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A B S T R A C T

Energy justice advocates for the equitable and accessible provision of energy services, mainly focusing on 
marginalized communities. Adopting machine learning in analyzing energy-related data can unintentionally 
reinforce social inequalities. This perspective highlights the stages in the machine learning process where biases 
may emerge, from data collection and model development to deployment. Each phase presents distinct chal
lenges and consequences, ultimately influencing the fairness and accuracy of machine learning models. The 
ramifications of machine learning bias within the energy sector are profound, encompassing issues such as in
equalities, the perpetuation of negative feedback loops, privacy concerns regarding, and economic impacts 
arising from energy burden and energy poverty. Recognizing and rectifying these biases is imperative for 
leveraging technology to advance society rather than perpetuating existing injustices. Addressing biases at the 
intersection of energy justice and machine learning requires a comprehensive approach, acknowledging the 
interconnectedness of social, economic, and technological factors.   

1. Introduction

Machine learning (ML) and Artificial Intelligence (AI) have become
integral tools for managing large datasets in energy consumption anal
ysis, optimizing efficiency, and uncovering disparities in energy infra
structure access and distribution. While these approaches offer rapid 
solutions to researchers, they inadvertently introduce implicit bias. Bias 
in ML, a subset of AI, refers to the systemic and unjust favoritism and 
marginalization that can manifest during the conception, implementa
tion, and application of ML systems. These biases may stem from various 
sources, leading to significant ethical and societal implications. This 
perspective seeks to explore the nexus between ML bias and energy 
justice, identify different types of biases, and propose solutions for 
mitigating ML bias. In leveraging ML and AI for energy-related analyses, 
it is crucial to recognize and address the unintended biases that may 
permeate these technologies. Understanding the diverse sources of bias 
in ML systems is essential for developing strategies that promote fairness 
and justice. This perspective aims to contribute to the ongoing discourse 
by shedding light on the intricate relationship between ML bias and 
energy justice, paving the way for informed discussions and concrete 

steps towards minimizing biases in ML applications within the energy 
sector. 

1.1. Energy justice and machine learning bias 

Energy justice has emerged as a recent focal point for researchers and 
policymakers, aiming to bolster energy equity [1–3]. It advocates for 
equal access to affordable and reliable energy supply and services for all, 
particularly emphasizing the needs of underserved communities with 
three main components – recognition, distributive, and procedural jus
tice [4,5]. Recognition justice highlights the necessity of acknowledging 
which groups of society are overlooked or misrepresented. Distributive 
justice revolves around the ethical principles that should guide resource 
allocation among society members. Finally, procedural justice empha
sizes the integrity of the process leading to decisions [2]. Using ML to 
analyze energy-related data has the potential to introduce and amplify 
biases, thereby deepening existing social inequalities. Bias can permeate 
the entire process, from data collection and model development to 
model deployment (Fig. 1). Mitigating bias in ML for energy analysis is 
not merely a technical challenge but imperative for promoting social 
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justice. Researchers and policymakers must be acutely aware of the 
potential biases and their wide-ranging implications to tackle these 
challenges effectively. This paper systematically examines various bias 
types at different stages of ML applications for energy data analysis and 
proposes future research directions. Furthermore, this paper un
derscores the need for proactive measures to counteract bias in ML ap
plications for energy analysis. 

2. Overview of machine learning bias 

As researchers delve deeper into the complexities of bias in ML for 
energy systems, it becomes evident that biases can emanate from various 
sources, spanning the entire data pipeline, algorithmic development, 
and deployment process, as illustrated in Fig. 1. In the first hurdle, data 
collection, bias can manifest in three primary stages: data collection, 
integration, and preprocessing. During the data collection phase, bias 
may arise from raw data acquisition and the utilization of secondary 
data. Raw data may inherently contain biases due to measurement 
inaccuracies, sampling, or selection processes. Similarly, secondary data 
can introduce biases through sampling and selection procedures. Sub
sequently, data integration can introduce aggregation bias, while data 
preprocessing can potentially introduce measurement and aggregation 
biases. If left unaddressed, these biases can culminate in representation 
bias, impacting spatial and temporal scales within energy systems. 

