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Abstract—Present quantum computers are constrained by lim-
ited qubit capacity and restricted physical connectivity, leading
to challenges in large-scale quantum computations. Distributing
quantum computations across a network of quantum computers
is a promising way to circumvent these challenges and facilitate
large quantum computations. However, distributed quantum
computations require entanglements (to execute remote gates)
which can incur significant generation latency and, thus, lead to
decoherence of qubits. In this work, we consider the problem
of distributing quantum circuits across a quantum network
to minimize the execution time. The problem entails mapping
the circuit qubits to network memories, including within each
computer since limited connectivity within computers can affect
the circuit execution time.

We provide two-step solutions for the above problem: In
the first step, we allocate qubits to memories to minimize the
estimated execution time; for this step, we design an efficient
algorithm based on an approximation algorithm for the max-
quadratic-assignment problem. In the second step, we determine
an efficient execution scheme, including generating required
entanglements with minimum latency under the network re-
source and decoherence constraints; for this step, we develop
two algorithms with appropriate performance guarantees under
certain settings or assumptions. We consider multiple protocols
for executing remote gates, viz., telegates and cat-entanglements.
With extensive simulations over NetSquid, a quantum network
simulator, we demonstrate the effectiveness of our developed
techniques and show that they outperform a scheme based on
prior work by up to 95%.

I. Introduction

Present quantum computers have limited qubit capacity
and are susceptible to noise due to decoherence and gate
operations. Error-correcting codes can be used to overcome
noisy gate operations, but that results in a blowup in the
number of qubits, which further exacerbates the qubit capacity
hurdle. Distributing quantum computations over a network of
quantum computers (QCs) is a promising way to facilitate
large computations over current QCs. However, distributed
quantum computations require entanglements (to execute re-
mote gates) which can incur significant generation latency
and, thus, lead to decoherence of qubits. Thus, in this work,
we consider the problem of distributing quantum circuits
across a quantum network with the optimization objective of
minimizing the circuit execution time, which includes latency
incurred in generating the required entanglements to execute
the remote gates under decoherence constraints.

Distributing quantum circuits entails mapping the circuit’s
qubits to the quantum network’s qubit memories and intro-
ducing quantum communication operations to execute remote
gates (gates spanning multiple QCs). Thus, in our proposed
approaches, we first determine an efficient allocation of qubits

This work was partly supported by the National Science Foundation under
Award FET-2106447 and Award CNS-2128187.

Himanshu Gupta
Stony Brook University, NY

C. R. Ramakrishnan
Stony Brook University, NY

to memories in the computers such that the estimated estimated
execution time is minimized, and after having established the
mapping of qubits, we use efficient strategies to execute the
gates using required entanglements with minimum latency
under network resource and decoherence constraints. The
allocation of qubits to memories also entails mapping the
qubits within each computer since limited connectivity within
computers can affect the circuit execution time.

Prior Work. The problem of distributing quantum circuits
in quantum networks has gained significant attention in re-
cent years, resulting in the development of efficient solu-
tions tailored to various settings and objectives. However,
almost all works on distributing quantum circuits have focused
on the objective of minimizing the number of maximally-
entangled pairs (EPs) either by minimizing the number of cat-
entanglements [1, 13] or the number of teleportations [19, 24,
28]. In the work closest to ours, given an allocation of qubits to
computers, [8] minimizes the number of time slots to generate
EPs required to execute the remote gates; they make the
simplistic assumption that each EP’s generation takes a single
unit of time. In our work, we aim to comprehensively solve the
problem of the distribution of quantum circuits by considering
the optimization objective of minimizing the circuit execution
time under the network resource and decoherence constraints.
The circuit execution time must include generation latencies
of the required EPs, which must take into consideration
the stochasticity of the underlying processes; this makes the
problem particularly challenging and significantly different
Jfrom prior works on distributing quantum circuits. When
allocating the qubits to network memories, we also map qubits
to memories within each computer as limited connectivity
within computers also affects the circuit execution time.

Our Contributions. In this paper, we formulate the prob-
lem of distributing quantum circuits in quantum networks to
minimize circuit execution time under given constraints. We
address this problem in two steps, as below.

« For the first step of allocating circuit qubits to network
memories, we develop a heuristic scheme based on an
approximation algorithm for a special case of the well-
known maximum quadratic assignment problem. (§V).

« For the second step of developing an efficient execution
scheme for a given qubit allocation, we design the fol-
lowing algorithms.

— For the special case, when the consumption order of the
required EPs is total, we develop a provably optimal
dynamic programming approach; we generalize it to
the general case.
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Fig. 1: Quantum communication. (a) Teleportation, (b) Telegate, (c) Cat-Entanglement. Dashed Fig. 2: Swapping tree to generate remote EPs.
boxes are the network nodes; the initial (final) state of the qubits is at the top (bottom).

— For the special case, when the consumption order of the

required EPs is null, we develop a greedy heuristic with

appropriate performance guarantees under reasonable
assumptions; we generalize it to the general case.

When using cat-entanglements to execute remote gates,

we develop a scheme for selecting a provably near-

optimal set of cat-entanglements. (§VII)

« Finally, we demonstrate the effectiveness of our devel-
oped techniques by evaluating them on randomly gener-
ated circuits and known benchmarks and show that our
techniques outperform the prior work by up to 95%. (§I1X)

II. Background

Quantum Circuit Representation. We represent an abstract
quantum circuit C over a set of qubits Q = {q1,¢2,...} as a
sequence of gates (g1, go, ...) Where each g; is either binary
CNOT gate or a unary gate (a universal set of gates). We
represent binary gates as triplets (g;, gj,t) where ¢; and g,
are the two operands and ¢ is the time instant of the gate in
the circuit, and unary gates as pairs (g;,¢) where g¢; is the
operand and ¢ is the time instant.

Quantum Network (QN). A quantum network is a network
of quantum computers (QCs) represented as a connected graph
with nodes as QCs and edges representing (quantum and
classical) communication links. Each computer has a certain
amount of quantum memory to store the data/circuit qubits.

