
assignment of subjects to groups or the handling of data. For example, in
the U.S. national survey data like the Residential Energy Consumption
Survey (RECS) [9], intentional exclusion of vacant homes and specific
quarters can introduce selection bias. Selection bias also arises when
only participants in an energy efficiency program are considered,
excluding those who are either unaware of these energy efficiency
programs or cannot afford them without financial assistance due to high
initial costs or lack of access to financing options. As a result, policies
and incentives designed to encourage energy efficiency technology
adoptions may be tailored to the needs and behaviors of early adopters,
typically from more financially secure groups, rather than addressing
the barriers faced by lower-income households to adopt the
technologies.

Selection bias can manifest in ML applications when training data are
biased towards specific demographic characteristics within a commu-
nity. Subsequently, this bias introduces social, ethical, and privacy
biases, perpetuating stereotypes and discrimination. ML algorithms,
such as sentiment analysis and decision trees, are particularly suscep-
tible to selection bias, leading to biased outcomes and inaccurate clas-
sifications. Even support vector machines, if trained on data biased
towards affluent neighborhoods, can perpetuate biases and contribute to
inadequate energy resource allocation for low-income or diverse com-
munities, reinforcing existing inequalities.

2.1.3. Measurement bias

Measurement bias arises when collected data is systematically
inaccurate or incomplete, distorting analyses. This bias can originate
from restricted data access or inadequate instrumentation in energy
analysis. An illustrative sample is measurement validity, which gauges
the extent to which an assessment tool, such as a questionnaire, accu-
rately measures its intended construct. Without validity, results ob-
tained from the measurement or tool may fail to faithfully represent the

underlying construct of interest. Typically, validity is established
through empirical evidence and theoretical reasoning [10]. Assump-
tions grounded in experience can contribute to measurement bias.
Considering studies using the American Time Use Survey (ATUS) data-
set, which lacks finer location data (i.e., only regional data without
census tract or zip code), the absence of finer geographic identifiers
poses a significant barrier to understanding energy consumption pat-
terns. To compensate for the lack of fine geolocation, researchers must
make assumptions about the locations of household activities for
building energy consumption simulations. For instance, many building
energy consumption models might assume that work-related energy use
predominantly occurs outside the home. However, due to the COVID-19
pandemic, the increase in work-from-home arrangements has started
altering this pattern. Suppose energy policy planners use outdated
models, such as assuming energy consumption occurs in office buildings,
without considering this shift, they may implement rolling blackout
plans or energy distribution strategies that inaccurately predict energy
demand peaks and valleys. Such measurement bias can disproportion-
ately affect residential areas with higher concentrations of remote
workers. Several ML algorithms are susceptible to measurement bias.
For example, decision tree algorithms such as Classification and
Regression Trees (CART) and Random Forests utilize data to create de-
cision rules for prediction, classification, and pattern recognition. If the
data used to build these decision trees is biased or incomplete, it could
result in skewed rules, potentially leading to misclassification or mis-
prediction for specific populations or neighborhoods. Similarly, linear
regression models that rely on historical energy consumption data to
predict the general population's future energy use or patterns may un-
derestimate the behavioral patterns and needs of underrepresented
communities. Therefore, addressing measurement bias is crucial for
ensuring the accuracy and fairness of analyses and predictions.

2.1.4. Aggregation bias

This bias emerges when data is consolidated or averaged at a higher
level, such as a group or population, resulting in unintentional as-
sumptions or inferences about individuals within that group [11]. Ag-
gregation bias can also manifest when researchers amalgamate variables
to have an aggregated score or index. The consequences of aggregation
bias are particularly profound in the context of energy justice, as it en-
genders inaccurate or biased conclusions regarding the unique energy
needs and usage patterns of distinct subgroups. For instance, assessing
renewable energy adoption rates across affluent and low-income areas
may obscure the specific impacts on low-income communities, perpet-
uating existing inequalities. This aggregation bias, in turn, can lead to
misallocation of resources, formulation of misguided policies, and
further marginalization of affected communities. ML models focus on
evaluating energy affordability, relying solely on aggregated averages,
risk overlooking instances of extreme energy poverty, or under-
estimating the financial burdens faced by low-income or rural house-
holds. The issue of aggregation bias is exacerbated during data
integration, as illustrated using composite indexes like the Social
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Vulnerability Index from the U.S. Center for Disease Control and Pre-
vention (CDC) [12], which combines multiple variables. Such an index
may neglect the distinct impact of individual variables. When data from
different subgroups are aggregated, cluster analysis may yield biased
results. For instance, clustering energy usage patterns or renewable
energy adoption without segregating data from diverse subgroups can
lead to inaccurate representations of their specific challenges.

