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How Valuable Is Your Data? Optimizing Client
Recruitment in Federated Learning
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Abstract—Federated learning allows distributed clients to train a shared machine learning model while preserving user privacy. In this
framework, user devices (i.e., clients) perform local iterations of the learning algorithm on their data. These updates are periodically
aggregated to form a shared model. Thus, a client represents the bundle of the user data, the device, and the user’s willingness to
participate: since participating in federated learning requires clients to expend resources and reveal some information about their data,
users may require some form of compensation to contribute to the training process. Recruiting more users generally results in higher
accuracy, but slower completion time and higher cost. We propose the first work to theoretically analyze the resulting performance
tradeoffs in deciding which clients to recruit for the federated learning algorithm. Our framework accounts for both accuracy (training
and testing) and efficiency (completion time and cost) metrics. We provide solutions to this NP-Hard optimization problem and verify
the value of client recruitment in experiments on synthetic and real-world data. The results of this work can serve as a guideline for the
real-world deployment of federated learning and an initial investigation of the client recruitment problem.

Index Terms—Federated Learning, Client Recruitment, Optimization

1 INTRODUCTION

MERGING machine learning techniques have achieved

great success in creating value from big data. Much
of this data is generated by increasingly pervasive mobile
devices. These devices, e.g., smart phones, are generally
equipped with powerful sensors and considerable storage
space, making them great sources of training data for ma-
chine learning applications like natural language processing
[32] and spam detection [2]. Traditional learning deploy-
ments assume all data is stored in a central location (e.g.,
in a single datacenter) where it can be accessed as needed
for training a model. User data is then fully exposed to
the operator of the model training. In practice, however,
the private nature and the potential volume of user data
obstruct its centralized storage and processing, making it
hard to make use of these isolated knowledge bases.

The popular federated learning framework allows users
to contribute the power of their data to train machine
learning models without sharing any raw records. The most
common federated learning algorithm is FedAvg [20]. It
involves one global coordinator, typically a powerful cloud
server; and a group of user clients, typically at the network
edge. These clients can communicate with the coordinator
through the wireless network. During the training, each
client in parallel works on a local model defined on its pri-
vate dataset. These local models are aggregated periodically
at the global coordinator, and sent back to synchronize with
all clients. This distribution of computation loads makes
federated learning a typical example of an edge comput-
ing system. The whole training process will take multiple
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rounds, repeating the local and global steps. Since only the
models are shared with the coordinator, users’ raw data is
kept private.

Under certain conditions, FedAvg converges [17]. How-
ever, ensuring its good performance in more general scenar-
ios requires overcoming additional challenges that do not
present in centralized learning. Specifically, the challenges
originate in the skewed distributions of data at different
users (statistical challenges), and in the complexity of the
edge computing system (system challenges). We will elab-
orate on these challenges below. Much recent work aims to
address them by optimizing the learning algorithm given a
set of participating clients (e.g. [29, 30, 35, 38]). However,
these works neglect a complementary question: Before run-
ning the federated learning algorithm, how should the operator
recruit participating clients so as to optimize the performance of
its federated learning algorithm? In this work, we show that a
good client recruitment is essential to overcoming federated
learning’s statistical and system challenges, complementing
algorithmic innovations like carefully selecting or schedul-
ing model updates from a given set of clients.

Client recruitment formalizes the relationship between
the two market players in typical commercial applications
of federated learning: the operators and the users. Operators
are typically companies who hope to create or improve their
Al products utilizing their users’ data. For example, Google
has utilized data from Android users to train a query sug-
gestion model for its keyboard application [42]. Recently, the
medical industry also proposed to predict hospitalizations
for cardiac events [5] with federated learning. Other pop-
ular application fields include medicine [5], the Internet-of-
Things [18], and vehicular networks [31]. Federated learning
operators are responsible for setting up the coordinator and
finding the participating clients. However, users are not free
labors. Most federated learning algorithms require users to
commit to computing local updates, which may consume
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limited battery, to the training on demand [29, 30]. These
contributions also expose information about private user
data, since the local models are sent to the federated learning
coordinator [3]. Typically, to ensure convergence, clients are
required to stay connected and reserve enough battery to
compute updates at all times [20]. Even federated learning
algorithms that use only a subset of clients to send updates
in each round often assume such clients can be freely se-
lected, i.e., that clients have made a commitment to compute
updates on demand [7, 41]. To compensate for these upfront
commitments, recruited users may need incentives from
the operator to participate in the training, which entails
contributing data and computing power and may consume
limited battery. In fact, since the local models are exposed to
the coordinator through periodic parameter aggregations,
federated learning does not entirely preserve user privacy
[3]. To compensate for this privacy loss and grant users
more control over their data, the operator may pay users for
their data, as proposed in [16]. Such compensation, however,
introduces a new challenge not commonly considered in
federated learning: limiting the recruitment cost.
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Fig. 1. Typical life cycle of federated learning comprises of client recruit-
ment, model training and model deployment. Client recruitment is the
preliminary stage and directly affects the quality of the trained model.

We define client recruitment as the preliminary stage of
federated learning (Figure 1), in which the coordinator de-
termines the set of candidate clients with which it will train
a model. When the recruitment is finalized, we will have
determined the quality and quantity of the training data, the
number and types of local devices, and the associated cost of
compensating users for their upfront commitments. A good
client recruitment is thus fundamental to the successful
execution of federated learning. Indeed, careful recruitment
will reduce the number of clients required to make training
commitments (by almost 5x in our experiments), improving
federated learning’s overall efficiency and impact on user
privacy. We emphasize that client recruitment differs from
the more commonly considered client selection, in which a
coordinator decides which clients” updates should be in-
cluded in each iteration of federated learning [23, 41]: client
recruitment occurs before the training starts and determines
the set of clients eligible for selection in each iteration.
E.g., an operator might seek to build a model that uses
smartphone weather measurements to predict temperature
as a function of location and precipitation, or sensor mea-
surements to predict traffic in a city as a function of location
and time. To do so, the operator must recruit clients by
respectively deciding from which smartphone users it will
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request model updates in the future, or which sensors to
place where. We elaborate further on client recruitment’s
potential benefits compared to client selection in Section 2.

The study of the client recruitment problem faces three
challenges: First, we lack quantitative metrics for the overall
performance of the learning system. In previous works (e.g.,
[17, 30]), local datasets are generally taken as given, and
“learning performance” is taken to be the training loss. In
client recruitment, however, we have the freedom to decide
the quality and quantity of the training data, which not
only affects the training loss but also controls the model’s
generalizability to data not in the training set. If clients
are not recruited carefully, the resulting training data may
yield skewed models, e.g., biased training data is likely
a cause of widespread racial bias in facial recognition
algorithms [11]. Refining only the learning algorithms or
client selection cannot fully address this challenge, e.g., if
some data is simply missing from the recruited clients’
datasets. Recruiting the right clients, however, must also
account for user devices’ divergent specifications [12], e.g.,
differing CPU clock speeds and operating systems. Client
recruitment thus also determines the completion time and
the operating cost of federated learning systems. We must
quantify the dependence of these metrics on the training
data, which to the best of our knowledge has not yet been
done in the federated setting. Complicating this problem
further, the federated learning operator may not know the data
distributions at each client a priori: knowing such distributions
may negate the privacy benefits of federated learning, and
client recruitment must take place before training, which
may reveal information about client distributions or spec-
ifications, begins. Quantifying the relevant metrics, even if
possible in theory, is thus difficult in practice.

The second challenge comes from the complicated tradeoffs
between our identified performance metrics in client recruitment.
This challenge originates in the multiple identities of clients.
When the operator recruits a client, she recruits both her
local dataset and the processing capacity of the associated
device to perform updates on the local data. This relation-
ship between the statistical and system characteristics of
clients further complicates federated learning’s statistical
and system challenges. Including the (monetary) cost of
compensating clients introduces even more complexity. For
example, recruiting more clients allows us to use more
training data, but too many participating clients could re-
sult in longer completion time and higher operating cost.
Similarly, it could be hard to determine if one should recruit
a small but statistically valuable dataset (yielding a smaller
training loss but potentially poor generalizability), or a big
but biased one. This challenge is further complicated by
clients’ potentially adding noise to their model updates, e.g.,
to ensure differential privacy guarantees [39].