Moreover, these biases can propagate throughout the ML algorithm 
development pipeline. The design of ML algorithms' loss and reward 
functions can also exacerbate overall bias. Careful consideration is 
needed to ensure these functions do not disproportionately penalize 
certain groups, promoting unfairness in algorithmic decision-making. 
Evaluation bias is another concern during model performance assess
ment, mainly when using metrics like accuracy or imbalanced datasets. 
During post-development, the ML models' deployment phase introduces 
its own biases. Domain shift bias occurs when the data distribution of the 
training model differs from its actual deployment environment. 

Additionally, explanation bias can arise from many ML models' 
inherent ‘black box’ nature, making their decision-making processes 
opaque. Encouraging interpretable and explainable models and doc
umenting model decisions can help address this concern. In the 
following section, this paper explains each type of bias and explores 
their impacts and potential strategies to overcome them. As the diagram 
in Fig. 2 was constructed qualitatively, the weights of each bias and the 
width of each flow are represented equally and illustrate a high-level 

mapping of critical bias points and their potential propagation paths. 

2.1. The impacts of data collection bias 

This perspective summarizes four types of bias during the data 
collection that can impact energy justice: sampling, measurement, se
lection, aggregation, and representation. 

2.1.1. Sampling bias 
Sampling bias emerges when the collected data fails to comprehen

sively capture and reflect the characteristics of the entire population, 
thereby yielding flawed or partial outcomes. For instance, exclusively 
gathering data on energy consumption in households equipped with 
smart meters might result in underestimating energy usage within low- 
income communities lacking such technology. Notably, sampling bias is 
accentuated in datasets reliant on non-representative sampling, as seen 
in the U.S. Department of Energy's Building Performance Database [6]. 
These datasets may inadvertently emphasize specific regions or markets, 
limiting their representativeness [7]. Sampling bias can also manifest 
during data preprocessing, particularly when handling missing data. 
Various methods, such as mean imputation (using the mean in place of 
missing data), omission or removal of missing data, and experience- 
based assumptions about the randomness of missing data (filling 
missing data based on past knowledge or experience), are employed to 
address this issue. However, these methods can inadvertently introduce 
bias. For instance, mean imputation replaces missing values with the 
variable's mean from available data, potentially introducing bias if the 
missing data are neither randomly distributed nor accurately repre
sented. For example, higher-income groups may be more hesitant to 
disclose their income, leading to a sampling bias. This can result in the 
misallocation of resources and misalignement of policies intended to 
improve energy affordability and accessibility. Such misallocation may 
lead to inefficient use of subsidies and support programs, failing to reach 
the households most in need and thus undermining the objectives of 
energy justice. Likewise, sampling bias can adversely impact equitable 
planning of clean transportation technologies. When city planners uti
lize surveys to gauge the need for electric vehicle (EV) charging in
frastructures, they often unintentionally target EV owners and higher- 
income individuals who have more access to the technology. This ten
dency can skew the survey findings, potentially failing to capture the 
broader communities' needs, especially those of lower-income house
holds. Research has demonstrated that EV charging stations are 

Fig. 1. Three main hurdles to overcoming ML bias relating to energy justice: Data collection, model development, and model deployment.  
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markedly underrepresented in low-income, Black-identifying, and 
underinvested neighborhoods, thereby limiting access to EV technology 
for these communities [8]. Hence, such sampling bias might lead city 
planners to overestimate the demand for EV charging infrastructures for 
wealthier neighorhoods based on the responses of higher-income par
ticipants. This could result in an unequal allocation of resources towards 
EV infrastructures, diverting funds from vital public transportation 
projects that are crucial for lower-income residents who depend heavily 
on them. Inadequate investment in public transportation can severely 
limit their mobility, making it harder to access jobs, educational op
portunities, and essential services. Therefore, sampling bias not only 
hinders the generalization of results to a broader population but also 
underscores the necessity to address and mitigate bias at the data 
collection and processing stages. 

2.1.2. Selection bias 
Selection bias is a broader concept encompassing various biases 

arising from how subjects are chosen or included in a study. It includes 
not only sampling bias but also other biases that may occur during the 
assignment of subjects to groups or the handling of data. For example, in 
the U.S. national survey data like the Residential Energy Consumption 
Survey (RECS) [9], intentional exclusion of vacant homes and specific 
quarters can introduce selection bias. Selection bias also arises when 
only participants in an energy efficiency program are considered, 
excluding those who are either unaware of these energy efficiency 
programs or cannot afford them without financial assistance due to high 
initial costs or lack of access to financing options. As a result, policies 
and incentives designed to encourage energy efficiency technology 
adoptions may be tailored to the needs and behaviors of early adopters, 
typically from more financially secure groups, rather than addressing 
the barriers faced by lower-income households to adopt the 
technologies. 