Modifiable Areal Unit Problem (MAUP) is a well-known statistical
bias resulting from aggregating data across different geographic
boundaries, eventually leading to various patterns and measurements
[13]. For instance, energy burden data from the Low-income Energy
Affordability Tool (LEAD) are available at PUMA (Public Use Microdata
Areas - the lowest U.S. Census spatial unit) scale, but the socioeconomic
datasets from the Census tend to be available at census blocks or block
groups or other boundaries. Given that the boundaries of these two
spatial units do not reconcile, they must be aggregated to a common
boundary, such as census tracts, counties, or utility service areas. Thus, a
study using census tracts vs. counties will have different results due to
MAUP [14]. Likewise, power outage data are available from utilities at
utility service area boundaries, which differ from county boundaries and
may overlap different zip codes. Such data, therefore, must be dis-
aggregated/aggregated to county boundaries or other census boundaries
to undertake power restoration and resource planning activities that
may marginalize specific communities and exacerbate energy justice
[15]. Analogous to MAUP is the Modifiable Temporal Unit Problem
(MTUP) that results from the aggregation of time-varying datasets, such
as power outage data that can be aggregated hourly or daily depending
upon the need [16]. Because of MAUP and MTUP, ML/AI algorithms can
produce biased results when data from different subgroups are aggre-
gated at varying spatial and temporal scales, leading to inaccurate
representation of specific subgroups' needs and challenges, influencing
resource allocation.

2.1.5. Representation bias

Representation bias comprises two key facets: spatial and temporal
bias. Spatial representation bias arises when national datasets are
employed locally, introducing disparities in representation due to
MAUP. For example, researchers often use the ATUS dataset to analyze
occupant energy use behavior patterns in residential building energy use
simulation [17,18] or EV charging pattern analysis [19]. Clustering (e.
g., K-means) and Markov-Chain are used to identify and simulate these
behavior patterns. These pattern identification and simulations are
conducted based on the national data. However, challenges emerge
when applying these models directly to a specific area (e.g., a state or a
city) due to representation issues during the spatial downscaling pro-
cess, where occupant profiles vary significantly across different regions.
Temporal-based representation bias can stem from infrequent data
collection or using data collected at one temporal scale to analyze pat-
terns at a different scale. This approach can hinder the accurate capture
of short-term changes [20] and lead to MTUP, thereby profoundly
impacting energy justice. For example, low-income households often
lack access to smart meters, which track detailed, real-time energy
consumption. Consequently, their energy usage data lacks the granu-
larity necessary to capture short-term energy use peaks accompanying
extreme weather, e.g., heat waves or extreme cold. Without detailed
data, energy assistance programs might distribute resources based on
average monthly usage, missing the urgent needs of these households in
critical times. To address temporal bias, social-media data (e.g., Twitter
(aka X)) or other real-time datasets (e.g., SafeGraph) are often incor-
porated to analyze short-term changes, especially during emergencies,
such as power outages [21,22]. However, it is essential to note that such
datasets are accessible only to a certain percentage of the population
using the respective apps or devices and willing to share their locations
and associated information. These biases adversely affect decision tree
algorithms, neural networks, and clustering algorithms, leading to
inaccurate predictions, unfair classifications, biased outputs, and
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insufficient resource allocation.
2.2. The impacts of model development and deployment

While datasets are the basis for bias, it is crucial to recognize that ML
models can also introduce biases even when the training data is inher-
ently unbiased [24]. Algorithmic bias, called model bias, emerges in
model development due to model design, feature selection, objective
function definitions, and the chosen evaluation metrics. For example,
supervised machine learning algorithms, operating on labeled data
where each input example is associated with a corresponding target
output, are often trained by minimizing the discrepancy between the
predicted and ground-truth label information. An objective function
designed to maximize overall predictive performance can inadvertently
introduce bias, favoring individuals from majority groups who are more
prevalent in the dataset, while neglecting those from racially or socio-
economically underrepresented groups. Similarly, a poorly designed
reward function in reinforcement learning (RL) will likely amplify en-
ergy disparities. For example, when developing energy efficiency
retrofit plans in residential buildings to reduce energy consumption and
greenhouse gas emissions, if the reward function in RL is biased towards
maximizing cost savings without considering the feasibility or afford-
ability of retrofit measures for low-income households, the learned
policy may prioritize upgrades that are inaccessible or unaffordable for
marginalized communities. This bias will widen the energy efficiency
gap between affluent and disadvantaged neighborhoods, exacerbating
energy and environmental injustices.

