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A B S T R A C T

In many applications, one can only access the inexact gradients and inexact hessian times vector
products. Thus it is essential to consider algorithms that can handle such inexact quantities
with a guaranteed convergence to solution. An inexact adaptive and provably convergent
semismooth Newton method is considered to solve constrained optimization problems. In
particular, dynamic optimization problems, which are known to be highly expensive, are the
focus. A memory efficient semismooth Newton algorithm is introduced for these problems.
The source of efficiency and inexactness is the randomized matrix sketching. Applications to
optimization problems constrained by partial differential equations are also considered.

1. Introduction

We introduce a memory-efficient sketched semismooth Newton method for solving dynamic optimization problems with form

min
uiÀRns ,ziÀRm

nt
…

i=1
f
i
(u

i*1, ui, zi) subject to c
i
(u

i*1, ui, zi) = 0 and z
i
À Zad,i œ Rm

, (1.1)
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where u
i
À Rns is the state variable, z

i
À Rm is the control variable and Zad,i œ Rm is the admissible control set at the ith time step,

i = 1,… , n
t
. We assume that Zad,i has the following structure

Zad,i :=
�

z
i
À Rm

h
i
(z

i
) = 0 and g

i
(z

i
) f 0

�

, (1.2)

where h
i
: Rm ô Rneq,i and g

i
: Rm ô Rnineq,i . Furthermore, u0 À Rns is the given initial state, f

i
: Rnsùnsùnt ô R denotes the objective

function associated with ith control and state and c
i
: Rnsùnsùm ô Rns is the time-discrete dynamical system, which advances the state

from u
i*1 to u

i
. Dynamic optimization problems like (1.1) arise in many applications, including, the control of pathogen propagation

in built environment [1,2], energy system operations [3], vortex control in nuclear reactors and superconductors [4], magnetic drug
targeting [5], and full waveform inversion [6].

These problems suffer from many computational challenges. Gradient-based methods for solving problems of the form (1.1)
require storing the entire state trajectory {u1,… , u

nt
} and auxiliary variables such as Lagrange multipliers, incurring a storage cost

of O(n
t
(2n

s
+ m)). When the system c

i
(u

i*1, ui, zi) = 0 is uniquely solvable, we can write the minimization problem (1.1) in terms of
controls {z1,… , z

nt
}, leading to the so-called reduced formulation. In this setting, the evaluation of the gradient requires the solution

of the adjoint or costate equation backward in time, which in turn depends on the state trajectory u
i
. A naïve implementation of this

again incurs the storage cost of O(n
t
(n

s
+m)), which can be prohibitively expensive. Consider the discretized pathogen propagation

problem described in [1], where n
s
˘ 109 and n

t
˘ 106. Using such an implementation, a gradient evaluation for this application

would require the storage of roughly 1015 floating point numbers.
One can reduce the storage cost, for instance, using reduced-order models (ROMs) [7–12]. However, the approximation

capabilities of a fixed ROM can significantly degrade as the optimization progresses. To overcome this, [13,14] employ trust-region
methods to adaptively control the fidelity of the ROM. Nevertheless, these approaches tend to be intrusive and do not easily adapt to
legacy codes. Indeed, almost all existing ROM approaches require extra reduction steps to approximate nonlinear terms in PDEs [15–
17]. For dynamic optimization problems, one can also use checkpointing to reduce the memory requirements of the state trajectory
[18–20]. However, checkpointing may increase the gradient computation costs as discussed in these references.

The contributions in this article are twofold. First, we introduce an inexact adaptive semismooth Newton method and provide
a convergence analysis of this algorithm for generic optimization problems in function spaces. Secondly, we consider dynamic
optimization problems of the form (1.1), where inexactness arises due to matrix sketching. To reduce the memory requirements
for (1.1), we use adaptive randomized sketching to compress the state {u1,… , u

ns
} as in [21]. Matrix sketching leads to low-rank

approximations of the state [22–24]. In our setting, this further leads to inexact gradients and Hessian applications. The latter
approximation are carefully controlled within the adaptive semismooth Newton method. This results in a provably convergent
and efficient algorithm for (1.1). We refer to [21] for the initial work on adaptive sketching trust-region methods for solving
unconstrained dynamic optimization problems.

The remainder of the paper is organized as follows. In Section 2, we describe the finite-dimensional optimization problem (1.1),
state its optimality conditions, and review randomized matrix sketching. In Section 3, we introduce an inexact semismooth Newton
method with guaranteed superlinear convergence in Banach space. Our convergence proof is adapted from [25, Sect. 3.2.4]. In
Section 4, we apply our semismooth Newton method to a generic optimal control problem with inexact gradient and Hessian
information. This problem is motivated by sketching for (1.1). To this end, we derive approximation estimates for the gradient and
Hessian computations. Although some of these results are known in the literature, we provide complete details, including proofs,
whenever appropriate, in Appendix A. The general nature of these results enable use to apply the semismooth Newton method to
our target dynamic optimization problem (1.1). Finally, we demonstrate the numerical performance of our algorithm on an initial
measure control problem in Section 5.

2. Problem formulation and randomized sketching

Throughout, we consider the reduced form of (1.1). To this end, we assume that the equality constraint c
i
(u

i*1, ui, zi) = 0 in
(1.1) is uniquely solvable for fixed u

i*1 and z
i
. Although, one can solve (1.1) using sequential quadratic programming methods,

the memory burden of O(n
t
(2n

s
+ m)) floating point numbers renders such methods infeasible for many practical applications. To

describe the reduced formulation, we collect the controls and states into stacked column vectors, denoted by

u = [uÒ1 ,… , u
Ò

nt
]Ò À U := Rnsnt and z = [zÒ1 ,… , z

Ò

nt
]Ò À Z := Rmnt ,

and represent the objective function, state equation and constraint functions as

f (u, z) :=
nt
…

i=1
f
i
(u

i
, z

i
), c(u, z) :=

b

f

f

d

c1(u0, u1, z1)
4

c
nt
(u

nt*1, unt , znt )

c

g

g

e

= 0,

h(z) :=
b

f

f

d

h1(z1)
4

h
nt
(z

nt
)

c

g

g

e

= 0, and g(z) :=
b

f

f

d

g1(z1)
4

g
nt
(z

nt
)

c

g

g

e

f 0.

