

1
2
3
4 **Warming-induced Contraction of Tropical Convection Delays and Reduces Tropical**
5 **Cyclone Formation**
6
7

8 Gan Zhang
9 Department of Atmospheric Sciences
10 University of Illinois at Urbana-Champaign
11 1301 W. Green Street, Urbana, IL 61801
12

13 Corresponding Author
14 Gan Zhang (gzhang13@illinois.edu)
15
16
17

18
19
20

21

Abstract

22 The future risk of tropical cyclones (TCs) strongly depends on changes in TC frequency, but
23 models have persistently produced contrasting projections. A satisfactory explanation of the
24 projected changes also remains elusive. Here we analyze the TCs in large-ensemble climate
25 simulations and show that a warming-induced contraction of tropical convection delays and
26 reduces TC formation. This contraction manifest as stronger equatorial convection and weaker off-
27 equatorial convection. It has been robustly projected by climate models, particularly in the northern
28 hemisphere. This contraction shortens TC seasons by delaying the poleward migration of the
29 intertropical convergence zone. At seasonal peaks of TC activity, the equatorial and off-equatorial
30 components of convection contraction are associated with TC-hindering environmental changes.
31 Finally, the convection contraction and associated warming patterns also explain the ensemble
32 uncertainty in projecting future TC frequency. This convection contraction escaped the scrutiny of
33 previous TC-climate studies, and recognizing its roles can motivate coordinated research and
34 solidify confidence in projections of future TC risk.

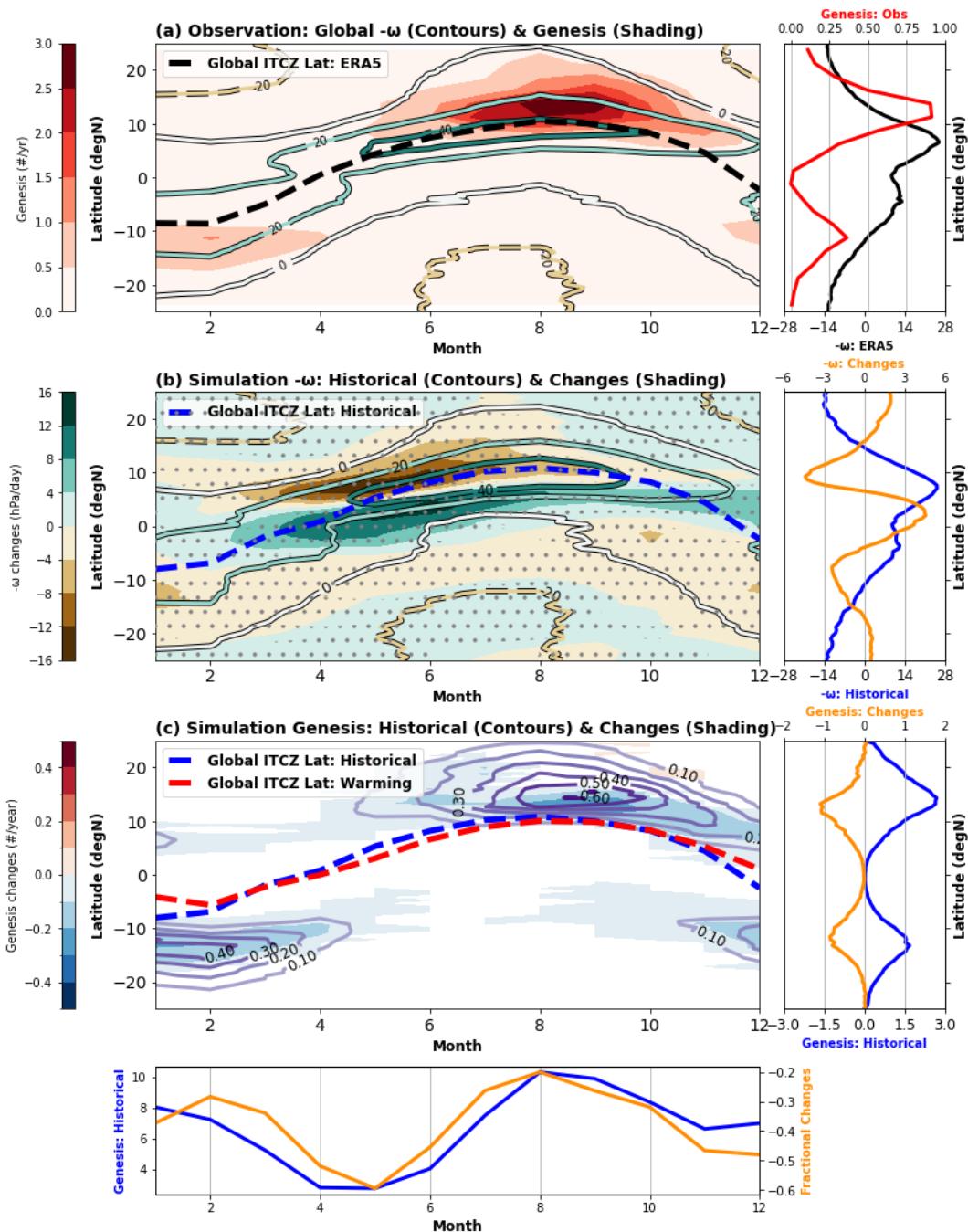
35 As anthropogenic warming rises sea levels, increases extreme precipitation, and strengthens
36 the most intense storms^{1,2}, the future global risk of tropical cyclones (TCs) strongly depends on
37 the changes in TC frequency³. Despite extensive studies over the past two decades, the projected
38 changes in global TC frequency remain uncertain^{1–3}. While most global climate models project a
39 decrease in global TC frequency, a statistical-dynamical downscaling model⁴ that assumes
40 unchanged statistics of convective disturbances suggests an increase in global TC frequency¹. The
41 direction of projected changes also depends on model parameters^{5,6} and input variables⁷. For
42 example, a set of high-resolution (25-km) climate simulations suggest that future TC frequency
43 increases⁵ as surface warming generates more seeding convective disturbances⁶. The diverging
44 projections limit confidence in scientific understanding and complicate climate risk management.

45 The slow progress in reconciling the projection differences is increasingly attributed to the lack
46 of a theoretical framework that fully explains the simulated changes and helps falsify alternative
47 model assumptions^{1,3}. Most theories recognize the essential role of atmospheric convection in TC
48 development and are formulated around the variables related to convective processes. One line of
49 thought is framed around the warming-induced changes of the vertical mass flux⁸. It suggests that
50 TC genesis is hindered by a reduction of time-mean upward mass flux^{9–11} and potentially by an
51 increase of upward mass flux per TC¹². Another line of research emphasizes the increasing
52 saturation deficit of a warmer troposphere and suggests that the drying suppresses TC development
53 by slowing the saturation of the convection environment^{13,14} and facilitating the ventilation of TC
54 convection^{15,16}. Lastly, an emerging research line suggests that TC frequency may increase due to
55 ocean warming, which promotes convective activity (including TC-seeding disturbances⁶) and
56 expands the latitudinal range of the TC-permitting environment^{17,18}. Though all developed around

57 convection changes, these research lines rarely intersect with each other, and their connections
58 with large-scale climate changes have not been well explored.

59 When explaining the climate impacts on TC activity, another line of active research builds on
60 the concept of the Hadley circulation^{19–22}. The Hadley circulation is a global-scale overturning
61 circulation characterized by equatorial ascent and subtropical descent. A key feature of the Hadley
62 circulation is its concentrated equatorial convection, or the intertropical convergence zone (ITCZ).
63 The ITCZ is at the center of global energy transport and embodies rich interactions with other
64 weather-climate processes²³. They collectively modulate the large-scale environment and
65 dynamical pathways of TC development. Under anthropogenic warming, climate models and
66 theoretical arguments suggest the Hadley circulation will weaken and expand poleward. Although
67 these circulation changes can be complicated by natural variability²⁴, the projections have been
68 adopted to explain the observed and simulated changes in TC activity in qualitative and
69 hypothetical ways^{20,22}.

70 Despite the intense interest in the Hadley circulation, past TC-climate studies paid limited
71 attention to the seasonal migration and future changes of tropical convection. In the current climate
72 regime, the location of tropical convection dictates the configuration of the Hadley circulation^{25,26},
73 with the equatorial convection disfavoring TC development and the off-equatorial convection
74 favoring TC development²⁷. While the annual means of TC activity and tropical convection do not
75 share the same latitudes, their seasonal cycles suggest a close association (Figure 1a). The seasonal
76 migration of tropical convection generally follows the insolation and the maximum of tropospheric
77 moisture content (or moist static energy). During the equinoctial seasons, the convection
78 concentrates near the equator and contributes to diverging upper-level outflows that descend in
79 both hemispheres (Supplementary Figure 1a). The poleward flanks of the ITCZ are characterized


80 by mid-tropospheric dryness related to descending motion and strong vertical wind shear related
81 to subtropical westerlies. As the ITCZ migrates away from the equator during solstitial seasons,
82 the convection in the summer hemisphere intensifies and drives an intense overturning cell with
83 air ascending in the summer hemisphere and descending in the winter hemisphere (Supplementary
84 Figure 1c). Although mid-tropospheric dryness and high wind shear dominate the winter
85 hemisphere, wet and low-shear conditions prevail in the summer hemisphere and favor TC
86 development. Consequently, the spatial-temporal distribution of tropical convection effectively
87 regulates the TC frequency (Figure 1a). Beyond the seasonal forcing, this TC sensitivity to the
88 convection location holds for a wide range of perturbations around the current climate^{18,27,28}.

89 Under anthropogenic warming, an analysis of recent climate simulations^{29,30} and past studies^{31–}
90 ³⁵ suggest that tropical convection will contract toward the equator. In a large ensemble of TC-
91 permitting climate simulations (Method), this contraction manifests as the strengthening of
92 equatorial convection at the cost of the off-equatorial convection on the poleward flanks of the
93 ITCZ (Figure 1b). The contraction is evident through seasons and is the most robust around the
94 transition from the boreal spring to boreal summer. In the early part of TC seasons, this contraction
95 delays the poleward migration of the ITCZ and hinders the circulation shift towards the TC-
96 favoring state. The contraction is also evident in the simulations of Coupled Model
97 Intercomparison Project Phase 6 (CMIP6)³⁰ (Supplementary Figure 2). Despite some
98 inconsistency in the southern hemisphere, the CMIP6 simulations concur with the large ensemble
99 simulation and suggests the contraction of tropical convection is a robust response to
100 anthropogenic warming.