Given these complex performance tradeoffs, our third
challenge is finding the optimal client recruitment. Client
recruitment is by its nature a combinatorial optimization
problem as recruiting each client is a binary choice. Since
there may be thousands of candidate clients, naive brute
force is impractical. Generally, the optimal client recruitment
problem is NP-Hard, making it difficult to find efficient
optimization algorithms.

The contributions of this paper are:
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e We construct a comprehensive system model to quan-
tify the performance measures of recruitment in federated
learning, including not only the training loss of the
output model, but also the model’s generalizability, the
reliability and completion time of model training, and
the operating expense.

o We formulate an optimization framework that captures
the complex tradeoffs in client recruitment.

o We exploit the structure of this NP-hard optimization
problem to provide a provably optimal, tractable solution.

o We introduce approximation methods for our quality met-
rics that can be computed in practice even when clients’
data distributions are unknown.

o We demonstrate our work’s practical feasibility by learn-
ing representative models with higher accuracy and
fewer recruited clients compared to heuristic methods,
on synthetic and real datasets.

Our results can help future researchers quantify the
tradeoffs in this problem, and provide guidance for the big
data industry on client recruitment in federated learning
deployments.

Due to the roles that clients take in federated learning,
we will use “users”, “clients”, “local datasets”, and “de-
vices” interchangeably. We review related works in Section 2
and formally introduce the federated learning algorithm in
Section 3. In Section 4, we build a comprehensive model to
quantify the performance of federated learning systems, and
we formulate client recruitment as an optimization problem
in Section 5. In Section 6 we provide solutions to this NP-
Hard optimization problem, which we evaluate on sample
learning problems in Section 7. We conclude in Section 8.

2 RELATED WORKS

Federated learning was first introduced with the FedAvg
algorithm [20]. Many experiments since then have shown
that FedAvg can indeed produce accurate machine learning
models [15, 42]. Recent papers also demonstrated the power
of federated learning for different applications [5, 18, 31].
The convergence of FedAvg has been proved for strongly
convex and Lipschitz continuous objectives. Specifically,
[38] shows that FedAvg converges in O(+) when all clients
participate; [17] proves the same convergence rate in general
cases, and shows that a decaying learning rate is required
for the algorithm to converge to a global optimum. These
works also prove that the non-independent-and-identically-
distributed (non-IID) local datasets can greatly obstruct
convergence, which has been experimentally verified [43].

Some other papers also incorporate system characteris-
tics. E.g., [38] proposes an adaptive control algorithm that
jointly considers the accuracy and the cost of training. An-
other topology-aware framework is proposed in [35], which
allows offloading the data between clients. [6] considers
federated learning over wireless networks, incorporating
wireless communication and energy consumption.

Client selection, which studies the scheduling of client
participation in each global round of federated learning,
is closely related to client recruitment. E.g., [23] proposes
an adaptive selection algorithm to maximize the number of
participating clients in each round while subject to resource
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restrictions. Similar topics are discussed in [41], which as-
sumes clients follow a specific scheduling policy for global
aggregations. Other work considers the design of incentive
mechanisms to attract federated learning users [13, 24] and
the use of differential privacy to enhance the privacy of
users’ local data [9, 14, 34, 39]. However, generic client
selection algorithms cannot guarantee the convergence of
federated learning to a globally optimal solution [7]. Client
selection, which is typically done at the start of each training
iteration, also requires all clients to stay active and ready to
be summoned anytime, even if they are not always selected,
which is unrealistic in practice due to the system challenges
to be discussed in Section 3.2.

Client recruitment supplements the existing works on
client selection and can be understood as a pre-processing
procedure. Compared to client selection, which cherry picks
from a small set of clients, client recruitment is expected
to deal with a much larger candidate pool. In practical set-
tings, client recruitment is more useful since it pre-excludes
disqualified clients before any training steps are taken or
incentives offered, while client selection cannot remove the
coordinator’s business obligation to the recruited clients
(e.g., monetary incentive payments), who have committed
to being available for training even if they are never ulti-
mately selected. The client recruitment method discussed
in this paper is independent of the remaining training
details, and can thus be coupled with any federated learning
algorithm and client selection strategies.

3 FEDERATED LEARNING BACKGROUND

This section formally introduces federated learning based
on the FedAvg algorithm [20] and discusses the statistical
and system challenges of deploying it in practice.

3.1 Federated Optimization

Federated learning trains a single model by attempting to
minimize the model’s empirical risk, i.e., the training loss,
over data from multiple clients. Suppose there are K clients,
each of whom owns a dataset Dy, = {(u;,v;)};, where
u;, v; are respectively a feature vector and the corresponding
label. We index the data samples by :. Let [(w; u, v) be a loss
function with weight vector w and a data record (u, v), i.e., a
measure of how accurately a model with weight w predicts
the label v for input w. Typical loss functions are cross
entropy for classification and L, distance for regression. The
local empirical risk of client k for a given weight w is defined
as the sample mean of the loss over its data Dy:

Ry (w; Dy,) = ﬁ Zil(w§uiavi) M

The ultimate goal of training is thus to find w that minimizes
the empirical risk over the global dataset D,, = U, Dj, 1,

. = K n ~
minFo(wiDe) =3, Buwi D) @

Here, we define ny = |Dy|, which is the number of data
samples of client k, and n, £ Y, nx, which represents the

1. For ease of notation, we use Uy, (or >, ) to denote the union (or
sum) taken over all the recuited clients, in contrast to Zf .
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total number of samples in the global datasets over all the
recruited users. The subscript x indicates that this global
dataset is determined by the recruitment decision x, which
we will formally define in Section 4. To minimize R,, the
distributed stochastic gradient descent (SGD) paradigm is
utilized. A central coordinator maintains a global weight
vector w, and each client k¥ maintains local weights wjy,. The
training repeats the following four steps fort =1, ..., T.

o Client Selection: The coordinator selects a random subset
of clients to participate in the training for this round.

o Synchronization: The coordinator broadcasts the global
weight vector w™ to the clients through the network.
Clients then update their local weights w}! with w*.

o Local Optimization: Each client k£ runs SGD independently
and in parallel for 7 steps to minimize its local risk Ry,

getting local weights w,(fH)T.

o Aggregation: The coordinator aggregates {w }i from

clients by setting the next global weight vector as their

weighted average: w(t1)7 = 3~ Z—:w,ﬁtH)T.

(t+1)r
k

Since only the weight vector w is exchanged with the
central coordinator, it is guaranteed that each local dataset
will only be accessible by the client itself; thus no raw data
records will be disclosed.

In the following sections we will assume all the al-
gorithm parameters are given, which include the number
of local/global epochs 7/T and so on. This simplification
allows our results to be robust to different algorithm settings
and complement optimizations of these parameters. In fact,
these algorithm parameters often cannot be optimized pre-
cisely, especially as some client characteristics may not be
known to the operator. Co-optimizing the parameters with
client recruitment is an interesting area of future work.

3.2 Learning Challenges

The optimization paradigm introduced above resembles the
distributed machine learning framework traditionally used
in datacenters. However, as mentioned earlier, federated
learning faces both statistical and system challenges that
do not appear in the data center environment. Intuitively,
this is because, first, federated learning performs multiple
local iterations between aggregations; and second, mobile
devices are more prone to failures than powerful servers.
We will incorporate these challenges into the analysis of the
client recruitment problem, and show in simulations that
client recruitment allows us to overcome these challenges.
Statistical Challenge: Non-IID datasets. Unlike in the
data center where data is assumed to be identically and
independently (e.g., [40]) distributed among workers (e.g.,
by randomly shuffling data between workers), clients’ data
distributions in federated learning may well be non-IID.
Specifically, we suppose that samples in every local dataset
Dy, are independently drawn from a distinct distribution
Pyi.. Depending on the application, the distributions {Py }
may differ significantly with each other. Both experiments
and theoretical results have shown that non-IID data can
greatly decelerate the training [20]. Intuitively, since clients
train on their local datasets, their local models are skewed
towards their local distributions. The aggregation step will
help alleviate this bias but cannot completely remove it.

