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ABSTRACT

Federated learning (FL) is a distributed paradigm for collaboratively
learning models without having clients disclose their private data.
One natural and practically relevant metric to measure the effi-
ciency of FL algorithms is the total wall-clock training time, which
can be quantified by the product of the average time needed for
a single iteration and the number of iterations for convergence.
In this work, we focus on improving FL efficiency with respect
to this metric through caching. Specifically, instead of having all
clients download the latest global model from a parameter server,
we select a subset of clients to access, with a smaller delay, a some-
what stale global model stored in caches. We propose CacheFL -
a cache-enabled variant of FedAvg, and provide theoretical con-
vergence guarantees in the general setting where the local data is
imbalanced and heterogeneous. Armed with this result, we deter-
mine the caching strategies that minimize total wall-clock training
time at a given convergence threshold for both stochastic and deter-
ministic communication/computation delays. Through numerical
experiments on real data traces, we show the advantage of our
proposed scheme against several baselines, over both synthetic and
real-world datasets.
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1 INTRODUCTION

Federated learning (FL), proposed by McMahan et al. [22], is a
promising paradigm that enables multiple entities (e.g, mobile de-
vices, hospitals, and banks) to jointly train a machine learning
model on their individual data without sending private data to a
central location. Though proposed recently, FL has already been
successful in many real-world applications, such as Gboard mobile
keyboard [12] and Android Messages [7]. FL typically involves a
parameter server and a collection of clients, each with its local data.
The training procedure is divided into iterations, each of which
includes the following three steps [22, 30]: 1) Initialization of local
model: each client downloads the current global model. 2) Local
updates: each client refines the downloaded global model by pass-
ing through local data for multiple epochs, and uploads the locally
updated model to the server. 3) Aggregation: the server aggregates
all the locally updated models to produce a new global model.

One main challenge of implementing FL in real world systems is
resource heterogeneity: clients may have heterogeneous computa-
tion capabilities and communication (downlink/uplink) capacities.
As a result, the time needed to complete a full iteration can be
dominated by stragglers, leading to long training time and resource
underutilization at faster clients. Mitigating the straggler issue and
reducing the time per iteration is a critical and open problem in
designing FL algorithms and systems [30, 36]. A number of works
examine the straggler issue; we review them in Sec. 2.

In this work, we propose a new technique based on caching and
design cache-enabled federated learning systems, aiming to reduce
the overall wall-clock training time of FL algorithms by reducing
per-iteration training time. Caching originates from computer sys-
tems, where copies of frequently used commands and data are
stored in memory [1], and is applied in network systems such as
content delivery networks (CDNs) [24] and information-centric
networks (ICNs) [25] for faster data delivery. In the proposed cache-
enabled FL systems, we deploy caches that store the global model
at clients or the server. The stored copies of the global model are
updated from time to time during the training process after a new
global model is available. Clients can get such model copies faster,
reducing the time needed to complete each iteration. Nevertheless,
this reduction in per-iteration time comes with a price: cached mod-
els may be stale, which can lead to a degradation in convergence
rate and an increase in the total iterations needed.

In light of this, we wish to design the best caching strategy
that minimizes the overall wall-clock training time. This gives rise
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to several challenges. First, determining the number of iterations
needed to guarantee an error floor in the presence of stale updates
is required; this, in itself, is a challenging task. Clients’ data hetero-
geneity and imbalance make this even more difficult, as the effect
of specific clients experiencing staleness to convergence should be
quantified. Second, having determined the impact of caching on
iterations, one needs to carefully design caching strategies that de-
cide which clients compute their local updates from a cached global
model, while others fetch the latest global model. The caching strat-
egy should strike a favorable trade-off between (a) the time a client
needs to retrieve a global model, affecting the time per iteration, and
(b) the total number of iterations, which is necessary to minimize
the overall wall-clock time of training.

Contributions. Our contributions can be summarized as follows:

o To the best of our knowledge, this is the first work that con-
siders caching of intermediate global models as a method to
improve FL efficiency. We design several cache-enabled FL
systems by placing caches at clients or the parameter server,
and discuss how per-iteration training time is reduced and
how FL algorithms can be implemented in these systems.

e We analyze the convergence of CacheFL (Federated Averag-
ing [22] in proposed caching systems) by providing conver-
gence bounds as functions of clients using the cached models.
We show that the number of iterations needed is increased
by a factor depending on the data volume of these clients.

e We propose and solve optimization problems to find client
caching strategies that appropriately trade off between re-
ducing per-iteration time and increasing total iterations, min-
imizing the overall wall-clock time of FL algorithms.

e Through extensive experimentation on real mobile network
traces, we show the advantages of the proposed scheme in
faster per-iteration completion and wall-clock convergence
over baselines for both i.i.d. and non-i.i.d. local data distribu-
tions, and for both synthetic and real-world datasets.

From a technical standpoint, prior FL convergence bounds gen-

erally assume either fully synchronous or entirely asynchronous
model initialization and aggregation in each iteration, while our
work extends and refines their analysis to quantify the effect of
specific clients’ use of stale models. Such analysis is particularly im-
portant as clients’ data can be imbalanced and heterogeneous; the
convergence bound depends on which clients experience staleness
in caching systems.
Organizations. We present related works in Section 2. In Section 3,
we introduce cache-enabled FL systems and the CacheFL algorithm.
We make a convergence analysis of CacheFL in Section 4. In Sec-
tion 5, we discuss optimization problems that minimize the overall
wall-clock training time of CacheFL. We present numerical results
in Section 6 and conclude in Section 7.

2 RELATED WORK

Hetergeneous and imbalanced data. Several algorithms have
been proposed to incorporate heterogeneous and imbalanced data
in FL, and guarantee good convergence rates. FedAvg [22] reduces it-
erations by letting clients train the local models for multiple epochs
instead of one before aggregation. FedProx [20] and FedDyn [5] use
regularization terms in local cost functions to limit the impact of
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heterogeneous local data. SCAFFOLD [15] uses control variates to
correct the client-drift due to heterogeneity of local data in local up-
dates, and FedCOMGATE [10] takes a gradient tracking approach
to achieve the same goal. These algorithms can be implemented in
the proposed caching systems by letting some clients make local
updates based on cached global models. We discuss the conver-
gence of FedAvg in our caching systems, while analysis of other
algorithms in such systems is a possible future direction.
Reducing per-iteration training time. Effects of heterogeneous
computation capabilities can be reduced by allowing clients to per-
form variable amounts of local computation, through different local
epochs [20] or mini-batch sizes [19]. To reduce communication de-
lay, algorithms with compression mechanisms [10, 29, 37, 38] or sub-
space methods [28] are proposed, where the models are compressed
or projected to a subspace, respectively, before being transmitted
between the server and clients. In FL with wireless communication,
client selection, wireless resource blocks and transmit power are
optimized under resource constraints to minimize the communica-
tion delay [3, 4]. To mitigate the straggler issue, each iteration can
be stopped strategically with only a subset of local models being ag-
gregated [2, 43]. Another way is to allow clients to asynchronously
aggregate the local model at the server and start the next iteration
without waiting for others [35, 36]. The proposed caching method
is an independent and new direction that reduces per-iteration time,
which can be combined with aforementioned techniques such as
compression, wireless resource optimization, and asynchronism.
Networking and caching for FL. While there exist many works
that use FL to optimize network operations as well as caching deci-
sions in networks [33, 39-41], only a few works study the usage
of networking and caching techniques to boost machine learning
or federated learning performance. A few works [21, 31] study the
optimal routing of data samples for distributed ML in networks to
maximize model accuracy. In [44], caching for trained models is
studied to minimize the inference error of mobile users. Caching for
clients’ gradients is considered in [9], where cached gradients are
used for aggregation when clients drop out. Caching for stale statis-
tics in vertical FL (VFL) is recently explored to enable local updates
and improve communication efficiency [6]. VFL involves clients
that hold disjoint features but overlap on the instances, meaning
local training require the exchanges of intermediate computation
statistics among clients. Caching can help reduce the cost of this
communication. Our work is the first that proposes caching of global
models to improve training efficiency.