Moreover, feature selection also plays an essential role in designing
unbiased models. For example, when identifying areas for infrastructure
investment (e.g., renewable energy installations), if the clustering al-
gorithm, a typical unsupervised learning approach, is biased towards
prioritizing features that correlate with higher property values or so-
cioeconomic status, the identified areas for investment may dispropor-
tionately benefit affluent neighborhoods. This bias could exacerbate
unequal spatial access to essential infrastructures, further perpetuating
energy access and resilience disparities. As such, a poorly designed
model with inappropriate features or objective/reward functions will
result in biased predictive outcomes, eroding confidence in ML/AI-
supported decision-making processes among policymakers [25].

Evaluation metrics, which furnish quantitative measures to gauge
the performance of ML models, can introduce an additional layer of bias
into the model development phase if not tailored to the specific data or
task requirements. Models learn and are optimized using training data,
and their performance is assessed based on specific chosen metrics. Bias
emerges when the selected metrics are not aligned with how the model is
developed. A concrete example is when a sole accuracy measure is
employed to evaluate a supervised ML model's performance dis-
tinguishing between traditional and renewable energy sources. This
evaluation approach will introduce significant bias when dealing with
imbalanced datasets [26]. For instance, even if a dataset is representa-
tive of a real-world scenario, if it comprises 95 % traditional samples and
only 5 % renewable samples, the overall prediction accuracy can be as
high as 95 % if the model simply predicts all samples as conventional
energy sources. However, this model is fundamentally flawed because
the prediction accuracy for the renewable samples would be zero.
Relying solely on overall accuracy as a metric is unreliable for assessing
the performance of supervised ML models in the context of imbalanced
datasets [27].

Similarly, evaluation metrics can introduce bias to unsupervised
learning algorithms. For example, when analyzing energy consumption
patterns across communities, evaluation bias can occur if the perfor-
mance of the pattern recognition algorithms is assessed solely based on
metrics such as cluster purity. Suppose those metrics prioritize the ho-
mogeneity of clusters without considering the diversity of energy con-
sumption behaviors across different socioeconomic groups. In that case,
the resulting clusters may not accurately reflect the needs and
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challenges faced by marginalized communities. Another example is in
RL algorithms. When designing optimal policy to allocate resources for
energy assistance programs (e.g., subsidies for utility bills, weatheriza-
tion initiatives), if the performance of the RL is assessed solely based on
metrics such as program efficiency without considering the effectiveness
or equity of resource allocation, the resulting assistance programs may
underserve or exclude racial or socioeconomic minorities. As a best
practice, a comprehensive evaluation strategy utilizing various metrics
that incorporate diversity and equity considerations across different
racial and socioeconomic groups is essential to mitigate potential bias in
algorithmic evaluation for energy-related analyses.

Bias can also result during model deployment. Specifically, domain
shift and explanation bias are two types of biases that can impact justice
in the model deployment phases. A foundational assumption in devel-
oping and applying ML models is that the training and testing data stem
from independent and identically distributed sources [28]. When the
attributes of subjects in the deployment environment differ from those in
the training data, the ML model may yield unreliable predictions. For
instance, if a model is trained on energy usage data from a high-income
community, it may produce inaccurate or conflicting predictions when
applied to underserved communities, exacerbating existing energy dis-
parities. Deployment bias may arise from the opaque nature of many
sophisticated ML models, such as deep learning models. The limited
transparency makes it challenging to interpret the model's predictions,
especially for policymakers without a background in data science.
Without clear explanations regarding how data inputs influence pre-
dictions, deploying AI/ML models can introduce unintended harm.
Therefore, explainable Al techniques, domain adaption, and transfer
learning methods are critical to promote the development of more
responsible and socially beneficial AI/ML systems.

It is important to note that biases in ML are centered on ethical,
social, and fairness considerations inherent in the development and
deployment of ML technologies. Alongside these biases, numerous other
common issues exist, such as reproduction, replication, and data leakage
[29-31]. These must be diligently addressed to uphold the validity and
reliability of ML algotihms' findings, further advancing and facilitating
energy justice.

