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ABSTRACT

We present an analytical model for the plasmonic enhancement of metal photoluminescence (MPL) in metal
nanostructures with a characteristic size below the diffraction limit. In such systems, the primary mechanism
of MPL enhancement is the excitation of localized surface plasmons (LSP) by recombining carriers followed
by photon emission due to LSP radiative decay. For plasmonic nanostructures of arbitrary shape, we obtain
a universal expression for the MPL Purcell factor that describes the plasmonic enhancement of MPL in terms
of the metal dielectric function, LSP frequency, and system volume. We find that the lineshape of the MPL
spectrum is affected by the interference between direct carrier recombination processes and those mediated by
plasmonic antenna which leads to a blueshift of MPL spectral band relative to LSP resonance in scattering
spectra observed in numerous experiments.

1. INTRODUCTION

The photoluminescence of noble metals1–3 and metal nanostructures3–35 has attracted continuing interest fueled,
to a large extent, by its numerous applications, e.g., in imaging,36–41 sensing,42–45 nanothermometry,46–48 and
optical recording.49 In bulk metals, the underlying mechanism of metal photoluminescence (MPL) is the radiative
recombination of photoexcited d-band holes and upper-energy sp-band electrons via a momentum-conserving
interband transition, a process that competes against much faster nonradiative transitions in noble metals,
such as Auger scattering, resulting in extremely low MPL quantum yields1–3 ∼ 10−10. Much brighter MPL
has been reported from various metal nanostructures supporting localized surface plasmons (LSP), including
nanospheres,4–13 nanorods,14–28 nanowires,29,30 nanoparticle dimers,31–34 and porous structures.35 In all such
systems, the generic MPL spectrum represents a nearly Lorentzian peak centered close to the LSP frequency
with a peak amplitude depending weakly on the system size,5–7,25 except for very small systems, in which MPL
is largely quenched,6,50 or for large structures, in which LSP is radiatively damped.5,7, 25

The origin of bright MPL from plasmonic structures was suggested6 to be due to the excitation of the
LSP by a recombining electron-hole pair50–52 followed by the LSP radiative decay. This plasmonic antenna
scenario has been extensively tested and largely accepted based mainly on MPL measurements from single gold
nanorods which revealed strong similarities between the MPL spectra and scattering spectra measured from
the same structures.21–28 More recent experiments on hot carrier recombination in plasmonic structures have
highlighted the important role of intraband transitions, but here as well, strong similarities between the MPL
and scattering spectra point to the dominant role of LSP-mediated processes.53–59 At the same time, persistent
differences in the lineshape and in peak positions between the MPL and scattering spectra have been widely
reported in diverse nanostructures under various excitation conditions.22–24,34,56–58 Notably, the MPL spectra
are blueshifted relative to scattering spectra, which has not so far been explained.

The enhancement of the radiation rate is described by the Purcell factor,60 which, for an emitter situated near
a plasmonic structure, is determined by the LSP’s local density of states (LDOS) at the emitter’s position.63,64

In contrast, the MPL Purcell factor describes the enhancement of the time-averaged signal and, therefore,
involves spatial averaging of the LDOS over the metal volume, which requires the calculation of local fields
within the entire structure. Such calculations, with the rare exception of high symmetry systems, present a
considerable numerical challenge.57 On the other hand, the surprising similarity of MPL spectra across diverse
systems3–35 suggests that a simpler, yet accurate, description of plasmon-enhanced MPL should be possible
within an analytical approach.

In this article, we present an analytical model for MPL from plasmonic structures of arbitrary geometry
whose characteristic size is below the diffraction limit. For such systems, we derive an explicit expression for the
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MPL Purcell factor, which describes the plasmonic antenna effect, and trace the observed blueshift of the MPL
spectral band to destructive interference between the direct and antenna-assisted recombination processes. For
frequencies ω close to the LSP frequency ωn, we obtain the MPL enhancement factor relative to the bulk MPL
background in the following universal form

Mn(ω) = An

∣∣∣∣ ε′(ωn)− 1

ε(ω)− ε′(ωn)

∣∣∣∣2 , (1)

where ϵ(ω) = ϵ′(ω)+ iϵ′′(ω) is the metal dielectric function and the parameter An weakly depends on the system
volume. For any system geometry, the lineshape of the MPL spectrum is determined solely by the metal dielectric
function and LSP frequency. For larger structures, Eq. (1) is extended to include the LSP radiation damping
effect while retaining its universal form.