3 CACHE-ENABLED LEARNING SYSTEMS

In this section, we introduce the general learning problem in FL
as a preliminary, and then introduce the designs for several cache-
enabled FL systems for use in different network scenarios. The goal
of our system design is to enable FL algorithms to solve federated
learning problems with smaller overall wall-clock time, i.e.,

TIME=T X7, (1)

where T is the number of iterations for an FL algorithm to converge
to an error floor, and 7~ is the time needed for all participating clients
to finish a single iteration, i.e., per-iteration training time [16]. We
also propose CacheFL as an algorithm in the cache-enabled systems
by extending the vanilla Federated Averaging [22].
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3.1 Federated Learning Problem

Federated learning aims to train a single model by minimizing the
model’s empirical risk, i.e., the training loss over all data samples
distributed across multiple clients. Consider a set of clients k € K,
|K| = K, each having a local dataset Dy = {(u;, vi)}l.?lk ‘, where u;
and v; are the features and label of the i-th sample, respectively. Let
D = U Dy.. We aim to minimize the following objective function:

F(w) = Zgex diFi(w), (2)
[ Dy |

where dj. = Tor and Fj. (w) are the local cost functions:

Fr(w) = ﬁ Z(uponeny f(wiug0), keK, (3

where w is the parameter vector of the model and f(w;u;, v;) is the
loss function associated with the i-th data sample. The loss function
depends on the machine learning model and can be either convex
(e.g., logistic regression) or non-convex (e.g., neural networks).

In general, FL algorithms consist of multiple iterations, each
comprising the following steps: First, clients initialize their local
models by downloading the current global model from the server.
Second, each client tries to minimize its local cost Fy (usually for a
few epochs) and produces an updated local model. Finally, clients
upload their local models to the server, where they are aggregated
to produce a new global model. In this way, clients jointly minimize
the global objective F without sharing their local data.

3.2 Cache-enabled system design

In FL, the per-iteration training time 7 is determined by the time
for the slowest client (straggler) to finish downloading the current
global model for initialization, making local updates, and uploading
the updated model. Let Tp k., Tur k> and Tcomp  be the time needed
for client k to download the global model from the server, upload the
local model to the server, and finish local computation, respectively.
Without caching, the per-iteration completion delay for client k is

Tr = ToLk + Tcompk + Tupks 4

We propose cache-enabled systems, where we mitigate the strag-

gler issue by letting the stragglers obtain the global model from
caches for initialization to reduce 7 and also 7.
System Design. We propose different caching systems by placing
the caches at different locations, as appropriate for different network
conditions and device computation capacities. In all schemes, we
store the global model in a cache or caches, which is updated in
each iteration after a new global model is available, thus bounding
the staleness of the model in caches by one iteration. Aggregation is
still synchronized as in classic FL where the server aggregates the
local models it receives from all clients. On the other hand, caching
allows clients to asynchronously initialize their local models in each
iteration. In particular, by caching the global model, we give more
flexibility to clients in getting the global model for initialization
and make possible parallelism in some FL steps, thus reducing the
time for finishing an iteration.

We denote by Kserver and Keache, Kserver U Keache = K, the sets
of clients that use the latest global model and those that use the
global model from the caches to initialize their local models, re-
spectively, in each iteration. We refer to the strategy of partitioning
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Figure 1: Cache-enabled FL systems. Each system has a set
of clients k € K. The value near a communication link is the
time for transmitting a model over this link and Tcomp k is
the computation time for k to finish its local updates.

Table 1: Per-iteration delay of different caching systems

Caching systems
Cache at AP
Caches at clients

Per-iter delay of k € Keache (Teache k)
max{TpL, Tcompx + TuL}
max{Tpr . Tcompkx + TuLk}
max{Tyy k, Tcomp.k + ToLk}
min{max{Tpr . Tcomp k + TULk}:

max{Tyr k. Tcomp,x + ToLk }}

Cache at server
Caches at both
clients and server

K to Kserver and Keache as client partition, which is assumed to
be static during the training. The proposed caching systems are
shown in Fig. 1 and the reduced 7 by caching in each system is
summarized in Table 1.

3.2.1 Cache at access point (AP) (Fig. 1(a)). Consider a scenario
where clients are located in proximity and communicate with the
server through the same access point (AP), where a cache is placed.
At the t-th iteration, when the server sends the latest model w;
to the clients, passing through the AP, the content in the cache
is replaced by w;. Before that, the model in the cache is w;_1
from the previous iteration. Clients with more limited computation
capabilities can start their local updates earlier by directly using
w;—_1 in the cache, saving the downloading time Tpy, from the server
to the AP. Other faster clients can wait for the latest global model
w;. We ignore the delay on last-mile links between clients and the
AP, as it can be absorbed into local computation time Toonpp k-
Assume that all clients share the same uplink/downlink delay be-
tween the server and AP in this case, then the slowest clients (with
the largest Toopmp k) should be assigned to Kcyche to reduce the
per-iteration training time 7°; otherwise, 7~ is determined by these
slowest clients regardless of whether other clients use the cache. Let
Tserver = MaXje K, IcOMPk a0d Teache = MaXge K, TCOMP k-
Without caching, the overall training time per iteration is 7~ =
TpL + Teache + Tur. With caching, the time is reduced to 7~ =
max{Teache + TUL, DL + Tserver + TUL }, leading to a time reduction of
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Figure 2: Example timing diagrams of two cases. In both cases,
client 1 is in Kserver, and clients 2&3 are in K ,cpe. Due to
cache initialization, the per-iteration delay is Tpy, 2 +Tcomp 2+
Tyl for both cases at t = 0, while it is reduced to Tcomp,2 +
Tur,2 and TpL2 + Tcomp,2 in Fig. 2(a) and 2(b), respectively,
starting from ¢ = 1.

min{Tpr, Teache — Tserver }- When clients are heterogeneous in their
computation capabilities (e.g., some clients may be mobile phones
and some may be laptops with GPUs), such that we can find a client
partition under which T.,he — Tserver = TpL, then we save time Tpp,
for an iteration by caching. Otherwise, we save T ache — Tserver-