Table 1 presents the overview of critical concepts in energy justice
and their associations with types of bias, with some examples. One thing
to highlight is that the three energy justice types are inherently inter-
related and can influence one another. The biases listed under each
category represent their primary impact areas within the energy justice
framework. However, it is crucial to understand that these biases can
and often do cross over, affecting multiple aspects of energy justice
simultaneously.

3. Consequences of ML Bias

Addressing the consequences of bias in ML for energy analysis is
imperative. Failure to recognize and rectify these biases perpetuates
systemic inequalities, widening the gaps between privileged and
marginalized communities. This paper identifies three consequences of
ML bias in the energy sector (see Figs. 3 and 4).

3.1. Discrimination and inequality

Biased ML systems can perpetuate discrimination based on race/
ethnicity, gender, and age, further entrenching societal disparities. For
example, systems that inadvertently discriminate based on race/
ethnicity in determining credit eligibility for energy efficiency loans or
clean energy financing can lead to distributive injustice, denying
marginalized groups equal access to these resources. Similarly, if ML
models automating utility customer service interactions unintentionally
exhibit racial biases, it represents a procedural injustice where specific
communities do not receive fair treatment.
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Table 1
Summary of types of energy justice and associated bias with examples.
Type of Definition Potential Data Examples
energy and ML Bias
justice
Recognition Highlights the Sampling Omitting to collect
necessity of Selection samples from
acknowledging Representation underrepresented or
which groups of Aggregation marginalized groups
society are compromises the
overlooked or integrity of a general
misrepresented. It population study
promotes equity by
addressing both
historical and current
disparities.
Distributive It revolves around Selection Collecting energy
the ethical principles =~ Measurement consumption data
that should guide Algorithmic exclusively from
resource allocation Evaluation households equipped
among society with smart meters may
members. Its goal is lead to
to ensure a fair underestimating
allocation of benefits energy usage in
or burdens among households without
various users within this technology.
a community or Omitting key variables
society. and concepts that
could estimate the
outcomes leads to an
inaccurate assessment
of unfair distribution.
Procedural Emphasizes the Measurement Collecting information
integrity of the Aggregation exclusively from
process leading to Explanation decision-makers while

decisions. It focuses Domain-shift neglecting non-
decision-makers'
perspectives skews the
understanding of the
situation.

Failing to gather
information on critical
variables essential for
estimating the fairness
of the decision-making
process results in an

incomplete analysis.

on the fairness of the
methods,
mechanisms, and
procedures used in
decision-making
rather than the
equity of the
outcomes (which
falls under the focus
of distributive
justice).

3.2. Negative feedback loops on underserved communities

A negative feedback loop refers to a cyclical process in which the
consequences or effects of an initial factor tend to amplify and reinforce
that factor over time, creating a self-perpetuating cycle that intensifies
the original issue. In the context of energy justice for economically
disadvantaged neighborhoods, residents often face higher energy bur-
dens (the percentage of household income spent on energy bills). This
high energy burden can force families to make difficult trade-offs be-
tween paying for energy and other essential needs like food, healthcare,
or education. Consequently, they may adopt energy-saving practices
that compromise their health and well-being, such as underheating or
undercooling their homes [32]. These substandard living conditions can
lead to adverse health effects, missed school or workdays, and reduced
productivity, further straining the household's finances. With limited
resources, investing in energy-efficient upgrades or transitioning to
clean energy sources becomes increasingly challenging, perpetuating
their reliance on older, inefficient, and potentially polluting energy
systems. This vicious cycle of high energy burdens compromised living
standards, and lack of access to clean energy resources can entrench
these communities in a state of energy poverty and environmental
injustice, making it difficult to break free from this negative feedback
loop without external interventions or assistance.
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Fig. 3. Biases arising during model development and model deployment stages.

