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Abstract— Federated learning (FL) is a decentralized learn-
ing framework wherein a parameter server (PS) and a collection
of clients collaboratively trains a model via minimizing a global
objective. Communication bandwidth is a scarce resource; in
each round, the PS aggregates the updates from a subset of
clients only. In this paper, we focus on non-convex minimization
that is vulnerable to non-uniform and time-varying communi-
cation failures between the PS and the clients. Specifically, in
each round ¢, the link between the PS and client : is active with
probability p?, which is unknown to both the PS and the clients.
This arises when the channel conditions are heterogeneous
across clients and are changing over time.

We show that when the pi’s are not uniform, Federated
Average (FedAvg) — the most widely adopted FL algorithm
— fails to minimize the global objective. Observing this, we
propose Federated Postponed Broadcast (FedPBC) which is a
simple variant of FedAvg. It differs from FedAvg in that the
PS postpones broadcasting the global model till the end of
each round. We show that FedPBC converges to a stationary
point of the original objective. The introduced staleness is
mild and there is no noticeable slowdown. Both theoretical
analysis and numerical results are provided. On the technical
front, postponing the global model broadcasts enables implicit
gossiping among the clients with active links at round ¢. Despite
pl’s are time-varying, we are able to bound the perturbation
of the global model dynamics via the techniques of controlling
the gossip-type information mixing errors.

I. INTRODUCTION

Federated learning (FL) is a distributed learning paradigm
wherein a parameter server (PS) and a large collection of
clients collaboratively learn a machine learning model with
clients’ local data undisclosed [1], [2] to the PS. The global
objetives are often non-convex. Communication bandwidth
is a scarce resource. In each round, the PS aggregates the
updates from a subset of clients only — either proactively [1],
[2] or passively [3]-[5]. A FL system is often deployed in
a uncontrolled environment, wherein the channel conditions
between the PS and the clients could be highly heterogeneous
and time-varying [1]. To capture this, in this paper, we
consider non-convex minimization that is vulnerable to non-
uniform and time-varying link failures between the PS and
the clients. Specifically, in each round, the link between
the PS and client 7 is active with probability pf, which
is unknown to both the PS and the clients. A generic FL
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Fig. 1: A federated learning system with heterogeneous
devices: Solid arrows indicate active links and dashed arrows
are inactive links.

system of interest is illustrated in Fig. 1. To the best of our
knowledge, the convergence of FL in the presence of non-
uniform and time-varying communication is overall under-
explored.

Our setup can be viewed as a special case of the general
client unavailability, has received intensive attention re-
cently [2]. Nevertheless, existing methods are not applicable
to our problem. In the seminal works [1], [3], the PS chooses
K clients either uniformly at random or proportionally to
clients’ local data volume. Neither of theses client selection
methods is feasible when p!’s are unknown and time-varying.
In [2]-[4], [6], the PS waits for the K fastest responses. The
correctness of their algorithms crucially relies on the fact
that the response probability of each client is known. Ruan et
al. [7] considered a generalized random client unavailability,
yet required the response probability to be fixed. Time-
varying response rates are also considered in [5], [8], [9].
For the methods in [5] to converge to stationary points,
the response rates need to be “balanced” in the sense that
either (1) the p;’s are deterministic and satisfy the regularized
participation, i.e., Zle plot™ =y for all clients at all
to € {0,P,2P,---} where P is some carefully chosen
integer; or (2) p!’s are random and satisfy E[pl] = pu
for all clients and sufficiently many ¢. In contrast, we do
not require such rate “balanceness”. Perazzone et al. [8]
analyzed the convergence of FedAvg under time-varying
client participation rates. Nevertheless, they assumed (1) a
uniform participation rate in each round, i.e., p; = pj for
any pair of clients, and (2) bounded stochastic gradient. Gu



et al. [9] considered general client unavailability patterns for
both strongly convex and non-convex global objectives. For
non-convex objectives (which is our focus), they required
that the consecutive unavailability rounds of a client to be
deterministically upper bounded, which does not hold even
for the simple uniform and time-invariant response rates.
Moreover, they required the noise of the stochastic gradient
to be uniformly upper bounded with probability 1.