A. Distribution of Quantum Circuits over QNs

Given a quantum network (QN) and a quantum circuit,
we seek to distribute and execute the given circuit over the
network in a way that the execution incurs minimum time.
Distribution of a circuit over a network essentially entails two
aspects: (i) distributing the circuit qubits across the QCs/nodes
of the QN, and (ii) executing the “remote” binary gates (i.e.,
gates with operands on different QCs) efficiently.

Executing Remote Quantum Gates. To execute such remote
gates, we need to bring all operands’ values into a single
QC via quantum communication. Since direct transmission
of qubit is subject to unrecoverable errors, we consider the
following ways to communicate qubits across network nodes.

Teleportation. An alternative approach to physically transmit
a qubit from a node A to B is via teleportation [3] which
requires an a priori distribution of an EP over A and B. See
Fig. 1(a). Teleportation can be used to bring operands of a
remote gate to a single QC for local execution.

Telegates. One way to execute remote gates without commu-

nicating the gate operands are via the telegate protocol [8].
The telegate protocol (see Fig. 1(b)) is a sequence of local
operations that effectuates the execution of a remote CNOT
gate with operands at nodes A and B; the protocol requires
an a priori distribution of an EP over A and B.

Cat-Entanglement: Creating “Linked Copies” of a Qubit. Yet
another approach to execute remote gates is by creating linked
read-only copies of a qubit across QCs via cat-entanglement
operations [11, 27]. Creating a linked copy of a qubit ¢ at node
A to a node B requires a priori distribution of an EP over A
and B. See Fig. 1(c). The linked copy at B can be used to
execute binary gates where ¢ is the (read-only) control qubit,
until a unary operation needs to be executed on g. When a
unary operation needs to be executed on ¢, a disentanglement
operation is done, which destroys the linked copies, and then,
the unary operation can be done on the original qubit g at A.

Teleportation vs. Telegates vs. Cat-Entanglements. First, ob-
serve that each of these three communication protocols re-
quires a single EP. Teleportation transports the qubit operand
to the computer where the gate is executed. In contrast,
the telegate protocol executes a remote gate without moving
qubits. The main advantage of cat-entanglement is that one
cat-entanglement (and, thus, one linked copy) can some-
times be used to execute several binary gates; however, cat-
entanglements are best used for circuits with only CZ binary
gates (see §VII). This paper considers both telegates and cat-
entanglements (§VII) for executing remote gates. The use of
teleportations leads to dynamic qubit allocation (see §III),
which requires more a sophisticated problem formulation and
solution, and is thus deferred to our future work.

B. Generating EPs over Remote Nodes

Each of the above communication modes requires an apriori
distributed EP. One simple way to have an EP distributed over
nodes A and B is to generate an EP locally (at some node)
and transport the qubits to A and B respectively; however, this
involves direct communication of qubits, which may not be
feasible due to irrecoverable errors over large distances. To cir-
cumvent this challenge, to distribute an EP over remote nodes,
we generate EPs over larger and larger distances from shorter-
distance EPs using a sequence of “entanglement-swapping”
operations. An entanglement swapping (ES) operation can be
looked up as being performed over three nodes (A, B, C') with
two EPs over (A, B) and (B, C); the ES operation results in
an EP over the nodes (A, C), by essentially teleporting the



first qubit in node B (i.e., the qubit of the EP over (4, B)) to
the node C' using the second EP over (B, C). In general, an
EP over a pair of remote nodes A and B can be generated by
a sequence of ES operations over the EPs over adjacent nodes
along a path from A to B. For example, see Fig. 2 which
shows a “swapping” tree to generate an EP over (zg, x5) using
EPs along the path xg,x1, x2, T3, T4, x5. Different swapping
trees over the same path P can incur different generation
latencies [14].

Generation Latency of EPs. The stochastic nature of the ES
operations means that an EP at the swapping tree’s root is
successfully generated only after many failed attempts; thus
the generation of an EP incurs significant generation latency.
To generate a set of EPs concurrently, we need to allocate the
network resources appropriately to each EP’s generation.

C. Decoherence and Fidelity

Fidelity is a measure of how close a realized state is to the
ideal. The fidelity of a quantum state decreases over time due
to interaction with the environment and gate operations. Time-
driven fidelity degradation is called decoherence. To bound
decoherence, we limit the aggregate time a qubit spends in a
quantum memory before being consumed by the decoherence
threshold of T seconds. We address fidelity degradation by
using entanglement purification [4] techniques which entails
using multiple copies of an EPs to improve its fidelity.

III. Problem Formulation and Related Work

We start by defining some terms and models before moving
on to the problem formulation.

Qubit-Allocation Function. Let the set of network nodes/QCs
in the given quantum network be P = {P, P,,..., Py},
where each QC P; is equipped with a set Q(F;) of qubit
memories for data storage. For a given quantum circuit C, let
Q(C) be the set of qubits in C. To execute a circuit over a
quantum network, we must first distribute the circuit qubits
over the qubit memories in the network nodes. To that end,
we define the qubit allocation function 1 as the function that
maps the circuit qubits Q(C) to the network qubits | J, Q(F;),
ie,n:Q(C)— U, Q(F;); the qubit-allocation function must
be one-to-one, i.e., only one circuit-qubit can be mapped to a
qubit memory in the network.

Remote and Local Gates. For a given circuit C' and a qubit
allocation function 7, a gate (¢;,¢q;,t) in C is considered to
be remote if q; and q; are assigned to different computers by
the qubit allocation function, i.e., 7(¢;) € Q(P;) and n(g;) €
Q(Pj) where i # j. Every gate that is not a remote gate is
considered a local gate.

Coupling Graph; Executing Local Gates Using Swaps. In
realistic quantum computer hardware, quantum gates can be
executed only over those qubit operands that are in memories
located “close by.” To characterize this limitation, we use a
concept of coupling graph U, over the set of qubits, Q(F;)
for each computer P;; an edge (m,,my) in U; signifies that
the memories m, and m; are located close by that qubits in

them can be operated upon directly using a binary gate. If two
qubits g. and ¢g are in far away memories m. and my within
a computer P;, then to execute a gate (¢c, qq,t), we need to
move the qubits close-by through a series of swap operations.
In particular, we assume that the swaps are done along the
shortest path connecting m. and mg, and thus, number of
swaps needed is equal to the shortest path length between m,.
and my in the coupling graph U;.