3.22 Caches at clients (Fig. 1(b)). In practice, clients may be located
in different areas and have heterogeneous communication delays
Tpr x and Ty k. To generalize the cache at AP case, we can maintain
a cache at each client. At the start of the ¢-th iteration, the server
sends the latest global model w; to all the clients, and the model
is stored in the clients’ caches. In this iteration, clients k € Kserver
wait for Tpy, ;. of downlink transmission time and start local updates
based on w;, while k € K che directly access their caches for w;_1
and start immediately from w;_;. The downloading of the latest
global model w; to k € K ,che is done in parallel while doing local
updates and uploading the updated local model, reducing the delay
of this client for an iteration from 7y given by (4) to

Teachek = max{Tpr,k, Tcomp k + Tur k) ®)
saving time Tp,  if Tpp x < Tcomp k+TuL k (e.g- client 2 in Fig. 2(a)),
and Teomp i + Tur, k otherwise (e.g., client 3 in Fig. 2(a)). Globally,
the per-iteration delay 7 is reduced from maxyc 4 {7x} to

7 = max {{%ache,k}kef](c > {ﬁ}ke‘](server} . (6)

ache
3.2.3 Cache at server (Fig. 1(c)). Sometimes, the uplink can be more
expensive and slower than the downlink (e.g., mobile devices may
have limited transmission power), which motivates us to save the
uplink transmission time by putting a cache at the server.

The content in the cache at the server is replaced by the latest
global model, each time the server finishes global aggregation. With
this cache, after finishing local updates, a client k can either wait
until all clients upload their updated models (at least for Tyy ) and
then download the latest global model, or immediately download
the model from the cache at the server and start the next round of
local updates. By using the cache, uploading the local models of
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round ¢ — 1 can happen in parallel with the global model download-
ing and local computation for round ¢, reducing the delay of this
client for an iteration from 7y given by (4) to

Teachek = max{Tyr k. Tcompx + oLk }- (7)

A timing diagram is provided in Fig. 2(b). The per-iteration time 7~
is also given by (6), with Toyche £ given by (7).

3.24  Caches at both server and clients (Fig. 1(d)). Further combin-
ing the previous cases leads to new FL systems. For example, we
can have caches at both clients and server (combining Fig. 1(b) and
1(c)). Based on the relationships of downlink/uplink transmission
delay and computation delay, clients k € K,che can decide to get
the global model from any of the caches to best reduce their delay
in an iteration. By (5) and (7), the minimum achievable delay for k
in an iteration is given by the minimum of max{Tpy, x, Tcomp k +
TUL,k} and rnax{TUL’k, TCOMP,k + TDL,k}' Thus, client k may de-
cide to get the global model from the cache at the client when
max{Tp . Tcompx + TuLk} < max{TyL k. Tcompk + TbLk}, and
from the cache at the server otherwise.

Discussion. In these systems, cached global models are used by
some clients k € K ,che to reduce their per-iteration delay, thus
mitigating the straggler issue and reducing 7. This technique
is quite efficient when Tpy  and Toompx + Tur i or Turx and
Tcomp,k + TpL i are of a similar order of magnitude. As an example,
when Tpp . ~ Tcomp,k + TuL k. by using the global model in the
cache (at client k), client k can reduce its delay by half (compare (4)
and (5)). On the other hand, this technique fails to efficiently re-
duce the per-iteration delay of a client when one part of the delay
is much larger than other parts, making parallelism less fruitful
(e.g., Tur k is extremely large due to an uplink connection failure).
This should be solved by excluding client k in the client recruit-
ment phase [26] or not aggregating the local model of k in certain
training iterations (for temporary connection failures). In Sec. 6,
we further show with experiments that the proposed systems can
effectively reduce per-iteration training time, using statistics of
computation and communication delay from real mobile networks.
All aforementioned caching systems are easily implementable with
low storage requirements. At the server or AP or each client device,
we need only space to store a model parameter vector.

3.3 CacheFL algorithm

We next introduce the CacheFL algorithm by extending FedAvg [22]
in our proposed cache-enabled systems, as described above.

3.3.1 FedAvg. minimizes F(w) iteratively as follows:
Initialization of local models. At the start of each iteration t =
1,...,T — 1, the server broadcasts the current global model w' to
the clients to initialize their local models,

w =wl, Vkexk. ®)
Local Updates. Based on w](:’o), clients attempt to minimize their
local loss functions by stochastic gradient descent (SGD). To reduce
the communication overhead, each client runs SGD for 7yax epochs,

before sending the local model to the server. Let w ") be the local
model of client k at the t-th iteration and z-th epoch. For each
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Algorithm 1: CacheFL (cache-enabled FedAvg)

Input: Initial model w®, learning rate 5, batch size B
1 fort€{0,1,...,T -1} do

2 for Client k € K do
3 Let w](:’o) =w!, if k € Kserver
4 Let W](Ct’o) =wi7lifk € Keache
5 fort=0,...,Tmax— 1 do
6 SG: gl(ct’r) = % Z?:] Vf(wl(:’r) 304, 0;)
t,7+1 t, t,
7 Local update: WI(< A Wl(c 2 Ug,(c 2
8 end
9 end
10 for Server after receiving w](:’f'”“") forallk € K do
1 ‘ Update global model w/*! = ¥ cqc dkwl(ct’rm""‘)
12 end
13 end
14 return w’!
keKandr=0,...,Tmax — 1, the client updates its local model as
t,r+1 t, t,
Wl(c T+1) =Wl(c 7) _”gl(c T)’ (9)

where 7 is the learning rate and g](:’T) is the mini-batch stochastic

gradient (SG), with batch size B, computed as

g = & S(uoes V(W w0), (10)
(t,7)
k
unbiased estimator of local gradient, i.e., E[g](:’f)] = VF, (w](:’r) ).
(¢,Tmax)
k

where B is a random subset (| 8| = B) sampled from Dy.. g isan

Aggregation. After the local updates, each client k sends w
to the server. At the end of iteration t, i.e., when the server receives
all the local models from the clients, the server aggregates the local
models to update the global model for the next iteration by

Wit = Yiex de,(f’Tm”)- (11)
3.3.2 CacheFL Learning Algorithm. We now extend traditional fed-
erated learning algorithms to cache-enabled systems. The essential
change is that some of the clients perform local updates based on a
global model stored in the cache, instead of the latest one. At the
start of each iteration ¢t = 1,...,T — 1, each client initializes the
local model as following:

t .
(£0) _ W, if k € Kserver,
W T -1 (12)
w'hif k€ Keaches

instead of (8) as in classic FL algorithms. For k € Kache, W' ! is

obtained from the cache, and for k € Kierver, W' is sent from the
server. At the beginning of the training process, we have wio,o) =
(0,0)
K|

rithm in our proposed systems, then we replace the initialization
step (8) by (12), while each client still makes local updates according
to (9) and the server aggregates the updated local models accord-
ing to (11). We call the resulting algorithm CacheFL (Alg. 1). We

can easily implement other FL algorithms in the proposed caching

=W = w?. If we consider FedAvg as the implemented algo-
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systems, as we make no specific assumptions about the local up-
dates and aggregation steps in our system designs. We note that all
proposed caching systems lead to the same algorithm, as different
cache deployments only affect the per-iteration delay reduction
(see Table 1), instead of the resulting algorithm.