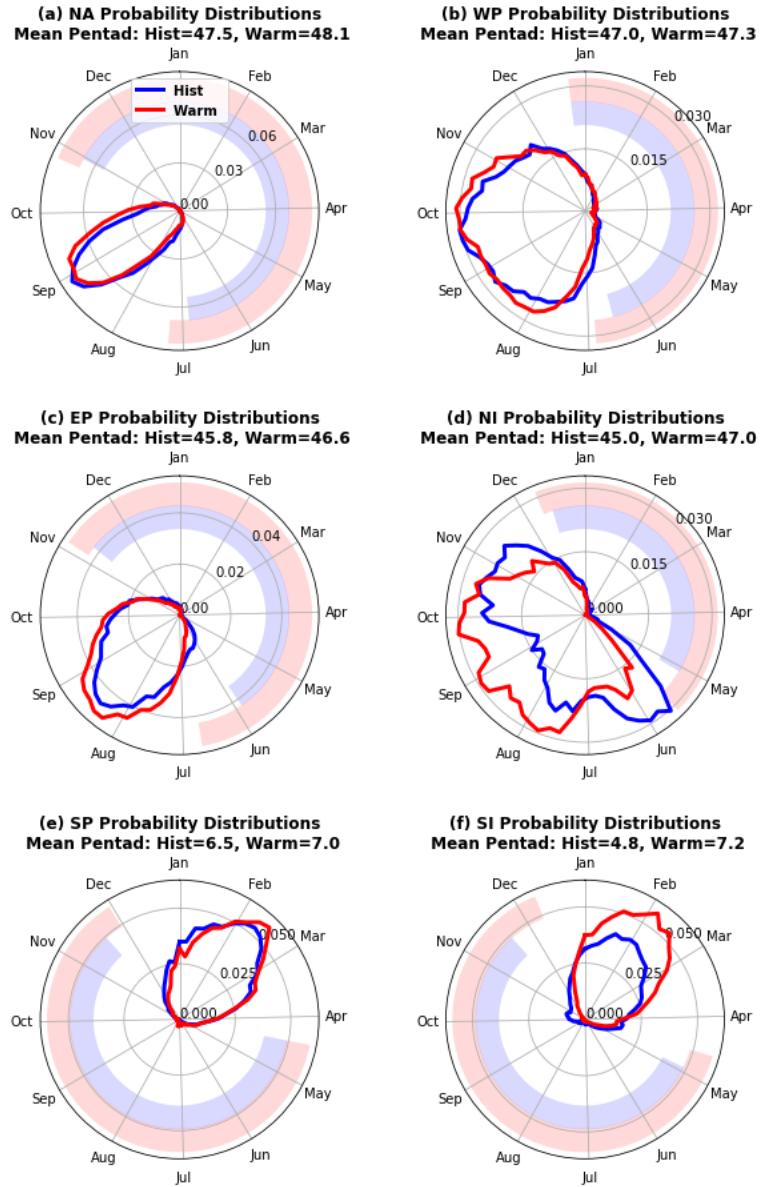
101 In the previous CMIP simulations, similar signals of the convection contraction have been
102 identified in the annual mean^{31,32} and the seasonal cycle^{33–35}. This warming-induced contraction

103 likely arises from an enhanced equatorial warming³⁶ and cloud radiative feedback^{32,37}, which
104 sharpen the meridional gradients in moist static energy and the convection activity^{33,35,38}. When
105 viewed as a delay and an equatorward displacement of the seasonal migration of tropical
106 convection, this contraction can also be interpreted as a response to the warming-induced
107 enhancement of cross-equator energy transport from the autumn hemisphere to the spring
108 hemisphere^{34,39}. The projected contraction depends on the equatorial warming³⁵, as well as model
109 details of moist static energy and vertical velocity profiles⁴⁰.

110 The robustly projected contraction of tropical convection has so far escaped the scrutiny of
111 many TC-climate studies. The existing studies mostly examine the ITCZ around the peak TC
112 seasons and focus on the intensity and latitude of the precipitation maximum. Yet the contraction
113 of tropical convection has no apparent impact on the latitude of precipitation maximum at the peak
114 TC seasons (Figure 1b). Instead, the contraction displaces the global ITCZ the most in the early
115 part of TC seasons. Meanwhile, the focus on the precipitation maximum makes it hard to detect
116 subtle changes in the latitudinal distribution of tropical convection (e.g., equatorial convection
117 increases). Lastly, the total precipitation increases poleward of the ITCZ due to the warming-
118 related increase of atmosphere vapor content and deepening of the troposphere⁴¹. For many
119 precipitation-based metrics, this widespread wetting likely blurs the signal of the convection
120 contraction (Supplementary Figure 3).

121

122 **Figure 1** The observed and simulated monthly evolution of tropical convection and TC genesis
 123 frequency. (a) The 500-hPa vertical motion ($-\omega$) (hPa day^{-1} ; contours) from the ERA5 reanalysis
 124 and the TC genesis frequency (yr^{-1} ; red shading) from the IBTrACS. The analysis uses $-\omega$ since
 125 negative ω values correspond to the upward motion. (b) The vertical motion in historical


126 *simulation (contour) and its responses to the 4-K warming (warming - historical; shading) from*
127 *the large ensemble simulations (Methods). The changes at the 99%-confidence level are marked*
128 *with stippling. (c) The TC genesis frequency in historical simulation (contour) and its response to*
129 *the 4-K anthropogenic warming (warming – historical; shading). The signals below the 99%-*
130 *confidence are masked out. In (b-c), the mean latitudes of the weighted ITCZ (Method) of the*
131 *reanalysis data (1981-2010), historical simulation (HPB), and warming simulation (4-K) are*
132 *shown as black, blue, and red dashed lines, respectively. The vertical motion is zonal means, and*
133 *the TC genesis is zonal sums. The annual means (right) and the meridional aggregations (bottom)*
134 *of these quantities are displayed in auxiliary side panels. These quantities are denoted with colored*
135 *axis labels.*

136

137 The contraction of tropical convection is accompanied by a statistically significant decrease in
138 the frequency of TC genesis (Figure 1c). This frequency decrease is qualitatively consistent with
139 the impacts of stronger equatorial convection and weaker off-equatorial convection. Interestingly,
140 the simulated TC decrease is season-dependent and mostly appears near the ITCZ. In the transition
141 months of TC seasons (e.g., May-Jun in the northern hemisphere), the TC frequency decrease is
142 relatively small in absolute values but represents a large fractional decrease. This feature suggests
143 a possible shortening of the TC seasons associated with the delay of convection migration. Near
144 the peak of TC seasons (e.g., Aug-Sep in the northern hemisphere), the TC frequency decrease is
145 large in magnitude and preferentially occurs close to the ITCZ. This proximity suggests the TC
146 frequency decrease is tied to the convection contraction, though the contributions of the equatorial
147 and off-equatorial changes which will be discussed below. The ensuing discussion will examine the
148 shortening of the TC seasons and the peak-season changes in detail.

149 Despite some biases in the simulated TC seasons (Supplementary Figure 4), the large ensemble
150 simulation suggests that anthropogenic warming shortens and delays the TC seasons in individual
151 basins (Figure 2). The probability distributions of TC genesis in the historical and warming
152 simulations show differences with magnitudes up to ~0.15. Consistent with Figure 1c, individual
153 basin often experiences a more pronounced suppression of TC activity in the transition seasons. If
154 one defines the TC seasons with a 0.01-probability threshold of activity, the warming induced
155 changes shorten the TC seasons by approximately 5-10%. Alternatively, the annual cycle can be
156 divided into three-month periods consisting of a peak, a quiet, and two transitional seasons.
157 Supplementary Figure 4 shows that the transition periods account for ~13% (North Atlantic) to
158 ~200% (East Pacific) of the projected decreases in TC frequency, with the six-basin average being
159 ~75%. This suggests the importance of transition periods despite some differences between basins.

160 Across the individual basins, one of the most consistent signals is the delay of the early part of
161 TC seasons, which are around June for the northern-hemisphere basins and December for the
162 southern-hemisphere basins. With the 4-K warming, the delay is fewer than 15 days in all the
163 basins except for the East Pacific. Other less robust changes in the simulated seasonal cycle of TC
164 activity include an enhanced concentration of TC genesis near the season peaks and a minor
165 seasonal delay in the average time of TC genesis. For example, such seasonality changes are
166 pronounced in the Northern Indian basin and alter the basin's bimodal distribution of TC geneses.
167 The changes in this basin are consistent with Murakami et al⁴² and the regional monsoon changes⁴³,
168 though some quantitative aspects are likely model-dependent⁴⁴.

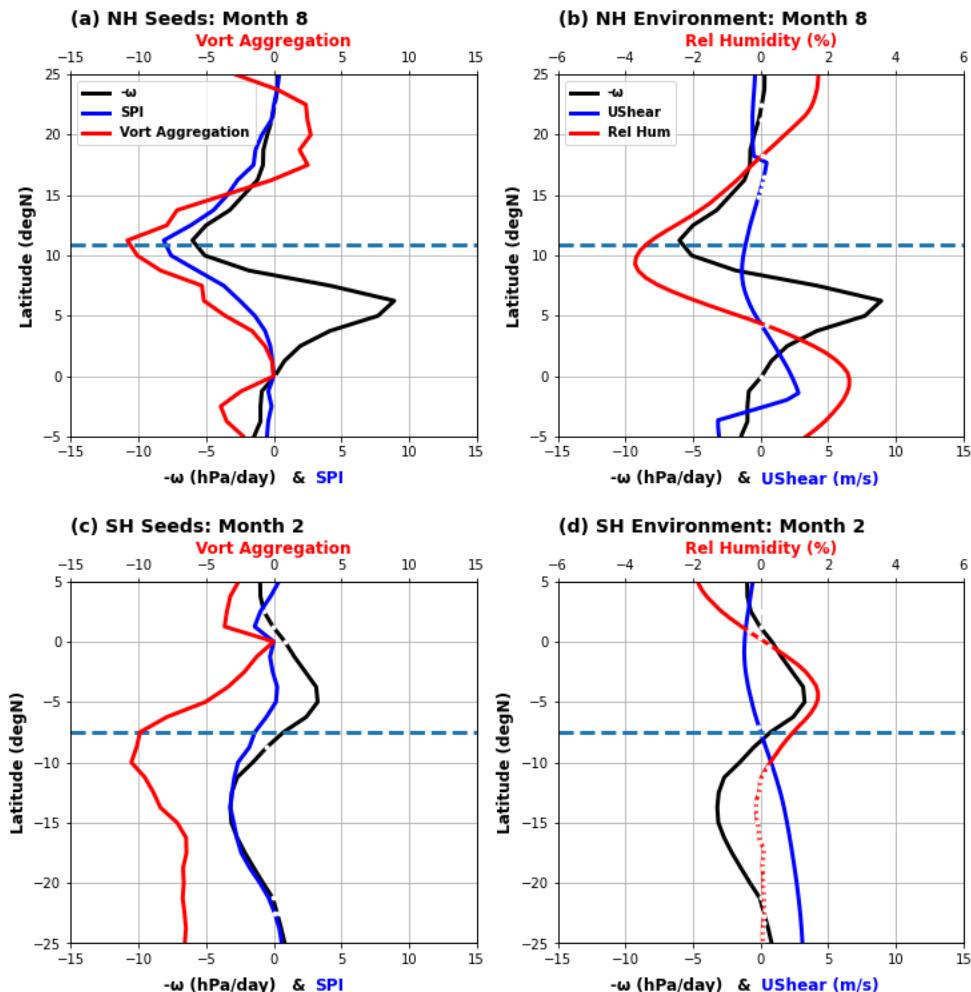
169

170 **Figure 2** The seasonal cycle of TC genesis in the historical and the warming simulations. The
 171 polar coordinates show the time of seasonal cycle and the annual probability distributions
 172 (unitless) in angular and radial axes, respectively. The probability distributions of TC genesis are
 173 shown as lines for the historical (blue) and warming (red) simulations. Six ocean basins are
 174 examined: (a) North Atlantic, (b) Northwestern Pacific, (c) Northeastern Pacific, (d) North Indian
 175 Ocean, € South Pacific, and (f) South Indian Ocean. The genesis time of individual TCs is grouped
 176 into 5-day bins (pentads) based on the corresponding day of the year (Method). The mean pentads