Enforcing Static Qubit-Allocation Function. In general, the
qubit-allocation function may change during the circuit execu-
tion due to teleportations and/or swap operations. However, to
simplify algorithm design and analysis, we enforce the qubit
allocation to be fixed throughout the circuit execution; we
relax this enforcement in our implementation and evaluations
(§IX). This enforcement of static qubit allocations entails the
following:

1) We don’t need to consider teleportations to execute
remote gates, as they would incur double the cost than
telegates, as the qubits will need to be teleported back and
forth. Thus, to execute remote gates, we use telegates or
cat-entanglements (§VII).

2) For the execution of local gates that require swaps, we
reverse the sequence of swap operations after the gate
execution to preserve the qubit allocation function. We
relax this in our evaluations.

We now formulate the problem of distributing quantum circuits
in quantum networks with minimum circuit execution time
under given constraints.

Distributed Quantum Computation and Routing (DQC-QR)
Problem. Given a quantum network and a quantum circuit C,
the DQC—QR problem is to distribute and execute C' over the
given network with minimum execution time under the net-
work constraints (in particular, memory at each network node,
EP generation resources, and decoherence). The DQC-QR
problem entails (i) finding a qubit-allocation function, which
remains fixed throughout the circuit execution (see above), and
(i1) an execution scheme involving the execution of local and
remote gates, such that the total circuit execution time is mini-
mized. As discussed above, executing local gates may involve
swaps, while executing remote gates requires communication,
which requires EPs to be generated, as discussed below.

The DOC-QR problem can be shown to be NP-Hard by a
reduction from the min quadratic-assignment problem [21].

Key Challenges: Qubit-Allocation, Generation Order of EPs.
The key initial task of the DOC—-QR problem is to determine
the qubit-allocation function that facilitates a minimum-time
execution scheme. Now, given a qubit-allocation function, the
resulting set of remote gates determines the EPs that need
to be generated. Without decoherence (and minimal/zero
gate and swap latencies), the desired EPs can be generated
at the start of a circuit execution in any order. However, in
the presence of decoherence, the required EPs need to be
generated in an appropriate order—so that each generated




q,® ® .
D

q, -

Qg e QET ,

(a)

Fig. 3: DQC—-QR Problem Example 1. (a) Quantum circuit, with the remote gates (based on the qubit allocation in (b)) colored and labeled
with the EPs required. (b) Qubit allocation over the quantum network. (¢) Execution scheme, i.e., the batches and order in which the required
EPs are generated; the colored paths in (c) represent the entanglement routes along which the corresponding EPs are generated.

EP can be consumed before decohering.! In the case of non-
zero gate execution and swap latencies, generation of EPs can
also be overlapped with swap and gate operations to minimize
overall execution time. In summary, the key challenges in
solving the DQC—-QR problem are to determine an efficient
qubit-allocation function and an execution scheme; the latter
largely involves determining when and how to generate the
required EPs.

Example 1. Fig. 3 shows an instance of the DQC—QR problem,
with the input circuit of five qubits in Fig. 3 (a). The colored
gates (non-black) represent remote gates based on the qubit al-
location over a quantum network shown in Fig. 3(b). Fig. 3(b)
doesn’t show the coupling graph within each network node,
for the sake of clarity, as each node only holds at most two
qubits. Fig. 3 (c) shows one possible execution scheme for
the given qubit allocation: Execute the EPs in three batches
in order: {e1, ea, e3,e4}, {€5, €6, €7}, {€s }; within each batch,
the EPs can be generated concurrently. As EPs get generated,
they are consumed to execute the corresponding remote gates.

A. Related Work

The DOC-QR problem is related to two studied problems,
viz., Distributing Quantum Circuits and the Qubit Routing. We
discuss these below, then discuss the work closest to ours.

Prior Work on Distributing Quantum Circuits (DQC) Problem.

The DQC problem is to distribute a given quantum circuit
over a quantum network with some optimization objective. In
contrast to our DQC—-QR problem, the DQC problem ignores
the coupling graphs within each computer [1, 9, 13, 19], and
thus, the swap operations needed. The optimization objective
used in almost all of these works has been to minimize
the communication cost—defined as the number of EPs
used; a couple of recent works [17, 18] consider EPs with
arbitrary (but fixed) cost and develop a simulated-annealing
heuristic for the qubit-allocation part of the DQC problem.
Our schemes in this work use a similar two-step strategy
as some [13, 24, 25] of the DQC works, but otherwise
differ significantly as we need to consider the stochastic and
concurrent generation of required EPs to minimize execution
time, and the coupling graph; we also consider telegates to
execute remote gates while the two-step DQC works consider
entanglements [13, 25] and/or teleportations [24, 25].

Prior Work on Qubit Routing (QR) Problem. The QR problem
considers limited connectivity across memories within a single

Note that the order of gates in the given circuit imposes a consumption
order on the EPs which, in turn, imposes a generation order on EPs and may
also require them to wait before being consumed.

QC and entails finding an allocation of circuit qubits to qubit
memories, followed by a minimal sequence of swap operations
to execute the circuit gates. Most QR works [16, 23, 29] first
find an initial allocation of circuit qubits to memories and
then add swap gates as needed. The optimization objective
is to minimize the number of swap operations or the circuit
depth overhead. Some works [5, 7, 22] have used subgraph
isomorphism to obtain high-quality qubit allocations followed
by token-swapping heuristics to determine a near-optimal set
of swap operations. Our work generalizes the QR problem by
considering a network of QCs, and thus, needs to address the
generation of EPs as well as swap operations. We note that
our treatment of qubit routing is limited as we keep the qubit
allocation fixed (this is relaxed in our evaluations (§IX).