2. MPL PURCELL FACTOR

We start by recalling that MPL involves several stages2,3, 57 including the photoexcitation of the nonequilibrium
population of d-band and sp-band carriers, carrier energy and momentum relaxation due to electron-electron and
electron-phonon scattering, and carrier recombination accompanied by photon emission, all of which contribute
to the MPL overall quantum yield. Here, we focus on the latter process which can involve LSP excitation in
the intermediate state.51 Note that only a small fraction of recombination processes, for which the emitted
photon energies fit within the LSP spectral band, undergo plasmonic enhancement.6 For interband transitions,
which require no momentum relaxation mechanism, the transition matrix element has the form

∫
dVmψ

sp
k Φψd

k ≈
−dk ·E(r), where ψsp

k and ψd
k are the Bloch wave functions for the sp-band and d-band, respectively, dk is the

interband dipole matrix element between electron states with the same wave vector k, Φ(r) is the local potential
and E(r) = −∇Φ(r) is the corresponding local field at d-band hole’s position r, while the integral is taken over
the metal volume Vm.

50 Note that, in contrast to the radiation field that is nearly uniform on the system scale,
the local field E(r) can vary significantly inside the nanostructure, so a recombination of a low-mobility d-band
hole and sp-band electron can be viewed as a dipole transition that takes place at some position r inside the
nanostructure.

The rate at which the energy of the excited electron-hole pair is transferred to an electromagnetic (EM)
environment is60 Γk = (2/ℏ)Im [dkD(ω; r, r)dk], where D(ω; r, r′) is the EM dyadic Green function obeying (in
operator form) ∇ ×∇ ×D − (ω2ε/c2)D = (4πω2/c2)I; here ε(ω, r) is the system dielectric function equal to
ε(ω) in the metallic regions and εd in the dielectric ones (we set εd = 1 for now), c is the speed of light, and
I is the unit tensor. To extract the LSP contribution to D, we note that, for unretarded electron motion, the
LSP modes are described by the longitudinal fields En(r) = −∇Φn(r) and obey the lossless Gauss’s equation65

∇ · [ε′(ωn, r)∇Φn(r)] = 0. The dyadic Green function D relates to the scalar Green function D for the potentials
Φ as D(ω; r, r′) = ∇∇′D(ω; r, r′), where D satisfies ∇ · [ε(ω, r)∇D(ω; r, r′)] = 4πδ(r − r′). We now split the
scalar Green function as D = D0+DLSP, where D0 = −|r−r′|−1 is the free-space near-field Green function and
DLSP is the LSP contribution. Expanding the latter over the LSP modes as DLSP(ω; r, r

′) =
∑

nDnΦn(r)Φn(r
′),

we obtain the expansion coefficients as

Dn(ω) = − 4π∫
dV ε(ω, r)E2

n(r)
, (2)

where we omitted a constant term.64 Since, due to Gauss’s law, we have
∫
dV ε′(ωn, r)E

2
n(r) = 0, the ex-

pansion coefficients Dn(ω) exhibit LSP poles in the complex frequency plane at ω = ωn − iγn/2, where
γn = 2ε′′(ωn)/[∂ε

′(ωn)/∂ωn] is the LSP decay rate (we assume γn/ωn ≪ 1). Presenting Dn(ω) as the sum over
LSP poles would lead to normal field expansion suitable for quantum approaches.66 However, within classical
approaches, it is suitable to obtain another representation for the LSP Green function (2) directly in terms of the
metal dielectric function. Namely, the denominator is presented as

∫
dV ε(ω, r)E2

n(r) = [ε(ω)− ε′(ωn)]
∫
dVmE

2
n(r),

where the integral is taken over the metallic regions while contributions from the dielectric regions, characterized
by constant permittivities, cancel out. We thus obtain the LSP Green function for the electric fields as

DLSP(ω; r, r
′) =

∑
n

−4π∫
dVmE2

n

En(r)En(r
′)

ε(ω)− ε′(ωn)
. (3)
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Note that even though En(r) represents eigenmodes of the lossless Gauss equation, the Green function (3) is
valid for the complex dielectric function ε(ω) = ε′(ω)+ iε′′(ω) as well. Indeed, if ϵ′′ is included as a perturbation,
then the first-order correction leads to Eq. (2), and the higher-order corrections involve nondiagonal terms of the
form ε′′(ω)

∫
dVmEn(r) ·En′(r), which vanish due to the modes orthogonality,66 so that the LSP Green function

(3) is, in fact, exact in all orders. The energy transfer rate from the emitter to the plasmonic environment takes
the form

Γk(ω, r) =
2

ℏ
∑
n

[dk ·En(r)]
2∫

dVmE2
n

Im

[
−4π

ε(ω)− ε′(ωn)

]
. (4)

Note that the rate (4) is suitable for an emitter situated either outside or inside the plasmonic structure, but
here we consider only the latter case.