Employing this notation, we can rewrite (1.1) as

min
(u,z)ÀU ùZ

f (u, z) subject to c(u, z) = 0 and z À Zad, (2.1)
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where

Zad := Zad,1 ù5 ù Zad,nt = {z À Z h(z) = 0 and g(z) f 0}

is the admissible control set.
To generate the reduced problem, we assume that f and c are continuously differentiable on U ù Z and that there exists a

unique control-to-state map z ≠ S(z) : Z ô U . Here, S(z) is the unique state trajectory satisfying c(S(z), z) = 0 holds for each
z À Z . To this end, we assume that the state Jacobian of the state equation function c, denoted by duc(S(z), z), has a bounded
inverse for all controls z À Z . The unique state trajectory takes the form

S(z) :=

b

f

f

f

f

d

S1(u0, z1)
S2(S1(u0, z1), z2)

4
S
nt
(S

nt*1(… , z
nt*1), znt )

c

g

g

g

g

e

.

By the implicit function theorem [26, Th. 1.41], we have that all S
i
and S are continuously differentiable. Consequently, we can

formulate the reduced problem

min
zÀZad

{ Çf (z) := f (S(z), z)}. (2.2)

To derive the optimality conditions for (2.2), we define the Lagrangian functional

L (z,�,�) := Çf (z) + �Òh(z) + �Òg(z),

where � À Rneq and � À Rneq are Lagrange multipliers. Here, neq := neq,1 +5 + neq,nt and nineq := nineq,1 +5 + nineq,nt . Assuming that
Çf , h and g are twice continuously differentiable, we deduce the optimality (KKT) conditions

(zL (z,�,�) = ( Çf (z) + (h(z)� + (g(z)� = 0, (2.3a)

h(z) = 0, (2.3b)

� g 0, g(z) f 0, �Òg(z) = 0. (2.3c)

We equivalently reformulate the complementary conditions (2.3c) as

F3(z,�) := max{0,� + g(z)} * � = 0,

for fixed  > 0. Recall that F3 is semismooth [25, Def. 2.5], since the maximum function is semismooth and g is continuously
differentiable. We can then rewrite the optimality conditions in (2.3) as the semismooth nonlinear system of equations

F(z,�,�) :=
b

f

f

d

(zL (z,�,�)
h(z)

F3(z,�)

c

g

g

e

= 0. (2.4)

We will solve (2.4) using the semismooth Newton’s method.
As seen in the definition of Çf , we can evaluate the objective function sequentially while only storing two state variables u

i*1 and
u
i
. Recall that u

i*1 is needed to compute u
i
by solving the ith equality constraint. Unfortunately, the gradient of Çf in (2.4) requires

the solution of the adjoint equation

duc(S(z), z)<p = *duf (S(z), z), (2.5)

or equivalently

(d
ui
c
i
(u

i*1, ui, zi))<pi = *d
ui
f
i
(u

i
, z

i
) * (d

ui
c
i+1(ui, ui+1, zi))

for i = n
t
* 1,… , 1, which is solved backward in time. Upon first glance, we require the entire state trajectory to compute the

adjoint trajectory. As mentioned earlier, this storage requirement can be alleviated using checkpointing, resulting in additional
computational cost. Instead, we use randomized matrix sketching to compress the state trajectory u = S(z).

2.1. Randomized matrix sketching

Let U = [u1 5u
nt
] À Rnsùnt be the state trajectory u reshaped as a matrix. We denote the prescribed sketch rank by r À N and

assume that the sketching parameters k, s À N satisfy

r f k f s f min{M ,N}.

In our numerical experiments, we set k = 2r + 1 and s = 2k + 1. We fix four random linear dimension-reduction maps with i.i.d.
standard normal entires:

⌥ À Rkùns , ⌦ À Rkùns , � À Rsùnt ,  À Rsùnt .
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The rank-r sketch of the matrix U, denoted {{U}}
r
, is the triplet of matrices (X,Y,Z), given by

X = ⌥U À Rkùnt (co-range sketch),
Y = U⌦< À Rnsùk (range sketch),
Z = �U < À Rsùs (core sketch).

These computations can be performed online. For example, with the representation U =
⌅

u1 …u
nt

⇧

, we can calculate

X
(0) = 0, X

(i) = X
(i*1) + ⌥ u

i
e
Ò

i
i = 1,… , n

t
,

where e
i
denotes the ith unit vector. Similar recursions hold for computing Y and Z. Therefore, we do not need to store U to build

the sketch {{U}}
r
, which is critical for practical applications.

To recover the sketched columns of U, we first compute the QR decompositions

X
< =: PR1, where P À Rntùk,

Y =: QR2, where Q À Rnsùk,

and use the core sketch Z to compute a core approximation by solving two small least-squares problems

C := (�Q)†Z(( P)†)< À Rkùk
.

The rank-k approximation of U is then given by

õU := QCP
<
.

We defineW := CP
< À Rkùnt and store only the skinny matrices Q andW, which require O(k(n

s
+n

t
)) memory, instead of O(n

s
n
t
) for

the storage of U. However, since X, Y and Z need to be stored intermediately during the column wise updating process, the required
storage is marginally increased to O(k(n

s
+ n

t
) + s

2). The reconstruction of õU from Q and W can then be performed column-wise as
õU[:, j] = QW[:, j].
Before concluding this discussion, we recall that the sketching error (cf. [21, Th. 3.4]) satisfies

E⌥ ,⌦,�, 

⌧

ÒU * õUÒ
F

�

f

˘

6 � ⌧
r+1(U), (2.6)

where ⌧
r+1(U) denotes the (r + 1)-st tail energy:

⌧
r+1(U) := min

rank(B)<r+1
ÒU * BÒ

F
=
H

…

igr+1
�
2
i
(U)

I1_2

,

with �
i
denoting the ith singular value. In particular, the rank-k sketching approximation õU differs from the best rank-r approxima-

tion by a constant factor on average.

2.2. Approximation of gradient and Hessian for (2.2)

Let õu denotes the approximation of the state due to sketching and let the corresponding approximate adjoint be given by õp, i.e., õp
solves (2.5) with u replaced by öu. While solving the state equation, we can calculate the objective function f as in [21, Alg. 4.1].
However, due to sketching, the adjoint õp is inexact and subsequently the gradient ( Çf (z) and Hessian (2 Çf (z) are inexact. Recall
that applying the Hessian to a vector generally depends on the entire state and adjoint trajectories as well as trajectories from two
additional dynamical systems. Consequently, one must sketch two additional trajectories to apply the Hessian, cf. [21, Alg. A.6].