Prior Work on Our DQC—QR Problem. The works closest to
ours [8, 12] address the DQC—QR problem with some limita-
tions and differences. In particular, [12] focuses on estimating
only the worst-case overhead in executing a circuit over a net-
work, by the worst-case linear network topology; the overhead
considered is in terms of an increase in circuit “layers” and
EPs required to execute remote gates. In the closest work that
inspires this work, [8] focuses on the efficient execution of
remote gates using telegates, given a qubit allocation (they
consider qubit allocation to be out of the scope of their
work), to minimize the number of circuit layers; they assume
generation latency of each EP to be uniform (one time slot),
and ignore decoherence constraints. In §IX, we compare our
approaches with their approach (supplemented with our qubit-
allocation strategy). The main difference between our work
and [8] is that we consider qubit-allocation and the stochastic
generation of EPs under decoherence and network resource
constraints. We also consider cat-entanglements for executing
remote gates, which result in significant performance improve-
ment, as demonstrated in our evaluations.

IV. High-Level Approach

In the previous section, we formulated the DOC—QR problem
as distributing a given circuit over a given network with
minimum execution time. As mentioned above, the key chal-
lenges or subproblems in solving the DQC—-QR problem is
to determine the qubit-allocation function and the execution
scheme such that the execution time is minimized. Thus, it is
natural to tackle the DOC-QR problem as a sequence of two
steps, similar to the approaches taken in prior works on the
similar problem of distributing quantum circuits [13, 24, 25].
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1) Determine the Qubit-Allocation Function. In this step,
given the quantum circuit and the quantum network, we
determine the qubit-allocation function that will yield an
execution scheme in the second step with minimum total
circuit execution time.

2) Determine the Execution Scheme, Given the Qubit Allo-
cation. In this step, given a qubit-allocation function for a
given circuit, we determine the execution scheme—which
largely entails determining when and how to generate the
EPs required to execute the remote gates. Local gates are
executed using appropriate swap operations.

We discuss the above steps in the following sections. See Fig. 4
for the overall plan and organization of the following sections.

V. Step 1: Determining Qubit Allocation Function

In this section, we design an algorithm for determining
a qubit-allocation function to yield an efficient execution
scheme. We start with formally defining the qubit-allocation
problem and show that it is NP-Hard to approximate within
a constant factor. Then, we design an algorithm for qubit
allocation based on a 4-factor approximation algorithm for a
special case of the related quadratic-assignment problem.

Qubit-Allocation Problem Formulation. Informally, the
qubit-allocation problem essentially maps a circuit graph (de-
fined over circuit qubits, with edge weights representing the
number of gates between the qubit-pairs) onto a network-
coupling graph (defined over network memories, with edge
weights representing the cost of executing a gate over the
qubits in the corresponding network memories); the optimiza-
tion objective is to minimize an appropriately defined cost of
the mapping. In effect, we want to map the circuit qubits to
network memories so that qubit-pairs with more gates between
them are mapped to memories that are “close by”; this can be
formally captured by defining a mapping cost as the weighted
sum of the product of the weights of the edge pairs that map
to each other in the mapping. We formalize the above intuition
below by defining the input graphs and the problem.

Circuit Graph G¢. The circuit graph is an edge-weighted
graph defined over the set of qubits Q(C') of a given circuit

C with weight w(g;,q;) associated with an edge (g¢;,q;)
representing the number of (binary) gates in C' over the qubits
q; and q;.

Network-Coupling Graph G . The network-coupling graph is
an edge-weighted graph defined over the set of qubit-memories
J; Q(P;) in the given quantum network with QCs {FP;}.
The weight w’(m,,my) associated with an edge between two
memories (mg,my) is defined as follows.

o If my, and m; are in the same computer P;, then the
weight is the product of swap-operation latency and twice
the shortest distance between m, and my in the coupling
graph U; of P;; note that this represents the time to
execute the gate over qubits in m, and m; using swap
operations.

e If m, € Q(P;) and m, € Q(P;), then the weight
on the edge (m,,my) is the latency of (independently)
generating an EP over network nodes P; and P;.

For the sake of simplicity, the above weighting of the network-
coupling graph assumes that each EP is generated indepen-
dently. However, when we actually generate the EPs in the
following step (Step 2 discussed in §VI), we generate them as
concurrently as possible. We now formally define the qubit-
allocation problem.

Qubit-Allocation Problem Formulation. Given a quantum cir-
cuit C' and a quantum network, the qubit-allocation problem
is to determine a mapping 7 : Q(C) — |J,; Q(F;) from the
circuit qubits to the qubit-memories of the given network, such
that the mapping-cost cost(n), defined as below, is minimized.

cost(n) =324, gseac) (e, ;) x w'(n(ai), n(g;))

The qubit-allocation problem can be shown to be NP-Hard
by a reduction from the well-known minimum quadratic
assignment problem (min-QAP) [21]. In addition, by the
same reduction, it can also be shown that there is no constant-
factor polynomial-time approximation algorithm for the qubit-
allocation problem unless P=NP.

Below, we design an algorithm to solve the qubit-allocation
problem. We start with a formal definition of the min-QAP
problem since our designed algorithms are based on it.

Minimum Quadratic Assignment Problem. Given two n X n
matrices A and B, the min-QAP problem is to permute
the rows/columns in B such that the sum of the product
of the matrix elements is minimized. More formally, the
goal is to find a permutation (a one-to-one mapping) P :
{1,2,...,n} — {1,2,...,n} to minimize the following
quantity: >, o, o, Ali, j]B[P(i), P(j)].

Qubit-Allocation Algorithm Based on Quadratic-
Assignment. The qubit-allocation problem is quite similar
to the minimum quadratic assignment problem (min-QAP)
defined above, except that the min-QAP problem requires
the two input matrices/graphs to be complete and of equal
sizes. Moreover, the min-QAP problem is known to be
inapproximable within any polynomial factor [21] (unless
P = NP), but the maximum quadratic assignment problem
(max-QAP) has a 4-factor approximation algorithm when



one of the graphs satisfies the triangular inequality [2].
Based on the above, we design an efficient heuristic for our
qubit-allocation problem as follows.

Let C' be the given quantum circuit with G¢ as the corre-
sponding circuit graph. Let G be the network-coupling graph
of the given quantum network. Without loss of generality, let
us assume that the size of G¢ (i.e., the number of circuit-
qubits |Q(C)|) is less than the number of qubit-memories in
the network. Our qubit-allocation algorithm is:

(a) Add dummy nodes and edges to G¢ to create a new
graph G, which is the same size as the network-coupling
graph G . In particular, we add an appropriate number of
dummy nodes to G¢ and connect these nodes with edges
of zero weight to the original nodes in G¢. We also add
edges of weight zero between all pairs of dummy nodes.