4
TABLE 1
Notations
T Recruitment decisions, = € {0, 1}
K Number of candidate clients
Dk, Pr, Pk Local dataset and its empirical, real dist.
Do, Pa Global dataset and its empirical distributions
P, P Estimated and real population distributions
Ry, R, Local and global empirical risks
Nk, N Number of data points in local/global datasets
N Number of client groups
ms Number of clients in group z,z =1,..., N
A, 45,97 Processing, failure, recovery rate of group z
Ck Cost to recruit client &

Recently, researchers [17, 38] have bounded the training
loss with a monotonically increasing function of the average
difference in loss functions evaluated with local and global
optima wj, and w},. A similar bound uses the divergence in
local and global empirical distributions instead:

training loss o Zk %Wsk — Py 3)

Here Pk and ]596 respectively denote the local and global
empirical distributions. In other words, the training loss,
i.e., the global empirical risk, increases for more dissimilar
local and global data. For example, [43] shows that the
training loss increases monotonically with the earth mover’s
distance between local and global distributions.

System Challenge: Stragglers and failures. User devices
such as smart phones and tablets have relatively constrained
computation resources (e.g. CPU, memory, storage), which
furthermore must be shared among many applications.
These weaknesses make stragglers (devices that take a long
time to run local iterations) more likely to appear in feder-
ated learning. Furthermore, edge devices generally lack data
centers’ extensive backup resources [1]. Machine failures are
so rare as to be generally ignored in cloud-based learning
algorithms [40], but the risk of client failure in edge com-
puting settings is considerably higher [22]. The appearance
of stragglers and failures will cause the remaining devices to
wait idly in the aggregation step, slowing down the training
speed.

A final challenge often not considered in distributed
learning is that of user compensation, for both computing
updates and giving up potentially private information about
their data through sending these updates to a central server.
We discuss the resulting monetary cost in Section 4.2.

4 SYSTEM MODELING

Formally speaking, given a list of candidate clients &/ =
{ug }, the goal of client recruitment is to recruit the optimal
subset of clients I/, C U that will run the learning algorithm
to optimize the overall performance of federated learning.
In this section, we first model the relevant data distributions
and then propose formal performance metrics for both the
accuracy and the efficiency of the learning algorithm.

4.1 Data Distributions

We assume all data points are generated in an IID manner
from a population distribution ‘P, no matter the client to which
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they belong. On the other hand, each client’s data individ-
ually forms a local distribution Pj, which generally differs
from other local distributions and from P, also known as
non-IID data distributions across clients. Figure 2 depicts
an example relationship between the local and population
distributions. Clients collect data only within their own
domains, which are subsets of the overall data distribution,
resulting in distinct perceptions of the data.

The existence of an universal population distribution
P is the premise of federated learning. Indeed, it does
not make sense to train a single model over separate data
clusters if their data does not present some correlation or
similarity.? The objective of federated learning can thus be
understood as to build an universally applicable model over
P with limited knowledge of and access to samples from the
local distributions Py ’s. Local distributions can be different
or even biased from the population for various reasons, such
as clients only collecting data in certain physical locations,
while the population covers all such locations.

When we compare two local datasets, we assume the
data is independent but not identically distributed between
them. In contrast, when we discuss the union of all local
datasets, we treat each sample as IID distributed in P.
For example, suppose we are training a model to predict
temperature from features such as the amount of sunlight,
rainfall, and humidity. In this case, P represents the joint
distribution of world-wide temperature with these features.
Since a client can only collect temperature data in a small
region, its local distribution P}, only reflects the regional
climate characteristic (e.g., high humidity may correlate
with high temperatures in New York but not California).
As a result, clients in different regions possess divergent
local distributions, and most local datasets cannot cover the
whole temperature range of P. On the other hand, all these
data points are essentially generated within the same Earth
climate system. Thus when forged together, they do follow
the world-wide distribution P in an IID manner. We can
therefore use federated learning to train an universal climate
prediction model based on these datasets.

Client 1

Client 2

Fig. 2. The relationship between the population distribution P and local
distributions Pj. The numbers of balls passing through the Galton board
in different slots follow the binomial distribution 7. However, two clients
both only have limited views of the population. Their local datasets thus
follow two distinct local distributions P; # P2 # P.

In the meanwhile, a local dataset D), may not describe
its local distribution Py, well if insufficient data points were
collected. In fact, only in rare cases will Py be known by

2. Federated learning variants with personalized local models [33]
may not require an universal population distribution, but the local
models must still share some similarities. We focus on training a single
global model in this work.
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the client, let alone by the federated learning operator. In
practice, the operator estimates the divergence between Py
and P through client k’s empirical distribution Py, which
converges to the real P, when Dy, grows larger.

Similarly, we define the global dataset D, = U} D}, as the
union of all local datasets over recruited clients. Data in D,
forms the global empirical distribution P. It is easy to check
that the empirical risk of D, is exactly the R, defined in (2)
as a weighted average of Ry’s. Likewise, P, is a weighted
average of local empirical distributions: P, = 3°; %P

Since all data in D, is independently drawn from the
population distribution P, P, can be regarded as an em-
pirical estimation of P when a reasonably large number of
clients are recruited. In this paper, we assume that P, is
an empirical distribution of P that converges to P as more
clients (thus more datasets) get recruited. In the climate data
example, if we have recruited clients from all climatic zones
in the world, the union of this data P, becomes a good
representative of the whole Earth climate system P.

To facilitate client recruitment, we assume the federated
learning operator can estimate P, e.g., with a small set of IID
data points D sampled from P based on the operator’s prior
knowledge on the population of interest (e.g., as in [36]), and
we denote its empirical distribution by P. Since D is small
in size, it cannot be directly used for training. Such a sample
dataset is likely needed to determine whether learning a
federated model on these features makes sense in the first
place. It can also be considered as a basis to generate the
test dataset. For example, before using climate data in user
devices for model training, we can estimate the population
distribution by investigating the public historic data. In
principle, knowledge of P is sufficient to learn a model for
our data. However, if D is merely a basis to generate the
test dataset, this knowledge may not be sufficient to learn
a model. For example,~ in Section 5.1, we show that it is
sufficient to estimate |P — P;| by knowing the distribution
of data labels; such distribution is clearly insufficient to learn
the entire model.

Alternatively, the operator may purchase samples di-
rectly from users who are willing to sell their data with a
relatively high price. The operator can choose from which
clients to purchase data by leveraging prior knowledge of
context features, e.g., ensuring the collected samples cover
all of the basic climate zones if the goal is to learn a
climate model. Since the cost is expensive, the resulting D
is small, but can still reflect the main characteristics of the
population. This educated guess of the population allows
the operator to gauge the clients’ quality and representa-
tiveness. After all, without a basic understanding of the
target data population, it is impossible to decide what data
is needed for the training.

4.2 Performance Metrics

We will consider two categories of performance measures.
The first category is the accuracy of the output model, which
includes not only the training loss (i.e. global empirical
risk), but also the model’s generalizability (i.e., the expected
accuracy when applied to fresh data samples from recruited
clients) and its representativenss (i.e., the expected accuracy
when applied to data from the rest of the population that
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is not recruited). The second category measures the training
efficiency, which includes the time to complete the training,
and the cost incurred. Putting them together, below we
list five metrics that we will consider in this paper. All
of them are critical to the commercial success of federated
learning, ensuring that we can train an accurate model with
reasonable time and cost. We discuss how to compute these
metrics in practice in Section 5.

Reduce training loss with high-quality data: A dataset
Dy, is considered of good quality if its P, resembles the
population P. From (3), if P, resembles P (see “representa-
tiveness” below), the quality of the local datasets directly
determines the training loss. A dataset Dy with a small
distribution divergence |P, — P| yields small training loss.