In order to prove convergence of our semismooth Newton method, we must quantify and control the sketching errors in the
gradient and Hessian computations. To this end, we denote the approximate gradient by g

r
(z) and the approximate Hessian by

H
r
(z). Let õF(z,�,�) denote F(z,�,�) in (2.4) with ( Çf (z) replaced with g

r
(z) in the first equation. Then it is straightforward to see

that

õF(z,�,�) * F(z,�,�) =
`

r

r

p

g
r
(z) * ( Çf (z)

0
0

a

s

s

q

and setting ✏ = õF(z,�,�) * F(z,�,�), we obtain

Ò✏Ò2 = Òg
r
(z) * ( Çf (z)Ò2. (2.7)

Furthermore, let M À )
cl
F(z,�,�), where )

cl
F denotes the set-valued map of Clarke’s generalized Jacobians of F [25, Def. 2.1], i.e.,

)
cl
F(z) := conv

$

M À Rmntùmnt
F differentiable at zk for all k with z

k
kôÿ
⇤ z, (2.8)

and F
®(zk)

kôÿ
⇤ M

%

. (2.9)
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Here, conv denotes the convex hull. Since Çf , h and g are assumed to be twice continuously differentiable, M has the form

M =
b

f

f

d

(2
z
L (z,�,�) (h(z) (g(z)
(h(z)Ò 0 0
Mz 0 M�

c

g

g

e

,

where Mz denotes the Clarke generalized Jacobian of F3 with respect to z and M� denotes the Clarke generalized Jacobian of F3
with respect to �.

Let ûM denote the sketching approximation of M and note that the only error occurs is in (2 Çf (z) (i.e., the (1,1)-block of M) and
so we obtain

ûM *M =
b

f

f

d

H
r
(z) * (2 Çf (z) 0 0

0 0 0
0 0 0

c

g

g

e

.

Setting � = ûM *M , we see that

Ò�vÒ2 = Ò(H
r
(z) * (2 Çf (z))v1Ò2 (2.10)

for any v = [vÒ1 , v
Ò

2 , v
Ò

3 ]
Ò À Rmnt+neq+nineq . From (2.7) and (2.10), we notice that the approximation errors in the value and generalized

Jacobians of F in (2.4) only depend on the gradient and Hessian of Çf (z). In Section 4, we will derive error estimates for these
components in order to guarantee convergence of our inexact semismooth Newton method.

The formulation discussed in this section is for finite-dimensional optimization problems, which are a special case of the infinite-
dimensional setting discussed in the next section. One advantage of the infinite-dimensional setting is that it enables the treatment
of inexactness arising from sources other than just matrix sketching.

3. Abstract semismooth Newton with inexact values and Jacobians

Let (X, Ò � Ò
Z
) and (Y , Ò � Ò

Y
) be real Banach spaces. We will develop an inexact semismooth Newton algorithm for solving the

abstract problem of finding x À X such that

F (x) = 0, (3.1)

where F : X ô Y is a )
<-semismooth map. Here, )< denotes an appropriate generalized derivative operator. For example, in finite

dimensions, one can take )
< = )

cl as done in Section 2. See [25, Def. 3.1] for more information on )
<-semismoothness.

As seen in Section 2, the problem (2.1) can be formulated as a special case of (3.1). More generally, we can formulate a certain
class of simulation-constrained optimization problems in an analogous way. Let (U , Ò � Ò

Y
), (W , Ò � Ò

W
), (Z, Ò � Ò

Z
) and (H , Ò � Ò

H
)

be real Banach spaces and let (G, Ò � Ò
G
) be a real Hilbert space. We denote the topological dual spaces associated with H , G, U ,

W , and Z by H
<, G<, U<, W < and Z

<, respectively. To generalize (2.1), we denote the optimization variables by u (state) and z

(control/design), and consider the problem

min
(u,z)ÀUùZ

J (u, z) subject to e(u, z) = 0 and z À Zad, (P)

where J : U ù Z ô R denotes the cost functional, e : U ù Z ô W is the state equation, h : Z ô H is an auxiliary equality
constraint, g : Z ô G is an inequality constraint and the admissible control set is

Zad = {z À Z h(z) = 0 and g(z) À K}. (3.2)

Here, K œ G is a nonempty, closed and convex cone. As before, we assume that the state equation e(u, z) = 0 has a unique solution
u(z) À U for every control z À Zad, which enables us to define the reduced objective function öJ (z) := J (u(z), z) and the reduced
optimization problem

min
zÀZad

öJ (z). (öP)

To construct F for this application, we introduce the Lagrangian functional

L (z, �,�) := öJ (z) + Íh(z), �Î
H ,H< + Íg(z),�Î

G,G<

for multipliers � À H
< and � À G

<. Since G is a Hilbert space, we identify its dual G< with G and thus replace the duality pairing
Íg(z),�Î

G,G< by scalar product (g(z),�)G.
Assuming öJ , h, and g are continuously differentiable, the optimality conditions for (P) are given by

(
z
L (z, �,�) = öJ

®(z) + h
®(z)<� + g

®(z)<� = 0 , (3.3a)

h(z) = 0 , (3.3b)

g(z) À K , � À K
*
, and (g(z),�)G = 0 , (3.3c)

where K* := {x À G  (x, k)
G
f 0, ≈ k À K} denotes the polar cone. As in (2.3), we can write the complementarity condition in (3.3c)

in an equivalent form, which we state in Theorem 3.1. The proof of this result has been provided in Appendix B.
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Theorem 3.1. The complementarity conditions in (3.3c) are equivalent to

F3(z,�) := proj
K* (� + g(z)) * � = 0 , (3.4)

for fixed  > 0, where proj
K* (x) denotes the metric projection of x À G onto the polar cone K*.

In view of Theorem 3.1, the optimality conditions in (3.3) are equivalent to

F (x) =
b

f

f

d

L
z
(z, �,�)
h(z)

F3(z,�)

c

g

g

e

= 0 . (3.5)

Provided that the projection onto the polar cone K
* is semismooth, which is the case in (2.4) (i.e., K = (*ÿ, 0]nineq and K

* =
[0,ÿ)nineq ), and öJ , h, and g are twice continuously differentiable, we can apply a semismooth Newton method to solve (3.5).

Motivated by the inexactness introduced by sketching, we are interested in rigorously handling inexactness in the evaluation
of F and its generalized Jacobians. Returning to the general setting of (3.1), we focus on F : X ô Y that is not differentiable in
the classical sense but is rather )<-semismooth. Let V œ X be an open set and consider a set-valued map )

<
F : V – L(X, Y ) with

nonempty images )<F (x) ë Á for all x À V . Here, )<F (x) consists of generalized Jacobians of F at x and L(X, Y ) denotes the space
of bounded linear operators that map X into Y . We say that F is )<F -semismooth (cf. [25, Def. 3.1]) at x À V if F is continuous
near x and

sup
MÀ)<F (x+s)

ÒF (x + s) * F (x) *MsÒ
Y
= o(ÒsÒ

X
) as ÒsÒ

X
ô 0.