(b) Create a new graph G¢ by replacing each edge-weight
w(gi,qj) with M — w(g;, ¢;), where M is a sufficiently
large number (e.g., equal to the total sum of edge-weights
in G¢). This change of weights converts the minimiz-
ing mapping-cost problem in G{, to the maximizing
mapping-cost problem in G7.

(c) Solve the max-QAP over the input graph G, and Gy
using the 4-approximation algorithm for max-QAP.

Theorem 1: The 4-approximation max-QAP algorithm
from [2] returns a 6/p-approximate solution for the max-
QAP problem over /c/‘ and G ; here, p is the entanglement-
swapping’s success probability.

PROOF: (Sketch) First, we show that the edge weights in G
satisfy the triangular inequality within a constant factor. If m;
and m; are memories in a computer P, then w’(m;, m;) <
w'(mi, my) + w'(mg, m;) for any memory my, in P since
w’(m;, m;) is the time to perform swaps along the shortest
path between m; and m;. If m; and m; are in different
computers P, and P, then, for any my € Ps, we have [14]:
w'(mi, my) < 3/(2p)(w'(ms, mi) + w'(m, my)),
since an EP over (P, P») can be generated using EPs over
(P2, P3) and (Py, P3). The 3/(2p) factor above, when incor-
porated in the analysis for the 4-approximation result from [2],
yields the 4(3/(2p)) = (6/p) approximation factor. [ |

We note that our overall qubit-allocation algorithm (i.e., (a)-
(c) above) is still a heuristic since the conversion from the min-
QAP to max-QAP does not preserve the approximation factor;
however, the algorithm performed well empirically (§1X).

VI. Step 2: Executing Remote Gates by Generating EPs

Step 1, discussed in the previous section, determines the
qubit allocation function, which, in turn, determines the set
of remote gates that need to be executed using quantum
communication mechanisms. In this section, we use telegates
to execute remote gates (we consider cat-entanglements in
§VID); since telegates require an a priori EP distributed over
the nodes/QCs that contain the gate operands—for each remote
gate, we need to generate an EP over the pair of nodes that
contain the gate operands. For simplicity, we assume the swap
and gate execution latencies to be zero (i.e., negligible com-
pared to the EP generation latencies); we relax this assumption

eme(—\ /\e{\elfi
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Fig. 5: Consumption order of EPs required in Example 1. A directed
edge from e; to e; indicates e; must be consumed before e;.

in §VIIL. Under the above assumption, given a qubit allocation,
the problem of executing the given circuit with minimum
execution time essentially boils down to generating (possibly,
concurrently) the required EPs in minimum total latency
(under the constraints of consumption order and decoherence
thresholds, as discussed below). We start by considering the
simpler case when there is no decoherence.

Generating EPs When No Decoherence (GenerateEPs).
Let us use £ to denote the set of EPs required to be generated
for a given qubit-allocation function. Without decoherence
constraints, Step 2 of our approach boils down to generating
the EPs in £ with minimum total latency. This is because if all
the EPs in £ can be generated in total time 7', then the total
circuit can also be executed in 7" as all the circuit gates can
be executed instantly right after all the EPs are generated; the
converse is also true, i.e., if the circuit execution time is 7,
then it implies that the total generation latency of all the EPs
in & is less than 7. To generate a set of EPs £ concurrently
with minimal total latency without decoherence, we use the
linear programming (LP) approach from [15] that generates
a set of desired EPs using swapping trees with a maximum
total generation rate. In our context, since we are interested
in only generating a specific set of EPs with a minimum total
latency, we modify the LP appropriately after each EP has
been generated successfully. We refer to the above procedure
to generate a set of EPs concurrently as GenerateEPs.

Generating EPs under Decoherence Constraints. If there is
decoherence, EPs can decohere while and after (as they wait to
be consumed) being generated. In particular, decoherence may
require that we partition £ into subsets of EPs (called batches)
with each batch generated independently—as generation of the
entire set £ concurrently may result in some EPs having a
generation latency of more than the decoherence threshold 7.
Once the set £ has been partitioned appropriately into batches,
the batches need to be generated (with each batch generated
independently) in an appropriate order to prevent EPs from
decohering. This is because if we generate the batches in an
arbitrary order, then some already-generated EPs may have
to wait for other EPs to be generated and consumed before
being consumed, leading to the waiting EPs possibly getting
decohered. For example, for the example in Fig. 3, consider
two batches of EPs: &1 = {e1,ea,e5} and Eo = {e3, e4,€6}.
Based on the consumption order (formally defined below) in
Fig. 5, if £; is generated before £5 then e; € £; will need to
wait for e3 € €5 to be generated and consumed, before e5 can
be consumed. In this case, even generating £, before £; will
lead to an EP waiting for another. In general, partitioning &
into batches and the order in which these batches are generated
depends on the consumption order constraints between the
EPs, which comes from the order of the corresponding gates



in the circuit. Below, we formally define the consumption
order over &, problem formulation of generating £ under given
constraints, and then present our approaches.

Consumption Order C over EPs. Consider the set of EPs &
that must be generated to execute the remote gates for a given
qubit allocation. The consumption order C over the EPs in £
is defined as follows. For E;, E; € £, we have E; < Ej if
the gate g; and g; in C corresponding to the EPs F; and E;
are such that they share an operand and g; occurs before g;
in C. In addition, C is closed under transitive closure, i.e., if
E; < FE; and E; < Ey, then F; < Ej. Note that the order C
is a strict partial order; in particular, for no F;, F; < E;.

Generation of EPs under Decoherence (GED) Problem.
Given a set £ of EPs with a consumption order C, the
EG problem is to partition the set £ into subsets/batches
E1,E9,...,& (generated in that order) such that (i) each
subset £; has a total generation latency of at most 7, and
(ii) the total circuit execution latency is minimized, assuming
the batches are generated in the order £,,&2,...,&; and we
use the GenerateEPs procedure to generate each batch.