Reduce generalization error with more data: Given
a loss function ! and dataset D, the generalization er-
ror |R — R| is the divergence between the empirical risk
R(w;D) = (O l(w;u,v))/|D| and the real risk R(w) =
Ep[l] = [I(w;u,v)dP. While the training loss gauges the
model’s performance on the training data, the generaliza-
tion error reflects its accuracy when applied to new samples
drawn from the recruited distributions. If a client has insuffi-
cient data, its local empirical distribution P, may poorly
approximate Py, which implies a large generalization error.
Existing works generally omit the generalization error as
they take the training data as given. For us, however, client
recruitment determines the size of the training dataset,
affecting the generalization error.

Choose for population representativeness: In order for
the trained model to be applicable to unrecruited datasets, the
recruited clients, when forged together, must be representa-
tive of the population P. Indeed, if the clients do not cover
portions of the population space, we will perform poorly
in those areas. For example, including polar region data
complicates the training of models that predict worldwide
temperatures, but failing to do so can degrade the model’s
performance in this region.

Control the completion time: Federated learning is use-
less if the training process does not complete in reasonable
time. We define the completion time as the expected time for
the coordinator to finish all 7" rounds of aggregations, which
is related to the per round runtime of the clients. Clients
that come with more powerful devices allow the training
to complete faster. However, recruiting too many clients
increases the probability of client failures, which results in
additional runtime from waiting for these failed clients.

Control the cost: Since the size of an individual local
dataset is usually small, a typical execution of federated
learning may need thousands of recruited clients [4]. The
operator should thus make sure the resulting recruitment
expense is affordable. Clients may also add noise to their
contributed model updates, e.g., to satisfy differential pri-
vacy guarantees [39]. This addition may further increase
the training loss [14, 39] but may lower the cost, as the
contribution of updates yields less privacy leakage.?

3. Adding noise to the model updates may decrease the generaliza-
tion error and representativeness associated with the recruited clients
in practice, as the model no longer directly minimizes the training loss.
For simplicity, we do not include these effects, which are hard to predict
a priori, in our model.

Fig. 3. The choices of three datasets. D1, D2 are chosen, while D3 is
not. Each dataset D; follows distribution ;. P is the prior knowledge
on the population distribution 7. The global empirical distribution P, =
P1 U P3 converges to the population 7 when more additional datasets
get chosen.

While all these metrics are critical in practice, client
recruitment is unlikely to attain their optimal points simul-
taneously. Generally, improving the accuracy metrics entails
recruiting more clients, which increases the completion time
and cost. Likewise, tradeoffs exist among accuracy metrics.
Figure 3 qualitatively illustrates them with an example:
First, compared to client 1’s data distribution D;, Dy and
D5 have better qualities because their distributions, P arld
P3, are closer to the population distribution P. Therefore, Pz
and P3 are more similar to each other. Choosing them would
result in a smaller risk divergence as defined in (3), reducing
the training loss. Second, the empirical distribution could be
biased from its real counterpart due to insufficient samples.
For example, the empirical distribution P; is highly biased
from P;. A federated learning model trained with only
Dy may thus not perform well when tested on new data
points sampled from P;. Third, the global P, could be
skewed away from the real population distribution P if
we recruited only one client instead of two. Intuitively, any
single local distribution fails to represent almost half of the
population sample space, which may also lead the trained
model to generalize badly when applied to fresh samples
in the population. Thus, we may always want to recruit
more clients to increase the representativeness. A tradeoff
thus appears when deciding which distribution to choose.
For example, we will obtain better representativeness but
higher generalizability error by recruiting client 1.

5 PROBLEM FORMULATION

To jointly consider the metrics in Section 4.2, we formulate
client recruitment as an optimization problem: Given a set of
candidate clients U = {U;.}X_,, let x € {0,1}¥ be a binary
vector denoting the recruitment decision for each client.
The operator picks an optimal subset U, = {Uj|z; = 1}
to minimize an objective function f, subject to a given
maximum completion time I; and cost /..

Problem 1. Client Recruitment
i - + + r
zer{r(l)l,rll}K f(d?) ’Ytlftl(x) ’Ygefge(x) 'erf p(z)
st gi(x) < I, ge(z) < I,

We derive expressions for the completion time g¢:(z)
and cost g.(x) in Section 5.2. Here f(x) consists of three
terms that determine the accuracy of the trained model:
fu, fges frp, which respectively upper bound the training
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loss, the generalizability, and the representativeness. The
objective f determines the goodness of the trained model
when applied to existing or future data points gener-
ated by both recruited and unrecruited clients. The coef-
ficients 74, Vge, Yrp determine the relative importance of
these terms. For example, if the operator runs thousands
of iterations (i.e., T is large), the client recruitment may
not significantly affect the training loss. The operator may
instead emphasize the generalization error and the repre-
sentativeness, which cannot be compensated for with more
iterations.

5.1 Quantifying Accuracy Metrics

We first consider the training loss. According to (3), the
training loss is determined by the divergence between local
and global empirical distributions )~ =[Py, — P.|. How-
ever, since the global distribution can only be determined
after the recruitment process, it is difficult to optimize
the divergence directly. Thus, we utilize the fact that P,
resembles the population P (Lemma 2) to define:

fa@) =Y,

Sharing this metric preserves user privacy since it does
not actually require the individual empirical distributions
Pi’s. Instead, P is broadcast to clients by the ~(:oordNinator,
and the returned information from the clients |P;, — P| only
encodes the distance of local distributions to the population.
The model parameter transfer in federated learning reveals
similar information [3]. If the user adds noise to its model
updates so as to guarantee differential privacy, then the
training loss will increase due to the additional noise [14].
However, as this added noise is independent across clients,
we can still approximate the training loss as a sum of
terms proportional to |P;, — 73| where we can absorb extra
constants into the constant 2=

Depending on the data and model being used, the di-
vergence can in practice be calculated in many different
ways, e.g., [37] empirically measures the quality using a
predefined test dataset. Below we provide tractable methods
and formula to approximate the training loss f;; for generic
machine learning tasks from limited client information.

TNk

\Pk - 7P| 4)

o Counting classes: Consider a classification problem with L
classes, and suppose the local empirical distribution Pp,
and empirical population distribution P have densities
ﬁk and p. We can then write the divergence as |Pr —

= [ 1k (u, v)=p(u, v)|dudv = 3¢ (1) [ [Pr(ulv)pr(v =
z) pulv)p (v = i)|du. We assume pi(ulv) = p(ulv), i.e.,
local features have the same distribution as the population
given the label v. Thus, [[pr — p| < Xicp) [Pe(v =
i) — p(v = )|, where the population distribution p is
known a priori. If a client & has j labels, py(v = 1) = 1/j
if label 4 is included in Dy, or px(v = i) = 0 otherwise.
Thus, the whole term > |p(v = i) — p(v = )| can be
easily computed by simply counting the number of labels
each client sees, and estimating P from D entails the same
simple counting process.

o Gaussian graphical model approximation: For general super-
vised learning with continuous labels, we can formulate
the features and the label as a Gaussian graphic model. A

7

local empirical distribution is then fully specified by the
mean and covariance (fig, ). The quality measure then
becomes the divergence between two Gaussian distribu-
tions, which can be quantified by the Kullback-Leibler
divergence: [Py — P| o Dgy, (/\/'(ﬁ;c, ik),/\/(/],i)). Es-
timating P from D entails computing /i, Y and inferring
the graph connectivity (e.g. from the covariance).

We will demonstrate the effectiveness of these two ap-
proximation methods in Section 7. Not only does our opti-
mal recruitment strategy obtain the best performance, but
we also find that recruiting more high-quality clients out-
performs the learning outcome when recruiting more large-
quantity clients, which shows that our quality estimations
are sufficiently accurate to improve the learning process.