We have shown the benefits of caching in reducing the per-
iteration training time 7. On the other hand, this benefit comes with
the price of letting clients in K ,che make updates on a stale global
model. One would naturally ask: 1) Can FL algorithms still converge
with the use of caching? 2) If they converge, what is the effect
of using a stale global model on the number of overall iterations
for convergence? 3) Is the benefit worth the price? We formally
answer the first two questions in the next section, by analyzing
the convergence of CacheFL and providing a convergence bound
as a function of the client partition (Kserver and Keache)- In Sec. 5,
we further discuss the last question and show how to optimize the
trade-off by formulating and solving optimization problems.

4 CONVERGENCE ANALYSIS OF CACHEFL

We analyze CacheFL (Alg. 1) from a theoretical perspective and
provide a convergence bound for any given client partition.! We
show that the bound is increased by a factor depending on the data
volume fraction of clients k € Kache-

4.1 Assumptions

Formally, we introduce the following assumptions for the conver-
gence analysis, which are commonly made in the FL literature (e.g.
[30]). Specifically, assumption (i&ii) is about the algorithm choice
in CacheFL; assumptions (iii-v) are about the properties of the local
cost functions, and assumption (vi) is about the data heterogene-
ity across clients. These assumptions allow the local data to be
imbalanced and heterogeneously distributed.

(i) Each client k € K participates in every iteration.

(i) As in (2), the objective function F(w) is the weighted average
of local cost, i.e., F(W) = X rex di Fr (W), where di. = %
to incorporate imbalanced local data.

(iii) Local cost functions Fj.(w) are convex and L-smooth,
Fr(w) < Fe(W) + (VE (W), w = w') + L]jw — w'||?

(iv) The stochastic gradient g(t’T)

.~ is unbiased with uniformly

bounded variance, namely
Elllgl"” - VE (w w7 12] < o2, (13)
(v) The stochastic gradients are bounded in expectation,
E[llg\""1I°] < G2 (14)

(vi) The weighted average of the dissimilarities between gradients
of the local functions and the gradient of the global function
is bounded, namely

D dellVF(w) = VE(w)||* < {2 (15)
keK

! As most FL algorithms are variants of FedAvg, the convergence bound of CacheFL
can be extended to incorporate other algorithms.
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In this analysis, we do not consider partial client participation
and non-convex loss functions (assumptions (i) and (iii)), to focus
attention on the effects of caching. We provide an initial result of
partial client participation at the end of this section, showing that
our scheme still guarantees convergence without the full client
participation assumption. In experiments, we try both convex and
non-convex loss functions and compare our scheme with client
selection related methods, e.g., eliminating stragglers. A more de-
tailed discussion of CacheFL with partial client participation and
non-convex losses will be a future work. Inequality (13) reflects the
sample dissimilarity within local datasets. Due to the heterogeneity

(t.7)

of local datasets, g, " is not an unbiased estimator of the global

gradient in general, i.e., VFk(wI(:’T)) + VF (w](:’f)), and we have
(15) to describe this heterogeneity.

4.2 Theoretical Results

We base our analysis on the proofs for FedAvg in [30] and [8] and
extend them to incorporate the use of caching for global models.
Besides bounding the convergence, we also need to quantify the
dependence on the clients that use the cache, i.e., the bound should
be a function of client partition.
To handle iterates from multiple clients, a concept of shadow/virtual

sequence is adopted (commonly used in and originating from de-
centralized optimization), defined as

W) = Ve de(t’T), (16)
|

Z Z;:ax —(l‘ 7) and w*

be the minimizer of objective function F, we show that E[F(W!)] -
F(w*) is upper bounded by a quantity decreasing with T.

Following [30], we first show that there is a progress in each iter-
ation, by proving that E[?lax Zrma" F(w(t T)) — F(w*)] is bounded
by the difference of a potential function evaluated at the start and
the end of each iteration, plus additional small error terms:

where dj. = \DI‘ Lettmgw =

Tmax

LEmMA 1. If the client learning rate satisfies n < 4L’ then
B[ L 2 FEED) - Fw) |7 (0|
0
anmax (W(t )

L ZTmax_l Skegc diE [”wl(ct’f) —_w®D) ||2|7:(t,0)

<

[W(t,rma» |¢<t,o>]) +170? Lpercd?

Tmax

where W(t7) = ||_(t ) _w* 12 and F (&) is the o-field representing
all historical lnformation up to the start of iteration t.

Proof Sketch. It follows from Lemma 1 in [30], and further incor-
porates imbalanced local dataset sizes. See details in Appendix A.1.
O

Next, we show that all client iterates remain close to the vir-

tual/shadow sequence, i.e., the weighted average D¢ % dg| |wl(ct’f) -

w(to) [|? is bounded in expectation.
Lemma 2. Let VD) = ¥ g dk||w](:’f> — w2, we have
E [V(“)] < 12, n?G? +20%G? + 200y 2.

Proof Sketch. It is based on Lemma E.2 in [8], and makes necessary
extensions to incorporate caching. With the use of the cached global
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model (Kache # 0), we do not have V(9 = ¢ as in classic FedAvg,
thus should bound V(:0) carefully. See details in Appendix A.2.
m]

Combining Lemma 1 and Lemma 2 leads to the following theo-
rem that gives the convergence bound of CacheFL:

THEOREM 1. Under the aforementioned assumptions (i)-(v), if the
client learning rate satisfies n < 4L’ then one has

[F(W )] - F(w") < + r]azdsq + 2Tmax° L2

21 TmaxT
+2n2LG? + 2, LG?, (17)

a7 .i1=(00 _ -
1+ degche ||W( )_W*”: dsq =Ykek dlzc, anddgene =
2k eKuene k- If further choosing the learning rate as

where A =

2 2 2
S 1 A A3 A3 A3
ly—mm{4L, T T 7> 1 ’TmaxC}’
d 2 TmaxT 2 o Tmaxc Tmaxc
1.1 2
where C =T3L3G3, we have
_ . zLA2 Zd 3L3 $A3
E[F(W!)] - F(w*) < £33
TmaxT VTmaxT T*
Tmax
lahal , alciat
3L G A + 2L GZA (18)
Tmaij T,i

Proor. Combining Lemma 1 and Lemma 2, we have

B [# T FE ) - Fw) |7 (0|

Tmax

< g (WO =B [WOm O] 0 e
+ 120 1?LG? + 20°LG? + 21imaxn L. (19)

_ W*HZ —
wh? <
- w*||%, for
~ WP = [deache (WO -

< dcacheHw(O’O) - W*HZ +

Let dserver = 2keKore k> DY convexity, ||W(t 0)
“dcache(w(t ZTmaX) - w) + dserver(w(t Ltmax)
dcache”W(t 2fmax) w ”2 + dserverHW(t_l’TmaX)
t > 2. We also have ||W(1’0)
w) + dserver(w(o’rma’() - wH)|?

dserver|[W®™a) — w*||2. Thus, by telescoping, we have

S W ED) — wtma)y < (14 degene) |[W %) — w2,

By above, telescoping (19) with ¢ from 0 to T — 1 and using the
convexity of F, finishes the proof. O

Discussion. Compared to the convergence bound of FedAvg (e.g.,
Theorem 1 in [30]), the main difference is that CacheFL has an
extra term /1 + d,che in the definition of A. If no client uses the
cache (dcache = 0), we recover the convergence bound for FedAvg
in [30]. If all clients use the cache (dcache = 1), running CacheFL
is equivalent to running one FedAvg at the odd iterations and
running another FedAvg at the even iterations. Thus, CacheFL
intuitively needs twice the iterations to achieve the same error as
FedAvg. We also see this from the convergence bound, where we
have ACacheFL ©0 w*||2 - ZAIZ*‘ed.Avg

expected error is dominated by the second term of the RHS in (18).