We now turn to the MPL Purcell factor, which is defined as Fn = ⟨Γk⟩/γrk, where γrk = 4d2kω
3/3c3ℏ is the

emitter’s radiative recombination rate60 and ⟨Γk⟩ stands for the average of rate (4) over the emitter’s positions
inside the metal and over orientations of its dipole moment dk = dknk. For relatively small nanostructures under
long illumination, the electron-hole pairs are distributed nearly uniformly. Using ⟨nknk⟩ = 1

3I and averaging
Eq. (4) over the metal volume, we obtain the MPL Purcell factor per emitter in the following universal form,

Fn(ω) =
2πc3

ω3Vm

ε′′(ω)

|ε(ω)− ε′(ωn)|2
, (5)

where we kept only the resonant term. The MPL Purcell factor is inversely proportional to the metal volume,
while its frequency dependence, apart from normalization, is determined by the metal dielectric function. At
resonance frequency ω = ωn, the maximal value of the Purcell factor is Fn = 2πc3/ω3

nVmε
′′(ωn), which is related

to the LSP mode volume Vn as61,62 Fn = 6πc3Qn/ω
3
nVn, where Qn = ωn/γn is the LSP quality factor, and we

obtain

Vn = 3Qnε
′′(ωn)Vm =

3

2
Vm ωn ∂ε

′(ωn)/∂ωn. (6)

The LSP mode volume (6) for MPL can be significantly larger than the metal volume Vm, especially for long-
wavelength LSPs characterized by large |ε′(ωn)|. Note, however, that the LSP mode volume plays no significant
role in MPL, in contrast to that for an emitter situated outside the structure,63,64 as it effectively cancels out in
the radiated power spectrum (see below).

3. EMISSION SPECTRUM

We now turn to the emission spectrum of a recombining electron-hole pair mediated by the excitation of LSP.
For systems with a characteristic size below the diffraction limit, the radiated power spectrum is60 W r

k(ω) =

(ω4/3c3)|pk(ω)|2, where pk(ω) = peh
k (ω) + ppl

k (ω) is the system dipole moment composed of the electron-hole

pair’s dipole moment peh
k (ω) and the induced dipole moment of the plasmonic structure ppl

k (ω). To determine
peh
k (ω), we note that, due to the very fast relaxation rate of the d-band hole, the recombination events are

not correlated. In the linear regime, the interband polarization ρk can be determined from the Maxwell-Bloch
equations

i∂ρk/∂t = (ωk − iγk/2)ρk − dk ·E(r)/ℏ (7)

with the initial condition ρk(0) = 1. Here, ωk is the interband transition frequency, γk is the intrinsic decay rate
due to the fast Auger processes,2 and E(r) is the local field at the emitter position. The coupling to LSP is
included in the standard way,60 by relating the local field back to the interband dipole moment peh

k = dkρk as
E(r) = DLSP(r, r)p

eh
k . Upon performing the Laplace transform, the interband dipole moment takes the form

peh
k =

dk

ωk − ω − iγk/2− iΓk/2
, (8)

where the energy transfer rate Γk is given by Eq. (4).

The MPL enhancement comes from the induced dipole moment of plasmonic structure defined as

ppl
k =

∫
dV χ(ω, r)E(r)=

∫
dV ′χ(ω, r′)DLSP(ω; r

′, r)peh
k , (9)
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where χ = (ε− 1)/4π is the system susceptibility. With help of the LSP Green function (3), we obtain

ppl
k = −

∑
n

4πpn(ω)∫
dVmE2

n

En(r) · peh
k

ε(ω)− ε′(ωn)
, (10)

where pn(ω) =
∫
dV χ(ω, r)En(r) is the dipole moment of the LSP mode. Finally, using Eq. (8), the radiated

power spectrum for an electron-hole pair takes the form

W r
k(ω) =

ω4

3c3|Ωk|2

∣∣∣∣∣dk −
∑
n

4πpn(ω)∫
dVmE2

n

En(r) · dk

ε(ω)− ε′(ωn)

∣∣∣∣∣
2

, (11)

where Ωk = ωk − ω − iγk/2− iΓk/2.