Next, we model the average generalizability. Since
the training objective of federated learning R, is an aver-
age of local empirical risks as in (2), we similarly quan-
tify the average generalization error of local datasets by
>k B[Ry, — Ryl To formulate it, we rely on Lemma 1
as follows:

Lemma 1. There exists a class of convex learning problems
(e.g. linear regression), for which we can obtain the following
generalization error bound for all clients k:

|Ri — Ri| = O (n; ") (5)

For example, [26] proves this bound for the linear regres-
sion model. A tighter convergence bound is also possible
using more sophisticated statistical tools such as Hoeffd-
ing’s inequality. For simplification and to accommodate
non-convex models that may have looser risk generalization
bounds, this paper assumes a relatively common asymptotic
bound [10, 26], but our analysis can be easily extended to
using any functions of ny as the generalization error bound
as long as it can be easily computed without using private
information. We thus define,

OEDIEC ©)

We then model the representativeness. To make sure
the chosen distributions can represent basic characteristics
of the population distribution, we seek to minimize the
divergence between P, and P. As is discussed in Section
4.1 where we assume P, is an empirical distribution of P,
and using the central limit theorem, we have the following
uniform bound:

Lemma 2. P, — P converges in distribution to the Gaussian
distribution with 0 mean at the rate of O(n;°).

Therefore, statistically, when n, grows larger, 7530 be-
comes a more accurate representative of P. We thus define:

frp(@) =1 0° @)

Though we use the standard convergence rate of the
central limit theorem in Lemma 2 and (7), our analysis
and algorithm can still work for general O(n;?) with
0<pB<14

4. In practice, the constant associated with this term may be large,
e.g., if the data is high-dimensional. However, we can still use this
expression as a guide to recruit more representative clients that benefit
the overall learning process, even if the actual representativeness error
is far from zero.
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Combining (4), (6), and (7), and reorganizing, the ob-
jective f can be expressed as in (8). Since the associated
importance coefficient ,, in (8) is a positive constant inde-
pendent of x, we normalize it to 1. The s; value here is a
weighted sum of client ks quah%y representation |Py — P|
and quantity representation n, °. It thus enables us to
quantify the quality-quantity tradeoff when choosing user
datasets.

f(x) = Yy (Zk TENESk + n;0,5)

Na
’Ytl |,P P| + 05
7

D D

®)

The required local information from clients in (8) in-
cludes only ny and |Pr — P|. The former is trivial to
compute, as it only requires the number of datapoints, and
the latter can be estimated using the approximation methods
discussed above. As discussed above (4), while |P; — P|
reveals some information about client £’s data, it is unlikely
that this single scalar would significantly compromise data
privacy, as it only encodes the distance from the local data
distribution to that of the population.

5.2 Quantifying System Metrics

Now we analyze the completion time constraint. The com-
pletion time depends on the specific aggregation scheme
used in federated learning. When the coordinator constructs
the next global weight vector, it has to wait for the clients to
upload their local weights. Some of the weights, however,
may not be delivered due to straggling and failure. One
possible solution is to only wait for the first few clients,
and discard the rest of them. This is usually referred to as
K-synchrononous SGD [8]. Unfortunately, in the federated
setting, this scheme may cause the coordinator to wait indef-
initely if several failures occur simultaneously. We will con-
sider a more resilient aggregation scheme: For each round
of the federated optimization iteration, the coordinator will
wait up to a predetermined duration L. The global weight
will then be calculated based on the weights received before
the deadline. Thus, the runtime for one iteration equals the
runtime of the slowest client if all clients complete by Ej, or
E) if a client fails in this iteration.

ar
S hewe ) rates >
1—¢q Ji qr 1-gq,

Fig. 4. A two state Markov chain representing the state transition of
clients. An active client fails with probability ¢. A failed client recovers
with probability g,

We model the client failure as a Markov chain, and
we calculate the recovery and failure rates based on the
mean times to failures [25]. As in Figure 4, an active client
crashes with probability g¢, and a failed client recovers
with probability g,. Here ¢,,q;y > 0. Suppose there are m
recruited clients. Let A’ be the number of active clients at
iteration ¢, which has the following properties.

8

Proposition 1. A’ is an ergodic Markov chain. In the steady
state with m recruited clients, the probability that there are i
active clients equals

(Tzn) (%'/qf)i
(1 + QT/ af )m
Proof. The transition probability is given by

Py = P(AT = j|A" =)

= (1— klk m—i J=k(] _ g, )m—i—itk
Z() ar)" (j._k)qr (1-aq)

(10)

P(A>® =) = &)

Here the summation is taken from k = max{0,i+j—m}
to k& = min{i, j}. This conditional probability P;; does
not depend on ¢, so A* is a homogeneous Markov chain.
Furthermore, it is easy to check that max{0,i + j — m} <
min{s, j} given that 0 < 4,5 < m. Therefore, A’ is positive
recurrent since P;; > 0 for all pairs of states (¢,7). In
addition, A" is aperiodic since there is a self-loop for every
state i: P;; > 0. As a result, A? is ergodic.

Besides, it is easy to verify that for all (7, j), we have

P.. PPy,
i 040y (11)
Pj;  PjoPo
Let 1 = {P(A*™ = 7)}; be the steady state vector, and
P = [P;;];; be the transition matrix. It can be shown that

with (11), the solution of the steady state equations 7P = 7

satisfies:
Py;

T = Pio ) (12)
Combining (10,12), and wusing the condition that
St m =1, we can get (9). a

Since ergodic Markov chains converge exponentially
fast, we only consider the steady state. The probability that

no clients fail is thus pr s

In practice, clients have divergent specifications, e.g.,
different types of CPUs, so they may not have the same
failure and recovery rates. To model this heterogeneity, we
partition clients into N groups according to their device
specifications, network qualities, battery levels, etc. In prac-
tice, we may use the network interface (i.e., WiFi or cellular)
operating system or CPU speed to group clients, depend-
ing on which resource (e.g., computing or communication)
bottlenecks the completion time of an update. For example,
clients on laptops/desktops connected through WiFi that
meet a minimum bandwidth requirement can be grouped
together, while smartphones with the same manufacturing
specification and identical cellular signal strength may form
another group.

Suppose each group z has m, clients for z = 1,..., N,
and all the clients inside a group z have the same failure
rate ¢7 and recovery rate ¢7. Since clients are running
independently, the probablhty that all clients in all groups

my
q‘f +‘I7» ) :

When a client k from group z is active, we model its per-
iteration runtime (the time for the client to calculate and up-
load its local weight, measured from the time it receives the
last global weight) as a random exponentially distributed

are active is then HZ 1 (
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variable Y7 ~ exp(\?). The expected full iteration runtime
(from the time the coordinator sends the global weight to
the time it sends the next global weight) when all clients
are active is: I'(mq,...my) = E[min{max, max; Y;?, Eo}],
where Fj is the maximum time of each iteration that the
coordinator waits up to, and we should have Ey > I'.

We omit the coordinator’s processing time as it is gen-
erally negligible compared to client times. The completion
time is then given in (13), where m, depends on our choice
x of recruited clients.

gt(z) = gt(ma,...,mn)

N z N z

z=1 qf +q7' z=1 qf +q$

Intuitively, the completion time increases when we re-
cruit more clients. This is summarized in Proposition 2. In
Section 6, we will use this proposition to relax the comple-
tion time constraint.

Proposition 2. The completion time g¢(my, ..
when any m,,z = 1,..., N increases.

.my) increases

Proof. Let 1x represent an indicator function which equals
1 when X is true. We define random variable ¥ =
min{max, maxy, Y;?, Ey} of which the expectation is I" used
in (13). The cumulative distribution function of Y is

N

Fy(Y <y)=1Lyep, [[L—e)™ +10p,  (14)
z=1
Since Y > 0, we have
D, comy) = EY] = [ 1= Fy(u)dy
0
Eo N (15)
N / 1= [T —e)mdy
0 z=1
Because F), is continuous w.r.t. (y,m1, ..., my), we get
or 2 N \
e 7/0 log(1—e zy)zl;[l(ke Mgy >0 (16)
Thus,
dg: _ Or ﬁ( a5 ym
TOm, Om, 4t a
= (17)
= 4
I'-E )= Jog r >0
(0= o) [[ (2 o tos 5 )
Therefore, g; increases when any m, increases. O

Finally, we consider the cost constraint. The cost of
usage depends on the specific payment mechanisms actu-
ally adopted. For example, clients can auction their data
to operators as in [16]. Alternatively, operators can publish
their willingness to pay for each client’s participation and let
the clients decide whether to participate. We thus assume a
generic scenario where each client £ has an exogenous price
Ck, SO g. becomes:

(18)

K
w)=)  arer <L

This price ¢, may be adjusted upward or downward ac-
cording to how much the user values privacy, after adding

9

noise to the model updates so as to achieve a certain level
of differential privacy guarantee. Since the noise required
to achieve such a guarantee is independent of other users’
participation in the training [14], we take this noise level
and the associated user cost as fixed and given.