No-Wait Property of GED Solutions. A GED  solution
E1,E2,...,& satisfies the no-wait property if for all
E;,E; pairs of EPs in &, if E; < Ej, then E; € &; and
E; € £; such that + < j. For example, for Fig. 5, the GED
solution {e1, ea, e3,e4}, {€5, €6, €7}, {es} satisfies the no-wait
property. GED solutions with the above no-wait property
ensure that the circuit execution time equals the sum of the
generation latencies of the batches. Note that, in general, if
the no-wait property is not satisfied, then the total circuit
execution latency can be more than the sum of the generation
latencies of the batches due to some already-generated
EPs waiting for other EPs to be generated. Our designed
approaches return solutions with the no-wait property.

In the following subsections, we develop dynamic program-
ming (DP) and greedy approaches for the GED problem. The
motivation behind our approaches is: (i) If the consumption
order C is total, then an optimal approach based on DP can be
designed. (ii) If no consumption order exists over EPs, then
a greedy approach with performance guarantees under certain
reasonable assumptions can be designed. Both approaches can
be generalized for general partial consumption orders.

A. Dynamic Programming (DP) for Generating EPs

Here, we provide a dynamic programming (DP) algorithm
for the GED problem; the DP algorithm is optimal for the
special case when the consumption order C is total. We start
with presenting the DP algorithm for the special case when the
consumption order C is total; we then generalize the algorithm
for the general C later.

Optimal DP Algorithm when C is Total. Let the set £
of required EPs be {E1, Fs,...,E,} and without loss of
generality, let the consumption order C be F; < FEj; <
FEs--- < FE,, and thus, be a total order. First, we observe
(see Lemma 1 below) that, if the consumption order C is
total, then there is an optimal GED solution that partitions

£ into “contiguous” batches—i.e., each batch is of the type
{EiaEi+laEi+2 .. ~Ej—17Ej} for 1 < 7 < j <m.

Lemma 1: Consider a GED problem for a set of EPS &£ =
{F1,Es,...,E,} and a total consumption order C as E; <
FEy < F5--- < E,,. There exists an optimal GED solution
where each batch is a contiguous set of EPs. [ ]

Based on the above Lemma, finding the optimal GED
solution for £ with a total order C is tantamount to partitioning
£ into contiguous batches such that (i) each batch has a
generation latency of less than the decoherence threshold T,
and (ii) the sum of generation latencies of the batches is
minimized. Such an optimal partition of £ can be found using
a dynamic programming approach as follows. In particular,
let us define S; be the optimal partitioning of the subset
{E1, Es,...,E;} of EPs into contiguous batches such that
(1) each batch has a generation latency of less than 7, and
(i) the sum of the latencies of the batches is minimum. Let
S[j] be the sum of generation latencies of the batches in S;.
Also, let L;; be the total generation latency of the set of
EPs {EZ‘,EZ‘+1,EZ‘+2...E]‘_17EJ'} (1 S 1 S _] S m) when
generated independently using the procedure GenerateEPs.
Then, we have:

S[1] = Ln

S[il = minijicj and L, <r Si] + Lij
Using the above recursive equation, we can compute S[j] (and
the corresponding partitioning .S;) for all j, which yields the
optimal solution S;, of the GED problem for £.

Theorem 2: The above DP algorithm yields an optimal GED
solution when C is total. ]

DP Algorithm for General C. To generalize the above DP
algorithm for a general consumption order C, we first create
a “topological sorting” of the EPs using the “edges” in C
and then run the DP algorithm over the sorted/sequenced EPs.
More formally, given a set of EPs £ and a consumption order
C over them, we first order and rename the EPs in &£ as
(Er, Es, ..., Ey) such that for all E;, E;, if E; < Ej; then
7 < j. Note that such an ordering is always possible since the
consumption order C is a strict partial order (i.e., the C relation
is acyclic). There are many such orders possible, and we pick
any such order. After ordering the EPs as above, we run the
above DP algorithm over the ordered list (Eq, Es, ..., E,,)
to determine the GED solution. It is easy to see that the DP
solution satisfies the no-wait property, even for the general C.

B. Greedy Approach for Generating EPs

We now design a greedy algorithm for the GED problem.
We start by considering the special case when C is null.

Greedy’ : Greedy Algorithm when C is Null. For the special
case when C is null, at a high-level, the greedy algorithm itera-
tively picks a batch of EPs (from the remaining EPs in £) with
the lowest average latency. It can be shown that such a greedy
algorithm would deliver an O(log(n))-approximate solution,
where n is the number of gates. However, determining the
batch that has the minimum average latency is NP-hard; thus,
within each iteration, we use an (inner-level) greedy approach



to determine the batch with near-minimum average latency. We
now present our greedy approach (called Greedy’ ) in more
detail, and and present performance guarantee results. Let
E ={F,..., Ey,} be the set of EPs that need to be generated
as an input to the GED problem, and the consumption order C
be null. Then, our proposed Greedy’ algorithm is as follows.
Greedy’:
1) Let S = &, the set of remaining EPs.
2) i = 1. /* The below generates the batch &; */
3) Initialize £, = E, where E is the EP in S of lowest
latency.
4) Initialize S’ = S.
5) For k = 1 to |S|: /* Tteratively remove an EP E from
S’ that reduces the latency of remaining S’ as much as
possible. Update &; to S’, if needed.*/

a) Remove the EP E from S’ that reduces its latency
the most. That is, pick an E in S that minimizes
Latency(S’ — {E}).

b) §'=5"—{E}.

¢) If S’ has latency less than 7 and has lower average
latency than &;, then £&; = S’.

6) S=5-¢&,.

7) If S = {} RETURN &4, &o,..

and Go to Step #3.

We use GenerateEPs procedure to determine the total
latency of any set of EPs in the above Greedy’ algorithm.
Note that since C is null, the Greedy’ solution trivially
satisfies the no-wait property; hence, the circuit execution time
equals the sum of the latencies of the batches in the solution.

.,&;, ELSE Increment 3

Performance Guarantee Results. We make the following
observations (we omit the proofs here). (i) If, in each iteration
above, &; is indeed the subset of EPs with the lowest average
latency, then the Greedy’ approach delivers an O(log(n))-
approximate solution. (ii) If the GenerateEPs procedure
corresponds to a submodular function, then, in each iteration,
the selected &; is such that, for a given |€;], (S—&;)’s latency
is at least 63% of the maximum possible. In other words, the
&; is derived by removing a near-optimal set of EPs from S.