The full radiated power spectrum W r(ω) is obtained by the k-integration of Eq. (11) with the factor f spk (1−
fdk ), where f

sp
k and fdk are the Fermi distribution functions for the sp-band and d-band, respectively. After

orientational averaging, we obtain W r =W r
ehM , where

W r
eh =

ω4

3c3

∑
k

d2kf
sp
k (1− fdk )

|ωk − ω − iγk/2− iΓk/2|2
(12)

describes direct emission by the recombining carriers and

M(ω, r) =

〈∣∣∣∣∣nk −
∑
n

4πpn(ω)∫
dVmE2

n

En(r) · nk

ε(ω)− ε′(ωn)

∣∣∣∣∣
2〉

nk

(13)

is the local MPL enhancement factor. The direct emission spectrum (12) differs from the bulk MPL spectrum
by the presence of an additional relaxation rate Γk, which describes the excitation of high-momentum LSPs by
recombining carriers and, for small systems, leads to MPL quenching.50 Note that due to the extremely short
d-band hole lifetime (< 50 fs), MPL is significantly quenched only for very small (≲ 3 nm) structures, in which
most excited carriers are sufficiently close to the metal surface.6,50 Otherwise, we have W r

eh = qW r
b, where W

r
b

is the bulk MPL spectrum and q ≲ 1 is the quenching parameter that weakly depends on the system volume.

Turning now to the MPL enhancement factor (13), the main contribution comes from the LSP (second) term.
Keeping only the resonance term (with ω close to ωn) and neglecting, for now, the direct (first) term, the LSP
contribution to the MPL spectrum takes the form

MLSP
n (ω, r) =

1

3

[
En(r)∫
dVmE2

n

]2 ∣∣∣∣ 4πpn(ω)

ε(ω)− ε′(ωn)

∣∣∣∣2 , (14)

where the factor of 1/3 comes from orientational averaging. Noting that pn(ω) = χ(ω)
∫
dVmEn and averaging

Eq. (14) over the metal volume, we obtain

MLSP
n (ω) =

sn
3

∣∣∣∣ ε(ω)− 1

ε(ω)− ε′(ωn)

∣∣∣∣2 , (15)

where the parameter

sn =

(∫
dVmEn

)2
Vm

∫
dVmE2

n

(16)

is independent of the field overall amplitude and, for the dipole LSP modes, of the system volume as well.
For nanospheres and nanospheroids, its exact value is sn = 1, while smaller values are expected for other
geometries. To pinpoint the exact mechanism of MPL enhancement, we note that, for small nanostructures,
the LSP’s radiation efficiency is ηn = wr

n/w
nr
n , where wr

n and wnr
n are its radiated power and the Ohmic losses,

respectively:60

wr
n(ω) =

ω4|pn(ω)|2

3c3
, wnr

n (ω) =
ωε′′(ω)

8π

∫
dVmE

2
n(r). (17)
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Then the LSP contribution (15) can be recast as

MLSP
n (ω) = ηn(ω)Fn(ω), (18)

where the Purcell factor Fn(ω) is given by Eq. (5), implying that MPL enhancement is indeed due to the
plasmonic antenna effect. Since, for small nanostructures, the antenna’s radiation efficiency is proportional to its
volume, the latter effectively cancels out the Purcell factor’s volume dependence, as reflected in the parameter
sn.

We now turn to the effect of interference between the direct and LSP-mediated MPL processes, described by
the cross term in Eq. (13). After performing spatial and orientational averaging, we obtain

M int
n (ω) = −2sn

3
Re

[
ε(ω)− 1

ε(ω)− ε′(ωn)

]
. (19)

Combining MLSP
n (ω) and M int

n (ω) and omitting a constant term, we arrive at the enhancement factor Mn(ω),
given by Eq. (1), with An = snq/3 that includes the quenching parameter q. Comparing the frequency dependence
of Mn(ω) and MLSP

n (ω), we observe that ε(ω) in the numerator of Eq. (15) is replaced with ε′(ωn) in Eq. (1),
implying that interference between the direct and LSP-mediated transitions, however weak, can substantially
affect the MPL spectral band (see below).

The enhancement factor (1) is derived for small structures by assuming that the LSP’s radiation damping
is much weaker than the Ohmic losses in the metal. For larger systems, the radiation damping effect can be
included in the standard way by considering the system’s interaction with the radiation field.60,67 The result
reads

M(ω) =
∑
n

An

∣∣∣∣∣ ε′(ωn)− εd

ε(ω)− ε′(ωn)− 2i
3 k

3Vn[ε(ω)− εd]

∣∣∣∣∣
2

, (20)

where we restored the environment permittivity εd. Here, k =
√
εd ω/c is the light wave vector, Vn =

Vm|ε′(ωn)/εd − 1|sn/4π is the effective volume,68 and the sum runs over LSP modes that couple to the far
field (e.g., longitudinal and transverse dipole modes in nanorods). For the nanosphere of radius a, we have
sn = 1 and ε′(ωn) = −2εd, and we recover Vn = a3. The enhancement factor (20) can be used to describe the
MPL spectra for systems of various shapes and sizes with no substantial numerical effort. It is also suitable for
describing MPL spectra of complex or random metallic structures, such as nanosponges,35 which exhibit multiple
LSP peaks. In this case, the coefficients An can be tuned to fit the spectral peaks’ amplitudes.