— 9A2
Thus, having ACacheFL = 2054 Ave leads to the same result that

CacheFL needs twice iterations for the same error.

=2||lw As T increases the
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For arbitrary d.,che, by (18) and letting the expected error be
smaller than e, we have the following bound on T,

5 1
2 dgqotN L2IA? fonr 13
T(e) = O 225 + S0 L0 L LIGA L LIGR ) (30
max Tnzxaxe 2 Tmax€ 2 €2

where A? = (1+d che) | |W(0’0) —w*||2, which gives the dependence

of T on deyches 1-€., T o< 1+ dcache- In Sec. 5, we use this dependence
to approximate the total number of iterations required for training.
Partial client participation. While we mainly focus on full client
participation in this section, we also provide the following initial re-
sult with client sampling: in each iteration ¢, a subset S (¢ ) of clients
with [S()] = S, is sampled uniformly from K clients for training.
(t,r+1) _ W(t,r+1) _

For k € S, the local update is given by w *
(1)
K8 -

K (t7) (t.7) _

B8 , such that ES([) e ZkeS(‘> 58 = K Dkek

THEOREM 2. Under the aforementioned assumptions (ii)-(v) with
the above client sampling and local update methods, if the client
learning rate satisfies n < ﬁ and dy. = I% forallk € K, then

2 (72
2 2
2NTmaxT K
+2n? K LG + 35512, LG2, (21)

where A == 1+ I‘EK‘“"” ||w(00) - w|.

PRrOOF. See details in Appendix B. O

[F(WT)] F(w") < + 2tman L2

5 OPTIMIZING OVERALL TRAINING TIME

In this section, we formulate optimization problems to decide the
client partition strategy that minimizes the overall wall-clock train-
ing time of CacheFL by minimizing the following trade-off: As
shown in Sec. 3, the global per-iteration training time 7 is a non-
increasing set function of K,cphe. If more clients use the cache to
reduce their delay, then there is a chance to decrease 7 more. On
the other hand, as discussed in Sec. 4, an increase of the clients in
Keache leads to an increase in the number of needed iterations T.?

By (20), we upper bound the total number of iterations needed
for CacheFL to reach a certain error as

T =ax (1+dcche) = aX (1+ Xgex dieXy), (22)

where a is a constant and x; € {0,1}, k € %K, are the decision
variables indicating whether client k uses the cache, i.e., Kiache =
{klxx = Lk € K} and Kserver = {klxx = 0,k € K}. Let x =
{xr.} keq( be the vector of decision variables that we will optimize.

Let T Li TULk’ and T be the time needed for client k
to download the global model from the server, upload the local
model to the server, and finish local computation at ¢-th iteration,
respectively. As discussed in Sec. 3, the time for k € Kserver to
finish the ¢-th iteration is

t _
‘7; - TCOMP TDL k’
and the time for k € Wcache to finish the ¢-th iterations (i.e., cache )

varies for different caching schemes and is summarized in Table 1.

This section considers full client participation, using Theorem 1, but it is ready to be
extended to the partial client participation case.
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Algorithm 2: Prob. (23)
Input: x; =--- =xg =0, Xout = X0 =X
1 Compute Tpin = TIME(X0), Tmax = 7 (X0)
2 fork=0,1,...,K do
3 If Tmax > Tx: Break
4 Set x; =land x =x

5 Compute Tmax = T (Xx)
6 If Tmin > TIME(Xk): Tnin = TIME(Xk), Xout = Xk
7 end

8 return xgut

Then, the training time for ¢-th iteration is,

7= max [T e 5k {7 (150

keK }

We formulate optimization problems considering different cases
of transmission and computation delay, i.e., deterministic, offline
random, and online random:

Deterministic case. We start with the transmission delay and
; : : t
computation delay being fixed, i.e., TDL « = DLk TUL « = TuLk-and

t
TCOMP,k
across t. This assumption relates to cross-silo FL, where clients
have static and reliable links with the server, and allocate abundant
computation resources for local updates [42]. We formulate the

following problem to minimize the total wall-clock time of training:
min TIME=9 -T (23)
st. xp €{0,1},Vk e K (24)

= Tcomp i for all t. Thus, we have 7t = 7 being constant

Though the problem is an integer optimization problem, which is
often hard to solve in reasonable time, we exploit the structure
of (23) to derive an efficient algorithm. Assume the clients being
indexed in decreasing order with the value 7 = Ty, + Tcomp,k +
TyL k- Prob. (23) can be solved by trying at most K + 1 candidate
solutions xi for k = 0,..., K such that each of them set the first k
decision variables to 1 and the remaining to 0 (i.e, x; = -+ =x; =1
and xp,; = --- = xg = 0). The final solution is the candidate with
minimum TIME. We formalize the procedure in Alg. 2.

THEOREM 3. Alg. 2 finds the optimal solution of Problem (23)
with O(K) time complexity for sorted clients.

Proor. 7 and T are non-increasing and non-decreasing set func-
tions of Kache. Moreover, for i < j and x; = 0, setting xj to 0 or 1
leads to the same 77, as 7; > 7j = Tcache,j- Then, for any solution
x’ aside from the candidates, suppose the first k coordinates are
1, and the (k + 1)-th is not, then we can set all coordinates after
k + 1 to zero, making 7~ unchanged but T decrease, leading to a
better solution, our candidate x. Thus, trying x; fork =0,...,K
guarantees that we can find the optimal solution. This traversal can
stop earlier when finding 7 (xx) > Tx4q (line 5 in Alg. 2), as further
assigning client i > k to K,che Will not further reduce 7. O

Offline random case. We now assume that the transmission delay

and computation delay are stationary random processes indexed
- ¢

by ¢, with E[ DL, k] = HDLk> E[TUL,k] HUL,k> and E[ COMP, k]

Hcomp k- This assumption corresponds especially to cross-device
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FL that runs during off-peak hours, where the delay can vary from
time to time but their statistics are rather stable. In this case, the
statistics of the random delay can be collected beforehand (offline).

We wish to minimize the expected wall-clock time of training,
ie, B[T*] - T. However, in general, we cannot compute the closed-
form expression of E[77'], the expectation of the maxima of random
variables, which motivates us to consider approximations. For such
expectation and with any distribution of the delays, Hamza’s theory
[11] provides a bound. As Z;Che,k has different expressions for
different caching schemes, we choose the caches at clients case
(Fig. 1(b)) as an example, where 7¢ is given by (5). For other

cache,k
systems, we can obtain similar bounds with Hamaza’s theory.