6 THE OPTIMAL CLIENT RECRUITMENT

From Section 5, each client U, € U,k = 1,.., K can be char-
acterized by a tuple ([P, — P|,nk, Z(k),ci), representing
respectively the distribution divergence, the local dataset
size, the group number, and the ask price. Clients in a group
z have failure rate g7, recovery rate ¢; and processing rate
A%. As discussed above, the client can readily compute this
information and send it to the operator without significant
privacy loss at the start of the recruitment.
Combining (8), (13), and (18), Problem 1 becomes:

Problem 2. Client Recruitment

1
-0.5
— E TENESk + Ny,

(T — Ey) 1 - E<It
OH qJ‘+qr + O_f

= Zk rrer < 1.

Proposition 3. Problem 2 is NP-Hard.

Lomin f(z) =

st gi(x)

Proof. Let I; = 00,5, = 0, Problem 2 is then equivalent
to maximizing n, = > xpny subject to a linear constraint
gc. This constructs a reduction from the classic Knapsack
problem to Problem 2, which shows the problem is NP-
Hard. O

6.1 Unconstrained Optimization

We first consider the unconstrained version of Problem 2,
i.e.,, when all the limits I3, I, approach infinity. This is useful
when the operator has gained complete right of usage of
the clients (so that they can be used for free without time
limit). This unconstrained optimization can be solved in
polynomial time using the following proposition:

Proposition 4. (Unconstrained Client Recruitment) Suppose
clients are sorted by their s values, i.e. s1 < ... < sk. The
solution to Problem 2 without constraints must be of the form:

=(1,1,...,1,0,0,...0), ie., if a client j is recruited, all the
clients k < j must also be recruited.

Proposition 4 indicates that recruiting more clients does
not always help improve the accuracy. Intuitively, when
more clients are participating, the overall dataset grows
larger, and the representativeness should thus improve.
However, a recruited dataset Dy, itself may be small in size,
making its data biased from the local population P, it is
supposed to represent. This will enlarge its generalization
error. Worse still, if P, is also biased from the population P,
the training loss will increase as well due to the increased
divergences in local distributions.

Based on the proposition, we can get a polynomial time
greedy algorithm as in Algorithm 1. The correctness of
Algorithm 1 is obvious. The complexity is dominated by
the sorting step, which is O(K log K).
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To prove Proposition 4, we first introduce the following
lemma.

Lemma 3. Consider two recruitments x° and x7 that contain the
same set of clients, except that the latter includes client j while the
former does not. If f(z7) < f(2%) and we take {s}’s as fixed,
then f(x7) decreases as we increase nj, the number of data points

from j.

Proof. (Lemma 3) For convenience we rewrite f(z7) =
f7(n;), and we consider general representativeness bound
n;”,0 < B < 1. Note that

» Sk TAngsK +nys; 0 -8
(nj) = + () xpng +ny)
J S 2ing +nj ; J

df? Y apne(s; — sk) B

= — 20
dnj  (CpaRne +n5)? (g adng 4+ ny)1+8 20

(19)

fi

i) |

Fig. 5. Two possible cases of f7: i) strictly decreasing, or ii) first increas-
ing then decreasing. Since f7(n;) = f(z7) < f(z%) = £7(0), n; can
only be in the shaded area. Thus, further increasing n; will only cause
the objective f to decrease.

As n; increases, (20) is either i) strictly negative, or ii)
first positive then negative. Thus, (19) will either i) strictly
decrease, or ii) first increase then decrease. Using the condi-
tion f7(n;) = f(z7) < f(z°) = f7(0), the value of n; must
fall into the decreasing interval (Figure 5). Therefore, further
increasing n; will only cause the objective f to decrease. [

Lemma 3 implies that when a client is recruited to reduce
f, the accuracy improves if this client collects even more
data. However, the statement may not hold for unrecruited
clients. For example, if client j is not recruited due to
its large s; value, adding client j to the recruitment and
increasing n; may cause the objective to increase compared
to not including client j.

We then prove Proposition 4:

Proof. (Proposition 4) We prove by contradiction. Assume
the clients are already sorted by the s value. Suppose the
optimal recruitment z* = 27, where client j is the last
recruited client, and there exists at least one unrecruited
client U;, such that i < j, 27 = 0. Denote by f(x|U(s,n)) the
objective value for recruiting clients in x, plus an additional
client U who has parameters s and n. Let z° be a copy
of 77, except that client j is not recruited. We thus have

f(a*) = f(27) < f(2°), and:

P (sm0) < U s,m0) o
nj) <

=f(@°U(s;,n; +ny)) < f(a°|U(s;,n;)) = f(a’)
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The first inequality is due to the condition s; < s;. The sec-
ond follows from Lemma 3 with the fact that f(27) < f(x°).
Therefore, adding the unrecruited client ¢ to the recruitment
27 results in a smaller objective value f(z7|U(s;,n;)), con-
tradicting that 2* = z7. O

Algorithm 1 Greedy Recruitment. Solving Problem 2 without
constraints.

1: procedure OPTIMIZE

2: sort clients according to s (ascending)

3 [+ o

4 forj=1,2,..., K do

5: 27 + (first j elements are 1, others 0)

6

7

f e min(f*, f(27))

return f*

6.2 Constrained Optimization

As we would expect from our NP-hardness result (Proposi-
tion 3), Proposition 4 does not hold when incorporating the
constraints. To solve the constrained optimization Problem
2, we first relax the completion time constraint g, < I, by N
linear constraints G;(my,...,my) = {m, < M7}, onm.,
which essentially means that we recruit at most M} clients
for each group z, formalized as follows.

M7 = min{ Z:Zl

argmax,, {g:(0,...,0,m.,0,...,0) < It}}

1(Z2(k) = 2), )

According to Proposition 2, if (my, ..., my) satisfies the
original completion time constraint g;(my,..my) < I, it
also satisfies the relaxed constraint G;(m, ..., mx ). We then
construct a new optimization Problem 3. Here we define
s) = npsp, I, = Yr s,. Problem 3 maximizes a linear
objective, subject to N + 2 linear constraints. This is a multi-
dimensional Knapsack problem, and can be solved by the

dynamic programming (DP) algorithm [19].

Problem 3. Data Quantity Maximization
max

ze{0,1}K e = Zk LRIk
st. m, = Zk 1(Z(k)=2)zp < M7, z=1,...N

ge(x) = Zk zpep < I, gs(x) = Zk zps), < I,

As in conventional DP procedures, we construct a N + 3
dimensional table ¢(k,mq,...,mpy,c,s) to keep track of
the algorithm states, where we have ¢ £ Y, zxc;, and
s = Y, wpsh. d(k,my,...,mn,c,s) represents the maxi-
mum value of n, we can get, under the conditions that:
1) we only pick from the first k clients (the order of clients
does not matter); 2) we recruit at most m, clients for each
group z; 3) the cost is less than or equal to ¢; and 4)
the sum ) s} < s. Conditions 2) to 4) correspond to the
three constraints in Problem 3. The DP algorithm gradually
increments the recruitment boundary k. For each k, the
following recursive relation guarantees the consistency of
@:

d(k,my,...,mn,c,8) =max{p(k —1,...,mzu — 1,

23
ey C— Cy 8 — 83) + g, ok — 1,ma, ...,my, ¢, 8)} 23)
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Complete pseudo code is presented in Algorithm 2. In
practice, the values of ¢, s may be float numbers, but we
can easily discretize and normalize them to integers. The
correctness of the algorithm is obvious by induction. Since ¢
and s are only used in sorting operations or in optimization
constraints, discretization will only affect the optimality of
our solution if we miss their optimal values in the DP
table. With sufficiently fine quantization granularity, this
is unlikely to happen; moreover, since the DP problem is
formulated based on estimates of client statistics, we expect
that natural errors in these estimates will dominate any
quantization error. Algorithm 2’s complexity is bounded by
the size of the DP table, which is O(K I.I, [[2_, M7).

