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Abstract—Foundation models (FMs) emerge as a promising
solution to harness distributed and diverse environmental data
by leveraging prior knowledge to understand the complicated
temporal and spatial correlations within heterogeneous datasets.
Unlike distributed learning frameworks such as federated learn-
ing, which often struggle with multimodal data, FMs can trans-
form diverse inputs into embeddings. This process facilitates
the integration of information from various modalities and
the application of prior learning to new domains. However,
deploying FMs in resource-constrained edge systems poses sig-
nificant challenges. To this end, we introduce CoRAST, a novel
learning framework that utilizes FMs for enhanced analysis of
distributed, correlated heterogeneous data. Utilizing a server-
based FM, CoRAST exploits existing environment information
to extract temporal, and cross-feature correlations among sensor
data. This enables CoRAST to offer context-aware insights for
localized client tasks through FM-powered global representation
learning. Our evaluation on real-world weather dataset demon-
strates CoRAST’s ability to exploit correlated heterogeneous
data through environmental representation learning to reduce
the forecast errors by up to 50.3% compared to the baselines.

Index Terms—Cyber-physical systems, foundation models, het-
erogeneous data analysis, Internet of Things (IoT), time series.

I. INTRODUCTION

The data generated by edge devices in Cyber-Physical
Systems (CPS) and the Internet of Things (IoT) is inherently
rich in spatial and temporal correlations, offering significant
opportunities for enhancing edge intelligence. Those sys-
tems’ distributed computing and sensing capabilities enable
the monitoring of a physical environment through different
modalities (e.g., audio/video signals, or environmental metrics
like temperature and air pressure). Effectively utilizing this
rich and interrelated data pool, collected from a diverse set of
edge sensors, can substantially benefit a wide range of complex
downstream tasks that require detailed data interpretation (Fig-
ure 1). For example, augmenting audio data with visual cues
(e.g., lip-reading) from a camera focusing on a speaker can
significantly improve the accuracy of speech recognition [1].

However, it is challenging to leverage this rich, distributed
data effectively. Extensive research has been done on mul-
tivariate time series for forecasting or classification, and the
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Fig. 1. Correlated Data in CPS and IoT

major approach involves treating each variable as an inde-
pendent univariate time series, addressing temporal and inter-
variable correlations separately [2]–[4]. There is a lack of
a unified strategy for integrating heterogeneous data types,
such as video streams and time series data. Moreover, the
prevalent practice of centralizing data processing can overlook
essential spatial details. For instance, when one sensor captures
1D acceleration data at a particular location, while another
records 3D gyroscope data elsewhere, the central system may
fail to fully leverage the spatial context of these data points.
This limitation underscores the need for strategies that can
effectively integrate and interpret heterogeneous data sources
while preserving and utilizing their spatial characteristics to
enhance analysis and decision-making.

Foundation models (FMs) emerge a promising solution to
complex data analysis and information fusion. Research in this
domain is rapidly gaining popularity, as evidenced by recent
surveys [5]–[8]. Employing transformers, these models adeptly
convert diverse inputs into embeddings, enabling the integra-
tion of various data types and facilitating the application of
prior learning or training to new domains. Large Language
Models (LLMs) like GPT and BERT extend well beyond their
initial applications in text and image processing to encompass
temporal and multimodal data analysis. Research by Zhou et
al. [9] exemplifies how pre-trained LLMs can match or even
outperform the state-of-the-art methods in time series analysis.
Advanced multimodal models [10], [11] further integrate
multimodal data – from images and text to audio and video –
for a diverse range of downstream tasks.