177 *in the historical and warming simulations are denoted at the top of subplots. The outer thickened*
178 *arcs indicate the periods with suppressed TC activity defined with the 0.01-probability threshold*
179 *(Method).*

180

181 The simulated shortening and delay of the TC seasons are consistent with the responses to
182 warming-induced convection contraction, but the observed and modeled changes in the TC season
183 length can be complicated by other factors. For example, observational studies suggest the Atlantic
184 TC season became longer⁴⁵ and started earlier⁴⁶ in recent decades, consistent with the concurrent
185 increase in the number of Atlantic hurricanes and a large-scale environment more conducive for
186 genesis⁴⁷. It is possible that either natural variability⁴⁷ or anthropogenic forcings other than
187 greenhouse gases (e.g., aerosols⁴⁸) dominated the observed changes in an individual basin,
188 especially as the current anthropogenic warming is substantially weaker than the 4-K warming.
189 Another complication arises from a model that projects an increase in TC frequency⁴. When driven
190 by the large-scale changes in the CMIP5 simulations, Emanuel's statistical-dynamic downscaling
191 suggests the TC seasons become longer in most basins, in contrast to the results of climate models
192 driven by the same CMIP5 changes. A recent examination of Emanuel's statistical-dynamical
193 downscaling suggests that it tends to miss early- and late-season storms⁵⁰, implying some potential
194 weakness representing the length of TC seasons. Meanwhile, the seasonal cycle in the large
195 ensemble simulation is not perfect either (Supplementary Figure 4). A detailed assessment of the
196 differences between our large-ensemble simulations and Emanuel's statistical-downscaling results
197 is left for future research.


198 We next explore why TCs decrease near the ITCZ at the peak of TC seasons, as well as how it
199 is related to the contraction of tropical convection. Recently, Hsieh et al^{51,52} proposed that the

200 variation in the TC frequency can be conceptually interpreted as a product of changes in the
201 frequency of rotating convective disturbances (“seeds”) and the probability of disturbance-to-TC
202 transitioning^{51–53}. Hsieh et al^{51,52} suggested that the former is correlated with the seed propensity
203 index (SPI), and the latter inversely scales with the vertical wind shear and tropospheric dryness.
204 We assume the SPI scales with the frequency of rotating convective disturbances^{51,52,54} in the large
205 ensemble simulation (Methods) and examine the latitudinal changes of the SPI, wind shear, and
206 mid-tropospheric humidity (Method) at the peak of TC seasons. Given the active debate about the
207 definition of TC “seeds”^{51,54} and their role in the TC climatology⁵⁰, the upcoming discussion of
208 the SPI serves as an example of linking existing hypotheses about future TC changes to the
209 contraction of tropical convection.

210 Consistent with the peak-season decrease of TC frequency, the SPI decreases near the
211 northern-hemisphere ITCZ (Figure 3a) and the poleward flank of the southern-hemisphere ITCZ
212 (Figure 3c). The SPI changes arise primarily from the weakening of convection and the associated
213 vorticity changes. More specifically, the weaker convection near 10°N and 15°S indicates less
214 generation of low-level vorticity from the stretching of the atmosphere column. While the SPI’s
215 vorticity term is also affected by the meridional gradient of vorticity, the local changes in vorticity
216 generally prevail over the gradient changes induced by the contraction of tropical convection. The
217 stronger equatorial convection and weaker off-equatorial convection are also accompanied by
218 other environmental changes. For example, the contraction of tropical convection can dry the mid-
219 troposphere³¹ (Figure 3b) or enhance the vertical wind shear (Figure 3d) poleward of the ITCZ,
220 which can suppress TC development via mechanisms independent of TC “seeds”.

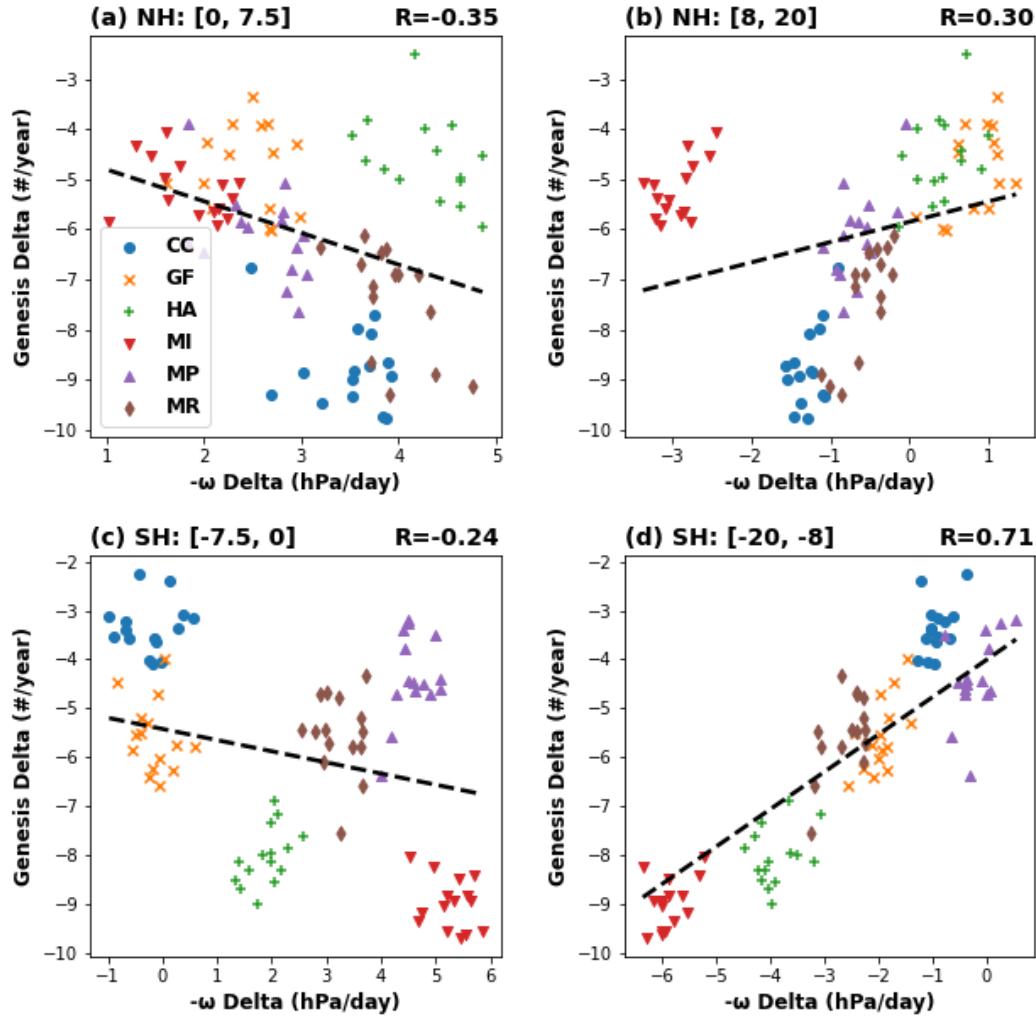
221 The definition of the SPI and its intricate associations with other environmental factors warrant
222 remarks. Specifically, the SPI is defined with a component of the vertical mass flux^{51,52}, which can

223 be linked to convection changes, as well as surface fluxes and saturation deficit⁵⁰. As suggested in
 224 the introduction paragraphs, those factors have been used to explain changes in future TC activity.
 225 One could argue that the projected changes in TC frequency may be attributed to the changes in
 226 vertical mass flux or moisture without invoking assumptions about the role of TC “seeds”. While
 227 these physical hypotheses warrant future research, we speculate that the key environmental factor(s)
 228 will ultimately connect to changes in tropical convection, so our argument about the importance
 229 of the convection contraction will unlikely rest on the validity of a specific hypothesis.

230

231 **Figure 3** Warming-induced changes in the latitudinal profiles of seed propensity index (SPI) and
 232 selected large-scale environmental variables. The results near the climatology peak of TC seasons

233 in (a-b) the northern hemisphere and (c-d) the southern hemisphere are displayed separately. (a)
234 August changes in the SPI and its two terms, namely the negative 500-hPa vertical motion and the
235 850-hPa vorticity aggregation. (b) August changes in the negative vertical motion ($hPa\ day^{-1}$),
236 mid-troposphere (600-hPa) relative humidity (%), and vertical shear of zonal wind ($m\ s^{-1}$). (c-d)
237 are the same as (a-b), except for February changes. The horizontal dashed line indicates the
238 latitudes of weighted ITCZ of the historical simulation (HPB) in the corresponding months. The
239 changes below the 99% confidence level are marked with white breaks on the latitudinal profile
240 lines.


241

242 To further illustrate the importance of the convection contraction, we examine the relationship
243 between the simulated changes (4K warming - historical) in the global TC frequency and tropical
244 convection (Figure 4). This analysis leverages the large number of climate scenarios driven by
245 natural and anthropogenic oceanic perturbations in the large ensemble simulation. Hence the
246 analysis also offers an opportunity to examine the sensitivity of tropical convection and TC
247 frequency to the patterns of surface warming.

248 Motivated by Figure 3, we partition the warming-induced contraction of tropical convection
249 into equatorial and off-equatorial components. Overall, the equatorial convection strengthens
250 while the off-equatorial convection weakens, suggesting the projected convection contraction is
251 qualitatively robust. Nonetheless, details of the projected contraction are dependent on the
252 warming patterns. For example, the convection changes in the southern hemisphere are relatively
253 weak in simulations forced by two warming patterns (CC and GF; Methods). These simulations
254 are likely responsible for the overall muted southern-hemisphere changes projected by the large-
255 ensemble simulations (Figure 1b), which contrast with the projections by CMIP6 models

256 (Supplementary Figure 2). The inconsistency suggests larger uncertainty of our southern-
257 hemisphere results. Compared to the other warming patterns (HA, MI, MP, and MR), the CC and
258 GF warming patterns also show weaker El Niño-like warming in the tropical Pacific
259 (Supplementary Figure 5), which likely affects regional TC activity together with changes in the
260 South Pacific Convergence Zone⁵⁵. Since the tropical Pacific warming profoundly affects the
261 convection contraction³⁵ and may involve large model errors⁵⁶, it shall be a focus of future TC
262 research.

263 Turning attention to TC frequency, the sign of peak-season changes is insensitive to the
264 warming patterns, but the magnitude of these changes depends on these patterns and associated
265 convection changes. In the northern hemisphere, the simulated changes in TC frequency are more
266 closely correlated with the equatorial convection (0–7.5°N; $r=0.35$) than with the off-equatorial
267 convection (8–20°N; $r=0.30$). The significant correlation between projected changes in the
268 equatorial convection and TC frequency received limited attention from previous studies. The
269 correlation with off-equatorial convection would strengthen if the simulations driven by the MI
270 warming pattern are removed, though what makes the MI pattern distinct in driving TC changes
271 is unclear. In the southern hemisphere, the correlation is weaker with the equatorial convection (0–
272 7.5°S; $r=-0.24$) than with the off-equatorial convection (8–20°S, $r=0.71$). The strong correlation in
273 the southern hemisphere (Figure 4d) may be surprising since a large area without TC activity
274 (180°W–30°E) could render the changes in the global zonal means less relevant. The strong
275 correlation with off-equatorial convection is contributed by the South Indian and the South Pacific
276 basins. In particular, the South Pacific Convergence Zone shows a noteworthy equatorward
277 displacement at the peak TC season (Supplementary Figure 6).