LEMMA 3 (THEOREM 1 1IN [11]). For 7!

cache o &iven by (5), we have

3K —1
T<E[TY <+ —
F<E[T] <fi+—p

=5 (Sker Mg +Myg) - X + Sex My g - (1-x1))
fimax = max {{My 5 xk}ke?{’ My (1~ xk)}ke‘l(}’

and M, 5 = max{My, My}, with My ;., My}, and Ms . be the
expectations of the maxima of 3K copies of the random variables

t t t t t t .
TUL,k + TCOMP,k’ TDL,k and TUL,k + TCOMP,k + TDL,k’ respectively.

Umax, Where

Thus, one can approximate E[7 ] by i or pimayx. A remaining
challenge is that M ., My j and M ;. usually also have no closed-
form values for arbitrary K. For certain distributions, nice ap-
proximations exist [13]: if the communication and computation
delay are Gaussian random variables: TSL’k ~ N(ppLk GIZDL,k)’

t N 2 t N 2
Tk ~ NuuLk oy g)> and Tegnp o~ N(Hcomp ks 9gonp )
when K — oo, we have

_ 2 2
Mk = HuLk + Heompk + 42001 . + 9conp i) - VIog K,

and M, j, M ;. can be computed similarly. For arbitrary distribution
and smaller K, we use sampling to estimate M j, My and Ms k., as
the statistics of each delay are already known in the offline random
case, and the sampling is needed only once before the training.

If we approximate E[7 ] by pimay, we have

min  pmax - T subject to Eq. (24) (25)

which has the same form as Prob. (23), and the same algorithm with
O(K) complexity can find its optimal solution.
Another option is approximating E[7 ] by j. We have

min pg-T subject to Eq. (24) (26)
which is a quadratic unconstrained binary optimization (QUBO)
problem, and can be solved by traditional combinatorial optimiza-
tion methods, such as Simulated Annealing.
Online random case. We further consider the transmission and
computation delay as non-stationary random processes. The statis-
tics are changing as in cross-device FL with clients having limited
computing resources (training processes need to compete with
other processes) and unreliable wireless communication links [30].
In this case, client partition needs to change over time with the
evolution of delay processes, and we should predict the delay for
each iteration using past observations. Gaussian Process Regression
(GPR) is a candidate method for prediction, which is nonparametric
and provides an analytical way to measure the uncertainty of the
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Figure 3: Distribution of per-iteration delay of Cache-OPT.
Compared with FedAvg, CacheFL-OPT reduces the per-
iteration delay by 28% on average.

prediction [14]. While other prediction methods are also possible,
their selection is out of the scope of this paper.
At the t-th iteration, given the predicted delay Tlg T!

Lk> "ULk’
~p >t : ; ;
and TCOMP, &> We can compute (cache,k (which varies for different
: At At At
caching schemes) and 7, = TCOMP,k + TUL,k + TDL,k' Then, the

predicted per-iteration training time for this iteration is,

7" = max {{(lgche,k ’ xk}ke?(’ {7? (1= xk)}keW} '

To decide the appropriate client partition in each iteration t, we
formulate the following heuristic problem,

min 7! (1+ Ygpeqdexy) st Eq.(24) (27)

This problem is again of the same form as Prob. (23) and can be
solved in O(K) time. Note that by (20), the remaining number of
iterations at any iteration can also be approximated as a constant
times 1+d¢ache. Thus, by solving the above problem at each iteration
t, one greedily minimizes the remaining wall-clock training time,

and T! are the delay for

assuming the estimation Tt T COMP.k

DLk’ "ULK’
the following iterations.

Extending the convergence analysis in Sec. 4, we can show that
CacheFL can still converge if we change the client partition from
time to time. From the practical design perspective, we may set
Kserver = K for the first few iterations, as the estimation is not
accurate enough. Changing the partition of K.,che and Kserver
by solving Prob. (27) can also be done less frequently, only when
there is a large change in the prediction of the delay, instead of in
every iteration. The server can adjust caching strategy in real-time
without significant overhead, as clients can collect past observations
of their own delays and use them to predict future delays. This
information can be sent to the server when the server and clients
exchange control information.

6 NUMERICAL EVALUATION

We now present empirical results of CacheFL compared with several
baselines, to show the advantage of cache-enabled systems.>

Experiment Setting. We consider synthetic and real datasets, cu-
rated from prior work in FL: synthetic data Synthetic(1,1) [20],
and real image data MNIST [18], CIFAR-10 [17], and FMNIST [34].
We study both convex and non-convex classification problems on

30ur code and data are publicly available at https://github.com/NormanLiu/CacheFL.
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Figure 4: Convergence comparison of different algorithms in iterations and wall-clock time, with logistic regression.

these datasets using logistic regression, MLP, and CNN with cross-
entropy loss. We consider K = 50 clients.* The number of data
samples at each client is imbalanced, decided by the Zipf distribu-
tion with power 2 and scaled by 50, leading to the minimum and
maximum local dataset sizes of 50 and 700. Synthetic(1,1) generates
non-ii.d. data for each client. For MNIST, CIFAR-10 and FMNIST,
we consider both i.i.d. and non-i.i.d. data partitions. In the latter
case, each client has samples of 2 classes out of 10.

To compare the wall-clock training time, we simulate the up-
link/downlink transmission delay and computation delay as follows:
The computation delay in each iteration is randomly sampled from
a real-world trace, collected as in [27], with values from 2 to 25.
The downlink/uplink transmission throughput of client k in each
iteration is randomly sampled from the Mobiperf trace [23], with
resulting transmission delay ranging from 2 to 50. The compared
FL algorithms include FedAvg [22] and the following:

o CacheFL-OPT: The proposed scheme given by Alg. 1, with
Keache and Kserver decided by solving Prob. (25).

e CacheFL-random: Alg. 1, with a random client partition,
changed every 10 iterations.

o FedAvg-stragglers: FedAvg with clients in K ,cpe (as strag-
glers) being excluded from the training process.

e FedProx [20], with penalty constant set to 0.1.

The learning rate is set to 0.05 for CNN and decided by grid-
search as in [32] for logistic regression and MLP. The number of
local epochs is 5. The mini-batch size is 10 for logistic regression
and 5 for MLP and CNN.

Per-iteration training time. We show how CacheFL-OPT can
efficiently reduce the per-iteration training time in Fig. 3, which
gives the distribution of 7cacherL-0PT/TFedAvg in 200 iterations of
training, where 7cacherL-0PT and TFedavg are the per-iteration train-
ing time of CacheFL-OPT and FedAvg (no caching). CacheFL-OPT
can reduce the per-iteration delay by 28% on average and by 45%
(nearly reducing it by half) in the best iteration.