Greedy: Greedy Approach for a General C. The Greedy’
algorithm can be generalized to a general consumption order
C. The key goal of our generalized algorithm (called Greedy)
is to preserve the no-wait property of the solution so that the
circuit execution time doesn’t include additional wait times. In
particular, we modify the above greedy approach as follows.
In Line 5 of the Greedy’ ’s pseudo-code above, which selects
near-optimal batch &; by iteratively removing an appropriate
EP FE, we instead remove E with all its “descendants” (i.e.,
all EPs E;’s in S s.t. B < Ej); more formally, in Line 5a,
we pick an E that minimizes Latency(S’ — E’)/|S’ — E'|
where E’ is F and all its descendants. Removal of descendants
ensures that the selected batch £; doesn’t include any EP that
”depends” on another EP not yet included in a batch—and
thus, ensures that the eventual solution satisfies the no-wait
property. For example, consider the first iteration of Greedy
over the EPs in Fig. 5. When considering removal of e4, we

must also remove {eg, €7, es }, leaving us with {ey, ea, €3, e5}.
If e4 is indeed chosen for removal, then we continue the
algorithm over {ej, e, €3, e5}, while keeping {e1, e, €3,€5}
as a potential choice for £;.

VII. Cat-Entanglements to Execute Remote Gates

We have considered telegates to execute remote gates until
now. We now consider using cat-entanglements instead, which
can result in lower circuit execution time since a single cat-
entanglement can enable the execution of several remote gates.

Given a qubit allocation, several possible sets of CEs may
be sufficient to execute the required remote gates; thus, in this
section, we discuss the problem of selecting a near-optimal set
of CEs sufficient to execute the remote gates. The selected CEs
yield the EPs to be generated; these EPs are then batched and
ordered using approaches discussed in the previous section.
We start with defining cat-entanglements.

Cat-Entanglements (CEs). A cat-entanglement (CE), requir-
ing one EP, creates a read-only linked copy of a qubit ¢ at
another network node. Such a linked copy can be used as a
control-qubit operand to execute gates until there is a unary
gate on the qubit g, at which point the linked copy must
be “destroyed” using the disentanglement operation (which
doesn’t require an additional EP). Thus, though telegates and
CEs both require a single EP, a telegate helps execute one
remote gate, while a CE may help execute several remote
gates. Thus, using CEs can drastically reduce the set/number
of EPs required and, thus, the circuit execution time.

Notation. A cat-entanglement is a triplet (q;, Pk, t) signifying
creation of a linked copy of qubit ¢; on node Py at circuit’s
time instant ¢. Disentanglement operations are implicit, i.e.,
done immediately before any unary operation on ¢;. For
simplicity, we assume that the circuit contains only unary and
CZ gates, as the symmetry of CZ gates facilitates a simpler
description; CNOT gates can be handled similarly (§IX).

A. Selecting CEs (and EPs) to Execute Remote Gates

The CE-selection problem is a generalization of the classical
set-cover problem, as discussed below. We start with formal-
izing how CEs enable gate execution.

Execution (Coverage) of a Remote Gate by CEs. To execute
a remote gate (g;, g;,t), we can either: (i) Create a linked copy
of ¢; (g;) in the computer where g; (g;) is located, or (ii) Create
linked copies of g; and g; in a third computer where the gate
operation can be performed. Thus, a remote gate execution
can be enabled by either a single CE or a pair of CEs. We say
a single CE or a pair of CEs cover a gate if they enable the
execution of the gate. We also define the cost ¢(M) of a CE
M as the generation latency of the EP needed for M.

CE Selection (CESelection) Problem. Given a qubit-
allocation function 7, the CESelection problem is to select
a set of CEs M = {My, Ms,...M,} such that

« Every remote gate arising from the qubit-allocation func-
tion 7 is covered by CE(s) in M.



« The total latency of the EPs corresponding to the CEs is
minimized, i.e., > ¢(M;) is minimized.?
i=1
The above CESelection problem has been addressed
in [13] for the special case when the objective is to minimize
the number of CEs selected; here, we generalize their approach
for the above objective of minimizing the fotal cost of CEs.

O(log(n))-Approximation Greedy-CE Algorithm. The
above CESelection problem can be looked upon as a
weighted set-cover problem, wherein we need to select a
minimum-weighted (minimum-cost, here) collection of given
sets (CEs, here) to cover all the elements (remote gates, here).
However, unlike the set-cover problem, in our case, an element
(remote gate) may be covered by a combination of two sets
(CEs); this renders the simple greedy algorithm (which picks
the “best” set in each iteration) without any performance guar-
antee. However, a more sophisticated Greedy—CE algorithm
that, in each iteration, picks a set of CEs that covers the
most number of non-yet-covered remote gates per unit cost
of the CEs picked—can be shown to deliver a O(log(n))-
approximate solution (see Theorem 3). However, we need to
solve the non-trivial problem of picking such an optimal set
of CEs; fortunately, this can be formulated® and solved using
a generalized densest subgraph problem, as discussed below.

Densest Subgraph with Vertex-Costs (DSVC) Problem.  Let
G = (V,FE) be a graph where each vertex v € V has a
weight w(v) and a cost c(v) associated, and each edge
e has a weight w(e) associated. The DSVC problem is
find an induced subgraph H in G with maximum value
of (Xeemun w(€) + Xpevim w®)/ X ev ) c(v). For
the special case of the DSVC problem, when each vertex
has a unit cost, [13] proposed two algorithms: an optimal
linear programming and a 2-approximate greedy approach.
Both algorithms and their performance guarantees can be
generalized to include arbitrary vertex costs; due to limited
space, we discuss only the 2-approximate greedy approach
here. The DSVC-Greedy algorithm to solve the above DSVC
problem is to iter?ti)vely zr:emoveZ )a vertex v that has the
w(v)+ w(e

e incident on v

lowest value of () . We keep track of the
remaining subgraphs over the iterations and pick the best
among them (i.e., the subgraph H with the maximum value of
(ZeeE(H) w(e) + ZUGV(H) w(v))/ZvewH) c(v)). We can
show that DSVC-Greedy delivers a 2-approximate solution.