4. NUMERICAL RESULTS

To illustrate our results, below we present the MPL spectra for several gold nanostructures immersed in water
(εd = 1.77) by plotting Eq. (20) for a single LSP mode. In all calculations, we use the experimental gold dielectric
function. Accordingly, the LSP wavelength range extends above 530 nm, which corresponds to the interband
transition onset in gold. Specifically, we choose the LSP peak positions at wavelengths of 620, 670, 710, and 750
nm, which are close to those measured in the MPL experiments.22–24 We assume no particular nanostructure
shape but specify the overall volume as Vm = L3, where L is the characteristic linear size. For gold structures,
the optimal L lies in the interval between 20 and 60 nm, in which the MPL quenching is relatively weak while
the LSP radiative damping is not too strong,5–7,25,50 so we set q = 1, sn = 1, and An = 1/3.

In Fig. 1, we plot the MPL enhancement factor Mn(ω) for general-shape gold structures with L = 20 nm,
in which the LSP resonance position can be tuned by varying the structure shape (e.g., by varying the aspect
ratio of the nanorods). The MPL enhancement factor exhibits nearly-Lorenzian resonances, whose amplitude
increases with the wavelength, consistent with plasmon-enhanced MPL quantum yield measurements.22,23 Note
that the bulk MPL exhibits the opposite trend, as its efficiency is greater for shorter wavelengths due to an
increased sp-band electron density of states for higher energies close to the Fermi level.33

In Fig. 2, we compare the MPL spectra for L = 40 nm gold nanostructures at the same LSP wavelengths
obtained as SMPL(ω) ∝ ω4Mn(ω) and the scattering spectra, which are related to the plasmonic antenna’s
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Figure 1. MPL enhancement factor for general-shape gold nanostructures with characteristic size 20 nm at various LSP
wavelengths of 620, 670, 710, and 750 nm. (Inset) Schematic of interband transitions in gold.

Figure 2. Normalized MPL and scattering spectra for gold nanostructures with a characteristic size of 40 nm at the same
LSP wavelengths as in Fig. 1.

emission as Sscatt(ω) ∝ ω4MLSP
n (ω), both normalized to their maxima. A clear blueshift of the MPL spectral

band relative to the LSP resonance in scattering spectra persists for all structures but is more pronounced for
shorter wavelengths, consistent with the experiment.22–24,34,56–58 Specifically, the calculated normalized spectra
closely resemble those measured for gold nanostructures of various shape.23,24 This blueshift and the change
in the resonance lineshape originate from the interference between the direct and LSP-mediated recombination
processes, as discussed above, resulting in the replacement ε(ω) → ε′(ωn) in the numerator of Eq. (20).
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Finally, our approach should apply to the intraband MPL as well, where similar differences between the MPL
and scattering spectra were reported.56–58 Although any intraband MPL mechanism must include additional
momentum relaxation channels, the final-state transition should involve both the direct and LSP-mediated
processes, so the intraband MPL spectrum should still be described by Eq. (20), albeit with different An, which
incorporates the interference between them. Note that the calculated normalized spectra in Fig. 2 closely
resemble the intraband MPL spectra recorded in silver nanorods.56

5. CONCLUSIONS

We have developed an analytical approach to plasmon-enhanced MPL that accurately describes the emission
spectra of metal nanostructures of arbitrary geometry with the characteristic size below the diffraction limit.
We have established that the primary mechanism of MPL enhancement is excitation of LSPs by recombining
carriers followed by the LSP radiative decay, and we have obtained an explicit universal expression for the MPL
Purcell factor in terms of the metal dielectric function, LSP frequency, and system volume. We have shown that
the precise lineshape of the MPL spectrum is defined by the interference between the direct and LSP-mediated
photon emission processes, resulting in the blueshift of the MPL spectra relative to scattering spectra reported in
numerous experiments. Our results can be used for modeling experimental MPL spectra for small nanostructures
of arbitrary shape without extensive numerical effort.
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