Contributions. Our contributions is three-fold:

« We identify simple instances and show both analytically
and numerically that when the p;’s are not uniform
Federated Average (FedAvg) — the most widely adopted
FL algorithm — fails to minimize the global objective.

o We propose Federated Postponed Broadcast (FedPBC).

It differs from FedAvg in that the PS postpones broad-
casting the global model till the end of each round.
We show in Theorem 1 that, in expectation, FedPBC
converges to a stationary point of the global objective.
The correctness of our FedPBC neither impose any
“balancedness” requirement on p!’s nor require the
stochastic gradients or their noises to be bounded.
Moreover, compared with [5], [9], FedPBC works under
a much relaxed bounded-dissimilarity assumption.
On the technical front, postponing the global model
broadcasts enables implicit gossiping among the clients
with active links. Hence, we mitigate the perturbation
caused by non-uniform and time-varying p! via the
techniques of controlling information mixing errors.

o We validate our results empirically both on the coun-
terexample and by using Synthetic (1, 1) dataset [10].
The numerical results in the former show that FedPBC
successfully corrects the bias when p;’s are static but
non-uniform (i.e., p! = p;) while FedAvg does not.
In the latter, we further investigate time-varying link
activation rates such that the responsive rates follow a
uniform distribution and thus are bounded below. The
results show FedPBC outperforms FedAvg.

II. PROBLEM FORMULATION

A FL system consists of one central PS and m clients that
collaboratively minimize
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minF(m):% > Fi(w), (1)
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where F; (®) = E¢,ep, [l (x;&;)] is the local objective, D;
is the local distribution, ¢; is a stochastic sample that client
7 has access to, and ¢; is the local loss function. The loss
function can be non-convex. We are interested in solving
Eq. (1) over unreliable communication links between the PS
and the clients. In each round ¢, the communication link
between the PS and client ¢ is active with probability pf,
which could be time-varying and is unknown to both the
PS and the clients. We assume that p;(t) > ¢ for all ¢ and
all i, where c € (0,1).

III. A CASE STUDY ON THE OBJECTIVE INCONSISTENCY
OF FEDAVG

In this section, we use a simple example (a similar
setup as in [11]) to illustrate FedAvg fails to minimize the
global objective in Eq.(1) when p;’s are not uniform. For
completeness, we formally describe FedAvg in Algorithm 1.
Notably, in Algorithm 1, all the clients (regardless of whether

Algorithm 1: Federated Average (FedAvg) [1]

t Input: T, 2%, s, {n:},_g... 74
2 The PS and each client initialize parameter x
3fort=0,---,T—1do
/% Let A' denote all the clients
with active communication
links. */

0.

4 The PS broadcasts x! to each client;
s forie[m] do
6 Draw a fresh sample ff;
7 if i ¢ A’ then
8 mgt’o) — xb
9 else
10 mgt’o) —axl;
11 end
12 for k=0,---,s—1do
13 wgt’kﬂ) — mgt’k) — ntv&(wgt’k);gf);
14 end
15 zi T :c,gt’s);
16 Report /™ to the PS;
17 end
/* On the PS. */
18 if A" # () then
19 xttl \T1t| ST
20 else
21 !t — xt;
22 end
23 end

the corresponding links are active or not) compute locally in
Algorithm 1 in each round. This is logically equivalent to
the usual setting where only clients in A? do the local steps
because in line 20 the summation is taken over the clients in
At. Similar equivalence is observed in [5]. We present the
FedAvg in the form of Algorithm 1 for ease of comparison
with our FedPBC - an algorithmic fix to FedAvg for bias
correction.

Let the local objective F; () = 3 ||z — w3, where u; €
R? is an arbitrary vector. The corresponding global objective
is thus

F@) - LS A - =Y le-ull @
mia 2m = *

. . e 1 )
with unique minimizer * = - > " u;.