The kth semismooth Newton step s
k
for (3.1) is obtained by solving

M
k
s
k = *F (xk),

where M
k À )

<
F (xk). Now, for all k, let

ûM
k := M

k + �
k
, õF

k
(xk) := F (xk) + ✏

k
,

where �k and ✏
k denote the errors in the generalized Jacobian and the function value, respectively. Using this notation, we introduce

the inexact semismooth Newton’s method for solving (3.1) in Algorithm 1.

Algorithm 1 Inexact Semismooth Newton’s Method
Require: The initial guess x0 À X

1: for k = 0, 1,… do
2: Choose ûM

k À L(X, Y ) boundedly invertible.
3: Obtain s

k À X by solving ûM
k
s
k = * õF

k
(xk).

4: Set xk+1 = x
k + s

k.
5: If xk+1 = x

k, STOP with x
? = x

k+1.
6: end for

Algorithm 1 is an inexact version of the traditional semismooth Newton method. Consequently, the convergence proof is closely
related to known results in the literature, see for instance [25, Sec. 3.2.4]. We emphasize that both Newton and quasi-Newton
methods (such as BFGS) are special cases of the semismooth Newton’s method, hence a convergence result of the inexact semismooth
Newton’s method, Algorithm 2, can also be applied to show convergence of these methods.

A few comments are in order regarding Algorithm 1. First, the stopping criterion in Step 5 ensures local convergence. One could
also consider a more traditional stopping criterion based on õF (xk) = 0 and still establish convergence, see for instance [25, Rem. 3.11
and Th. 3.15]. Secondly, in [25, Sec. 3.2.4.], a smoothing step is inserted after Step 3 to weaken the invertibility condition and to
account for appropriate function spaces in certain cases. For simplicity of presentation, we have omitted this step, but the entire
discussion below works in this case after minor modification.

Our proof below has been adapted from [25, Sec. 3.2.4], which examines inexactness in the generalized derivative (�k). Here,
we additionally allow an error ✏k in the function F . This has further consequences as stated in Assumption 3.2(c) below.

Assumption 3.2. We require the following conditions to hold.

(a) For all k, the mapping M
k À L(X, Y ) is continuous with bounded inverses, and there exists a constant C

M*1 > 0, independent
of k, such that

Ò(Mk)*1Ò
L(X,Y ) f C

M*1 .

(b) There exists Mk À )
<
F (xk), which fulfills the requirements from (a), such that for �k := ûM

k *M
k we have

Ò�
k
s
k
Ò

Y
= o(ÒskÒ

X
) as Òs

k
Ò

X
ô 0.



Finite Elements in Analysis & Design 228 (2024) 104052

7

M. Alshehri et al.

(c) The residual approximation õF
k
(xk) with ✏

k := õF
k
(xk) * F (xk) satisfies

Ò✏
k
Ò

Y
= o(Ò õF

k
(xk)Ò

Y
) as Ò

õF
k
(xk)Ò

Y
ô 0.

Remark 3.3. We note that condition (c) in Assumption 3.2 is stronger than what is required by inexact trust-region methods
[27,28]. In contrast, trust-region methods enforce

Ò✏
k
Ò

Y
= O(Ò õF

k
(xk)Ò

Y
).

On the other hand, condition (b) in Assumption 3.2 is closely related to the Dennis-Moré condition [29,30], which is required to
obtain the superlinear convergence rate.

Under Assumption 3.2, we have the following convergence result; see also [25, Th. 3.18].

Theorem 3.4. Let Assumption 3.2 hold, F : V ô Y , where V œ X is open, and let the generalized Jacobian set-valued map
)
<
F : V – L(X, Y ) have nonempty images. Let Ñx À V solve (3.1) and F be Lipschitz continuous near Ñx. If F is )<F -semismooth at

Ñx, then there exists � > 0, sufficiently small, such that for all x0 À ÑX + �B
X
, Algorithm 1 either:

(i) Terminates with x
? = x

k = Ñx, or
(ii) Generates a sequence {xk} œ V that converges q-superlinearly to Ñx in X.

Proof. The proof of Theorem 3.4 is related to the proof of [25, Th. 3.18]. The main difference is the introduction of the error term
✏
k and the omission of the smoothing step. We provide details for completeness.
To prove this result, we first prove a bound on the norm of sk. The triangle inequality, Assumption 3.2(a) and ûM

k
s
k = * õF

k
(xk)

ensure that

Òs
k
Ò

X
f Ò(Mk)*1Ò

L(X,Y )

⇠

Ò�
k
s
k
Ò

Y
+ Ò

ûM
k
s
k
Ò

Y

⇡

f C
M*1

�

Ò�
k
s
k
Ò

Y
+ Ò✏

k
Ò

Y
+ ÒF (xk)Ò

Y

�

. (3.6)

By Assumption 3.2(b), we can choose � > 0 sufficiently small so that

C
M*1Ò�

k
s
k
Ò

Y
f

1
2Òs

k
Ò

X
.

To bound the second term on the right-hand side of (3.6), Assumption 3.2(c) implies the existence of a nonnegative sequence {⌘k}
with ⌘

k ô 0 such that

Ò✏
k
Ò

Y
f ⌘

k
Ò

õF
k
(xk)Ò

Y
.

Consequently, for any fixed ⌘ À (0, 1), there exists K
⌘
À N such that ⌘k f ⌘ for all k g K

⌘
. This and Lipschitz continuity of F near Ñx

ensure that

Ò✏
k
Ò

Y
f ⌘

k
Ò

õF
k
(xk) * F (xk)Ò

Y
+ ⌘

k
ÒF (xk) * F ( Ñx)Ò

Y
f ⌘Ò✏

k
Ò

Y
+ ⌘

k
LÒx

k * ÑxÒ
X

implying

Ò✏
k
Ò

Y
f ⌘

k L

1 * ⌘
Òx

k * ÑxÒ
X
,

where L > 0 is the Lipschitz modulus of F around Ñx, i.e.

ÒF (xk)Ò
Y
= ÒF (xk) * F ( Ñx)Ò

Y
f LÒx

k * ÑxÒ
X
.

Here, we shrink � as needed to ensure Lipschitz continuity. Combining these estimates, we have that ÒskÒ
X
satisfies

Òs
k
Ò

X
f 2LC

M*1

0

⌘
k

1 * ⌘
+ 1

1

Òx
k * ÑxÒ

X
f 2LC

M*1

0

⌘

1 * ⌘
+ 1

1

Òx
k * ÑxÒ

X
≈ k g K

⌘
.

Now, we bound the norm of xk+1 * Ñx. To this end, we have that

M
k(xk+1 * Ñx) = *�k

s
k +M

k(xk * Ñx) * ✏
k * F (xk) + F ( Ñx).