Nonetheless, integrating FMs into CPS and IoT applica-
tions poses major challenges, primarily due to the extensive
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resources required to run these large models, often beyond
the capabilities of edge devices. Many CPS and IoT applica-
tions require edge devices themselves to make decisions or
predictions. For instance, in smart agriculture, soil moisture
sensors may need to determine optimal irrigation levels based
on collected data. These devices, e.g., low-power sensors, may
not have the communication capabilities needed to continually
send collected data to a central location and receive back a
decision. Moreover, sending some data, e.g., audiovisual data,
to a central location for processing may introduce privacy
issues. We aim to answer the question: how can we leverage
the knowledge from a foundation model, previously trained
on historical data, for distributed systems with resource-
constrained edge devices? Research challenges include:

Resource Constraints on Edge Devices. Edge devices or
sensors within CPS or IoT environments often face severe
memory and computational limitations, making it difficult to
host FMs directly. For example, the base BERT model [12] has
108 million parameters. Training even moderately sized FMs
typically requires several gigabytes of memory, presenting a
challenge for updating these models on edge devices. This is
true even when considering distilled or compressed versions of
FMs designed to reduce size and resource requirements [13].
High-end edge computing devices, such as NVIDIA Jetsons,
might struggle with the storage and memory demands required
for training large models, let alone less capable IoT devices
(e.g., microcontrollers) that are typically equipped with only
a few megabytes of SRAM. Thus, involving FMs in training
on locally collected environmental data may require significant
involvement of more well-resourced servers that can host FMs.

Decentralized and Correlated Local Tasks. CPS and IoT
applications often need distributed decision-making on the
edge due to privacy concerns, real-time responsiveness, and
unreliable network connections. This distributed intelligence
calls for the development of local models tailored to the
specific edge data models and distributions. Traditional feder-
ated learning (FL), even with personalization, often falls short
when it comes to learning with correlated and heterogeneous
local data. For example, adjacent edge devices with different
sensor arrays may collect correlated yet distinct types of
data, calling for unique local models for tasks like anomaly
detection. This level of data specificity and the need for model
customization go beyond what personalized federated learning
currently offers. In light of the fact that many edge devices
cannot directly host FMs, we must design new methods to
integrate information from FMs hosted at a central server into
distributed decision-making on such correlated data, without
leading to excessive communication overhead.

Contributions: To address these research challenges,
we introduce CoRAST, a novel general learning frame-
work designed to utilize FMs for Analyzing Spatially and
Temporally CoRrelated heterogeneous data within resource-
constrained edge computing systems. Diverging from tradi-
tional approaches based off improving a single application ob-
jective, CoRAST adopts a holistic strategy, emphasizing the in-
terconnectedness of data from a shared physical environment,

thereby improving the learning for various downstream tasks.
Leveraging FMs to understand the correlation among various
sensor data and tasks with prior environmental knowledge,
CoRAST provides context-aware insights for client-specific
tasks. We summarize our contributions:

• We introduce CoRAST, the first FM-based learning
framework for analyzing correlated heterogeneous data in
CPS and IoT. The framework leverage a server-based FM
to synthesize global insights and client-specific models
that apply these insights to local tasks.

• Our study offers insights into designing FM-based archi-
tectures for managing correlated heterogeneous data.

• CoRAST improves distributed learning on a real-world
weather dataset, reducing forecasting errors with its FM-
based global learning approach.

We review related work in Section II and present CoRAST
in Section III. The proposed framework is evaluated in Section
IV. The paper concludes in Section V.

II. RELATED WORK

FM for Correlated and Multimodal Data Analysis:
Research on FM for correlated data analysis is rapidly ad-
vancing with models such as GPT4TS [9], LLM4TS [14],
and AnomalyTrans [15], which utilize pre-trained models and
transformers for tasks like time series analysis, forecasting,
and anomaly detection. These models enhance their perfor-
mance through targeted fine-tuning. GTA [4] employing graph
structures for uncovering hidden data associations with novel
attention mechanisms. Penetrative AI [16] exploits textualized
expert knowledge to guide the reasoning of the physical
world using existing language models, but it has limitations in
detailed data analysis and comprehensive environment learn-
ing. Additionally, the adoption of multimodal large models,
including CLIP [11] and Macaw-LLM [10], demonstrates
FMs’ potential to unify data modalities such as in text-image
translation by converting diverse inputs into embeddings.

Advancements in Representation Learning: TS2Vec[17]
introduces a universal contrastive learning approach to time se-
ries representations that effectively differentiates between pos-
itive and negative samples at various time scales with contex-
tual information. In federated learning, CreamFL [18] pushes
the boundaries of federated multimodal learning by sharing
learned modality-specific representations. FedGKT [19] ex-
plores a novel strategy for knowledge transfer using local
representation and global logits. In contrast, CoRAST ex-
plicitly incorporates FMs to learn representations capturing
correlations between distributed and multi-modal data.