278

279 **Figure 4** Relationship between the warming-induced changes in the tropical convection ($-\omega$ at
 280 500 hPa) and the global frequency of TC genesis. The evaluated months correspond to the peak
 281 TC seasons in (a-b) the northern hemisphere (August-October) and (c-d) the southern hemisphere
 282 (January-March). (a, c) Equatorial convection ($0-7.5^\circ$) and (b, d) off-equatorial convection ($8-$
 283 20°) are evaluated for the hemisphere where the ITCZ and most TCs reside. The displayed changes
 284 are defined as the difference between the 4-K simulation and the ensemble mean of the historical
 285 simulations. Individual dots show ensemble members that are forced by six oceanic warming
 286 patterns (CC, GF, HA, MI, MP, and MR; see Method). The regression of ensemble members is

287 shown with black dashed lines. The correlation coefficients (r) are shown in the upper right of
288 corresponding subplots and are all above the 95% confidence level.

289

290 Recognizing the contraction of tropical convection and the inherent link between its off-
291 equatorial and equatorial components helps identify new research topics. For weather-scale
292 processes, the equatorial convection might suppress the nearby off-equatorial convection by
293 stabilizing the troposphere and inducing downdrafts. Such a pattern of differential convective
294 heating can either sustain a dynamically stable regime with aggregated convection and infrequent
295 TC genesis⁵⁷ or result in dynamic instability that facilitates vortex roll-ups and periodic TC
296 genesis^{58,59}. Which scenario might prevail with anthropogenic warming warrants further
297 investigation. From the climate perspective, the TC frequency decrease was often attributed to the
298 weakening of tropical updraft, which has been considered as a circulation response needed to keep
299 the global energy transport relatively stable when anthropogenic warming moistens the
300 atmosphere⁸. Yet a contraction of tropical convection may also serve to satisfy the same energetic
301 constraint⁶⁰. When compensated by stronger equatorial convection, an additional reduction in the
302 off-equatorial convection would be possible. To what extent this compensation occurs has apparent
303 implications for the model-projected decrease in global TC frequency.

304 While some other factors in our discussion (e.g., weaker mass flux, mid-tropospheric drying,
305 and fewer tropical disturbances) have been examined separately by previous studies, this study
306 highlights that these factors can be consolidated into a conceptual framework centered on the
307 tropical convection. Overall, the results of this study suggest that the contraction of tropical
308 convection, which consists of stronger equatorial convection and weaker off-equatorial convection,
309 is important for explaining the response of TC frequency to the anthropogenic warming simulated

310 by climate models. The contraction delays the transition of atmospheric circulation to the TC-
311 favoring state and potentially shortens TC seasons by 5-10% with 4-K warming. The changes in
312 the transition season on average accounts for ~75% of the TC frequency decreased projected by
313 the large ensemble simulation. During the core of TC seasons, the contraction suppresses the
314 development of convective disturbances and makes the large-scale circulation deviate from the
315 TC-favoring state. Although the convection contraction does not explicitly address the TCs at the
316 tropical-extratropical interface, which poses an additional threat in a warmer climate^{17,18}, this
317 contraction may exert an indirect influence via the upper-level outflow of the Hadley circulation
318 and the subtropical westerlies³¹.

319 Our attempt to analyze more high-resolution climate simulations^{61,62} was hindered by data
320 availability issues (e.g., missing variables). We thus acknowledge that our conclusions partly
321 depend on the fidelity of the examined models in simulating the multi-scale physical processes
322 and their changes due to the anthropogenic warming. At the same time, observational studies have
323 found signals consistent with the simulated contraction, including a seasonal delay of tropical
324 precipitation⁶³ and a contraction of the Pacific ITCZ⁶⁴. Although this study does not seek to
325 attribute the observed changes in global TC frequency, the observed contraction appears consistent
326 with a declining trend in the number of TCs globally²². Finally, the convection contraction explains
327 a substantial portion of the uncertainty in the projection of global TC frequency by the large-
328 ensemble climate simulations (Figure 4). Further coordinated effort in theoretical development,
329 climate modeling, and careful consideration of additional climate processes (e.g., the planetary
330 waves and midlatitude circulations) will lead to increased confidence in projections of future TC
331 risk.

332

333 **Methods**

334 *Observational Data*

335 The reference climate data in this study is the observation-constrained ERA5 reanalysis⁶⁵. We
336 use the monthly data on a 0.25-degree grid, which represent the tropical convection at a spatial
337 resolution much higher than most earlier reanalysis datasets. The observational data of tropical
338 cyclones (TCs) is the International Best Track Archive for Climate Stewardship (IBTrACS)⁶⁶. For
339 the sake of a relatively homogeneous definition of TC genesis across the global basins, we use the
340 US-sourced subset of storm data in the IBTrACS. The historical analyses focus on the 30-year
341 period of 1981-2010, which is covered by relatively reliable satellite observations and simulated
342 by the most recent climate models.

343

344 *Coupled Model Intercomparison Project (CMIP) Data*

345 CMIP6 data are analyzed to illustrate the robustness of the convection traction. Our analysis
346 uses a subset of models with high-resolution configurations (approximately 1-deg grid) available
347 in the CMIP6³⁰ archive. The selected models include BCC-CSM2-MR, CMCC-CM2-SR5,
348 CNRM-CM6-1-HR, CSIRO-ARCCSS-CM2, EC-Earth3, GFDL-CM4, HadGEM3-GC31-MM,
349 MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, NCAR-CESM2, and TaiESM1. To facilitate
350 comparison with the ERA5 reanalysis and the large-ensemble simulations, we use the Atmospheric
351 Model Intercomparison Project (AMIP) simulations as the reference climate and the high-end
352 Shared Socioeconomic Pathway (SSP5-85) simulations as the warming climate. Moreover, the
353 strong forcing helps generate signals that are relatively easy to identify with single runs of climate

354 models. This study also uses the CMIP5⁶⁷ data indirectly as their warming patterns serve as input
355 for the large-ensemble simulations (see next section).

356

357 *High-resolution Large Ensemble Simulation*

358 The analyzed large-ensemble simulation is a subset of the Database for Policy Decision
359 Making for Future Climate Change (d4PDF)²⁹. The simulation is conducted using Meteorological
360 Research Institute–Atmospheric General Circulation Model version 3.2 (MRI-AGCM3.2H)⁶⁸ on
361 a grid with ~60-km grid spacing. The historical (1951–2010) simulation covers 1951–2010 and is
362 driven by the observed forcings including the time-varying oceanic information. A 100-member
363 ensemble simulation is generated by perturbing the initial conditions of the atmosphere and the
364 sea surface temperature (SST). To account for observational uncertainties, the input SST forcing
365 also includes random perturbations up to 30% of the observed interannual variability of the SST.

366 The future warming simulation uses the greenhouse gas forcing that corresponds to the 2090
367 values of the CMIP5’s representative concentration pathway 8.5 scenario. Its input SST forcing is
368 based on the detrended SST observations plus representative SST warming patterns from six
369 CMIP5 models. The models include HadGEM2-AO, MPI-ESM-MR, MRI-CGCM3, NCAR-
370 CCSM4, GFDL-CM3, and MIROC5 – and are denoted as HA, MP, MR, CC, GF, and MI in Figure
371 4. In these simulations, each warming pattern is scaled to be 4-K warmer relative to the
372 preindustrial climate and then serves as input to generate a 15-member ensemble. The SST
373 warming patterns vary seasonally, and Supplementary Figure 5 shows the annual means of these
374 warming patterns. The model settings and the experiment design are described in detail by Mizuta
375 et al.²⁹.

376 The large ensemble simulations produce a realistic historical climatology (including the large-
377 scale environment and TC activity^{69,70}) and a warming-induced reduction in the global TC
378 frequency as most other climate models. This set of simulations consists of several unique
379 advantages that are leveraged by this study. For example, the simulations contain exceptionally
380 many ensemble members that are useful for accumulating TC samples, identifying warming-
381 induced responses, and evaluating sensitivities across ensemble members. Besides helping
382 simulate TCs, the high model resolution (for a climate model) is useful for the analysis of the
383 convection changes near the narrow ITCZ. Finally, the model data, including TC information and
384 key atmospheric variables, are meritoriously archived and publicly accessible.

385 Unless otherwise specified, all the key analyses in this study use the data of the large-ensemble
386 simulation. The analyses focus on the 30-year climatology of the historical period (1981-2010)
387 and 4-K warming scenario (2081-2110) to mitigate the burden of data management and avoid less
388 reliable observational records. The warming-induced responses are defined as the 4-K warming
389 (4-K) minus the historical (HPB) fields. The statistical significance of those responses is
390 determined with the Student's t-test using all the samples from the 100-member historical
391 simulation and the 90-member warming simulation.

392

393 *Definition of the ITCZ Latitude*

394 This study determines the latitude of the ITCZ by calculating the centroid location of the
395 tropical convection. For each month, an algorithm first identifies the grid points with top quartile
396 convection within the latitude band of 25°S–25°N. Then the algorithm calculates the mean latitude
397 of convection weighted by the convection intensity and the area of grid points. When the threshold
398 excludes all grid points except for the maximum value, the search algorithm is equivalent to the

399 commonly used metric of the ITCZ latitude, namely the latitude of tropical convection's maximum.
400 In the transition seasons, the choice of using the top-quartile convection ensures a relatively robust
401 definition of the ITCZ latitude when the convection maximum sticks with one hemisphere despite
402 intense convection on the other hemisphere. The use of the top-quartile convection also excludes
403 relatively weak convection outside the ITCZ (e.g., the subtropical precipitation). The output of this
404 algorithm is robust against small changes in the percentile threshold.

405

406 *TC Tracking and Genesis*

407 Besides the IBTrACS observational data, the TC track data of the large-ensemble simulations²⁹
408 (doi:10.20783/DIAS.640) are also used.. The track data is archived by the Data Integration &
409 Analysis System (DIAS) and provided by Yoshida et al⁶⁹. The tracking algorithm, as described by
410 Yoshida et al⁶⁹ and Murakami et al⁷¹, is summarized as follows. The tracking algorithm considers
411 multiple detection criteria about storm extremes and structure. It searches for candidate systems
412 that meet certain thresholds for maximum relative vorticity and wind speed at the 850-hPa level.
413 Additionally, the candidate systems are screened based on the presence of a warm core aloft and
414 the vertical profile of wind speed. The screening in the Northern Indian Ocean also includes a
415 specific check that differentiates TCs from monsoon depressions. When a candidate system meets
416 all the criteria and lasts at least 36 hours, the algorithm classifies it as a TC. The detected TCs are
417 then grouped based on genesis ocean basins. The threshold values used in the tracking process are
418 identical to those of Murakami et al⁷¹. The values were chosen based on the model and ensures
419 that the global number of detected TC geneses in the historical simulations and the observation are
420 comparable.