Selection bias can manifest in ML applications when training data are 
biased towards specific demographic characteristics within a commu
nity. Subsequently, this bias introduces social, ethical, and privacy 
biases, perpetuating stereotypes and discrimination. ML algorithms, 
such as sentiment analysis and decision trees, are particularly suscep
tible to selection bias, leading to biased outcomes and inaccurate clas
sifications. Even support vector machines, if trained on data biased 
towards affluent neighborhoods, can perpetuate biases and contribute to 
inadequate energy resource allocation for low-income or diverse com
munities, reinforcing existing inequalities. 

2.1.3. Measurement bias 
Measurement bias arises when collected data is systematically 

inaccurate or incomplete, distorting analyses. This bias can originate 
from restricted data access or inadequate instrumentation in energy 
analysis. An illustrative sample is measurement validity, which gauges 
the extent to which an assessment tool, such as a questionnaire, accu
rately measures its intended construct. Without validity, results ob
tained from the measurement or tool may fail to faithfully represent the 

underlying construct of interest. Typically, validity is established 
through empirical evidence and theoretical reasoning [10]. Assump
tions grounded in experience can contribute to measurement bias. 
Considering studies using the American Time Use Survey (ATUS) data
set, which lacks finer location data (i.e., only regional data without 
census tract or zip code), the absence of finer geographic identifiers 
poses a significant barrier to understanding energy consumption pat
terns. To compensate for the lack of fine geolocation, researchers must 
make assumptions about the locations of household activities for 
building energy consumption simulations. For instance, many building 
energy consumption models might assume that work-related energy use 
predominantly occurs outside the home. However, due to the COVID-19 
pandemic, the increase in work-from-home arrangements has started 
altering this pattern. Suppose energy policy planners use outdated 
models, such as assuming energy consumption occurs in office buildings, 
without considering this shift, they may implement rolling blackout 
plans or energy distribution strategies that inaccurately predict energy 
demand peaks and valleys. Such measurement bias can disproportion
ately affect residential areas with higher concentrations of remote 
workers. Several ML algorithms are susceptible to measurement bias. 
For example, decision tree algorithms such as Classification and 
Regression Trees (CART) and Random Forests utilize data to create de
cision rules for prediction, classification, and pattern recognition. If the 
data used to build these decision trees is biased or incomplete, it could 
result in skewed rules, potentially leading to misclassification or mis
prediction for specific populations or neighborhoods. Similarly, linear 
regression models that rely on historical energy consumption data to 
predict the general population's future energy use or patterns may un
derestimate the behavioral patterns and needs of underrepresented 
communities. Therefore, addressing measurement bias is crucial for 
ensuring the accuracy and fairness of analyses and predictions. 

2.1.4. Aggregation bias 
This bias emerges when data is consolidated or averaged at a higher 

level, such as a group or population, resulting in unintentional as
sumptions or inferences about individuals within that group [11]. Ag
gregation bias can also manifest when researchers amalgamate variables 
to have an aggregated score or index. The consequences of aggregation 
bias are particularly profound in the context of energy justice, as it en
genders inaccurate or biased conclusions regarding the unique energy 
needs and usage patterns of distinct subgroups. For instance, assessing 
renewable energy adoption rates across affluent and low-income areas 
may obscure the specific impacts on low-income communities, perpet
uating existing inequalities. This aggregation bias, in turn, can lead to 
misallocation of resources, formulation of misguided policies, and 
further marginalization of affected communities. ML models focus on 
evaluating energy affordability, relying solely on aggregated averages, 
risk overlooking instances of extreme energy poverty, or under
estimating the financial burdens faced by low-income or rural house
holds. The issue of aggregation bias is exacerbated during data 
integration, as illustrated using composite indexes like the Social 

Fig. 2. Connecting hurdles, their origins, and their impacts throughout the ML cycle.  
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Vulnerability Index from the U.S. Center for Disease Control and Pre
vention (CDC) [12], which combines multiple variables. Such an index 
may neglect the distinct impact of individual variables. When data from 
different subgroups are aggregated, cluster analysis may yield biased 
results. For instance, clustering energy usage patterns or renewable 
energy adoption without segregating data from diverse subgroups can 
lead to inaccurate representations of their specific challenges. 