Therefore, we can bound the norm of xk+1 * Ñx as

Òx
k+1 * ÑxÒ

X
f C

M*1
�

Ò�
k
s
k
Ò

Y
+ ÒF (xk) * F ( Ñx) *M

k(xk * Ñx)Ò
Y
+ Ò✏

k
Ò

Y

�

.

By the preceding arguments for bounding Òs
k
Ò

X
, we see that the first term is bounded as above and the third is o(Òxk * ÑxÒ

X
). In

addition, the second term in the above bound is o(Òxk * ÑxÒ
X
) since F is )<F -semismooth at Ñx. The desired result then follows as in

the proof of Theorem 3.13 (a) of [25]. ∏

Remark 3.5. In practice, Algorithm 1 requires an extra step to determine a stepsize tk so that xk+1 = x
k + t

k
s
k using, e.g., Armijo’s

rule [31, Eq. (3.4)]. As long as the stepsize t
k is admissible (to avoid steps that are too small), see, e.g., [32, Sec. 8.2], and t

k
f 1,

the convergence result still holds true.
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4. Application of Algorithm 1 to Simulation-Constrained Optimization

In this section, we consider (3.5) where approximations to F and its generalized Jacobians arise from approximating the state,
adjoint and the other variables that arise while applying the Hessian of öJ (z) to a vector. In this setting, x = (z, �,�), X = Z ùH

< ùG

and Y = Z
< ùH ùG. As in Section 2.2, we approximate F by replacing the state u with an approximation õu in the derivative öJ

®(z),
which we denote by öJ

®
r
(z). Similarly, we approximate the generalized Jacobians of F by replacing the adjoint and other auxiliary

variables in the application of the Hessian (2 öJ (z), which we denote by öJ
®®
r
(z). Consequently, the error committed by õF (x) is equal

to the error in the derivative approximation öJ
®
r
(z) (cf. (2.7)) and similarly the error in the generalized Jacobian is equal to the error

in the Hessian approximation öJ
®®
r
(z).

4.1. Approximation errors

We begin by deriving the expression of öJ using the adjoint approach [26, Sec. 1.6.2], i.e.,

öJ
®(z) = e

z
(u(z), z)<p(z) + J

z
(u(z), z) À Z

<
, (4.1a)

where p(z) À W
< solves the adjoint equation

0 = e
u
(u(z), z)<p(z) + J

u
(u(z), z). (4.1b)

We consider approximations of öJ ®(z) arising when we replace the state u(z) in (4.1) with an approximation õu. We denote the resulting
inexact derivative by öJ

®
r
(z). In the context of sketching, õu is a low-rank approximation of u(z), cf. [21, Alg. 4.2].

As seen in [21, Sec. 4.3], we can obtain residual-based error indicators for öJ
®
r
(z) under additional regularity assumptions (cf. [21,

As. 1]). We include these assumptions as Assumption 4.1, which are valid even in our more general setting. In addition, we include
assumptions that we will use to derive error estimates for the inexact Hessian applications.

Assumption 4.1. Let the following hold for problem (öP):

(a) Let Z0 œ Zad be open and bounded and let an open and bounded subset U0 œ U exist, such that {u À U « z À Z0 s.t. e(u, z) =
0} ” U0. Additionally, let an open and bounded subset W <

0 œ W
< exist, such that {p À W

<
« z À Z0 s.t. eu(u(z), z)<p =

*J
u
(u(z), z)} ” W

<
0 .

(b) There exist 0 < � f � < ÿ, such that the singular values2 of e
u
(u, z) fulfill � f �min(eu(u, z)) f �max(eu(u, z)) f � for all u À U0

and z À Z0.
(c) The mappings u ≠ e

u
(u, z), u ≠ e

z
(u, z), u ≠ J

u
(u, z) and u ≠ J

z
(u, z) are Lipschitz continuous on U0 for all z À Z0 and their

Lipschitz constants are independent of z.

As shown in [21, Sec. 5], Assumption 4.1 is fulfilled for discretized optimal control problems with parabolic PDE constraints.
We will provide a more detailed discussion on this in Section 5, when applying the sketching method to an example problem with
initial measure-valued control.

Next, we state some of the error estimates from [21, Prop. 4.1] without a proof. We use the notation a ø b to indicate that the
inequality a f cb holds up to a constant c > 0.

Lemma 4.2. Let Z0 be open and bounded, Assumption 4.1 hold, and u(z) À U0 be the state associated with z. For all u À U0, all z À Z0,
and all p À W

< the following inequalities hold

�Òu * u(z)Ò
U
f Òe(u, z)Ò

W
f �Òu * u(z)Ò

U
, (4.2a)

Òp * p(z)Ò
W < ø Òe(u, z)Ò

W
+ Òe

u
(u, z)<p + J

u
(u, z)Ò

U< , (4.2b)

Òe
z
(u, z)<p + J

z
(u, z) * öJ

®(z)Ò
Z< ø Òe(u, z)Ò

W
+ Òe

u
(u, z)<p + J

u
(u, z)Ò

U< . (4.2c)

Remark 4.3.

(a) The constants in Lemma 4.2 solely depend on the constants from Assumption 4.1.
(b) From (4.2a) and (4.2c), it follows that

Ò

öJ
®
r
(z) * öJ

®(z)Ò
Z< = Òe

z
(õu, z)<õp + J

z
(õu, z) * öJ

®(z)Ò
Z< ø Òe(õu, z)Ò

W
f �Òõu * u(z)Ò

U
,

where we have used that e
u
(õu, z)<õp + J

u
(õu, z) = 0.

Additionally, if öJ is strongly convex, we have an error estimate for the control. The proof of this result is identical to [21, Th. 4.4]
and is thus omitted.

2 For the concept of singular values in Banach spaces, see e.g. [33].
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Theorem 4.4. Let Assumption 4.1 hold and öJ be strongly convex on Z0 with constant ↵ > 0. For given z À Z0, let u(z) À U0 be the
associated state and let õu be an approximation of u(z). Furthermore, let the adjoint state õp À W

<
0 associated with õu solve

e
u
(õu, z)<õp + J

u
(õu, z) = 0.

If Ñz is the solution to (öP), then it holds that

Òz * ÑzÒ
Z
ø Òe(õu, z)Ò

W
+ Ò

öJ
®
r
(z)Ò

Z< .

The estimate in Theorem 4.4 is computable, since the quantities Òe(õu, z)Ò
W
and Ò

öJ
®
r
(z)Ò

Z< are computable. In the case that the
inexactness is due to sketching with target rank r, we recover the result from [21, Th. 4.4].