We show in Section 7 that Algorithm 2 completes in
reasonable wall clock time. As opposed to client selection,
which is conducted in every iteration, the client recruitment
algorithm only needs to be run once before the training and
can be completed by powerful servers. On the other hand,
client recruitment helps control the completion time for each
federated learning round by choosing better devices, which
has greater impact on the overall time consumption since it
scales with T, the number of learning rounds.

Algorithm 2 Dynamic Programming. Solving Problem 3.

1: procedure OPTIMIZE

2: ¢ < N + 3 dimensional empty table
3: // Initialization

4 form; =0to M} do

5: formy = 0to MY do

6: forc=0to I. do

7 for s = 0to I, do

8: o0, mq,...,mp,c,s) <0
9: // Fill out the DP table

10: fork =1to K do

11: form; = 1to M} do

12: formy = 1to MY do

13: forc=0to I. do

14: fors =0to I, do
15: Update ¢ by (23)

16:  return ¢(K, M}, ..., MN I, I,)

Algorithm 3 DP and Revisit. Solving Problem 2.

1: procedure OPTIMIZE
2: ¢ < (solve Problem 3 with DP), f* < co
if (K, M{, ..., Mk, I.,1.) < 0 then
// Infeasible
return oo
fors=0to I, do
for m; = 0to M, do

for my = 0 to M} do
if g¢(m1,...,mn) < I, then
f* < min(f~, Equation (24))

10: return f~*

Now we go back to the original Problem 2. We can
observe that when the value of s is fixed, minimizing the
objective f is equivalent to maximizing the number of
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samples n,,. Since the ¢ table records a one-to-one mapping
of s to the maximum n,, we can utilize ¢ to reconstruct the
original objective f.

Formally, given (my, ..., my, $), we define

f=

S
¢(K7m1a (X3} TnN?IC’ 8) *
(gf)(K, My, ...,mpy, e, 5))70'5

(24)

Intuitively, for a solver z* of Problem 2, if its corresponding
s* and m} are recorded during the DP iteration, then since
¢ represents the summation of recruited data points ng,
plugging s* and m}’s into f'to replace s and m,’s should
produce a value that is close enough to the optimal objective
value f(z*). We show below that the two values are in
fact identical, which leads us to solve the constrained client
recruitment Problem 2 with Algorithm 3.

Proposition 5. Algorithm 3 solves Problem 2.

Proof. Consider the general representativeness bound n;”.
Let z* be a solver of Problem 2, with n}, = >, zjng,s* =
Yo Tpnksg,mi =Y. 1(Z(k) = 2z)x}, then

d(K,m7,....my,Ic, %) =nl (25)

Otherwise, if the left hand side is smaller, the DP al-
gorithm yields a smaller objective n for some recruitment
decision z2°. Both z° and z* satisfy the four conditions in the
definition of ¢ at (K, m},...,m%, I.,s*). But replacing x°
with z* yields a greater objective n; > n2. This contradicts
the correctness of DP. In addition, if the left hand side is
greater, the DP algorithm finds a recruitment 2z that has
sV = Zx%nksk <s*,nd = Zx%nk > n*, and satisfies all
the constraints in Problem 2. Thus, by recruitment 20, we
have f(z°) = 1% + ()P < Zf + (n:)=# = f(z*). This
shows z0 is a bxetter recruitmen‘: decision than x*, which
contradicts the assumption that z* is an optimal. Thus, since
Algorithm 3 iterates through all the feasible elements, we
must at some point visit (K, m}, ...,m¥y, I, s*). O

The complexity of Algorithm 3 is dominated by the DP
step and thus is also O (K I.1; Hivzl MF).

7 PERFORMANCE EVALUATION

We finally evaluate the performance of our client recruit-
ment strategy with two classification problems and a re-
gression problem. We set the aggregation deadline Ey = 30.

Unless otherwise noted, we assume clients have the default

specification: Group I = (qjlc =0.001,¢} = 0.6,\! =0.1). If

a client fails upon the aggregation, we replace its w}™ with

the previous global weight w'™. Throughout this section, we

uniformly at random set the cost of recruiting each client cy,

in the range of 1 to 9.

We consider three baseline recruitment strategies:

o All participation: recruiting all clients. Comparisons with
this baseline show the value of intelligent client recruit-
ment.

¢ Greedy recruiting by quantity: greedily choosing clients
with the most data samples until any constraint is active.

o Greedy recruiting by quality: greedily choosing clients
with best quality (i.e., highest estimated |P, — P|) until
any constraint is active.
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Comparisons to these baselines show the value of consider-
ing both quality and quantity in the client recruitment.

In the case of unconstrained optimization, we force the
greedy baselines to choose the same number of clients as the
optimal recruitment. By comparing to the latter two base-
lines, we present the value of considering both quantity and
quality of the data. Since we take the training parameters as
fixed as discussed in Section 3, we will not fine-tune them
in the simulation. We pick these values such that all model
training in all experiments are fully converged. We then
only need to determine the relative weights of the training
accuracy (7y) and generalizability (v4.). In practice, they
can be tuned by optimizing the unconstrained recruitment
through grid search.

7.1 Image Classifications

We use both the MNIST dataset with 10 labels correspond-
ing to digits 0 to 10, and the more complicated EMNIST
dataset with 26 labels corresponding to lowercase English
letter images a to z. We use the same CNN models as [27].
All clients are equipped with the Adam optimizer and use
the same set of training parameters. The number of global
epochs T' = 50. For MNIST, we use a batch size of 5 for local
iterations. The initial learning rate is set to 2e-5, and the local
epochs 7 = 10. For EMNIST, the batch size equals 5 and the
initial learning rate is le-5, and 7 = 30. In addition, we
perform random client selection in the MNIST experiments
with a selection ratio of 90%, i.e., 90% of the recruited clients
are randomly awakened in every communication round.
Dataset and clients. To construct the non-IID distri-
butions of local datasets, we assign each client a set of
labels (digits and letters). All labels appear with the same
probability. Clients then randomly sample training images
corresponding to the assigned labels. For MNIST, we limit
each client to sample 50 to 100 images. For j € {2,4,6,8},
we assign j label(s) to 30 new clients, resulting in total 120
candidate clients. To solve the more challenging EMNIST
problem, we allow each client to sample 50 to 300 images. To
reflect the sparsity of high-quality clients in the real world.
We assign 1 label to 30 clients, 10 labels to 20 clients, 15 labels
to 10 clients, 20 labels to 10 clients, resulting in 70 clients.
The 26 letters are drawn at random for each assignment.
The default test sets are used for both datasets.
Approximation of divergence. We use the “counting
classes” method described in Section 5.1 to approximate
the probability divergence. For MNIST, we have L = 10
labels, thus [|pr — p| = S0, |pe(v = i) — plv = ).
For the population distribution, all labels appear with the
same probability, so p(v = i) = 0.1. If a client k£ has
j labels, pp(v = i) = 1/j if label i was assigned, or
pr(v = i) = 0 otherwise. Thus, > |[pr(v = i) — p(v =
i) = ](% — 15) + (10 = j)15 = 2 — £, which clients can
easily compute knowing only the number of labels that they
see. Similarly, we have ) [p(v = i) — p(v = i)| = 2 — 5
for EMNIST. By tuning the unconstrained recruitment, we
choose 74 = 0.015, 4. = 1 for all experiments.
Unconstrained recruitment. The left plot of Figure 6
shows the convergence progress of the four recruitment
strategies for MNIST. There are 44 out of the 120 clients
recruited by the optimal strategy in this setting. The optimal
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Fig. 6. Convergence curves for the unconstrained recruitments. Left and
middle plots are respectively MNIST and EMNIST problems. The X axis
is global epochs, and the Y axis is test accuracy. The optimal strategy’s
model yields higher test accuracy than other baselines after the models
are sufficiently trained. The right plot is for the regression problem. The
X axis is global epochs, and the Y axis is the normalized MSE on the test
dataset. The untrained model has MSE=1, and the closed-form solution
has MSE=0. The optimal recruitment can obtain lower MSE than the
closed-form solution.

recruitment converges the fastest and obtains the highest
test accuracy on the fully trained models. Notably, the
optimal strategy converges faster and yields a fairly higher
final test accuracy. We can observe similar performance gaps
in the middle plot for EMNIST data, where 21 clients are
recruited by the optimal strategy. Note that the “Greedy by
Quality” baseline outperforms the “Greedy by Quantity”
baseline for MNIST data, yet it yields lower performance for
EMNIST data. This is because different training problems
may favor divergent combinations of data quality and quan-
tity, and our optimal recruitment can automatically balance
these factors and produce the best solution.