Proposition 1. Choose = = 0 and n; = n € (0,1) for all
t. For a global objective as per Eq. (2), if pt = p; for all t,



under FedAvg with exact local gradients

. pitli [1 + 3, (- 2sen; zes pz]
1—T2, (1 - pi) ’

. T
lim «° =
T— o0

i=1

where B; 2 {5 € [m]\ {j}.1s| =j ~ 1}

The proof of Proposition 1 can be found in Appendix.
It can be checked that if there exist ¢,3’ € [m] such that
pi # pi» then limy_ oo * # =37 u; £ &*; when p; = p
for all ¢ € [m], then lim;_, o, ' = x*. In fact, the output of
FedAvg may be arbitrarily away from x* depending on p;’s
and wu;’s.

IV. ALGORITHM: FEDPBC

In this section, we propose FedPBC (Federated Postponed
Broadcast, formally described in Algorithm 2) - a simple
variant of FedAvg.

Algorithm 2: FedPBC

1 Input: T, z°, s, {nt}tzo_n’Tfl
2 The PS and each client initialize parameter x°;
sfort=0,---,T—1do
/x Let A' denote all the clients
with active communication

links;
*/

4 foric[m]do
5 Draw a fresh sample ff;
6 scl(-t’o) =z!;
7 for k=0,---,s—1do
8 wgt,k+1) _ iL‘Et’k) o ntv&(wl(_t,k);ff);
9 end
10 ot =z,
11 Report mf“ to the PS;
12 end

/+ On the PS. x/
13 if A' # () then
14 it — \,qu ST
15 else
16 xttl — zt;
17 end

18 Multi-cast 1! to each client i € A?;
19 for m € A* do

20 ittt

21 end

22 end

The key difference of FedPBC from FedAvg is that we
postpone the global model broadcasts to A’ till the end of
each round. Postponing the global model broadcast intro-
duces some staleness as the clients might start from different
x! rather than @'. It turns out that such staleness helps in
mitigating the bias caused by non-uniform link activation
probabilities. Moreover, the staleness is mild and there is

no significant slowdown. Theoretical analysis and numerical
results can be found in Sections V and VI, respectively.

Implicit gossiping among clients A’. From line 14 to line
22 of Algorithm 2, via the coordination of the PS, the clients
in A? implicitly average their local updates with each other,
i.e., there is implicit gossiping among the clients in A? at
round ¢. Formally, we are able to construct a mixing matrix
W® as

A i e Al
wi =<1, if i =jand {i ¢ A'};
0, otherwise.

The matrix is by definition doubly-stochastic and W) =
I when A" = () or |A'] = 1. We further note that this
matrix can be time-varying even in expectation since the link
activation probabilities p}’s can be time-varying. As can be
seen later, this mixing matrix bridges the gap between local
and global model heterogeneity and establishes a consensus
among different clients.

Let M® .= F [(W(t))Q] and J := %11? Define as

p(t) == Ao (M(t)) and p:= max p(t). 3)

Lemma 1 (Ergodicity). Recall that pt > c for some constant
¢ € (0,1). For each t > 1, it holds that p < 1 —
64[17(17C)7n]2
—_—

We defer the proof of Lemma 3 to Appendix. The follow-
ing lemma will be used in the convergence analysis.

Lemma 2. For any matrix B € R™™, it holds that

t
1B (H W) — J) I%] < p'|IBI%-
r=1

The proof of Lemma 2 follows the same outline as that in
[12, Lemmal]; it is deferred to Appendix.

E

Remark 1. In Algorithm 2, each client does local computa-
tions even if its communication link is not active. Continuous
local updates appear to be crucial. Numerical examples in
Section VI show that bias persists when only the active clients
do local computations. We leave as a future direction on how
to remove the bias while maintaining local computation.

V. CONVERGENCE RESULTS

A. Assumptions

Before diving into our convergence results, we will intro-
duce some assumptions, which are commented towards the
end of this subsection.