III. CORAST

CoRAST leverages a server-based FM backbone to exploit
both existing data and prior knowledge of the physical environ-
ment. It aims to learn useful representations of the environment
in a self-supervised manner. These representations learned
by CoRAST serve to provide valuable context for CPS and
IoT applications operating within the same physical setting.
On the client side, CoRAST integrates this environmental



Fig. 2. CoRAST framework. 1⃝ Global Representation Learning – A server-
based FM is pre-trained and fine-tuned on historical environment data for
global representation learning in a self-supervised manner. 2⃝ Representation
Distribution – Using the environment data that correlate with client local data,
the FM produces and distributes contextual representations to edge clients
aiding downstream local tasks. 3⃝ Local Learning with Global Context –
Clients integrate global contexts with their local data for independent local
learning, leveraging broad environmental insights with local datasets.

understanding, as learned from the server FM, with local data
to address specific edge computing tasks.

Figure 2 provides an overview of the framework. We
consider a distributed system of M edge clients indexed by
m, each equipped with various sensors for distinct local tasks.
Each client m maintains a dataset Xm

t and aims to optimize
a local model to minimize its unique loss function Lm

t , which
may reflect its specific local task (e.g., predicting various
environmental phenomena).

An edge server with the sufficient resources to run an FM,
holds a dataset Xenv

t correlating with the clients’ local data.
The FM, trained in a self-supervised or unsupervised way,
generates global representations Ht of the environment to be
distributed to the edge clients. This paper primarily focuses on
the genral framework’s design, leaving the detailed FM archi-
tecture and its adaptation to specific systems, applications, and
data types for future exploration. Our framework is agnostic
to the specific architecture of this FM.

Upon receiving the global representation Ht from the
server, edge clients merge this information with their local
data to refine their models. To illustrate the idea, consider a
scenario where the environment of interest is a single room
monitored by various sensors with distinct functions (e.g., an
infrared camera that detects human at the front door, a micro-
phone designed to pick up specific keywords, and temperature
sensors programmed to regulate the room’s air conditioning).
The server might have access to the video streams from
a surveillance camera or an aggregation of sensor data to
train the FM. The server can pre-train the FM with all the
existing environmental data and generate useful environment
representations Ht to each client. This representation embeds
vital extraneous global information not directly observable by
local sensors (e.g., the presence of a person in the room), but
crucial for enhancing local task performance.

By training the local model on both the specific local
data and the enriched global representation, the model is

equipped with a broader understanding of the environment.
This comprehensive input significantly elevates the model’s
potential to excel in its designated task.

A. Server-Based Representation Learning

The goal of the server-based representation learning is
to encode the intricate relationships and correlations among
multimodal data gathered from a specific environment. Cor-
relation describes how data relate to each other. If two
things are independent, they are not correlated. In the realm
of information theory, discerning the correlational dynamics
within data can effectively diminish system entropy – a metric
quantifying uncertainty. Should two variables X and Y exhibit
correlation, their joint entropy H(X,Y ) would be less than
the sum of their separate entropies H(X) + H(Y ) [20].
This implies that correlated data inherently reduce system
uncertainty, potentially enhancing model performance when
such correlations are adeptly leveraged.

Modeling correlations has been challenging. Traditional
methods use meta-data, such as spatial and temporal informa-
tion, or entropy analysis to discern correlations [21]. However,
they fall short in complex scenarios where the correlation
changes over time, or when dealing with high-dimensional,
multimodal data. In recent years, the shift towards deep
learning approaches, particularly the use of large foundation
models, enable autonomously derive insights from extensive
datasets and learn valuable embeddings for multimodal data.

In CoRAST, we employ a FM backbone for representa-
tion learning. This learning process is conducted in a self-
supervised manner, aiming to extract correlation-centric, high-
level concepts that help improve performance across a range
of downstream tasks. One notable strategy is contrastive repre-
sentation learning, which improves the model by differentiat-
ing among varied data samples [22]. TS2Vec[17], for example,
applies this method to time series data, capturing contextual
information across various temporal scales effectively.