Modifiable Areal Unit Problem (MAUP) is a well-known statistical 
bias resulting from aggregating data across different geographic 
boundaries, eventually leading to various patterns and measurements 
[13]. For instance, energy burden data from the Low-income Energy 
Affordability Tool (LEAD) are available at PUMA (Public Use Microdata 
Areas - the lowest U.S. Census spatial unit) scale, but the socioeconomic 
datasets from the Census tend to be available at census blocks or block 
groups or other boundaries. Given that the boundaries of these two 
spatial units do not reconcile, they must be aggregated to a common 
boundary, such as census tracts, counties, or utility service areas. Thus, a 
study using census tracts vs. counties will have different results due to 
MAUP [14]. Likewise, power outage data are available from utilities at 
utility service area boundaries, which differ from county boundaries and 
may overlap different zip codes. Such data, therefore, must be dis
aggregated/aggregated to county boundaries or other census boundaries 
to undertake power restoration and resource planning activities that 
may marginalize specific communities and exacerbate energy justice 
[15]. Analogous to MAUP is the Modifiable Temporal Unit Problem 
(MTUP) that results from the aggregation of time-varying datasets, such 
as power outage data that can be aggregated hourly or daily depending 
upon the need [16]. Because of MAUP and MTUP, ML/AI algorithms can 
produce biased results when data from different subgroups are aggre
gated at varying spatial and temporal scales, leading to inaccurate 
representation of specific subgroups' needs and challenges, influencing 
resource allocation. 

2.1.5. Representation bias 
Representation bias comprises two key facets: spatial and temporal 

bias. Spatial representation bias arises when national datasets are 
employed locally, introducing disparities in representation due to 
MAUP. For example, researchers often use the ATUS dataset to analyze 
occupant energy use behavior patterns in residential building energy use 
simulation [17,18] or EV charging pattern analysis [19]. Clustering (e. 
g., K-means) and Markov-Chain are used to identify and simulate these 
behavior patterns. These pattern identification and simulations are 
conducted based on the national data. However, challenges emerge 
when applying these models directly to a specific area (e.g., a state or a 
city) due to representation issues during the spatial downscaling pro
cess, where occupant profiles vary significantly across different regions. 
Temporal-based representation bias can stem from infrequent data 
collection or using data collected at one temporal scale to analyze pat
terns at a different scale. This approach can hinder the accurate capture 
of short-term changes [20] and lead to MTUP, thereby profoundly 
impacting energy justice. For example, low-income households often 
lack access to smart meters, which track detailed, real-time energy 
consumption. Consequently, their energy usage data lacks the granu
larity necessary to capture short-term energy use peaks accompanying 
extreme weather, e.g., heat waves or extreme cold. Without detailed 
data, energy assistance programs might distribute resources based on 
average monthly usage, missing the urgent needs of these households in 
critical times. To address temporal bias, social-media data (e.g., Twitter 
(aka X)) or other real-time datasets (e.g., SafeGraph) are often incor
porated to analyze short-term changes, especially during emergencies, 
such as power outages [21,22]. However, it is essential to note that such 
datasets are accessible only to a certain percentage of the population 
using the respective apps or devices and willing to share their locations 
and associated information. These biases adversely affect decision tree 
algorithms, neural networks, and clustering algorithms, leading to 
inaccurate predictions, unfair classifications, biased outputs, and 

insufficient resource allocation. 

2.2. The impacts of model development and deployment 

While datasets are the basis for bias, it is crucial to recognize that ML 
models can also introduce biases even when the training data is inher
ently unbiased [24]. Algorithmic bias, called model bias, emerges in 
model development due to model design, feature selection, objective 
function definitions, and the chosen evaluation metrics. For example, 
supervised machine learning algorithms, operating on labeled data 
where each input example is associated with a corresponding target 
output, are often trained by minimizing the discrepancy between the 
predicted and ground-truth label information. An objective function 
designed to maximize overall predictive performance can inadvertently 
introduce bias, favoring individuals from majority groups who are more 
prevalent in the dataset, while neglecting those from racially or socio- 
economically underrepresented groups. Similarly, a poorly designed 
reward function in reinforcement learning (RL) will likely amplify en
ergy disparities. For example, when developing energy efficiency 
retrofit plans in residential buildings to reduce energy consumption and 
greenhouse gas emissions, if the reward function in RL is biased towards 
maximizing cost savings without considering the feasibility or afford
ability of retrofit measures for low-income households, the learned 
policy may prioritize upgrades that are inaccessible or unaffordable for 
marginalized communities. This bias will widen the energy efficiency 
gap between affluent and disadvantaged neighborhoods, exacerbating 
energy and environmental injustices. 