Assumption 1 (Smoothness). Each local gradient function
V¢;(0) is L;-Lipschitz, i.e.,
[Vli(x1) — VEli(22)|ly < Li [[21 — 22|y,

for all x1,x5, and i € [m). Let L = m[ax] L.
i€[m



Assumption 2 (Bounded Variance). Stochastic gradients at
each client node i € [m] are unbiased estimates of the true
gradient of the local objectives, i.e.,

and the variance of stochastic gradients at each client node
1 € [m] is uniformly bounded, i.e.,

E[IVei(@) - VR (@)]3] < o?
where F* denotes the sigma algebra generated by all the
randomness up to iteration t.

Assumption 3. There exists F* € R such that F(x) > F*
for all x € R4,

Assumption 4 (Bounded Inter-client Heterogeneity).

1 m
Bl F; _
w L IVA @)

Assumptions, 1, 2 and 3 are standard in FL analysis [10],
[13], [14]. Assumption 4 captures the heterogeneity across
different users, and it is a more relaxed version (e.g., than
[10], [15], [16].) Notably, different from [9], we do not
assume fresh data per local update, and the unbiasedness
in Assumption 2 is imposed for global rounds only.

F(z)ll; < 5% |VF(@)[l5 + ¢

B. Results

In this section, we formally state our key lemmas and main
theorem. All proofs can be found in the full version [17].

Lemma 3 (Lemma 1 in [18]). For s > 1, we have for all

x € RY:
<,.m(> v,

2
(A4nL;)°—1—snL;
(5)(nL:)?

Claim 1. For any s € N, k is monotonic non-decreasing
with respect to n > 0, where
(I14+nL)*—1—snL

p 2

(5) (L)
Remark 2. Lemma 3 yields a simple upper bound on
the perturbations incurred by multiple local steps. For the
special case when s = 1, we simply have k = O For s > 2,
we always have k > 1, and furthermore k < £ 2}2 , when
n < <%, which follows from Claim 1. In other words, we
can treat Kk as a constant as long as n is sufficiently small.
Henceforward, for the special case s = 1, we know that
k = 0 and treat % as oo. In other words, it is removed
from the step-size threshold set when s = 1.

Let

> [v

k=0

)

tk) —V(a )}

A
where kK = max;

(1>

K
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Lemma 4 (Descent Lemma). Suppose Assumptions 1, 2, and

4 hold, under a choice of the learning rate n < L the

2s
following property holds for t > 0:
E [F(z't!) — F(&') | F']
1 2L
< 027]232 [RQLZ + 2L ( + R
m 4
{ﬁ
4
1
L? +3n*s°L¢) — -
+ {nsL? + 3s }m;::lllwz

):| + 3€2n282€

38 (8% +1) }||VF @],

consensus error

where € £ K212 4+ 2L (1 + "'24Lz> .

Remark 3. Lemma 4 can be proved via following the stan-
dard outline of SGD convergence analysis with non-convex
functions and plugging in Lemma 3 to bound the perturbation
arises from multiple local updates and non-fresh data per
update. The consensus error term comes from Assumption I
and enables us to connect our analysis of the aforementioned
W matrix, where we borrow the insights from the analysis of
gossiping algorithms. Formally, in matrix form, we use the
following notions
x® — [wtl’ 7mt ] :

m

G = [swmwit’”), -
s—1
> Vi
r=0

VFY = [VF(z}),-

L sVl (a2t

t’o))} :
Z Vi ]

VF ( m)] :

(t T)

Equivalently, we can write down the consensus error in
matrix form,

ZH% ~alfl; =

IX@ T -J3) |7

= (X =G ) W @ -3 |}

IS 6 (I~ a) 2,
q=0

where the last follows from the fact that all clients are
initiated at the same weights.

Lemma 5 (Consensus Error). Suppose the conditions in
Lemma 4 are met, under a choice of the learning rate, n <

min { 215’ KS\ED 6\}\{8 } The following property holds:

1 T-1
— S E[IXO1-3)° ||
t=0




Now, we are ready to present our main theorem.