Yet, correlations in CoRAST’s setting appear as tempo-
ral (time-based changes), spatial (spatial distribution), and
cross-modal (across different data types). Addressing these
correlations effectively demands careful architectural design.
We briefly discuss two advanced techniques that enhance the
ability to interpret complex system inputs and diverse data
types and thus handle more complex correlations.

a) Graph Neural Networks (GNNs): GNNs stand out
for their ability to model relational data. In GNNs, node
representations are iteratively updated through a series of
message passing with neighbours [23]. The graph structures
capture complex relationships within data, such as inter-
temporal dependencies–where nodes represent distinct time
points, or inter-variable connections–where nodes represent
different variables [2]. Edges thus represent temporal and
inter-variable correlations. For datasets of heterogeneous data
types, heterogeneous GNNs is a viable solution that supports
processing input features of varying sizes.

b) Attention Mechanism: Given a task, an attention score
is computed, indicating the relevance between pairs of inputs



and generates embeddings based on that score [24]. In our
context, this process enables models to interpret the intercon-
nections between different data features and their temporal
connections over time. Transformers heavily rely on attention
to encode input sequences. When integrated with GNNs, it
leads to the Graph Attention Networks (GAT) [25] that can
discern the complex interrelationships present within graph-
structured data, enabling the extraction of meaningful repre-
sentations out of spatially and temporally correlated data.

B. Client Local Training

Each client m’s local model contains three parts: a local data
processing module fm

l , a global information extraction module
fm
g that deciphers the encoded global representation H, and

an affiliate function fm
a that integrates outputs from both

modules to produce the final outputs Ym. Mathematically,
Ym = fm

a

(
fm
l (Xm), fm

g (H)
)
.

The local loss Lm can be determined by the specific local
tasks of each client, which might include, for instance, the use
of cross-entropy loss LCE(Y

m, ym) for classification tasks,
where ym represents the target label; or the prediction error
LMSE(Y

m,Xm
f ) on the discrepancy between the predicted

and actual future values of the local measurements Xm
f .

In addition to flexibly supporting a wide range of local tasks,
the client local model also allows multimodal data inputs that
may exhibit temporal or cross-modal correlations. The data
processing unit can be customized to capture time-dependent
patterns or inter-feature correlations. For instance, temporal
convolutional layers [26] can be used to grasp the temporal
dynamics of the data in CPS and IoT systems, and attention
mechanisms with graph structures can be adopted to learn the
interconnections between two types of data.

C. Continual Learning

The CoRAST framework is designed to foster continual
learning, allowing for the adaptation and incorporation of
new data over time. At its core, the framework maintains
a separation between the process of learning environmental
representations and the specific client local tasks. This division
allows environmental representation learning to universally
augment both present and future CPS and IoT tasks within a
given environment. Consequently, both the server model and
the local client models can efficiently integrate updates or new
data without the need for a complete system-wide retraining.

The framework allows different update frequencies for the
server model and the client models, a practical feature due to
the usual delay in client data becoming available to the server.
One learning scheme is to have different update intervals, Ts

for the server model and Tc for the client models, with Ts

being significantly longer than Tc. We don’t focus on the
specifics of how the model adjusts to new data. In the intervals
between server model updates, clients can manage incoming
new data using the representations generated from previously
learned server model. Clients are required to seek updated
global representations from the server only when the server
model is updated, an event that occurs much less frequently.

TABLE I
EXPERIMENT SETTINGS

Settings Client Data Server Data

1-centralized [Tdew, rh, sh] [Tdew, rh, sh]
1-distributed [Tdew], [rh], [sh] [Tdew, rh, sh]
2-centralized [Tdew, Tpot, rh, p, sh] [Tdew, Tpot, rh, p, sh]
2-distributed [Tdew, Tpot], [rh, p], [sh] [Tdew, Tpot, rh, p, sh]

TABLE II
MODEL SETUP

Model # of parameters

Client (TCN)

1-centralized 13984
2-centralized 15214
1-distributed 12970, 12970, 12970
2-distributed 13450, 13450, 12970

Server (TS2Vec) 337152

Representation 256

D. Resource Usage

CoRAST optimizes resource usage by enabling distributed
clients to leverage the knowledge of a pre-trained FM without
local execution of the large model. Instead, clients only need
to run moderately-sized local models, ensuring a lightweight
computational footprint. Communication overhead predomi-
nantly involves one-directional data flow from the server to the
clients, mainly for the purpose of transmitting representations.
Currently, we consider a single global representation for all the
clients, with the representation’s size dependent on the volume
and variety of data available to the server.