Lemma 2: The above DSVC-Greedy algorithm returns a
2-approximate solution for the DSVC problem. [ ]

Theorem 3: The above Greedy-CE algorithm for the
CESelection problem delivers a O(logn)-approximate so-
lution, where n is the total number of circuit gates. [ ]

2In general, as discussed before, the total (concurrent) generation latency
of a set of EPs may not be the sum of the independent latencies. Still, we
assume so for simplicity in formulating the CESelection problem.

3Consider a graph over CEs as vertices, where the weight on each vertex/CE
v is the number of remote gates covered by v by itself and the weight on edge
(u,v) is the number of gates covered by the pair of CEs {u, v}. However, a
gate may be covered in many ways—which can lead to double counting; this
can be resolved by partitioning the graph appropriately [13].

VIII. Other Generalizations

Non-Zero Swap and Gate Latencies. To incorporate non-
zero swap and gate latencies, we make two changes. (i) When
generating the EPs in batches, the gates and swaps are done
in parallel with the generation of EPs of the following batch.
Thus, gates and swaps do not add to the total execution
time—as long as their latencies are less than the EP-batch
latencies (which is expected to be largely true). (ii)) We only
consider batches whose total latency (including swap and gate
operations) is less than the decoherence threshold 7.

Fidelity Constraints. The fidelity of EPs may degrade dur-
ing the generation process due to the quantum operations
(decoherence can also affect fidelity, but we have handled it
separately). In our schemes, we use the purification technique
to overcome fidelity degradation by requiring and creating
multiple copies of EPs [10] (instead of just one) to execute
each remote gate; we required the number of copies to be
proportional to the entanglement path length [ used to generate
the EP (as fidelity degradation is somewhat proportional to [).

IX. Evaluation

In this section, we evaluate our algorithms over Net-
Squid [6], a QN simulator, on random and benchmark circuits.

Algorithms Compared. We compare our techniques with the
algorithm proposed in [8] (referred as Disjoint-Paths),
as it is the only work that considers the DQC-QR prob-
lem over general networks. We use our qubit-allocation
scheme (§V) as a precursor to all the algorithms, including
Disjoint—-Paths (as [8] assumes a given qubit allocation).
Our DQC-QR algorithms are named based on the execution
schemes as follows: (i) Greedy—TG using telegates (§VI-B),
(i) DP-TG using telegates (§VI-A), (iii) Greedy—-CE that
selects near-optimal number of CEs (§VII) and then uses the
Greedy approach over the selected CEs, and (iv) DP-CE,
similarly. In our evaluations, we relaxed the requirement of
fixed qubit allocation by not performing the reverse swaps;
we observed this had minimal performance impact.

Generating Random Circuits and Benchmark Circuits. We
evaluate the techniques on random quantum circuits using the
following parameters: number of qubits (default=50), number
of gates per qubit (default=50), and fraction of binary gates
(default=0.5). Given the parameter values, we generate the
random circuit one gate at a time. Gate operands are chosen
randomly. We also evaluate on benchmark circuits corre-
sponding to Quantum Fourier Transform (QFT), Quantum
Phase Estimation (QPE), and GHZ state generation (GHZ), of
various sizes obtained from the Munich Quantum Toolkit [20].

CNOT and CZ Circuits. Binary gates in the random circuits
can be either all CNOT (referred to as CNOT circuits) or
all CZ gates (referred to as CZ circuits). The benchmark
circuits have only CNOT and unary gates. The Greedy-CE
and DP-CE schemes can be applied directly to CZ circuits;
for CNOT circuits, we first convert each CNOT gate to a CZ
gate and two unary gates before applying the CE schemes.
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Generating Random Networks. We use a quantum network
spread over an area of 100km x 100km. We use the Waxman
model [26], which has been used to create Internet topologies.
We vary the number of network nodes from 5 to 25, with 10 as
the default. The total number of data memories in the network
is equal to the number of circuit qubits; these data memories
are randomly distributed among the network nodes.

Network Parameters. We use network parameter values similar
to the ones used in [15]. In particular, we set the atomic-BSM
probability of success and latency to be 0.4 and 10 seconds
and the optical-BSM probability of success to be 0.3. We use
atom-photon generation times and probability of success as
50p sec and 0.33, and the decoherence threshold of 1 second.

Evaluation Results. We evaluate the algorithms over the
circuits and networks as described above. We consider CNOT
and CZ gate-based circuits and vary one parameter at a time
while keeping the other parameters fixed to their default values
mentioned above. See Figs. 6-8. We observe the following:

o Generally, the performance of the algorithms is in the
following order (best to worst): Greedy—-CE, DP-CE,
Greedy-TG, DP-TG, and Disjoint-Paths, with
our Greedy—-CE outperforming Disjoint-Paths [8]
by up to 95% in some cases (see below).

« As expected, using CEs significantly reduces execution
time, especially in CZ circuits. In the CNOT circuits, the
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CE schemes perform worse sometimes than the telegate
schemes.

We believe there are two key reasons for sometimes drastic
under-performance of Disjoint-Paths [8]: (i) Their lay-
ering strategy is very conservative in exploiting concurrency
among required EPs; (ii)) For an actual generation of EPs,
they select one path for each EP’s generation—focusing on
maximizing the number of disjoint paths in a batch rather than
generation latencies. In contrast, our schemes use sophisticated
approaches to divide the set of required EPs into batches
and then use the optimal LP scheme to generate each batch
together through an optimal network flow of entanglements.

Runtime Overhead. Our schemes, being polynomial-time,
run in order of a few seconds for large circuits; this is a tol-
erable overhead, especially since these distribution strategies
need to be run only one time (for a given quantum algorithm).

X. Conclusion

In this paper, we have addressed the overarching problem of
distribution of quantum circuits in quantum networks to mini-
mize execution time, under decoherence and network resource
constraints. Our future work focuses on developing provably
near-optimal algorithms for the sub-problems addressed here,
and in particular, to develop more sophisticated techniques that
allow for dynamic qubit allocations.
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