Theorem 1. Suppose all the assumptions hold, and choose
a learning rate n = co\/ 1, where co is a constant, for
sufficiently large T such that

1
7n < min )
2 18s2L2p 144(82+1)s2L2%p
24 (8 +1)¢{1+(1_ 7| + (1—vo)’
1 f Lo 1-vp
2s’ ksL’ 6+/2pL s>

the following property holds for Algorithm 2
8F(x%) — 8F*
7 ZE Ivr@)] < o (=
o (1600?48, /122 (14 5) 52
mT T 2

Stochastic gradient noise

ms 24172 5 1728CL%¢? ms
L el el R e o
) (1-vp)

Client drift error

¢+

144p

+O<(1_\/Z))2(L +3L%¢) o T>7

Intermittent participation error

where € £ k212 + 2L (1 + ”24L2> .
Remark 4. Here, we remark on Theorem 1:

1) On the structures. Except for the first term, the re-
mained terms can be grouped into three parts: the noise
introduced by stochastic gradient, and the errors due to
client drift (heterogeneity) and intermittent participa-
tion, each scaling with a different rate. To control the
errors, we need a sufficiently small learning rate 1 that
meets all the conditions mentioned above.

2) On stationary points of F'. Theorem 1 says that Tt in
FedPBC converges to a stationary point of F' asymptoti-
cally. In other words, the bias will be corrected towards
the end. In contrast, we show in Proposition 1 that T'
in FedAvg converges to a point that could be arbitrarily
far away from the true optimum depending on p: and
data heterogeneity.

3) On the role of the activation lower bound c. It has
been shown in Lemma I that p < 1 — M

A greater c leads to a smaller p and thus a tighter

bound on Zt: E[||VF (x")|,] . Note that FedPBC

reduces to FedAvg with full-client participation, i.e.,

when ¢ = 1. In that case, our convergence rate becomes

1 ms ms
O =+ ), 5
(\/msT T T ) )

which matches the FedAvg literature (see e.g., in [11]).
We further note that because * can be treated as a
constant, the order of convergence rate does not change.
4) On linear speedup. It is trivial to see that the first
two terms in Eq. (5) dominate when T is sufficiently
large (e.g, T > cym?>s>, where ci is some positive
constant.) We shall see linear speedup w.r.t. the first
term; however, the second term ultimately dominates all.
Thus, it is unlikely that our algorithm achieves linear
speedup, which is consistent with FedAvg literature, see

e.g., in [3].
VI. NUMERICAL EXPERIMENTS

In this section, we present the numerical evaluations of the
proposed algorithm and FedAvg. In each round, the PS will
send an update request to each client. Client ¢ will respond
with probability p;, which is unknown to both the PS and
clients. This simulates unstable communications.
Counterexample. Here, we have m = 100 clients,
each doing 30-steps local computations, communicating
for 4000 rounds, and holding a local loss function
Fi(x;) = %HCCZ—MHS, where x;,u; € R0 u; ~
N ((i/1000)1,0.01I), and ¢ = O for all i € [m]. The
learning rate 7 = 0.0003. In addition, we let the first 50
clients respond with probability pg, whereas the second half
with py (to be specified later.)

p0: 0.3 p1: 0.3 p0: 0.3 p1: 0.8
— 10! =
'>< '><
I 1072 !
g ¢
x E
=103 =
0 1000 2000 3000 4000 0 1000 2000 3000 4000
(a) Always local computations
p0: 0.3 p1: 0.3 p0: 0.3 p1: 0.8
---- FedAvg
= 10! =
'>< 10 — FedPBC | 3 107
\
| _
010723 !:Q i
X | X , ---- FedAvg
= 10-3 ﬂ =10~ —— FedPBC
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(b) Sampled local computations

Fig. 2: Distance to the optimum ||xps — «*||, in the coun-
terexample in logarithmic scale.

For ease of presentation, we plot the distance to the optimum
lxps — x*||, after the first 50 communication rounds in
Fig.2, where xps = a in Algorithm 2. As illustrated in
Fig.2a, FedPBC is unbiased and converges to the global
optimum z* £ L 3" wu; in all the combinations of py
and p;, matching our analysis, while FedAvg will instead
converge to a different point observed from |zps — x*|,
when pg # p1. When pg = pi, the two algorithms will
converge to the same point, which matches our analysis. In
a sharp contrast, if we let only the sampled clients do local
computations, the bias persists, which we leave as a future
direction.
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(c) FedPBC evaluations under time-invariant and time-varying
responsive rates.