3.3. Inequitable access to advanced technology and economic disparities

Injecting bias into any part of the technology adoption cycle-from
assessing eligibility to marketing/education to pricing-can entrench
discriminatory barriers that block equitable access to sustainable energy
solutions and their associated economic opportunities. Biased ML and
customer segmentation models may also systematically deprioritize
marketing and outreach efforts in low-income areas, rural communities,
or minority neighborhoods. As a result, residents may lack awareness
about energy audit programs, rebates, or favorable financing options
that could reduce household energy burdens and enable sustainable
technology adoption. With the rise of rooftop solar, energy consumers
are evolving into prosumers who not only consume but also produce
their own electricity through solar energy. This shift has fostered a
strong sense of community among energy users. However, during
extreme weather conditions such as intense heat or severe cold, when
energy demand spikes, these prosumers may encounter difficulties. If
their solar production fails to meet the heightened demand, they could
face elevated energy costs or even suffer power outages. In these critical
times, the ability to supplement their solar supply with energy from the
grid or alternative sources becomes crucial.

4. Looking ahead: Strategies for reducing bias

Anticipating bias-free data is unrealistic due to the diverse tech-
niques employed in collecting socioeconomic, weather, physical, built
environment, and energy data across varying social, spatial, and tem-
poral scales from diverse sources in different formats. The imperative is
minimizing bias to ensure fairness, equity, and accuracy in models. To
effectively mitigate bias in ML systems, we propose a comprehensive set
of strategies (see Fig. 5) aligned with current best practice guidelines in
the ML and AI spheres, such as Fairness, Accountability, Transparency,
and Ethics (FATE) [38]. Several toolkits and libraries aligned with FATE
principles have emerged to aid in responsible Al development, such as
IBM's Al Fairness 360, Microsoft's Fairlearn [39], and Google's ML
Fairness Gym [40]. Our proposed strategies build upon these existing
FATE-based approaches while tailoring them to the unique challenges at
the intersection of machine learning and energy justice:

First, this paper underscores the significance of diverse and inclusive
data collection, a core tenet of ethical and fair Al development under the
FATE framework. Building a training dataset that encompasses a broad
spectrum of demographics and geographic regions is paramount for
mitigating biases that can perpetuate injustices, particularly those
affecting marginalized groups.

This ethical data collection approach ensures

the dataset
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Discrimination and Inequality:

Biased Al systems can discriminate

against individuals based on race, gender, age,
and other characteristics, further

entrenching societal disparities.

@ @
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Inequitable Access to Advance Technology and
Economic Disparities: Al bias can have profound
economic repercussions by limiting access to
financial resources and energy-related job
opportunities, while also undermining trust in
technology and impeding its broader adoption within
the energy industry.

Negative feedback loops on underserved communities:
Biased Al can reinforce its own biases, exemplified by search
engine results that echo users' preconceptions

Fig. 4. Consequences of Al Bias in Energy Justice.
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Fig. 5. Strategies for reducing bias.

authentically reflects the characteristics of all target population seg-
ments. It advocates for the inclusive representation and participation of
communities frequently underrepresented in energy data, upholding
principles of fairness and non-discrimination. Moreover, the intentional
inclusion of socioeconomic indicators such as income levels, educational
attainment, racial/ethnic composition, and access to energy resources
[34] contributes to a more equitable and holistic understanding of en-
ergy consumption patterns across diverse populations. Capturing this
nuanced data is essential for developing fair and ethical ML models that
properly account for disparities in energy needs, burdens, and con-
straints disadvantaged groups face.

Second, this paper advocates for trustworthy and acceptable al-
gorithms. Continuous assessment of model performance throughout its
lifecycle is crucial to enhance fairness and acceptability among various
user groups. Employing debiasing techniques is essential in our pursuit
of equitable outcomes. Preprocessing bias mitigation algorithms like
those from IBM's Al Fairness 360 toolkit [41] should be used to rectify
inadvertent biases introduced during data collection. Bias-aware algo-
rithms, equipped with mechanisms to handle imbalanced data and fine-
tune sensitivity to specific groups, also play a crucial role. Post-
processing algorithms should recalibrate and transform the model to
address concerns about fairness. Evaluation techniques such as Dispa-
rate Impact Analysis, Equal Opportunity Analysis, and Confusion Matrix

Disparities assess the model's performance across demographic groups.
Such practice aligns with fairness evaluation defined in the FATE
framework [38]. Leveraging this framework within the context of en-
ergy justice is crucial for detecting and addressing energy injustices that
could arise from biased model predictions or skewed resource alloca-
tions. A point to note is that the debiasing techniques identified here as
part of the FATE framework are tailored to minimize bias resulting from
algorithms and underlying datasets. Given the data-driven nature of Al,
these techniques are designed to enhance the fairness and trustworthi-
ness of the resulting algorithms and outputs. However, they do not
capture and minimize data justice issues, a structural challenge
requiring human interaction and policies to ensure every household/
customer is represented. In other words, debiasing techniques are cen-
tral to achieving procedural justice, but they may fail only to share and
benefit from the data.