Next, we derive an expression of the second-order derivatives and study the error induced by the approximation. We proceed as
in [26, Sec. 1.6.5] using the Lagrangian approach. Define the Lagrangian L : U ùZ ùW

< ô R as

L(u, z, p) := J (u, z) + Íp, e(u, z)Î
W < ,W . (4.3)

Notice that for all p À W
<, we have the identify

öJ (z) = J (u(z), z) + Íp, e(u(z), z)
≠́Ø≠̈

=0

Î

W < ,W = L(u(z), z, p).

Then for h1 À Z, we obtain that

Í

öJ
®(z),h1ÎZ< ,Z = Íu

®(z)<L
u
(u(z), z, p) + L

z
(u(z), z, p),h1ÎZ< ,Z .

Differentiating again in direction h2 À Z delivers

Í

öJ
®®(z)h2,h1ÎZ< ,Z = ÍL

u
(u(z), z, p), u®®(z)(h1,h2)ÎU< ,U + ÍL

uu
(u(z), z, p)u®(z)h2, u®(z)h1ÎU< ,U

+ ÍL
uz
(u(z), z, p)h2, u®(z)h1ÎU< ,U + ÍL

zu
(u(z), z, p)u®(z)h2,h1ÎZ< ,Z

+ ÍL
zz
(u(z), z, p)h2,h1ÎZ< ,Z .

It is easy to verify that for the adjoint state p = p(z) it holds L
u
(u(z), z, p(z)) = 0. Consequently, the first summand vanishes.

Furthermore, we have u®(z) = *e
u
(u(z), z)*1e

z
(u(z), z), which can be derived by implicitly differentiating e(u(z), z) = 0 with respect to

z. In view of minimizing the necessary storage, we refrain from storing the full Hessian, and examine how to apply the Hessian to
an arbitrary vector v À Z. Altogether, we arrive at

öJ
®®(z)v = e

z
(u(z), z)<e

u
(u(z), z)*<L

uu
(u(z), z, p(z))e

u
(u(z), z)*1e

z
(u(z), z)v

* e
z
(u(z), z)<e

u
(u(z), z)*<L

uz
(u(z), z, p(z))v

* L
zu
(u(z), z, p(z))e

u
(u(z), z)*1e

z
(u(z), z)v + L

zz
(u(z), z, p(z))v.

In abbreviated notation, this is equivalent to

öJ
®®(z)v = *e<

z

�

e
*<
u

�

L
uu

�

*e*1
u
e
z
v
�

+ L
uz
v
��

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

=:q(z;v)

+L
zu

�

*e*1
u
e
z
v
�

≠́≠≠Ø≠≠≠̈

=:w(z;v)

+L
zz
v, (4.4)

which motivates [34, Alg. 2].

Remark 4.5. In the context of the dynamic optimization problem (1.1), we compress the adjoint variable p À W
< and the state

sensitivity variable w À U to evaluate öJ
®®(z)v. However, for simplicity of notation, we only derive the error estimates for the

approximate state õu. Further compression errors related to the other variables can be introduced and the proofs can be directly
extended.

Next, we estimate the approximation error in the application of Hessian under the following additional assumptions.

Assumption 4.6. Let the second derivatives of the Lagrangian (4.3), i.e., L
uu
(u, z, p), L

uz
(u, z, p), and L

zz
(u, z, p), be Lipschitz

continuous on U0 ùZ0 ùW
<
0 with respect to the first and third arguments, and suppose that the Lipschitz constants are independent

of the second argument. Here, U0, Z0 and W
<
0 are defined in Assumption 4.1.

We will see in Section 5 that Assumption 4.6 holds for the discretized optimal control problems with quadratic objective function
and linear PDE constraint. Next, we discuss the approximation errors that occur in the application of the Hessian due to the inexact
state. This will enable us to analyze the inexact second-order methods introduced in the subsequent sections.

Theorem 4.7. Let Assumptions 4.1 and 4.6 hold, and let u(z) À U0 be the state associated with control z À Z0. For all z À Z0, v À Z,
u À U0, w À U , and p, q À W

<
0 the following inequalities hold:

Òw *w(z; v)Ò
U
ø (1 + ÒvÒ

Z
)Òe(u, z)Ò

W
+ Òe

u
(u, z)w + e

z
(u, z)vÒ

W
, (4.5a)

Òq * q(z; v)Ò
W < ø (1 + ÒvÒ

Z
)Òe(u, z)Ò

W
+ (1 + ÒvÒ

Z
)Òe

u
(u, z)<p + J

u
(u, z)Ò

U<
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+ Òe
u
(u, z)w + e

z
(u, z)vÒ

W

+ Òe
u
(u, z)<q * L

uu
(u, z, p)w * L

uz
(u, z, p)vÒ

U< , (4.5b)
fl * e

z
(u, z)<q + L

zu
(u, z, p)w + L

zz
(u, z, p)v * ÇJ

®®(z)vfl
Z<

ø (1 + ÒvÒ
Z
)Òe(u, z)Ò

W
+ (1 + ÒvÒ

Z
)Òe

u
(u, z)<p + J

u
(u, z)Ò

U<

+ Òe
u
(u, z)w + e

z
(u, z)vÒ

W

+ Òe
u
(u, z)<q * L

uu
(u, z, p)w * L

uz
(u, z, p)vÒ

U< . (4.5c)

Remark 4.8. All constants in Theorem 4.7 solely depend on the constants in Assumptions 4.1 and 4.6.

The proof of Theorem 4.7 is straight forward, see Appendix A. For related arguments, with different notations, we refer to [35,
Sec. 3]. These results can be directly applied to establish estimates for the approximation of Hessian application from (4.4) as we
see next.

Corollary 4.9. Under the assumptions of Theorem 4.7, the following estimates hold

Ò

öJ
®®
r
(z)v * öJ

®®(z)vÒ
Z< = Ò * e

z
(õu, z)<õq + L

zu
(õu, z, õp) õw + L

zz
(õu, z, õp)v * öJ

®®(z)vÒ
Z<

ø (1 + ÒvÒ)Òe(õu, z)Ò
W

ø (1 + ÒvÒ)Òõu * u(z)Ò
U
.

Proof. This is a consequence of (4.5c) and the facts that 0 = e
u
(õu, z)<õp + J

u
(õu, z) = e

u
(õu, z) õw + e

z
(õu, z)v = e

u
(õu, z)<õq * L

uu
(õu, z, õp) õw *

L
uz
(õu, z, õp)v. Additionally, from (4.2a) we have that Òe(õu, z)Ò

W
f �Òõu * u(z)Ò

U
. ∏

Remark 4.10. Corollary 4.9 implies that the error in the Hessian application is controlled by the state compression error. When
the adjoint variable p and the state sensitivity variable w are also compressed, the respective error terms in (4.5c) will be nonzero,
in contrast to Corollary 4.9. However, these errors can be easily accounted for in the final estimate.