Fig. 3: Synthetic (1,1) evaluations.

Synthetic (1,1) data . In this simulation, we first follow
[10] and construct Synthetic (1,1) dataset as follows: we
generate samples (X;,Y;) for each client i according to the
model y = arg max (softmax (Wz + b)), where x € R,
W € R10x60 p ¢ R0, To characterize the non-i.i.d. data,
we let W; ~ N (u;, 1), b ~ N (u;, 1), u; ~ N(0,a =1),
and x; ~ N (v;,X), where the covariance matrix is diagonal
with 37, . = j~'?. Each element in the mean vector v; is
drawn from N (B;,1), where B; ~ (0,8 =1).

For the non-uniform link activation probabilities p;s, we
consider two scenarios:

1) Time-invariant heterogeneous rates. Let p! = p? = 0.05
for 1 < <m/2 and p’ = p9 = 0.9 for (m/2) +1 <
7 < m. In other words, we have two groups of clients,
one responding with probability p{ = 0.05, while the
other one with probability p) = 0.9 ;

2) Time-varying heterogeneous rates. A uniformly dis-
tributed random variable, which is independent across
clients and communication rounds, is imposed on each
responsive rate per communication round. Formally, let
pi = p) + X and p} = p§ + X!, where X/, X} ~
U (-0.02,0.02) for 1 < i < (m/2) and (m/2) +1 <
j < m. This ensures ¢ £  min pt = 0.03.

te[T],i€[m]

The other auxiliary hyper-parameters are set as: client
size¢ m = 30, a constant learning rate g tuned from
{0.1,0.5,0.01,...,0.001,0.005}, batch size: 100, local
computation rounds: 25 for each ¢ € [m], communication
rounds: 1900.

Fig.3a and Fig.3b show that FedPBC consistently out-
performs FedAvg. Moreover, Fig. 3¢ says that FedPBC con-
verges to the same optimum in either settings, showing its
ability to rectify the bias.
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APPENDIX

Proof of Proposition 1. At each client i € A?, we have

2 = (1= )" 2t

! n)’"] :

r=0

Using the convention that % =0, we get

N2 iear Wi [Er 01— )1 Loarz0y

CL‘H_l = iL’tl{At:@} + (1 — 77)8 :Btl{At;é@} +

| A
= Liarz0}
= [Lgar—oy + (L= 0)" Lpazgy] @ +0 | D (1 —n)* t i
A
k=0 i€ At
Let 1, = 7 for all ¢. Since p} = p; for all i € [m],
; 1
pin Sl 4] =2 g Sl )
i€ At icAl

holds for all ¢. Taking expectation w.r.t. A%, we get

s—1
S Zz v Uj
H=P{A =0} +(1—n)°P{A £0}] "+ Z(1—n)k] E { &i' AL £ 0| P{A" £ 0}
k=0
=(1-a"E Al > Alyé@]
| | i€ Al
where we use the fact that ° = 0, and
a=1I0" (1—p)+ 1 -2 (1—p)] (1 —n)°.

Since a < 1, we get limy_,o, 1 —al*t!l = 1. Let X; = 1ican for each i € [m]. In sequel, we alternatively state the event

St X #0 as A # () since they are equivalent.

St s] [ g e
—E[ZZ ulAlaé@}:;uiE ™ #@}
Using the convention that 3 = 0, we know that
s Xj‘;)( £0
E[ZM |4t # 0] LAt £ 0} 10 x P {at =0}

P{Al # 0}
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Additionally,

X; X;
Emiz :P{Xizl}]E milXizl
I:Zi—l Xz} Zj:l X ]
X,
lEj—l X ]
E L ’X 1]
= Di i =
1+ 2 eim iy X

m .
=pi+ Y (—1H % S I e-
j=2

SeB; z€S

where B; £ {S ‘S C m)\{i},|S|=7— 1} , and the last follows from the definition of a binomial distribution and can
be seen through inspection of the terms. O