Third, this paper argues transparency and accountability are
central to increasing ML use in the energy sector. These principles align
with the FATE framework that has emerged in the trustworthy Al
community [38]. The FATE model provides guidelines and tools for
developing AI/ML systems that are fair, accountable to stakeholders,
transparent in their operation, and uphold ethical principles like non-
discrimination and privacy protection. Adopting a FATE-aligned
approach can help energy organizations proactively bake in justice
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considerations throughout the ML lifecycle. For example, feature
importance analysis can help explain model behavior and interpret its
performance, aligning with transparency principles from the FATE
framework. Continuous monitoring and human involvement throughout
the ML model's lifecycle are necessary for achieving transparency and
accountability. Domain experts should actively participate in model
development and deployment to identify and rectify biases while
providing feedback on biased outputs. Continuous monitoring is indis-
pensable for detecting and rectifying biases that may emerge over time.
Community engagement in data collection is crucial to ensure datasets
capture marginalized communities' specific needs and challenges,
contributing to the ethical and justice development and application of
ML models in the energy sector. For example, community liaisons or
representatives could be involved in designing a culturally appropriate
survey with researchers and facilitating data collection efforts within
their local communities. This approach helps ensure the data gathered
reflects residents' lived experiences, energy usage patterns, and prior-
ities rather than relying solely on external researchers' assumptions or
limited perspectives. Community representatives could also aid re-
searchers in accessing hard-to-reach populations and building trust to
facilitate more comprehensive data gathering within those commu-
nities. This level of engagement helps center the voices and realities of
marginalized groups in the data used to train ML models rather than
having outside researchers make potentially biased assumptions. It
promotes developing ethical, equitable models grounded in the actual
needs of impacted communities. Researchers, practitioners, and stake-
holders must establish guidelines to minimize biases and societal im-
plications without a formal regulatory framework. This process involves
the establishment of ethical guidelines and governance policies covering
data privacy protection, ML system provenance documentation,
acceptable bias thresholds, and a roadmap for bias mitigation [35,36].

Finally, given ML systems' uncertainties and data dependencies,
transdisciplinary educational outreach aligned with the ethics and
accountability tenets of the FATE framework is vital in mitigating biases
that could adversely affect certain demographic groups. Institutions and
stakeholders should encourage diversity in expertise within Al devel-
opment and maintenance teams, integrating different disciplinary per-
spectives and including practitioners and decision-makers to uncover
and address biases. This approach promotes accountability to affected
groups and facilitates uncovering blind spots through diverse view-
points, a core FATE principle.

User education and awareness efforts are essential, as users often
have limited awareness of operational and application-related pitfalls.
Developing best practices and educational programs grounded in FATE
can help users interpret model predictions through an ethical lens,
detect biases effectively, and uphold principles like privacy protection
and informed consent. By fostering transdisciplinary collaboration and
widespread education on ethical Al development in line with FATE, the
energy sector can proactively institute processes prioritizing fairness,
accountability, and justice in integrating machine learning technologies.
The pursuit of bias reduction is a continuous effort; achieving complete
bias elimination in any model remains an unattainable goal. The aim,
however, is to consistently diminish bias, improve fairness within ML
systems, and advocate for energy justice. By implementing these stra-
tegies, researchers can advance the development of ML models that
actively support justice, equity, and sustainability within the energy
sector. A sustained dedication to research and innovation in this field is
crucial for effectively mitigating bias in energy-related ML applications.

5. Conclusions

As ML becomes essential for analyzing energy consumption data and
energy efficiency, addressing data bias is vital to ensure energy justice
and equitable access to energy services. ML can unintentionally
perpetuate implicit biases that originate at various stages of design,
development, and deployment, with significant ethical and societal
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implications. This perspective explores the complex relationship be-
tween data bias and energy justice, identifies different types of biases,
and proposes strategies to mitigate these biases, thereby promoting
fairness in ML applications in the energy sector. Effective measures
include diversifying data sources, implementing bias mitigation tech-
niques, enhancing transparency and accountability, and fostering
interdisciplinary collaboration. By adopting these strategies, researchers
and practitioners can create fairer and more ethical ML models, har-
nessing ML's potential to support a more equitable and sustainable en-
ergy future.
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