Convergence in iterations and wall-clock time. We compare
different algorithms in training logistic regression in Fig. 4. The first

4We consider full client participation in the experiments. Additional experiments
with partial client participation and with a larger number of clients are included in
Appendix C.
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Figure 5: Convergence comparisons in wall-clock time, when
training MLP and CNN, respectively.

row and the second row compare the convergence in iterations and
wall-clock time, respectively. For all datasets, CacheFL-OPT has a
convergence rate close to those of FedAvg and FedProx, even though
clients in K¢ache make local updates based on cached global models,
meaning that the penalty for caching in terms of the number of
iterations for convergence is not significant and the saving in the
time per iteration will be the deciding factor. Thus, CacheFL-OPT
has the fastest convergence in wall-clock time due to its ability to
reduce 7 . This advantage of CacheFL-OPT is more significant in
harder learning problems that need more iterations to converge (e.g.
Fig 4(d) and 4(e)). Moreover, though FedAvg-stragglers reduces 7~
by excluding stragglers, its training loss is much larger than others,
especially on non-i.i.d. local datasets, due to having fewer samples
for training. Lastly, CacheFL-random fails to improve the training
time over FedAvg and FedProx, with no optimization in the client
partition. The randomly decided client partition cannot efficiently
reduce 7 while possibly reducing the convergence rate by letting
too many clients use outdated global models. This emphasizes the
need of optimizing client partition (as in Sec. 5).

In Fig. 5, we present the results of training an MLP on non-
ii.d. MNIST and training a CNN on non-i.i.d. FMNIST, respectively.
CacheFL-OPT still has the fastest convergence in wall-clock time
when solving non-convex problems, especially for CNN on FMNIST,
while CacheFL-random performs badly, further emphasizing the
need of optimizing client partition (as discussed in Sec. 5).
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Figure 6: Comparison with asynchronous FL, with logistic

regression on non-i.i.d. MNIST.

Comparison with asynchronous FL. Asynchronism is another
mechanism to mitigate the straggler issue. In Fig. 6, we compare
CacheFL-OPT with FedAsync [35], the asynchronous implemen-
tation of FedAvg where clients aggregate their local models asyn-
chronously to the global model with weights being dependent on
the staleness. FedAsync proceeds faster in the beginning, as fast
clients finish more local updates and model aggregation because of
asynchronism. However, FedAsync becomes slower than CacheFL-
OPT later due to larger staleness in clients’ local models.

7 CONCLUSION

In this paper, we design cache-enabled federated learning systems,
which allow clients to reduce per-iteration delay by making local
updates based on cached global models. We formulate and solve
for caching strategies that minimize the overall wall-clock training
time of FedAvg in the proposed systems.

Our current theoretical analysis focuses on convex loss functions.
The extension to non-convex loss is a future direction. Moreover,
the implementation of other algorithms in the proposed systems
and the combination with other efficiency-improving techniques
(e.g., compression) are also possible future directions.
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A FULL CLIENT PARTICIPATION

This section includes the proofs of two lemmas for Theorem 1,
which gives the convergence bound of CacheFL when we consider
full client participation. The proofs are based on assumptions 1-5.

A.1 Proof of Lemma 1

By (9) and (16), we have w(*™) = w(t7) _p 3, (deg( ) and
by parallelogram identity,

— * 1 — *
> dilg T ) = L0 - we?
kex (28)

_ ||w(t ,T+1) (¢, T)||2 _ ||—([ T+1) W*HZ)

By convexity and L-smoothness of Fj, we have

Fk(w(t,fﬂ))
< o)+ (R (), w0 - wit)
* ]:“W(MH) - W;(Ct’T)HZ (smoothness)
< Fr(wh) + (VFk(wI(Ct’T))’W(t,Hl) W)

||_(t T+ (t’T) 12 (convexity)

< Fk(w )+ (VFg (w‘”)> Wi —w)
+ L“—(t ,T+1) —(t,T)”Z +L||Wl(:"[) _ W(t,T)HZ’ (29)
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where the last step is due to triangle inequality. Combining (28)
and (29) yields

F@™) —Fw') = 3 di(F (@) = F(w))

keK
< Z dk<VFk(WI(:’T)) — g](ct’f)’w(t:“'l) _ W*>
keK
LW DL Y dllwy T W)
keK
1 . B _ B *
+ E(||W(t,r) —w||? - ||W(t,r+1) _ (t,T)HZ _ ||W(t,z'+l) — W),
(30)
Since E[VF,(w,"") — g7 (7] = 0, we have
E[ Z dk<VFk(W](Ct’T)) _ g}(ct,‘r)’w(t,r+l) _ W*>|7:(t’r)]
keK
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<ryo—2 Z dz + L |—(t T+1) _ —(t,r)||2|.7:(t,r)], (31)

keK

where the first inequality is by Young’s inequality and the last one
is by the bounded covariance assumption and independence across
clients. Plugging (31) back to the conditional expectation of (30)
yields

E[F(wEm)) - F(w*)|F (57)]

+ —(E[IIW“’”” —w*IPlF D] D) — w2

<no’ Z d; —(——L)E[n—(”“) w27 ()]
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"ot D+l Y dillwD w02
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By the law of total expectation, telescoping 7 from 0 to zmax — 1
yields

Tmax
Z“_(”)) F(w")|F 0]
Tmax P
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A.2 Proof of Lemma 2

(2.7)

Let g'#7) = Ykex drg, ", we have

y(to+l) Z dkHW;(Ct’T) _V—V(t,r) _ qg(t \T) +r7g(t r)”z
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Take the conditional expectation on both sides,
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keK

where the inequality is derived using variance decomposition (the
variance of X equal to the expectation of X squared minus the
expected value of X squared), i.e.,

> dillgy™ =8N = D delig 1P - 18 1?
keX keK

< 3 dilig? 11

keK

The last term in (32) can be further bounded as

> dwt) - w

& VR )

keK
= 3 @) —wit VR (WD) - VR (W)
keK
+ 3 d @) - Wi VE(w )
keK

where the first term is non-positive by convexity, and the second
term equals to 3 c ¢ di (W57 —w](ct’r), VE. (WD) —VF(w(0)))
as Yreg dk <W(t’r) - W,(:’T), VF(V_V(M))) = 0. Thus, we have

Z dk(W(t’T) _

keK
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where the second inequality is by Young’s inequality, and the last
one is by (15). Plugging the above equation to (32) yields

E[V(t,f+l) |?~(t,‘r)] <

Tmax
1t ) dElllgy" IRIF .
kekK
Take full expectation on both sides, by (14), we obtain

E[vE™D] < (1+ VEIVED] +02G? + tmaxn®? (33)

Tmax
By telescoping,
(1+-L)7-1
BIVED] < (14 ——) BV 4 — T Z (262 4 2
Tmax F

Note that V (#:0) may not be zero with the cached model (different
from that in classic FedAvg). Define deache = Zke%,q. 9k and
dserver = Zke?{server di (dcache + dserver = 1), we have

E[v(t0]
- (dcac:hewt_1 + dserverWt)”z]
(dcachevvt_1 + dserverwt) | |2]

=dcacheEll |dserver(wt - Wt_l)”z] + dserver B ||dcache (Wt - Wt_l)Hz]
t—lHZ.