Proof of Lemma 1. For ease of exposition, in this proof we drop the time index.
We first get the explicit expression for E [W?, | A # 0]. For j' # j, we have

m
Wi = WiWjnk
k=1
=WiiWyes + Wig Wi+ > WiWin.
ke[m]\{j,5"}

When k # j and k # j', we have
WikWijn, = M%l{jeA}l{j/eA}l{kEA}'
In addition, we have
WiWije = ﬁ (1= Lgeay) Ljeay Lireny

1
T ap Hoearbreay

and
1
Wiy Wi = Al (1=1gea) Lyeaylyren
1
— 1icadiican.
+ Ap tueatiea
Thus,

m
2 _ . .
W]], — Z W]kW]/k}
k=1

1 1
= Wl{jeA}l{j/eA} v (1= 1geay) Lea liea
1
A (1= 1gea) Lgeay e
For j = j', we have W7 = jr1(jea; + (1 — 1(jea;) . Taking expectation, we get
1
2
E[W;| A #0] =E [A|1{jeA} +(1- 1{jeA})]
14 AN\ {7}

ZE[I}ijrl'(l—pj)-

Note that A\ {j} is random and could be empty.



Let X; = 1g;ca;. We have

1
EL‘HA\{J}JE 1—1—2:Z€ \{;}X] /Okl;lj (1 —pg) + prs|ds

> [ L0 =pos+psjas =

ki
Thus, E [W? | A# 0] > p; + (1 —p;) > ;. Similarly,
2 . 1 V2120 ﬁ
E[Wjy | A#0] > pjpyE 2+Zke[m1\{j,j'}x’“] R
Then,
My =E[W2, | =E W}, | A# 0] P{A# 0}
+E[W; | A=0]P{A=0}
c? m
> —[1-(1-¢"].
M;; =E[W}] =E[W}, | A# 0] P{A+#0}
+E WS [ A=0]P{A=0}
1 - m
2 —[1-(1-9"]+(1~0)
1 c? m
ZEZE[l_(l_C) ]

We first show that p(t) = A2(M). We denote by A; and v; the non-increasing eigenvalues and the associated eigenvectors
of matrix M for ¢ € [m] with A\; =1 and vy = ﬁl. By spectral decomposition

M;HTi’\w"v 7—11T z/\vu,

showing p(t) = Aa.

Next, we show that a Markov chain with M as the transition matrix is ergodic. This is indeed true as the chain is (1)
irreducible: M ;1 > 2 [1—(1—¢)™] >0 for j,j' € [m] and (2) aperiodic (it has self-loops.) Moreover, it has a stationary
distribution ™ = %1 . Furthermore, this irreducible Markov chain is reversible since the following property is satisfied for
all the states WiMij = Wiji.

Following [19], the conductance of reversible Markov chain with underlying graph G is defined by ®(G) =
minziesmg% %%, where the vertices of the graph are the states of the M Markov chain, and for each pair
i,7 € V, the edge weight w;; = M;;m; = Mj;m;. From Cheeger’s inequality, we know that 17;‘2 <P(G) < /2(1 = Ng),
where \s is the second largest eigenvalue of M. It remains to bound ®(G),

o(G) = min —m Zies’j¢S M
Yiesmi<s Dies i
c\2 m o m
L@ -0-a"sIlS| _En-a-9m
- |S‘ - ’ bl
<0 m

where the inequality follows from (1) G is fully-connected (2) M;j; > % [1—(1—¢)™] for j,j/ € [m]. Meanwhile,
|S| =m — |S| > 2. Plug it back in, we get

@(Q)ZCQ[I—(l—c)m] ‘3‘>c2[1—(1—c)m].

m - 2

Thus,p(t):)\2§1_m§1_c4[1*(17*0)m}2_ -



Proof of Lemma 2. Similar to the proof in [12], let us define A,, £ [[_, W —J and use b; to denote the i-th row
vector of B. Since for £ € N, we have (W))T = W and WJ = JW® = J. Thus, one can obtain

t

A =TI (WO =3) = a0 (WO -3).