421 We define the TC genesis as the first point of individual TC tracks. This definition circumvents
422 the need of defining an intensity threshold of genesis or considering intensity biases of simulated
423 TCs. However, an exact comparison between the observed and simulated TC geneses is hindered
424 by differences between track methods. Since the observed TCs were mostly tracked by human
425 forecasters and researchers, the tracking process changed over years and fundamentally differs
426 from the automatic tracking applied to the large ensemble simulation. Such issues may moderately
427 affect the analysis that involves the genesis location.

428

429 *Analytics of the TC Seasonal Cycle*

430 We analyze the TC seasonal cycle using the histograms of TC genesis time in individual basins.
431 More specifically, we group all the simulated TCs in each TC basin for the historical and the
432 warming experiments, respectively. In each basin, we convert the genesis time of individual TCs
433 into the “day of year” and evaluate its histogram using 73 pentad (5-day) bins. Day 366 in the leap
434 years of the 30-yr period is assigned to the first bin. To facilitate the comparison of the distribution
435 shapes, we scale the histograms with the corresponding basin’s total TC number in the historical
436 or the warming experiments. Additionally, the periods of TC suppression (Figure 2) are defined
437 as the pentad bins when <1% of a basin’s TCs develop.

438 When paired with the large ensemble simulations, the analytical approach here has advantages
439 in detecting shifts and yielding robust results. The use of pentad bins instead of monthly bins helps
440 identify sub-monthly shifts in the TC seasons between the historical and the warming scenarios.
441 This technique becomes feasible as the bundling of ensemble members ensures the large sample
442 sizes of TCs. We have considered alternatives to define the TC seasons. For example, it is possible
443 to define the TC season length using the difference between the genesis time of the first and the

444 last TCs in the same season. But in the basins with low TC frequency, the stochastic noises and
445 the warming-induced TC decrease can result in ill-defined TC seasons. For example, an extremely
446 inactive season may generate zero or one TC, making the length of the TC season ambiguous.

447

448 *Seed Propensity Index and the Large-scale Environment Analysis*

449 Since the transfer and storage of the large-ensemble simulations make it computationally
450 challenging to track rotating convective disturbances, we assume that their frequency scales with
451 the Seed Propensity Index (SPI)⁵². The scaling relationship is valid with a few other high-
452 resolution climate simulations when the SPI is defined as follows:

453

$$S = -\omega \frac{1}{1 + Z^{-1/\alpha}}$$

454 Where ω is the mean of isobaric vertical velocity at the 500-hPa level. The following term is
455 referred to as the vorticity aggregation term in Figure 4 and scales with $Z^{1/\alpha}$ near the equator. Z is
456 defined as:

457

$$Z = \frac{f + \zeta}{\sqrt{|\beta + \partial_y \zeta| U}}$$

458 Where f and β are the Coriolis parameter and its meridional gradients, and ζ represents the
459 climatology relative vorticity at the 850-hPa level. The remaining parameters adopt the empirical
460 fitting values $U = 20 \text{ m s}^{-1}$ and $\alpha = 0.69$ ⁵².

461 The original SPI definition uses zero values in regions with climatological subsidence (i.e.,
462 $\omega > 0$), but this could complicate the calculation and comparison of zonal means in different
463 scenarios. For example, the regions with climatological convection can shift or change their size,

464 making it difficult to directly compare the zonal means of SPI between different climate scenarios.
465 To simplify the comparison, we calculated the zonal means without using zeros. This
466 simplification mainly affects the subtropical regions with large zonal variations in the convection
467 distribution. Near the equator, which is at the center of our discussion, the impact of this
468 simplification is relatively small due to the widespread footprints of convection.

469 The analysis of the large-scale environment uses simple metrics, the vertical wind shear of
470 zonal wind (200 hPa - 850 hPa) and the 600-hPa relative humidity, instead of the ventilation index
471 as Hsieh et al. . This choice is a practical compromise related to the computational burden of
472 calculating the ventilation index on a 60-km grid for nearly 6,000 simulation years. To conduct
473 the calculation, the volume of input data will likely exceed 100 TB due to the involvement of
474 vertical integrals and multiple physical variables. For our discussion of the global zonal means, we
475 expect the results from the simple metrics to be qualitatively consistent with the results from the
476 ventilation index.

477

478 *Inclusion & Ethics*

479 All the research data are publicly available, and the data sources have been acknowledged. All the
480 individuals whose contributions do not meet the authorship criteria have been acknowledged.

481

482 **Acknowledgment**

483 The authors thank the science programs (SOUSEI, TOUGOU, SI-CAT, DIAS) of the Ministry
484 of Education, Culture, Sports, Science and Technology (MEXT) of Japan for sharing the large
485 ensemble simulation data and the tropical cyclone data (doi: 10.20783/DIAS.640). We also would

486 like to acknowledge the data access and computing support provided by the NCAR CMIP Analysis
487 Platform (doi:10.5065/D60R9MSP). Early discussions with Isaac Held and Adam Sobel helped
488 motivate this study. GZ thanks Suzana Camargo, Tsung-Lin Hsieh, Thomas Knutson, Hiroyuki
489 Murakami, and Yi Zhang for stimulating discussions that helped improve the study and its
490 presentation. GZ also appreciates the support by the faculty start-up funds provided by the
491 University of Illinois at Urbana-Champaign.

492

493 **Data and Code Availability**

494 The large ensemble climate dataset, including tropical cyclone tracks, is available via DIAS
495 (<https://diasjp.net/en/>). The IBTrACS dataset is available via the National Centers for
496 Environmental Information (<https://www.ncei.noaa.gov/>). The ERA5 reanalysis and CMIP data
497 are accessible via the NCAR Research Data Archive (<https://rda.ucar.edu/>). The analysis code is
498 available from G.Z. upon request.

499

500 **Contributions**

501 This study was conceived by G.Z. G.Z. acquired the data and performed the data analysis. G.Z.
502 interpreted the results and wrote the manuscript.

503 **Competing Interests**

504 The authors declare no competing financial interests.

505 **Corresponding author**

506 Correspondence to Gan Zhang.

507 **References**

508 1. Knutson, T. *et al.* Tropical Cyclones and Climate Change Assessment: Part II: Projected
509 Response to Anthropogenic Warming. *Bull. Am. Meteorol. Soc.* **101**, E303–E322 (2020).

510 2. Seneviratne, S. I. *et al.* Weather and Climate Extreme Events in a Changing Climate. in
511 *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the*
512 *Sixth Assessment Report of the Intergovernmental Panel on Climate Change* 1513–1766
513 (Cambridge University Presss, Cambridge, United Kingdom and New York, NY, USA,
514 2021).

515 3. Sobel, A. H. *et al.* Tropical Cyclone Frequency. *Earths Future* **9**, (2021).

516 4. Emanuel, K. A. Downscaling CMIP5 climate models shows increased tropical cyclone
517 activity over the 21st century. *Proc. Natl. Acad. Sci.* **110**, 12219–12224 (2013).

518 5. Bhatia, K., Vecchi, G., Murakami, H., Underwood, S. & Kossin, J. Projected Response of
519 Tropical Cyclone Intensity and Intensification in a Global Climate Model. *J. Clim.* **31**, 8281–
520 8303 (2018).

521 6. Vecchi, G. A. *et al.* Tropical cyclone sensitivities to CO₂ doubling: roles of atmospheric
522 resolution, synoptic variability and background climate changes. *Clim. Dyn.* **53**, 5999–6033
523 (2019).

524 7. Lee, C.-Y., Camargo, S. J., Sobel, A. H. & Tippett, M. K. Statistical–Dynamical
525 Downscaling Projections of Tropical Cyclone Activity in a Warming Climate: Two
526 Diverging Genesis Scenarios. *J. Clim.* **33**, 4815–4834 (2020).

527 8. Held, I. M. & Soden, B. J. Robust Responses of the Hydrological Cycle to Global Warming.
528 *J. Clim.* **19**, 5686–5699 (2006).

529 9. Held, I. M. & Zhao, M. The Response of Tropical Cyclone Statistics to an Increase in CO₂
530 with Fixed Sea Surface Temperatures. *J. Clim.* **24**, 5353–5364 (2011).

531 10. Sugi, M., Murakami, H. & Yoshimura, J. On the Mechanism of Tropical Cyclone Frequency
532 Changes Due to Global Warming. *J. Meteorol. Soc. Jpn. Ser II* **90A**, 397–408 (2012).

533 11. Walsh, K. J. E. *et al.* Hurricanes and Climate: The U.S. CLIVAR Working Group on
534 Hurricanes. *Bull. Am. Meteorol. Soc.* **96**, 997–1017 (2015).

535 12. Satoh, M., Yamada, Y., Sugi, M., Kodama, C. & Noda, A. T. Constraint on Future Change in
536 Global Frequency of Tropical Cyclones due to Global Warming. *J. Meteorol. Soc. Jpn. Ser II*
537 **93**, 489–500 (2015).

538 13. Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and Global Warming: Results from
539 Downscaling IPCC AR4 Simulations. *Bull. Am. Meteorol. Soc.* **89**, 347–368 (2008).

540 14. Emanuel, K. Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis, 1908–
541 1958. *J. Adv. Model. Earth Syst.* **2**, 1 (2010).

542 15. Tang, B. & Emanuel, K. A Ventilation Index for Tropical Cyclones. *Bull. Am. Meteorol. Soc.*
543 **93**, 1901–1912 (2012).

544 16. Tang, B. & Camargo, S. J. Environmental control of tropical cyclones in CMIP5: A
545 ventilation perspective: VENTILATION OF CMIP5 TROPICAL CYCLONES. *J. Adv.*
546 *Model. Earth Syst.* **6**, 115–128 (2014).

547 17. Studholme, J., Fedorov, A. V., Gulev, S. K., Emanuel, K. & Hodges, K. Poleward expansion
548 of tropical cyclone latitudes in warming climates. *Nat. Geosci.* **15**, 14–28 (2022).

549 18. Zhang, G., Silvers, L. G., Zhao, M. & Knutson, T. R. Idealized Aquaplanet Simulations of
550 Tropical Cyclone Activity: Significance of Temperature Gradients, Hadley Circulation, and
551 Zonal Asymmetry. *J. Atmospheric Sci.* **78**, 877–902 (2021).

552 19. Zhang, G. & Wang, Z. Interannual Variability of the Atlantic Hadley Circulation in Boreal
553 Summer and Its Impacts on Tropical Cyclone Activity. *J. Clim.* **26**, 8529–8544 (2013).

554 20. Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of
555 tropical cyclone maximum intensity. *Nature* **509**, 349–352 (2014).

556 21. Sharmila, S. & Walsh, K. J. E. Recent poleward shift of tropical cyclone formation linked to
557 Hadley cell expansion. *Nat. Clim. Change* **8**, 730–736 (2018).

558 22. Chand, S. S. *et al.* Declining tropical cyclone frequency under global warming. *Nat. Clim.
559 Change* **12**, 655–661 (2022).

560 23. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical
561 convergence zone. *Nature* **513**, 45–53 (2014).

562 24. Grise, K. M. *et al.* Recent Tropical Expansion: Natural Variability or Forced Response? *J.
563 Clim.* **32**, 1551–1571 (2019).

564 25. Lindzen, R. S. & Hou, A. V. Hadley Circulations for Zonally Averaged Heating Centered off
565 the Equator. *J. Atmospheric Sci.* **45**, 2416–2427 (1988).