Figure 7 shows the distribution of recruited clients
w.r.t. the number of labels assigned to them for MNIST.
Compared to the greedy-by-quantity strategy, the optimal
recruitment chooses fewer low-quality datasets, but more
high-quality ones. Also, most clients recruited by the op-
timal strategy have moderate data sizes, but the greedy-
by-quality recruitment includes lots of tiny datasets. We
observe this trend for both MNIST and EMNIST data.
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Fig. 7. The distribution of recruited clients w.r.t. the number of assigned
labels (X axes). Left plot: counts of recruited clients. Right plot: sizes of
local datasets for recruited clients, where each point represents a client.
Top: MNIST. Bottom: EMNIST.
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Fig. 8. Left: Test accuracy when varying the budget 1. from 20 to 60 (i.e.
4x to 12x of the expected cost per client). Right: Test accuracy when
varying the per round completion time I; /T from 15 to 25 (i.e. 1/2 to 5/6
of Ep). The optimal strategy consistently has the highest accuracy. Top:
MNIST. Bottom: EMNIST.

Constrained recruitment. The left plot of Figure 8 shows
the change of test accuracy when we increase the budget
1. from 20 to 60 and take I to be infinity. The optimal
strategy obtains the highest accuracy for all the budgets ..
In the right plot of Figure 8 we drop the /. constraints and
vary the completion time constraint I; from 157" to 257T.
Apart from Group I, we also create a relatively lower-end
specification Group II = (qJQc = 0.01,¢%> = 0.5,A% = 0.05).
We randomly pick one third of the clients and assign
them to Group II. When I;/T is down to around half of
Ey = 30, only 1 or 2 clients are recruited, so the models
do not appear to be trained at all. The optimal strategy
exhibits the best performance when I; is reasonably large,
improving the accuracy by at most 10% to 20% for both
MNIST and EMNIST. The time constraint appears to have a
greater impact on the convergence in Figure 8 because in our
simulation, uncompleted clients do not submit their models
for aggregation, which breaks the original training logic and
incurs bias in the aggregation result [29]. The cost constraint
on the other hand affects only the recruitment results (i.e.
what clients are get involved), with no effect on the training
loop.

7.2 Climate Data Regression

We now evaluate client recruitment with a 5-dimensional
linear regression model, simulating a climate prediction
task. All clients use the Adam optimizer with the initial
learning rate set to le-3, decaying by 0.8 every 200 steps.
We set the batch size as 20, 7 = 10, and T" = 40.

Dataset and clients. We use the U.S. Historical Climatol-
ogy Network (HCN) dataset [21], which contains climate
records for climate stations in the 48 contiguous United
States. The local datasets of these stations are by their nature
non-IID, allowing us to evaluate how well our recruitment
algorithm performs on realistic data distributions. For sim-
plicity, we only use the data on the first day of December
from 1960 to 2019, and we randomly pick 1-3 stations from
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each state, resulting in 117 stations. Each record contains
5 features: station latitude, station longitude, lowest tem-
perature of the day, highest temperature of the day, and
precipitation of the day. Our goal is to predict the snowfall
of the day. To reflect the uneven sizes of local datasets, we
randomly drop some data so that each client has 30 to 69
samples. We test the learned models on a holdout dataset,
which is generated by randomly picking 2 unused stations
from each state.

Approximation of divergence. We use the second ap-
proximation method described in Section 5.1 by assuming
the 5 features and the snowfall form a fully connected
Gaussian graphic model N (u, ). Thus, each local distri-
bution can be parameterized by the sample mean and the
sample covariance N (fix, Xi). Similarly, we approximate
the population distribution N (fi,X) utilizing the unused
(neither training nor testing) data. Thus, we only need
to compute the divergence between the local Gaussian
N (jix, X1,) and population Gaussian AV (ji, ). We normalize
the divergences to the range of 0 and 10, and we choose the
coefficients vy = 0.01, y4e = 1.

Unconstrained recruitment. The right plot in Figure
6 shows the mean-squared error (MSE) on the holdout
dataset, which includes 1-2 stations from each state, for
different strategies. 37 clients are chosen by the optimal re-
cruitment, allowing us to drop most clients as in Section 5.1.
Since linear regression is a convex problem, we can easily
calculate the closed-form optimal model that minimizes the
training loss over the full dataset. For ease of comparison,
we normalize the MSE values so that the untrained model
has MSE equal to 1, and the closed-form solution has MSE
equal to 0. As in Figure 6, our optimal recruitment yields
a lower MSE even than the closed-form solution, which
illustrates the value of incorporating generalizability and
representativeness metrics. Compared to other strategies,
the optimal recruitment can decrease the MSE up to 10%.

Similar to Figure 7, Figure 9 shows the distribution of
recruited clients. Here we divide the clients based on their
local-population distribution divergences into 10 bins. We
observe a similar trend as in Figure 7: the optimal method
chooses mostly high-quality clients, but chooses clients with
larger datasets than the greedy-by-quality method. The
greedy-by-quantity method chooses only clients with large
datasets, without regard to the distribution divergence.
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Fig. 9. The distribution (left: client count; right: dataset size per client)
of recruited clients w.r.t. the distribution divergence. X axes are quantile
ranges. Left bins correspond to small divergence (i.e. good quality).

Constrained recruitment. Figure 10 shows the change of
MSE when varying the cost and time limits, on the same
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setup as in Section 7.1. The optimal recruitment obtains the
lowest MSE and much smaller variance in most cases.

0.6 —e—Optimal 0.6 —e—Optimal
~8—Greedy by Quantity ~8—Greedy by Quantity
0.5 —#—Greedy by Quality | 0.5 —A—Greedy by Quality

0.4 0.4

03 0.3
0.2 0.2

0.1 0.1

0 0

-0.1 -0.1

20 25 30 35 40 45 50 55 60 15 16 17 18 19 20 21 22 23 24 25

Fig. 10. Left: Test MSE when varying the budget I. from 20 to 60.
Right: Test MSE when varying I; /T from 15 to 25. The optimal strategy
consistently has the lowest error.

8 CONCLUSION

This paper studies the client recruitment problem in fed-
erated learning. We first introduce and quantify five per-
formance metrics that cover both the model’s accuracy
(training loss, generalization error, representativeness) and
the training efficiency (completion time, cost). We then
formulate the client recruitment as an NP-Hard optimiza-
tion problem and provide an optimal solution algorithm.
Finally, we verify our theoretical results with experiments
using both synthetic and real-world data. Our results show,
somewhat counter-intuitively, that recruiting more clients
does not always improve the model, and intelligent client
recruitment can greatly improve the accuracy of the trained
model in constrained execution environments. Future work
may integrate this work with client selection methods to
recruit a new set of clients over time, or co-optimize the re-
cruitment with algorithm parameters. Inspired by learning-
based client selection methods, we can also investigate
bandit or reinforcement learning based methods for learning
which clients to recruit over time, e.g., if clients must be re-
recruited every so often during the training and we improve
our estimates of their data quality over time.
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