=1
Then, by taking expectation w.r.t. W), we have
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Let Cy = By [(W®)TW® — J] and v; = Al by, then
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Repeat the above procedures, since W'*)’s are independent matrices, we have
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O
Proof of Lemma 3. By the definition of k,
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Hence it suffices to show
— 1 + Lz s—1 S Li
S [Vetat) - vi(e] | < LY = 1monbs gy gy ©
nL;
k=0 2
We prove (6) holds for all s > 1 by induction. The base case s = 1 follows from the definition. Suppose (6) holds true for
s=1,...,n—1, where n > 2. Next we prove (6) for s = n. We have
va (t,n— 1)) v[ H <L H (t,n—1) th
2
< Ly Z [Vt (249) = Vi (@) || + Lin(n = 1) |96 ()],
k=0 2
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where (a) follows from the induction hypothesis.
Plug Eq. (7) back in, use the induction hypothesis and triangle inequality, we get
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The proof is completed. O



Proof of Claim 1. Recall that

From binomial theorem, we know that

it follows that

o 1wt ELOGD ()
(;) (77[‘)2 (2) (WL) i=2 (3)

Since ¢ — 2 > 0 for i > 2, we can see that & is a polynomial of (nL). Thus, it is monotonic non-decreasing w.r.t. n > 0.
The proof is completed. U

Proposition 2. For any t € [T — 1], it holds that

*ZHVF DIl < ZHw — |, +3 (87 + 1) [V + 3¢

=1

Proof of Proposition 2.
—ZHVF Hz = ZHVF Fy(2') + VF,(z") - VF(z') + VF(z")|

m 3 m
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ZII f-atly + 387 [ VE@|L; + 3¢ + 3 [ VF @
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where inequality (a) follows from Assumptions 1 and 4.

Proof of Lemma 4. By L-smoothness, we have

F(z'*Y) — F(z') < <VF(jt)7jt+l _ :Et> Hwt-i-l —tuz
2

2
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2

Taking expectations with respect to the randomness in the mini-batches at k-th rounds, we have
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For ease of notations, we abbreviate V/; (:cgt’k)> as Vﬁgt’k).



a) Bounding (V f(z'),—LVF®1).:
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Term (A) can be bounded as
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From Lemma 3, we bound term (B.1) as follows
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where inequality (a) follows from Assumption 2, and the last inequality follows from Proposition 2. Thus, term (B) can be
further bounded as
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Combing the bounds of terms (A) and (B), we get
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For term (C), by Lemma 3, we have
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By Assumption 2, we obtain
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For term (D), by Assumption 2, we have
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Combing the above upper bounds of terms (C) and (D), we get
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Applying Proposition 2, we get
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c) Putting them together.: With Eq.(8) and (9), we have
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Proof of Lemma 5. Our proof shares the same outline as that in [12] yet with non-trivial adaptation to account for multiple
local updates and the fact the stochastic gradients at a client within each round are not independent. Particularly, T in
Eq. (10) does not exist in [12].

We have the following relations:
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where the last follows from the fact that all clients are initiated at the same weights. It follows that

t—1
IXO @)l <371 Y (6~ 6 ) (mow® — )
q=0

T
t—1 t—1
+30% 1> (G[()Q) - sVF<q>) [Tw® -3
q=0 t=q
T2
t—1
+30%s% || Y VF@ (Hz W - ) 12 . (10)

T3



d) Bounding E[T] .:
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where inequality (a) follows from Lemma 2, and Cauchy-Schwarz inequality. Next, we bound the second term, choose
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Plugging the above bound back in Eq. (11) we get
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where inequality (a) follows from Lemma 3. Thus,
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f) Bounding E[T3].: Use a similar trick as in bounding E [T;], and we get
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g) Putting them together.:
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Proof of Theorem 1. By taking an extra expectation over the remaining randomness and telescoping sum, we get
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What follows refines the choice of the step-size:
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In addition, we need to ensure that nps® < 1, with such an additional choice, we get
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A little rearrangement, and applying the fact that

1—p=(1-vp)(1+vp) > (1-p),



we arrive at
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Choose the step size to be n = c14/57. When T' is sufficiently large such that
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