For training with new data spanning a length of T , the global
representation is a d×T matrix for a d-dimensional represen-
tation model. This representation is distributed to all clients at
intervals of Ts, the update interval of the server model. During
inference, a d-dimensional vector representation is broadcast
to all clients at each inference point.

A future direction would involve developing customized
representations tailored to individual client needs, thereby
encoding only the pertinent partial information. This would
further optimize computational and communication efficiency,
for instance, by utilizing smaller representations for simple
tasks like automatically adjusting air conditioning based on
temperature. More discussion in Section V.

IV. EXPERIMENTS

We evaluate our CoRAST distributed learning framework
for managing complex correlated heterogeneous data distribu-
tion in edge computing systems. We use the real-world bench-
mark weather dataset from [27] and distribute the dataset’s
measurement data across clients. The dataset includes a variety
of measurements such as dew temperature (Tdew), potential
temperature (Tpot), air pressure (p), and relative humidity (rh),
among others. It is characterized by temporal patterns, such
as variations in temperature and humidity throughout the day,
as well as inter-feature correlations, such as the relationship
between the pressure and temperature.



Fig. 3. MSE Train Loss with the standard deviation represented by a shaded area around the loss curves. CoRAST has the lowest training loss in all settings
when clients share the same local training task or have distinct local training tasks.

To demonstrate CoRAST’s ability to process correlated
heterogeneous data, each client is assigned a distinct subset of
data types without any overlap or data sharing. The specific
experimental settings are detailed in Table I, where each
set of square brackets denotes the data types assigned to a
particular client. There are two settings: Setting 1 (central-
ized/distributed) and Setting 2 (centralized/distributed). Setting
2 provides clients with additional climate information (i.e.,
Tpot and p) compared to Setting 1.

In distributed settings, three clients each gather non-
overlapping sets of climate measurements, while in central-
ized settings, one central client collects all data. Given that
clients collect different types of data with possible dimension
differences (Setting 2), traditional FL struggles due to the local
models’ diversity, making it hard to aggregate these into an
effective global model with potentially different architectures.

For all experimental setups, the server accesses all the
client data to train the FM for representation learning. In
the centralized cases, the learning process is equivalent to
training a lightweight local model with a FM-based learning
approach pre-trained on the same data. We explore two addi-
tional scenarios: (1) No FM, where FM is not utilized, and
learning is purely local, akin to traditional multi-variate time-
series analysis. (2) CoRAST-rho, where the server uses only
the density measure rho – a variable not directly observed
but significantly correlated with client data – to evalute the
framework without direct data sharing from clients.

Setup: The dataset is divided into training, validation,
and test sets in a 7:1:2 ratio. The server’s backbone model
employs TS2Vec [17], consisting of 3 contrasting layers,
each containing 64 hidden units. It is pre-trained on the
training set using a self-supervised approach with hierarchical
contrastive loss and finally generates a 256-dimensional global
representation for each time step.

On the client side, local data is divided into sequences of
128 and processed through a 3-layer temporal convolutional
network (TCN) [26], with a kernal size of 3 and 64 hidden

units. Meanwhile, a fully connected network is applied to the
server-derived representation corresponding to the same time
step. These outputs are combined and fed into an affiliated
output layer to produce final results. Table II summarizes the
number of parameters of the client models, the server model,
and the dimension of the representation used in the experiment.