Moreover, feature selection also plays an essential role in designing 
unbiased models. For example, when identifying areas for infrastructure 
investment (e.g., renewable energy installations), if the clustering al
gorithm, a typical unsupervised learning approach, is biased towards 
prioritizing features that correlate with higher property values or so
cioeconomic status, the identified areas for investment may dispropor
tionately benefit affluent neighborhoods. This bias could exacerbate 
unequal spatial access to essential infrastructures, further perpetuating 
energy access and resilience disparities. As such, a poorly designed 
model with inappropriate features or objective/reward functions will 
result in biased predictive outcomes, eroding confidence in ML/AI- 
supported decision-making processes among policymakers [25]. 

Evaluation metrics, which furnish quantitative measures to gauge 
the performance of ML models, can introduce an additional layer of bias 
into the model development phase if not tailored to the specific data or 
task requirements. Models learn and are optimized using training data, 
and their performance is assessed based on specific chosen metrics. Bias 
emerges when the selected metrics are not aligned with how the model is 
developed. A concrete example is when a sole accuracy measure is 
employed to evaluate a supervised ML model's performance dis
tinguishing between traditional and renewable energy sources. This 
evaluation approach will introduce significant bias when dealing with 
imbalanced datasets [26]. For instance, even if a dataset is representa
tive of a real-world scenario, if it comprises 95 % traditional samples and 
only 5 % renewable samples, the overall prediction accuracy can be as 
high as 95 % if the model simply predicts all samples as conventional 
energy sources. However, this model is fundamentally flawed because 
the prediction accuracy for the renewable samples would be zero. 
Relying solely on overall accuracy as a metric is unreliable for assessing 
the performance of supervised ML models in the context of imbalanced 
datasets [27]. 

Similarly, evaluation metrics can introduce bias to unsupervised 
learning algorithms. For example, when analyzing energy consumption 
patterns across communities, evaluation bias can occur if the perfor
mance of the pattern recognition algorithms is assessed solely based on 
metrics such as cluster purity. Suppose those metrics prioritize the ho
mogeneity of clusters without considering the diversity of energy con
sumption behaviors across different socioeconomic groups. In that case, 
the resulting clusters may not accurately reflect the needs and 
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challenges faced by marginalized communities. Another example is in 
RL algorithms. When designing optimal policy to allocate resources for 
energy assistance programs (e.g., subsidies for utility bills, weatheriza
tion initiatives), if the performance of the RL is assessed solely based on 
metrics such as program efficiency without considering the effectiveness 
or equity of resource allocation, the resulting assistance programs may 
underserve or exclude racial or socioeconomic minorities. As a best 
practice, a comprehensive evaluation strategy utilizing various metrics 
that incorporate diversity and equity considerations across different 
racial and socioeconomic groups is essential to mitigate potential bias in 
algorithmic evaluation for energy-related analyses. 

Bias can also result during model deployment. Specifically, domain 
shift and explanation bias are two types of biases that can impact justice 
in the model deployment phases. A foundational assumption in devel
oping and applying ML models is that the training and testing data stem 
from independent and identically distributed sources [28]. When the 
attributes of subjects in the deployment environment differ from those in 
the training data, the ML model may yield unreliable predictions. For 
instance, if a model is trained on energy usage data from a high-income 
community, it may produce inaccurate or conflicting predictions when 
applied to underserved communities, exacerbating existing energy dis
parities. Deployment bias may arise from the opaque nature of many 
sophisticated ML models, such as deep learning models. The limited 
transparency makes it challenging to interpret the model's predictions, 
especially for policymakers without a background in data science. 
Without clear explanations regarding how data inputs influence pre
dictions, deploying AI/ML models can introduce unintended harm. 
Therefore, explainable AI techniques, domain adaption, and transfer 
learning methods are critical to promote the development of more 
responsible and socially beneficial AI/ML systems. 

It is important to note that biases in ML are centered on ethical, 
social, and fairness considerations inherent in the development and 
deployment of ML technologies. Alongside these biases, numerous other 
common issues exist, such as reproduction, replication, and data leakage 
[29–31]. These must be diligently addressed to uphold the validity and 
reliability of ML algotihms' findings, further advancing and facilitating 
energy justice. 