=dcacheEll |Wt_1

+ dserver]E [ | th -

=dcachedserver Bl |Wt -w
With full client participation, we further bound E||w’ — w~1||2 as
E“wt _ Wt—l||2

_1) max -
=E|| ) dwyTh) w2

keK
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=Bl Y de(w'” Z ng“ B!
k€ Kcache
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oY dew'T Z ng““) —wi
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V- S S gl
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keK 7=0
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< Y aE Y act. S el
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2 2 2 22
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where the last inequality is derived by letting t — oo. Thus,

3dcache 2

E[V(t’r)] Tmax/] Gz + 2’72G2 + 2Tmax772§2 (34)

server

B PARTIAL CLIENT PARTICIPATION

This section includes the proof for Theorem 2 which gives the
convergence bound of CacheFL with partial client participation, as
well as the proofs for two necessary lemmas. The proofs are based
on assumptions 2-5, while assumption 1 is replaced by the following
client sampling assumption: We consider that in each iteration t, we
uniformly sample S clients from a total of K clients for participation.
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We denote the set of clients that participate in ¢-th iteration as S (),

For k € S, the local update is given by w(t = - /(:’TH)
ylggl(f ) , such that ESU) K ZkeS® 5 g( ) = =% LS ex g](C ?) For
other unsampled clients, we have w](: ”1) = w](: ”1). We consider

balanced local data, where dy. = % for all k € K. Other parts of the

algorithm remain unchanged.

% Ykek W;(Ct’r)
—UDkes® ég,(:’f). Let the global model at

iteration ¢ be w! = w(f~1Lmmax) At the start iteration, we initialize

We define virtual sequence witt) = and we

have W(t T+1) _ —(t T)

w0 — w1 fork e Wé;)he and w9 = w1 for other k. Thus,
— ® @)
we have w(%:0) = %Wt—l + K_I;(cache wt.

LEmMMA 4. For partial client participation, if the client learning
rate satisfies n < ﬁ, then

Z F(w"D) - F(w’ )|sf“°>]

=1
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<! (Wi -5

[W(t,‘l'max) |7:(t,0)]) + ’70?2
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+ L Tﬁfl 1 Z E [”W(t,r) _W(t,r)Hz'Gc(t,o)]
Tmax 725 K keK ¢
where W(t:7) .= ||_(t ) —w*||? and F(40) s the o-field representing

all historical mformatzon up to the start of iteration t.

Proor. The proof follows directly from the proof of Lemma 1,

. £, t
noticing that E g % Ykes® %gl(( 0 % Skek g]i ). O

LEMMA 5. For partial client participation, let V(57 =

w(to) |2, we have

K
E [V(t T)] < max’?sz + ZEI]ZGZ + 2Tmaxt> 2.

Proor. Letgh?) = Ykes® %g](c ) and g(t T =0, fork ¢ SO,
we have
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where the inequality is derived using variance decomposition. Take

the conditional expectation on both sides and consider g](f’r) with
its original definition for all k,

B[V (e ()] <y ”zIﬁGz
N S

1
voy Y Lo

keK

wi VE(w")),  (35)

The last term in (35) can be further bounded as

Z dk(W(t’T) _

w L VR

keK
= > d @ —wit), VE(w") - VE (W (7))
keK
+ 3 d @ —wtD VR (WD)
keK

where the first term is non-positive by convexity, and the second
term equals to X pc g di (W(”) —W,((t’f), VFy (W(M) ) —VF(WU’T)))
as ek dk<w(t’r) - W](:’O, VF(W(”)» = 0. Thus, we have
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keK
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< d
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keK
" UTr;qax ||VFk(W(t’T)) - VF(W(LT))HZ)

1 (o) o 7 Tmax {2
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21 Tmax 2

where the second inequality is by Young’s inequality, and the last
one is by (15). Plugging the above equation to (35) yields

E[V(t,‘[+l)|7:(t,‘[)] < (1+

Tmax

)V(”)+ry Tmaxg +1 SGZ

Take full expectation on both sides, by (14), we obtain

[V(t T+1)] < (1 + . ) [V(t T)] S GZ + rmaxnzévz (36)
max
By telescoping,
1 (+5)" -1 K
EVID] < (14 — B[V ]+ —— (1 G 4t )
max Tmax

Tmax

Note that V' (4:0) may not be zero with the cached model (different
from that in classic FedAvg). Define dc(ac)he 2k € Ko NS % and

3cache =E[d (t) 1=

KeacheS
cache K?

, where |Keache| = Keache, We have
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cache
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With partial client participation:

t t—1y2
llw" = w7

=lldl ) W - - 3] Z O

keS(- 1) 7=0

t o=t
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Thus, we have
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|
Combining Lemma 4 and Lemma 5, we have
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By convex1ty,E||W(t0) w*[|? = E||dc(£2 e(_(t 2 Tmax) w*) +
w * Kcac e o max
(1 _dc(;zhe)(w(t Ltmax) _ y#) (|2 < KeacheS | g7(1=2.7max)
(1- c“he )|[w = bma) _w* |12, for t > 2 We also have E|[w(1?) -
1 1 —
w2 = Endéaghe(w(“) —w) (1~ A8 o) (WO T) — )2 <
Keache > * cac e W max *
ReacheS || (00) — |2 4 (1 — KeacheS ) 5(0-7max) — w*||2. Thus, by
telescoping, we have

- wi? +
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By above, telescoping (38) with ¢ from 0 to T — 1 and using the
convexity of F, finishes the proof of Theorem 2.

C ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we present additional experiment results. The
main experiment settings are the same as those in Sec. 6.
Effect of different client partitions. In Fig. 7, we further evaluate

the effect of client partition on the convergence rate of CacheFL.

We consider K cphe of different sizes and for each size we include
the clients with highest per-iteration delay 7 in K ache- When
[Keache| = 0, CacheFL reduces to FedAvg. We see that CacheFL has

a similar convergence rate in practice when |Kcache| = 0, 10, 20, 30,

Liu, et al.
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Figure 7: Effect of different number of clients using the cache
in convergence rate of CacheFL, with logistic regression on
non-i.i.d. CIFAR-10 dataset.
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Figure 8: Convergence in loss value with client sampling
(partial client participation), with CNN on non-i.i.d. MNIST
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Figure 9: Convergence in accuracy with client sampling (par-
tial client participation), with CNN on non-i.i.d. MNIST
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Figure 10: Convergence in loss value with client sampling
(partial client participation), with CNN on non-i.i.d. F-MNIST

and slower convergence rate when |Kiache| = 40, 50, i.e., the ma-
jority of the clients use the cache, showing that the effect of using
cached models in convergence rate is not significant and the benefit
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Figure 11: Convergence in accuracy with client sampling
(partial client participation), with CNN on non-i.i.d. F-MNIST
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in reducing the per-iteration delay plays a more important role if
we let K,che have a reasonable size.

Experiments with partial client participation. For every com-
pared algorithm, we further consider that in each iteration, 30 out
of 50 clients are sampled uniformly at random to participate in the
training, i.e., partial client participation. Fig. 8 and 9 compare the
convergence speed of the algorithms in training loss and testing ac-
curacy when training CNNs with MNIST data, while Fig. 10 and 11
present the results when training CNNs with FMNIST data. In these
experiments, CacheFL-OPT still converges the fastest in wall-clock
time. In Fig. 9, we can see that at the wall-clock time when CacheFL-
OPT achieves 60% testing accuracy, all other baseline algorithms
get accuracies about or below 30%.
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