566 26. Hack, J. J., Schubert, W. H., Stevens, D. E. & Kuo, H.-C. Response of the Hadley
567 Circulation to Convective Forcing in the ITCZ. *J. Atmospheric Sci.* **46**, 2957–2973 (1989).

568 27. Merlis, T. M., Zhao, M. & Held, I. M. The sensitivity of hurricane frequency to ITCZ
569 changes and radiatively forced warming in aquaplanet simulations. *Geophys. Res. Lett.* **40**,
570 4109–4114 (2013).

571 28. Ballinger, A. P., Merlis, T. M., Held, I. M. & Zhao, M. The Sensitivity of Tropical Cyclone
572 Activity to Off-Equatorial Thermal Forcing in Aquaplanet Simulations. *J. Atmospheric Sci.*
573 **72**, 2286–2302 (2015).

574 29. Mizuta, R. *et al.* Over 5,000 Years of Ensemble Future Climate Simulations by 60-km
575 Global and 20-km Regional Atmospheric Models. *Bull. Am. Meteorol. Soc.* **98**, 1383–1398
576 (2017).

577 30. Eyring, V. *et al.* Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
578 experimental design and organization. *Geosci. Model Dev.* **9**, 1937–1958 (2016).

579 31. Lau, W. K. M. & Kim, K.-M. Robust Hadley Circulation changes and increasing global
580 dryness due to CO₂ warming from CMIP5 model projections. *Proc. Natl. Acad. Sci.* **112**,
581 3630–3635 (2015).

582 32. Su, H. *et al.* Tightening of tropical ascent and high clouds key to precipitation change in a
583 warmer climate. *Nat. Commun.* **8**, 15771 (2017).

584 33. Huang, P., Xie, S.-P., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of
585 tropical rainfall to global warming. *Nat. Geosci.* **6**, 357–361 (2013).

586 34. Song, F., Leung, L. R., Lu, J. & Dong, L. Seasonally dependent responses of subtropical
587 highs and tropical rainfall to anthropogenic warming. *Nat. Clim. Change* **8**, 787–792 (2018).

588 35. Zhou, W., Xie, S.-P. & Yang, D. Enhanced equatorial warming causes deep-tropical
589 contraction and subtropical monsoon shift. *Nat. Clim. Change* **9**, 834–839 (2019).

590 36. Liu, Z., Vavrus, S., He, F., Wen, N. & Zhong, Y. Rethinking Tropical Ocean Response to
591 Global Warming: The Enhanced Equatorial Warming. *J. Clim.* **18**, 4684–4700 (2005).

592 37. Lau, W. K. M., Kim, K.-M., Chern, J.-D., Tao, W. K. & Leung, L. R. Structural changes and
593 variability of the ITCZ induced by radiation–cloud–convection–circulation interactions:
594 inferences from the Goddard Multi-scale Modeling Framework (GMMF) experiments. *Clim.*
595 *Dyn.* **54**, 211–229 (2020).

596 38. Byrne, M. P. & Schneider, T. Narrowing of the ITCZ in a warming climate: Physical
597 mechanisms. *Geophys. Res. Lett.* **43**, (2016).

598 39. Donohoe, A., Atwood, A. R. & Byrne, M. P. Controls on the Width of Tropical Precipitation
599 and Its Contraction Under Global Warming. *Geophys. Res. Lett.* **46**, 9958–9967 (2019).

600 40. Ahmed, F., Neelin, J. D., Hill, S. A., Schiro, K. A. & Su, H. A Process Model for ITCZ
601 Narrowing under Warming Highlights Clear-Sky Water Vapor Feedbacks and Gross Moist
602 Stability Changes in AMIP Models. *J. Clim.* **36**, 4913–4931 (2023).

603 41. Jeevanjee, N. & Romps, D. M. Mean precipitation change from a deepening troposphere.
604 *Proc. Natl. Acad. Sci.* **115**, 11465–11470 (2018).

605 42. Murakami, H., Sugi, M. & Kitoh, A. Future changes in tropical cyclone activity in the North
606 Indian Ocean projected by high-resolution MRI-AGCMs. *Clim. Dyn.* **40**, 1949–1968 (2013).

607 43. Bombardi, R. J. & Boos, W. R. Explaining Globally Inhomogeneous Future Changes in
608 Monsoons Using Simple Moist Energy Diagnostics. *J. Clim.* **34**, 8615–8634 (2021).

609 44. Bell, S. S., Chand, S. S., Tory, K. J., Ye, H. & Turville, C. North Indian Ocean tropical
610 cyclone activity in CMIP5 experiments: Future projections using a model-independent
611 detection and tracking scheme. *Int. J. Climatol.* **40**, 6492–6505 (2020).

612 45. Kossin, J. P. Is the North Atlantic hurricane season getting longer? *Geophys. Res. Lett.* **35**,
613 L23705 (2008).

614 46. Truchelut, R. E. *et al.* Earlier onset of North Atlantic hurricane season with warming oceans.
615 *Nat. Commun.* **13**, 4646 (2022).

616 47. Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M. & Gray, W. M. The Recent
617 Increase in Atlantic Hurricane Activity: Causes and Implications. *Science* **293**, 474–479
618 (2001).

619 48. Rousseau-Rizzi, R. & Emanuel, K. Natural and anthropogenic contributions to the hurricane
620 drought of the 1970s–1980s. *Nat. Commun.* **13**, 5074 (2022).

621 49. Dwyer, J. G. *et al.* Projected Twenty-First-Century Changes in the Length of the Tropical
622 Cyclone Season. *J. Clim.* **28**, 6181–6192 (2015).

623 50. Emanuel, K. Tropical Cyclone Seeds, Transition Probabilities, and Genesis. *J. Clim.* **35**,
624 3557–3566 (2022).

625 51. Hsieh, T.-L., Vecchi, G. A., Yang, W., Held, I. M. & Garner, S. T. Large-scale control on the
626 frequency of tropical cyclones and seeds: a consistent relationship across a hierarchy of
627 global atmospheric models. *Clim. Dyn.* **55**, 3177–3196 (2020).

628 52. Hsieh, T., Yang, W., Vecchi, G. A. & Zhao, M. Model Spread in the Tropical Cyclone
629 Frequency and Seed Propensity Index Across Global Warming and ENSO -Like
630 Perturbations. *Geophys. Res. Lett.* **49**, (2022).

631 53. Yang, W., Hsieh, T.-L. & Vecchi, G. A. Hurricane annual cycle controlled by both seeds and
632 genesis probability. *Proc. Natl. Acad. Sci.* **118**, e2108397118 (2021).

633 54. Yamada, Y. *et al.* Evaluation of the contribution of tropical cyclone seeds to changes in
634 tropical cyclone frequency due to global warming in high-resolution multi-model ensemble
635 simulations. *Prog. Earth Planet. Sci.* **8**, 11 (2021).

636 55. Vincent, E. M. *et al.* Interannual variability of the South Pacific Convergence Zone and
637 implications for tropical cyclone genesis. *Clim. Dyn.* **36**, 1881–1896 (2011).

638 56. Seager, R. *et al.* Strengthening tropical Pacific zonal sea surface temperature gradient
639 consistent with rising greenhouse gases. *Nat. Clim. Change* **9**, 517–522 (2019).

640 57. Wing, A. A. & Emanuel, K. A. Physical mechanisms controlling self-aggregation of
641 convection in idealized numerical modeling simulations. *J. Adv. Model. Earth Syst.* **6**, 59–74
642 (2014).

643 58. Ferreira, R. N. & Schubert, W. H. Barotropic Aspects of ITCZ Breakdown. *J. Atmospheric*
644 *Sci.* **54**, 261–285 (1997).

645 59. Wang, C. & Magnusdottir, G. ITCZ Breakdown in Three-Dimensional Flows. *J.*
646 *Atmospheric Sci.* **62**, 1497–1512 (2005).

647 60. Byrne, M. P., Pendergrass, A. G., Rapp, A. D. & Wodzicki, K. R. Response of the
648 Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. *Curr.*
649 *Clim. Change Rep.* **4**, 355–370 (2018).

650 61. Delworth, T. L. *et al.* SPEAR: The Next Generation GFDL Modeling System for Seasonal to
651 Multidecadal Prediction and Projection. *J. Adv. Model. Earth Syst.* **12**, (2020).

652 62. Roberts, M. J. *et al.* Projected Future Changes in Tropical Cyclones Using the CMIP6
653 HighResMIP Multimodel Ensemble. *Geophys. Res. Lett.* **47**, (2020).

654 63. Song, F. *et al.* Emergence of seasonal delay of tropical rainfall during 1979–2019. *Nat. Clim.*
655 *Change* **11**, 605–612 (2021).

656 64. Wodzicki, K. R. & Rapp, A. D. Long-term characterization of the Pacific ITCZ using
657 TRMM, GPCP, and ERA-Interim. *J. Geophys. Res. Atmospheres* **121**, 3153–3170 (2016).

658 65. Hersbach, H. *et al.* The ERA5 global reanalysis. *Q. J. R. Meteorol. Soc.* **146**, 1999–2049
659 (2020).

660 66. Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The
661 International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical
662 Cyclone Data. *Bull. Am. Meteorol. Soc.* **91**, 363–376 (2010).

663 67. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the Experiment
664 Design. *Bull. Am. Meteorol. Soc.* **93**, 485–498 (2012).

665 68. Mizuta, R. *et al.* Climate Simulations Using MRI-AGCM3.2 with 20-km Grid. *J. Meteorol.*
666 *Soc. Jpn. Ser II* **90A**, 233–258 (2012).

667 69. Yoshida, K., Sugi, M., Mizuta, R., Murakami, H. & Ishii, M. Future Changes in Tropical
668 Cyclone Activity in High-Resolution Large-Ensemble Simulations. *Geophys. Res. Lett.* **44**,
669 9910–9917 (2017).

670 70. Zhang, G., Murakami, H., Knutson, T. R., Mizuta, R. & Yoshida, K. Tropical cyclone
671 motion in a changing climate. *Sci. Adv.* **6**, eaaz7610 (2020).

672 71. Murakami, H. *et al.* Future Changes in Tropical Cyclone Activity Projected by the New
673 High-Resolution MRI-AGCM. *J. Clim.* **25**, 3237–3260 (2012).