Table 1 presents the overview of critical concepts in energy justice 
and their associations with types of bias, with some examples. One thing 
to highlight is that the three energy justice types are inherently inter
related and can influence one another. The biases listed under each 
category represent their primary impact areas within the energy justice 
framework. However, it is crucial to understand that these biases can 
and often do cross over, affecting multiple aspects of energy justice 
simultaneously. 

3. Consequences of ML Bias 

Addressing the consequences of bias in ML for energy analysis is 
imperative. Failure to recognize and rectify these biases perpetuates 
systemic inequalities, widening the gaps between privileged and 
marginalized communities. This paper identifies three consequences of 
ML bias in the energy sector (see Figs. 3 and 4). 

3.1. Discrimination and inequality 

Biased ML systems can perpetuate discrimination based on race/ 
ethnicity, gender, and age, further entrenching societal disparities. For 
example, systems that inadvertently discriminate based on race/ 
ethnicity in determining credit eligibility for energy efficiency loans or 
clean energy financing can lead to distributive injustice, denying 
marginalized groups equal access to these resources. Similarly, if ML 
models automating utility customer service interactions unintentionally 
exhibit racial biases, it represents a procedural injustice where specific 
communities do not receive fair treatment. 

3.2. Negative feedback loops on underserved communities 

A negative feedback loop refers to a cyclical process in which the 
consequences or effects of an initial factor tend to amplify and reinforce 
that factor over time, creating a self-perpetuating cycle that intensifies 
the original issue. In the context of energy justice for economically 
disadvantaged neighborhoods, residents often face higher energy bur
dens (the percentage of household income spent on energy bills). This 
high energy burden can force families to make difficult trade-offs be
tween paying for energy and other essential needs like food, healthcare, 
or education. Consequently, they may adopt energy-saving practices 
that compromise their health and well-being, such as underheating or 
undercooling their homes [32]. These substandard living conditions can 
lead to adverse health effects, missed school or workdays, and reduced 
productivity, further straining the household's finances. With limited 
resources, investing in energy-efficient upgrades or transitioning to 
clean energy sources becomes increasingly challenging, perpetuating 
their reliance on older, inefficient, and potentially polluting energy 
systems. This vicious cycle of high energy burdens compromised living 
standards, and lack of access to clean energy resources can entrench 
these communities in a state of energy poverty and environmental 
injustice, making it difficult to break free from this negative feedback 
loop without external interventions or assistance. 

Table 1 
Summary of types of energy justice and associated bias with examples.  

Type of 
energy 
justice 

Definition Potential Data 
and ML Bias 

Examples 

Recognition Highlights the 
necessity of 
acknowledging 
which groups of 
society are 
overlooked or 
misrepresented. It 
promotes equity by 
addressing both 
historical and current 
disparities. 

Sampling 
Selection 
Representation 
Aggregation 

Omitting to collect 
samples from 
underrepresented or 
marginalized groups 
compromises the 
integrity of a general 
population study 

Distributive It revolves around 
the ethical principles 
that should guide 
resource allocation 
among society 
members. Its goal is 
to ensure a fair 
allocation of benefits 
or burdens among 
various users within 
a community or 
society. 

Selection 
Measurement 
Algorithmic 
Evaluation 

Collecting energy 
consumption data 
exclusively from 
households equipped 
with smart meters may 
lead to 
underestimating 
energy usage in 
households without 
this technology. 
Omitting key variables 
and concepts that 
could estimate the 
outcomes leads to an 
inaccurate assessment 
of unfair distribution. 

Procedural Emphasizes the 
integrity of the 
process leading to 
decisions. It focuses 
on the fairness of the 
methods, 
mechanisms, and 
procedures used in 
decision-making 
rather than the 
equity of the 
outcomes (which 
falls under the focus 
of distributive 
justice). 