4.2. Adaptive inexact semismooth Newton’s method

We are now in position to verify the critical conditions in Assumption 3.2(b) and (c). By adaptively reducing the approximation
error (e.g., due to sketching), the resulting Algorithm 2 is shown to be provably convergent. In contrast to Algorithm 1, we include
the computation of a step length t

k in Algorithm 2 as discussed in Remark 3.5.

Algorithm 2 Adaptive Inexact Semismooth Newton’s Method
Require: The initial guess x0 = (z0, �0,�0) À Z ùH

< ù G, and � > 0.
1: for k = 0, 1,… do
2: Solve the state equation for u(zk) and replace it with an approximation (e.g., via sketching) to obtain õu

k, simultaneously
compute the error Òe(õuk, zk)Ò

Y
.

3: Solve the adjoint equation with input õuk for õpk, simultaneously compute õF
k
(xk).

4: if Òe(õuk, zk)Ò
W

f Ò

õF
k
(xk)Ò1+�

Y
is not fulfilled then

5: Adjust the approximation to decrease the residual Òe(õuk, zk)Ò
W
, and go to 2.

6: end if
7: Choose ûM

k as an approximation to M
k À )

<
F (xk) boundedly invertible in L(X, Y ).

8: Obtain s
k À X by solving ûM

k
s
k = * õF

k
(xk).

9: Determine stepsize t
k.

10: Set xk+1 = x
k + t

k
s
k.

11: end for

The adaptive inexact semismooth Newton’s method, Algorithm 2, ensures that

Òe(õuk, zk)Ò
W

f Ò

õF
k
(xk)Ò1+�

Y
, � > 0, (4.6)

holds at each iteration k by adjusting the state approximation õu
k to decrease the compression error. We make the following

assumption to guarantee that it is possible to sufficiently decrease the approximation error.

Assumption 4.11. The accuracy of õuk of u(zk) can be increased until the error, Òu(zk) * õu
k
Ò

U
, vanishes.

A motivation for (4.6) is provided in the result below. In the context of dynamic optimization, the computation of the residual
Òe(õuk, zk)Ò

W
in Algorithm 2 is performed sequentially, as described in Algorithm 4. Hence, the adaptive condition (4.6) can be

verified within the realm of efficient storage.
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Theorem 4.12. Consider problem (P). Let F be given as in (3.5) and let Ñx = ( Ñz, Ñ�, Ñ�) À ZadùH
< ùG solve (3.1). Let Assumptions 3.2(a),

4.1, 4.6, and 4.11 hold, and additionally let there be a constant C
M
, such that

Ò

ûM
k
ÒL (X,Y ) f C

M
≈k. (4.7)

Then, Algorithm 2 either:

(i) Terminates with x
< = x

k = Ñx, or
(ii) Generates a sequence {xk} that converges q-superlinearly to Ñx in X.

Proof. This result follows from Theorem 3.4 if we can show that Assumption 3.2(b) and (c) are fulfilled, i.e. Ò�k
s
k
Ò

Y
= o(ÒskÒ

X
)

and Ò✏
k
Ò

Y
= o(Ò õF (xk)Ò

Y
) as Òs

k
Ò

X
ô 0 and Ò

õF (xk)Ò
Y

ô 0, where �
k = ûM

k * M
k and ✏

k = õF
k
(xk) * F (xk). By Remark 4.3 and

Corollary 4.9 with v = s
k, we have that

Ò✏
k
Ò

Y
ø Òe(õuk, zk)Ò

W
and Ò�

k
s
k
Ò

Y
ø (1 + Òs

k
Ò

X
)Òe(õuk, zk)Ò

W
.

Furthermore, from the Newton step and (4.7) we have

Ò

õF
k
(xk)Ò

Y
= Ò

ûM
k
s
k
Ò

Y
f C

M
Òs

k
Ò

X
,

and we can directly deduce Ò

õF
k
(xk)Ò1+�

Y
ø Òs

k
Ò

1+�
X

. Once (4.6) holds true, we have

Ò✏
k
Ò

Y
ø Ò

õF
k
(xk)Ò1+�

Y
, and Ò�

k
s
k
Ò

Y
ø (1 + Òs

k
Ò

X
)ÒskÒ1+�

X
,

with constants independent of k. Finally, with � > 0, as Ò õF
k
(xk)Ò

Y
ô 0 and Òs

k
Ò

X
ô 0, it will hold Ò✏

k
ÒY

Ò

õFk(xk)ÒY
ô 0 and Ò�

k
s
k
ÒY

ÒskÒX

ô 0,
i.e. Assumption 3.2(b) and (c) are fulfilled. This completes the proof. ∏

Remark 4.13 (Krylov Methods and Stepsizes).

(a) To ameliorate the cost of storing the full matrix ûM
k, we can employ Krylov methods (e.g., GMRES [36]) to solve the

semismooth Newton step (Step 8 in Algorithm 2), which only require the action of ûMk onto a vector. Such methods introduce
an additional source of inexactness in Algorithm 2, which for every k, we can write as

ûM
k
s
k = *( õF

k
(xk) + ✏

k

Krylov).

Under the additional assumption that this error, ✏kKrylov is o(Ò õFk
(xk)Ò

Y
) as Ò õF

k
(xk)Ò

Y
ô 0, we maintain the convergence result,

Theorem 3.4. This adaptivity can be ensured by setting the desired tolerance of the Krylov space method to be less or equal
Ò

õF
k
(xk)Ò1+�

Y
.

(b) Numerically, we notice that for small stepsize tk, adjusting the compression parameters to decrease the compression error can
accelerate convergence. However, such an adjustment depends on the available storage.

(c) Notice that for dynamic optimization problems, and if the inexactness arise from randomized sketching, one generates the
sketch of the state in Step 2 of Algorithm 2 using Algorithm 3 from Appendix. The reconstruction of state (needed for adjoint
solves in Step 3) and calculation of sketching error (Step 4–5) is done using Algorithm 4.

5. Example problem: Initial measure control

Let ⌦ œ Rd
, 1 f d f 3 be an open, connected and bounded set with Lipschitz boundary � , and let T > 0 denote the final time.

We denote the space–time domain by Q := ⌦ù (0, T ) and assume that ud À L
2(Q) is given. In addition, denote byM(⌦) the space of

real and regular Borel measures, and recall that M(⌦) is the dual space of C(⌦), the space of continuous functions, cf. [37, p. 130].
We endow M(⌦) with the total variation norm

ÒzÒ
M(⌦) = sup

Ò�Ò
C(⌦)f1

 
⌦

� dz.