674

675

Supplementary Materials for

676 Warming-induced Contraction of Tropical Convection Delays and Reduces Tropical

677 Cyclone Formation

678

679

680

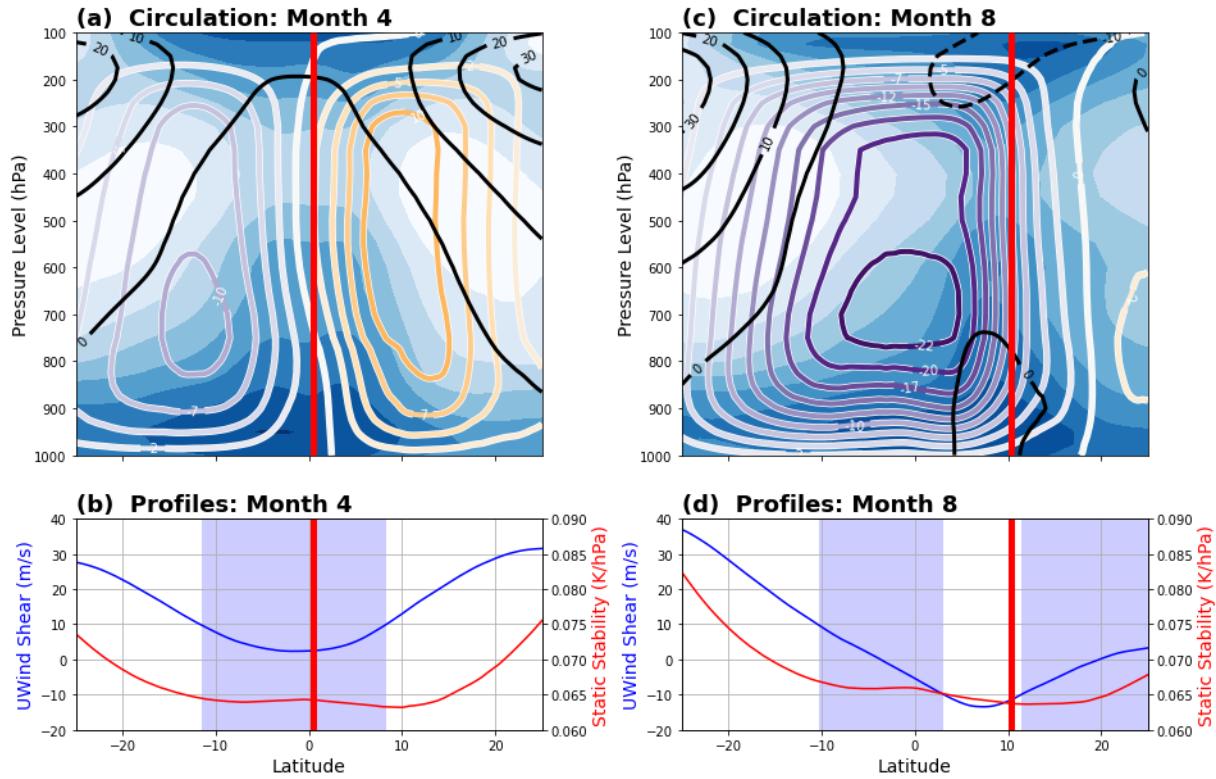
681 ¹Department of Atmospheric Sciences

682 University of Illinois at Urbana-Champaign

683 1301 W. Green Street, Urbana, IL 61801

684

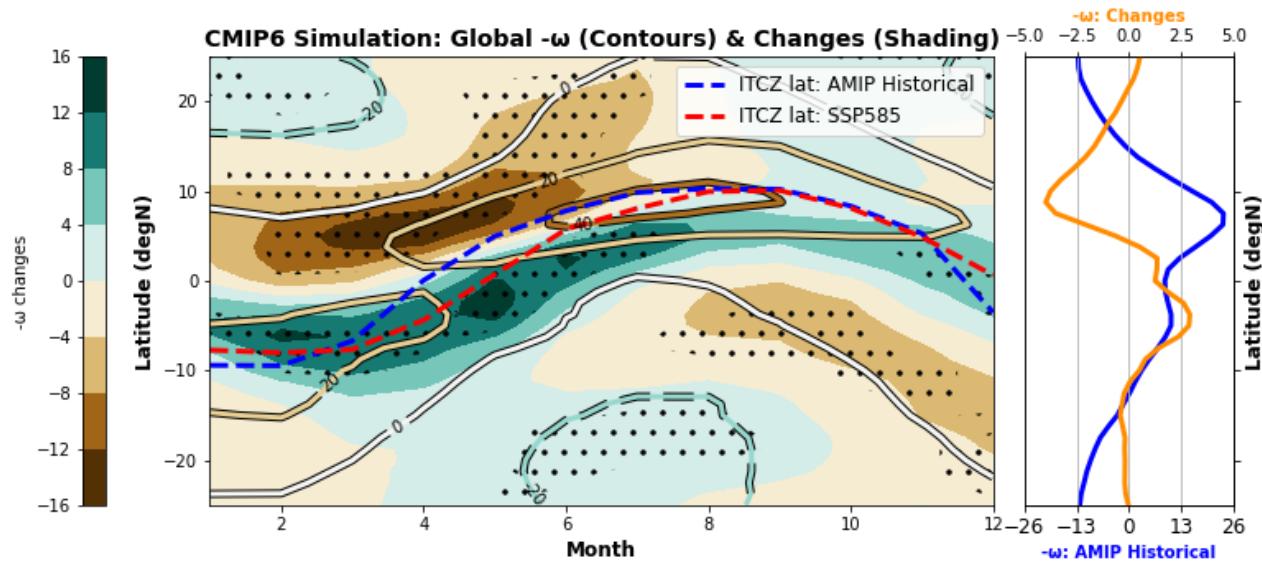
685


686

687 Corresponding Author

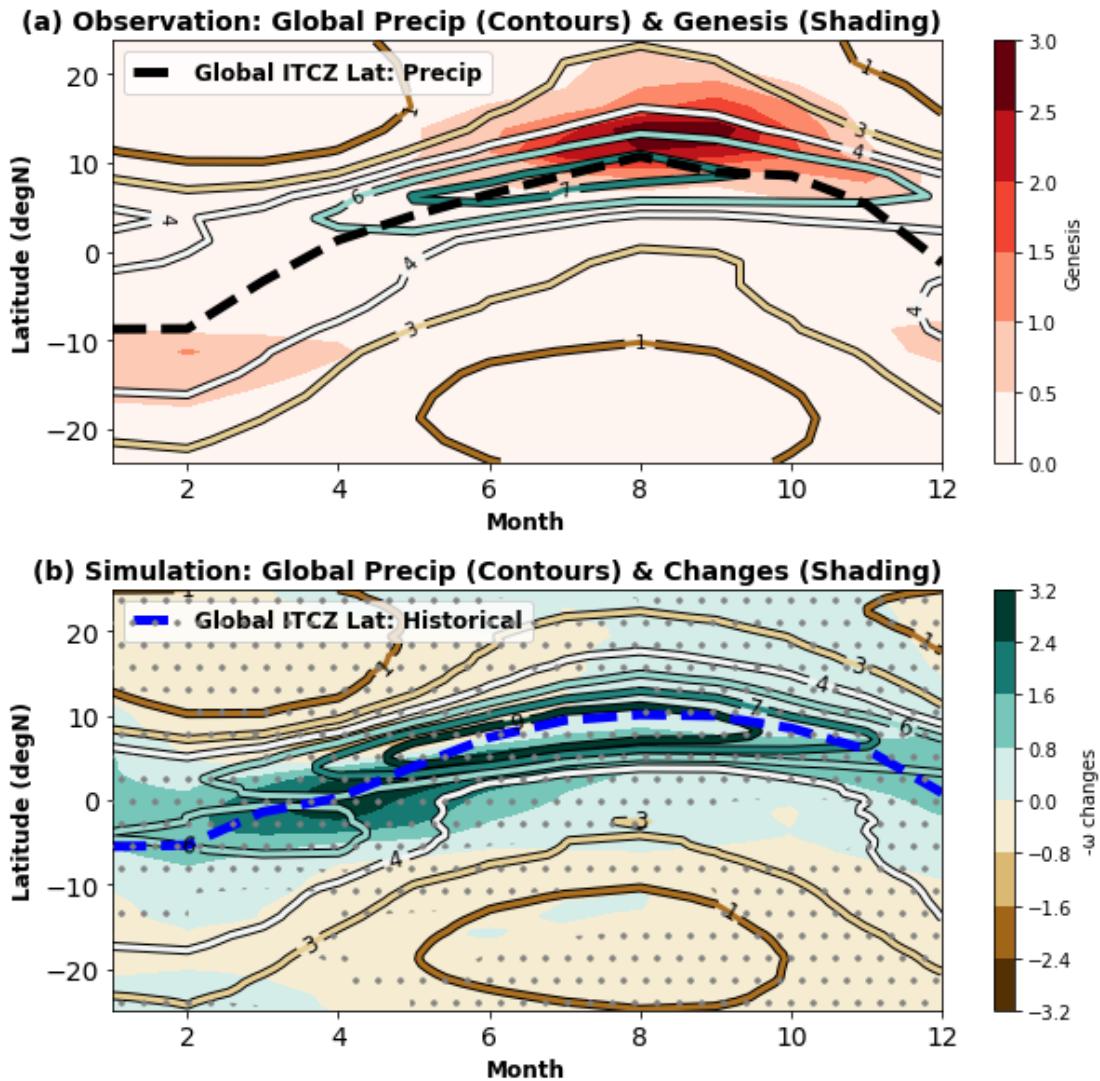
688 Gan Zhang (gzhang13@illinois.edu)