Measurement 
Aggregation 
Explanation 
Domain-shift 

Collecting information 
exclusively from 
decision-makers while 
neglecting non- 
decision-makers' 
perspectives skews the 
understanding of the 
situation. 
Failing to gather 
information on critical 
variables essential for 
estimating the fairness 
of the decision-making 
process results in an 
incomplete analysis.  
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3.3. Inequitable access to advanced technology and economic disparities 

Injecting bias into any part of the technology adoption cycle–from 
assessing eligibility to marketing/education to pricing–can entrench 
discriminatory barriers that block equitable access to sustainable energy 
solutions and their associated economic opportunities. Biased ML and 
customer segmentation models may also systematically deprioritize 
marketing and outreach efforts in low-income areas, rural communities, 
or minority neighborhoods. As a result, residents may lack awareness 
about energy audit programs, rebates, or favorable financing options 
that could reduce household energy burdens and enable sustainable 
technology adoption. With the rise of rooftop solar, energy consumers 
are evolving into prosumers who not only consume but also produce 
their own electricity through solar energy. This shift has fostered a 
strong sense of community among energy users. However, during 
extreme weather conditions such as intense heat or severe cold, when 
energy demand spikes, these prosumers may encounter difficulties. If 
their solar production fails to meet the heightened demand, they could 
face elevated energy costs or even suffer power outages. In these critical 
times, the ability to supplement their solar supply with energy from the 
grid or alternative sources becomes crucial. 

4. Looking ahead: Strategies for reducing bias 

Anticipating bias-free data is unrealistic due to the diverse tech
niques employed in collecting socioeconomic, weather, physical, built 
environment, and energy data across varying social, spatial, and tem
poral scales from diverse sources in different formats. The imperative is 
minimizing bias to ensure fairness, equity, and accuracy in models. To 
effectively mitigate bias in ML systems, we propose a comprehensive set 
of strategies (see Fig. 5) aligned with current best practice guidelines in 
the ML and AI spheres, such as Fairness, Accountability, Transparency, 
and Ethics (FATE) [38]. Several toolkits and libraries aligned with FATE 
principles have emerged to aid in responsible AI development, such as 
IBM's AI Fairness 360, Microsoft's Fairlearn [39], and Google's ML 
Fairness Gym [40]. Our proposed strategies build upon these existing 
FATE-based approaches while tailoring them to the unique challenges at 
the intersection of machine learning and energy justice: 

First, this paper underscores the significance of diverse and inclusive 
data collection, a core tenet of ethical and fair AI development under the 
FATE framework. Building a training dataset that encompasses a broad 
spectrum of demographics and geographic regions is paramount for 
mitigating biases that can perpetuate injustices, particularly those 
affecting marginalized groups. 

This ethical data collection approach ensures the dataset 

Fig. 3. Biases arising during model development and model deployment stages.  
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authentically reflects the characteristics of all target population seg
ments. It advocates for the inclusive representation and participation of 
communities frequently underrepresented in energy data, upholding 
principles of fairness and non-discrimination. Moreover, the intentional 
inclusion of socioeconomic indicators such as income levels, educational 
attainment, racial/ethnic composition, and access to energy resources 
[34] contributes to a more equitable and holistic understanding of en
ergy consumption patterns across diverse populations. Capturing this 
nuanced data is essential for developing fair and ethical ML models that 
properly account for disparities in energy needs, burdens, and con
straints disadvantaged groups face. 

Second, this paper advocates for trustworthy and acceptable al
gorithms. Continuous assessment of model performance throughout its 
lifecycle is crucial to enhance fairness and acceptability among various 
user groups. Employing debiasing techniques is essential in our pursuit 
of equitable outcomes. Preprocessing bias mitigation algorithms like 
those from IBM's AI Fairness 360 toolkit [41] should be used to rectify 
inadvertent biases introduced during data collection. Bias-aware algo
rithms, equipped with mechanisms to handle imbalanced data and fine- 
tune sensitivity to specific groups, also play a crucial role. Post- 
processing algorithms should recalibrate and transform the model to 
address concerns about fairness. Evaluation techniques such as Dispa
rate Impact Analysis, Equal Opportunity Analysis, and Confusion Matrix 

Disparities assess the model's performance across demographic groups. 
Such practice aligns with fairness evaluation defined in the FATE 
framework [38]. Leveraging this framework within the context of en
ergy justice is crucial for detecting and addressing energy injustices that 
could arise from biased model predictions or skewed resource alloca
tions. A point to note is that the debiasing techniques identified here as 
part of the FATE framework are tailored to minimize bias resulting from 
algorithms and underlying datasets. Given the data-driven nature of AI, 
these techniques are designed to enhance the fairness and trustworthi
ness of the resulting algorithms and outputs. However, they do not 
capture and minimize data justice issues, a structural challenge 
requiring human interaction and policies to ensure every household/ 
customer is represented. In other words, debiasing techniques are cen
tral to achieving procedural justice, but they may fail only to share and 
benefit from the data. 