The server model trains at an initial learning rate of 0.001,
and client models at 0.0001, using the Adam optimizer and
Cosine Annealing scheduler. Training halts if performance
drops on the validation set for three consecutive evaluations
(i.e., an early stopping criterion with a patience of 3).

a) Aligned Objective - H2CO Forecast: We first focus on
a common objective across all clients: predicting future H2CO
levels, though none directly observe H2CO. This variable is
highly correlated with client data. Training losses alongside
test errors, are depicted in Figure 3(a) and summarized in
Table III. CoRAST enhances learning outcomes across all
scenarios. When focusing on a singular global objective,
CoRAST significantly improves distributed learning by adding
additional environmental insights into learned representations.
This approach facilitates a more effective aggregation of client
data than traditional forecasting techniques, as evidenced by
Table III’s reductions in forecast error in comparison to the
centralized case lacking FM integration. Furthermore, the
improvements of CoRAST-rho over no FM show the value of
the global representation in conveying critical environmental
information, previously inaccessible to client-based learning,
thereby improving local model performance. Setting 2 gener-
ally gives lower MSE than Setting 1, indicating the value of
including more weather data in the prediction.

b) Multimodal Tasks - Local Forecast: We explore mul-
timodal local objectives with clients predicting future values
of their specific observed variables, which vary in type. For
example, in the 2-distributed setting, three clients forecast
variables [Tdew, Tpot], [rh, p], and [sh], respectively. As a
result, distinct local models targeting specific client data need
to be learned. Figure 3(b) and Table IV show the average



TABLE III
H2CO FORECAST - TEST MSE. CORAST HAS THE LOWEST TEST LOSS IN

MOST SETTINGS WHEN ALL CLIENTS HAVE THE SAME LOCAL TASK.
CORAST-RHO TAKES ADVANTAGE OF LIMITED GLOBAL INFORMATION TO

OUTPERFORM THE BASELINE WITHOUT A FM.

Setting No FM CoRAST-rho CoRAST

1-centralized 0.195 0.182 0.171
1-distributed 0.391 0.303 0.201
2-centralized 0.075 0.055 0.061
2-distributed 0.151 0.146 0.063

TABLE IV
LOCAL FORECAST - TEST MSE IN DISTRIBUTED SETTINGS WITH

DISTINCT LOCAL TASKS FOR CLIENTS. CORAST HAS THE LOWEST TEST
LOSS IN MOST SETTINGS. CORAST-RHO TAKES ADVANTAGE OF LIMITED
GLOBAL INFORMATION TO OUTPERFORM THE BASELINE WITHOUT A FM.

Setting Variable No FM CoRAST-rho CoRAST

1-distributed
Tdew 0.072 0.056 0.075

rh 0.297 0.318 0.276
sh 0.077 0.072 0.059

2-distributed

Tdew 1.953 1.796 1.853
rh 0.223 0.216 0.211
sh 1.945 1.912 1.930
p 0.151 0.159 0.145

Tpot 2.633 2.544 2.438

training loss across all variables and test MSE for each
variable. The results show that CoRAST improves the training
process and model accuracy in both centralized and distributed
cases, which highlights CoRAST’s capability to enhance the
distributed learning of interrelated tasks by utilizing correlated
environmental data through FMs. Comparing CoRAST and
CoRAST-rho reveals the distinct influences that environmental
variables exert on each other, emphasizing the complexity of
correlations within environmental data.

V. CONCLUSION AND FUTURE WORK

This paper introduces CoRAST, a general FM-based learn-
ing framework specifically designed for analyzing correlated
heterogeneous data in CPS and IoT. CoRAST uses a server-
based FM to generate global insights through advanced repre-
sentation learning and enables client models to enhance task
performance. It supports asynchronous updates for continu-
ous learning without requiring system-level retraining, and
is flexible in managing diverse local data and customizing
client models. Our evaluation demonstrates CoRAST improves
distributed environmental forecasting on a real-world dataset.

Future work will focus on refining the architecture to
better support temporal, spatial, and cross-modal correlations.
This includes adapting to diverse training datasets and the
discrepancy in data available at training versus inference.
Moreover, the current method of using a uniform global repre-
sentation fails to meet the diverse needs of individual clients.
Introducing client-specific adaptors for tailored representations
adds complexity but is essential for personalized learning.
These adaptors, reliant on client feedback for performance
optimization, introduce a new interaction dynamic.
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