689


690

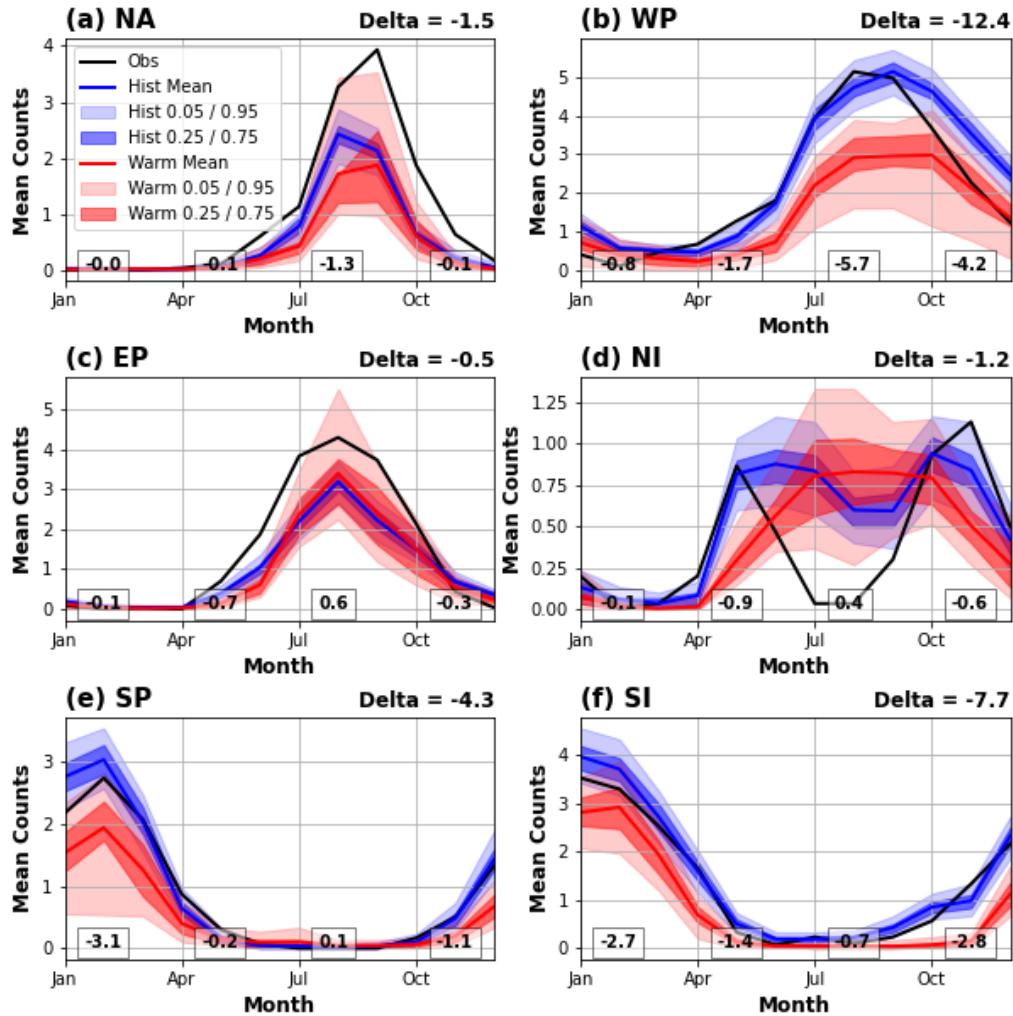
691

692 **Supplementary Figure 1** Seasonal variations of the Hadley Circulation and the zonally averaged
 693 large-scale environment. (a) April climatology (1981-2010) of the meridional mass streamfunction
 694 ($10^{10} \text{ kg s}^{-1}$; orange and purple contours), the zonal wind (m s^{-1}), and the relative humidity (%;
 695 blue shading). For the streamfunction, the positive values (orange) indicate clockwise motion, and
 696 the negative values (purple) indicates counter-clockwise motion. The meridional gradient of the
 697 streamfunction is proportional to the strength of vertical motion. The red line marks the latitude
 698 of the climatology ITCZ in the corresponding month. (b) April climatology of the vertical shear
 699 (blue) of zonal wind (200 hPa – 850 hPa) and the static stability (150 hPa – 850 hPa). The blue
 700 shading highlights the latitudes with the magnitude of wind shear smaller than 10 m s^{-1} . (c) Same
 701 as (a), but for August climatology. (d) Same as (b), but for August climatology.

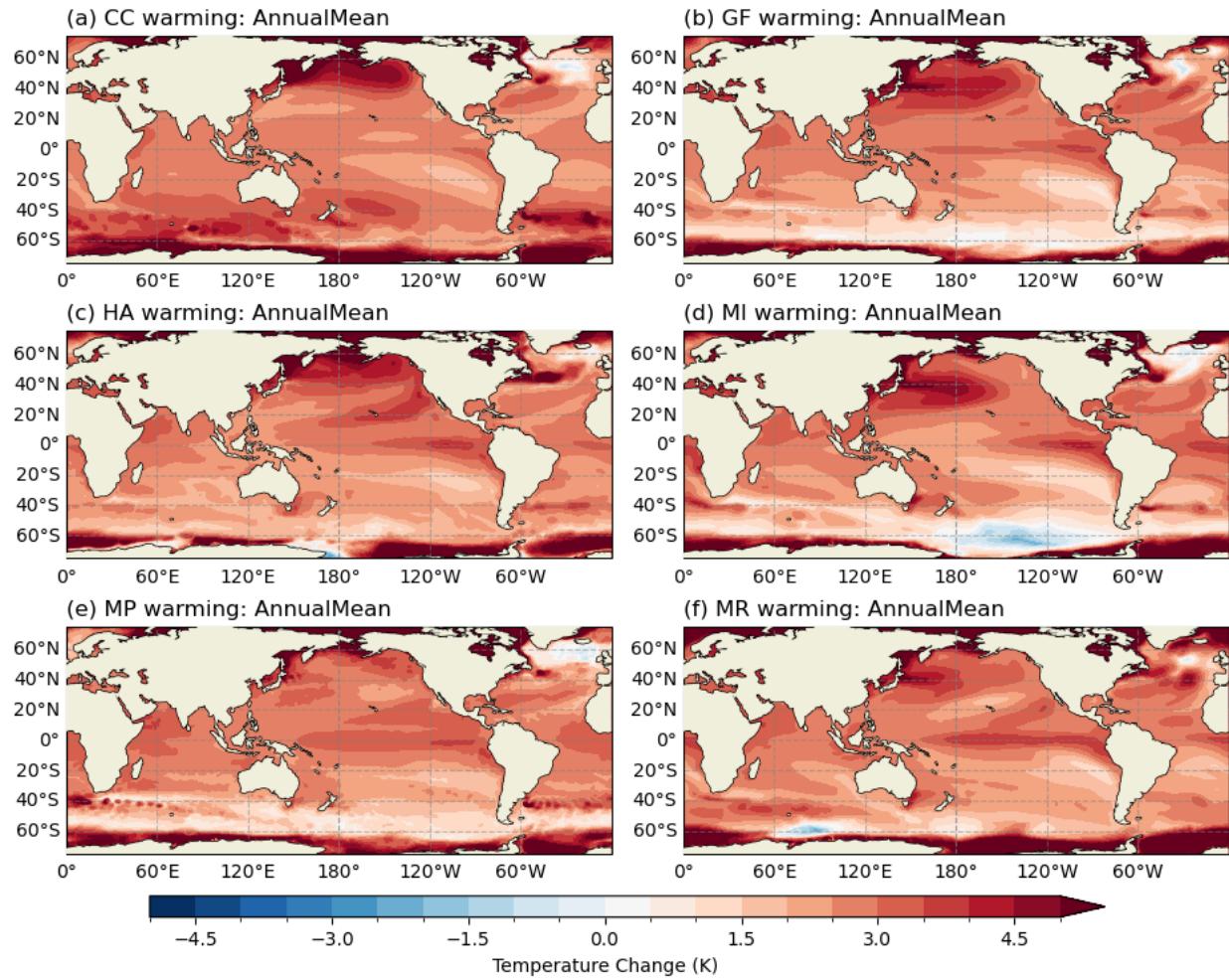

702

703

704 **Supplementary Figure 2** Same as Figure 1b, but for the convection changes simulated by twelve
 705 selected CMIP6 models (see Methods).


706

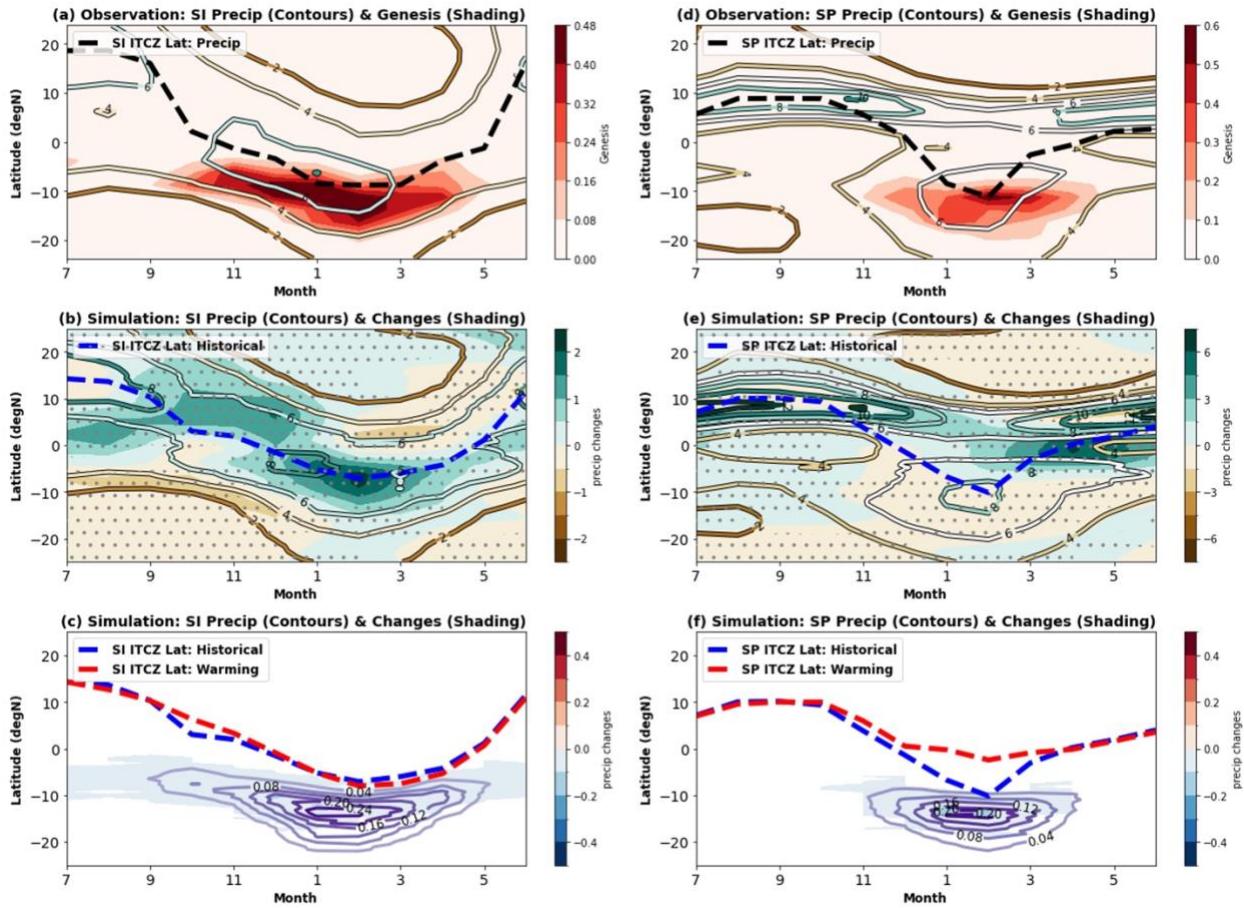
707


708 **Supplementary Figure 3** Same as Figure 1a-b, but with the vertical motion replaced with the
 709 precipitation (mm day^{-1}). The precipitation observation is the 2.5-degree gridded data from the
 710 *Global Precipitation Climatology Project (GPCP)* (Adler *et al.* 2003).

711

712

713 **Supplementary Figure 4** Seasonal cycle of TC activity in six basins. The TC frequency (yr^{-1}) in (a)
 714 North Atlantic, (b) Northwestern Pacific, (c) Northeastern Pacific, (d) North Indian Ocean, (e)
 715 South Pacific, and (f) South Indian Ocean is separately evaluated for the historical (blue) and the
 716 warming (red) experiments. The light and dark shading indicates the 5th-95th percentile range and
 717 the 25th-75th percentile range. The black solid line shows the observation values during 1981-2010.
 718 The changes in the annual TC frequency are denoted in the upper right of subplots. The changes
 719 aggregated over three-month periods (Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec) are denoted at
 720 the bottom of subplots.



721

722 **Supplementary Figure 5** Surface temperature differences between the historical (1981-2010) and
 723 4-K warming (2081-2110) simulations. The annual means of seasonally varying patterns that are
 724 scaled from the patterns of (a) NCAR-CCSM4 (CC), (b) GFDL-CM3 (GF), (c) HadGEM2-AO
 725 (HA), (d) MIROC5 (MI), (e) MPI-ESM-MR (MP), and (f) MRI-CGCM3 (MR). The strong warming
 726 in polar regions is related to sea ice melting.

727

728

729

730 **Supplementary Figure 6** Same as Figure 1 but showing the results in (a-b) the South Indian basin
 731 and (c-d) the South Pacific basin. The vertical motion is replaced with precipitation (mm day^{-1}).

732

733 Supplementary Reference

734 1. Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U.
735 Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin, 2003: The
736 version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis
737 (1979-present). *J. Hydrometeor*, 4(6), 1147-1167.