Third, this paper argues transparency and accountability are 
central to increasing ML use in the energy sector. These principles align 
with the FATE framework that has emerged in the trustworthy AI 
community [38]. The FATE model provides guidelines and tools for 
developing AI/ML systems that are fair, accountable to stakeholders, 
transparent in their operation, and uphold ethical principles like non- 
discrimination and privacy protection. Adopting a FATE-aligned 
approach can help energy organizations proactively bake in justice 

Fig. 4. Consequences of AI Bias in Energy Justice.  

Fig. 5. Strategies for reducing bias.  
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considerations throughout the ML lifecycle. For example, feature 
importance analysis can help explain model behavior and interpret its 
performance, aligning with transparency principles from the FATE 
framework. Continuous monitoring and human involvement throughout 
the ML model's lifecycle are necessary for achieving transparency and 
accountability. Domain experts should actively participate in model 
development and deployment to identify and rectify biases while 
providing feedback on biased outputs. Continuous monitoring is indis
pensable for detecting and rectifying biases that may emerge over time. 
Community engagement in data collection is crucial to ensure datasets 
capture marginalized communities' specific needs and challenges, 
contributing to the ethical and justice development and application of 
ML models in the energy sector. For example, community liaisons or 
representatives could be involved in designing a culturally appropriate 
survey with researchers and facilitating data collection efforts within 
their local communities. This approach helps ensure the data gathered 
reflects residents' lived experiences, energy usage patterns, and prior
ities rather than relying solely on external researchers' assumptions or 
limited perspectives. Community representatives could also aid re
searchers in accessing hard-to-reach populations and building trust to 
facilitate more comprehensive data gathering within those commu
nities. This level of engagement helps center the voices and realities of 
marginalized groups in the data used to train ML models rather than 
having outside researchers make potentially biased assumptions. It 
promotes developing ethical, equitable models grounded in the actual 
needs of impacted communities. Researchers, practitioners, and stake
holders must establish guidelines to minimize biases and societal im
plications without a formal regulatory framework. This process involves 
the establishment of ethical guidelines and governance policies covering 
data privacy protection, ML system provenance documentation, 
acceptable bias thresholds, and a roadmap for bias mitigation [35,36]. 

Finally, given ML systems' uncertainties and data dependencies, 
transdisciplinary educational outreach aligned with the ethics and 
accountability tenets of the FATE framework is vital in mitigating biases 
that could adversely affect certain demographic groups. Institutions and 
stakeholders should encourage diversity in expertise within AI devel
opment and maintenance teams, integrating different disciplinary per
spectives and including practitioners and decision-makers to uncover 
and address biases. This approach promotes accountability to affected 
groups and facilitates uncovering blind spots through diverse view
points, a core FATE principle. 

User education and awareness efforts are essential, as users often 
have limited awareness of operational and application-related pitfalls. 
Developing best practices and educational programs grounded in FATE 
can help users interpret model predictions through an ethical lens, 
detect biases effectively, and uphold principles like privacy protection 
and informed consent. By fostering transdisciplinary collaboration and 
widespread education on ethical AI development in line with FATE, the 
energy sector can proactively institute processes prioritizing fairness, 
accountability, and justice in integrating machine learning technologies. 
The pursuit of bias reduction is a continuous effort; achieving complete 
bias elimination in any model remains an unattainable goal. The aim, 
however, is to consistently diminish bias, improve fairness within ML 
systems, and advocate for energy justice. By implementing these stra
tegies, researchers can advance the development of ML models that 
actively support justice, equity, and sustainability within the energy 
sector. A sustained dedication to research and innovation in this field is 
crucial for effectively mitigating bias in energy-related ML applications. 

5. Conclusions 

As ML becomes essential for analyzing energy consumption data and 
energy efficiency, addressing data bias is vital to ensure energy justice 
and equitable access to energy services. ML can unintentionally 
perpetuate implicit biases that originate at various stages of design, 
development, and deployment, with significant ethical and societal 

implications. This perspective explores the complex relationship be
tween data bias and energy justice, identifies different types of biases, 
and proposes strategies to mitigate these biases, thereby promoting 
fairness in ML applications in the energy sector. Effective measures 
include diversifying data sources, implementing bias mitigation tech
niques, enhancing transparency and accountability, and fostering 
interdisciplinary collaboration. By adopting these strategies, researchers 
and practitioners can create fairer and more ethical ML models, har
nessing ML's potential to support a more equitable and sustainable en
ergy future. 
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