To illustrate the benefits of sketching, we consider an optimal control problem with bounded initial measure control. This problem
is inspired by [38, Rem. 2.11] and in its reduced form, it is given by

min
z

<

ÇJ (z) := 1
2  

Q

�(t0 ,T )ù⌦u(z) * ud
2
=

subject to z À Z
↵
:= {z À M(⌦)  ÒzÒ

M(⌦) f ↵}
(P

↵
)

with ↵ > 0 and t0 > 0, where the state u = u(z), in a very-weak sense [38], fulfills

)
t
u * �u = 0 in Q := ⌦ ù (0, T ), (5.1a)

)
⌘
u = 0 on ⌃ := � ù (0, T ), (5.1b)

u(0) = z in ⌦. (5.1c)
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The state Eq. (5.1) admits a unique solution u À L
r(0, T ;W 1,p

0 (⌦))„C((0, T ];L2(⌦)) for all p, r À [1, 2) that fulfill (2_r) + (d_p) > d +1,
see [38, Th. 2.2]. Also, following [38, Th. 2.4], we see that (P

↵
) has a unique solution.

The full state, at all time steps, is needed to evaluate the adjoint variable p at t = 0, which enters in the optimality conditions.
Owing to the structure of the problem, sketching will be highly beneficial. We follow [38, Th. 2.5 &Rem. 2.11] to derive the
optimality conditions first.

Lemma 5.1. Let u
d

À L
q(0, T ;L2(⌦)) with q À [1,ÿ) and let Ñz solve (P

↵
) with associated state Ñu. Then the adjoint state Ñp À

L
2(0, T ;H1(⌦)) „ C([0, T ) ù⌦), in a weak sense [38] solves

*)
t
Ñp * � Ñp = ( Ñu * u

d
)�(t0 ,T )ù⌦ in Q, (5.2a)

)
⌘
Ñp = 0 on ⌃, (5.2b)

Ñp(T ) = 0 in ⌦. (5.2c)

If î
Q
�(t0 ,T )ù⌦( Ñu * u

d
) dx dt ë 0, then the following conditions hold:

Ò ÑzÒ
M(⌦) = ↵,

supp( Ñz+) œ {x À ⌦  Ñp(x, 0) = *Ò Ñp(0)Ò
C(⌦)},

supp( Ñz*) œ {x À ⌦  Ñp(x, 0) = +Ò Ñp(0)Ò
C(⌦)},

where Ñz = Ñz
+ * Ñz

* is the Jordan decomposition of Ñz. Conversely, if Ñz À Z
↵
fulfills the above properties, then Ñz solves (P

↵
).

Proof. Since t0 > 0, the proof follows along the arguments in [38, Theorem 2.5].

Remark 5.2. The assumption î
Q
�(t0 ,T )ù⌦( Ñu * u

d
) dx dt ë 0 is meaningful, since it simply means that the desired state u

d
À L

2(Q) is
not in the reachable set R := {u(z)  ÒzÒM f ↵}.

To discretize (5.1), we choose the discrete state and test space to be piecewise linear and continuous in space, and piecewise
constant in time, which leads to an implicit Euler time stepping scheme for the parabolic PDE. We employ a variational discretization
space for the control, i.e., the control is not discretized. Variational discretization was introduced in [39] and has been used in [40]
for a related problem with initial measure control, and in [41], which considers a measure norm regularization term, instead of the
bound on the measure control. Following [40, Th. 6], the resulting problem can be shown to have at least one solution, and the
optimality conditions can be derived in the same way as in the continuous setting (cf. [40, Th. 11]). In particular, it holds

supp( Ñz+) œ {x À ⌦  Ñp(x, 0) = *Ò Ñp(0)Ò
C(⌦)} (5.3a)

supp( Ñz*) œ {x À ⌦  Ñp(x, 0) = +Ò Ñp(0)Ò
C(⌦)}, (5.3b)

where Ñp is the discrete adjoint state associated with the solution Ñz. Since Ñp(0) is a piecewise linear function, it will attain minima
and maxima at grid points in the generic case, i.e., we assume that Ñp(0) is not constant on spatial elements. We immediately deduce

supp( Ñz) œ {x
j
}ns
j=1,

with x
j
being the grid points. Consequently, the optimal control has the following implicit discrete structure

Ñz À Z
h
:= span{�

xj
 1 f j f n

s
}.

This is typical of the variational discretization—a natural discretization for the control space is induced by the chosen test space
discretization. Furthermore, if we restrict our control space to Z

↵
„ Z

h
the resulting finite-dimensional problem admits a unique

solution.
In order to implement the problem, we need discrete versions of the state and adjoint equations. Let M and A be the spatial

mass and stiffness matrices, respectively, and ⌧ the equidistant time step size in (0, T ). We define the following space–time matrices

M :=
`

r

r

p

⌧M

7
⌧M

a

s

s

q

, S :=

`

r

r

r

r

p

M + ⌧A

*M 7
7 7

*M M + ⌧A

a

s

s

s

s

q

.

The state equation, which determines u(z), can be written as

S u =
�

z5 0
�Ò

, (5.4)

where the right-hand side does not contain the spatial mass matrix M, since evaluating piecewise linear functions against dirac
measures delivers an identity matrix. The associated adjoint equation reads

S Ò
p = M (u

d
* u).
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Notice that in the discrete setting the state is a vector u À Rnsnt . However, to apply the sketching technique, we reshape the
vector u into the state matrix U À Rnsùnt , so that every column represents a time instance, cf. Section 2. Recall that we never form
U.

We are now ready to state the discrete optimization problem

min
zÀZh

$

ÇJ
�
(z) := 1

2 (u(z) * ud)ÒM (u(z) * ud)
%

subject to
ns
…

i=1
z

i
 * ↵ f 0.

(P
↵,�
)

Here, � = (h, ⌧) represents the space–time discretization. Note that Assumption 4.1 holds for the discretized problem (P
↵,�
) since

the objective function is quadratic and the discretized state equation is linear. To tackle the non-differentiable absolute value, we
consider a decomposition of the control, namely z = z

+ * z
* with z

+
, z

*
g 0. Furthermore, we enforce z

+
i
z
*
i
= 0 for all i = 1,… , n

s

by adding a penalty term to the target functional. Let us remark that the introduction of this constraint is essential to preserve
uniqueness of solutions. For example, if

≥ns

i=1 zi* ↵ < 0, there are infinitely many, different decompositions z
i
= z

+
i
* z

*
i
, such that

≥ns

i=1(z
+
i
+ z

*
i
) * ↵ f 0 is still fulfilled. We can then write the problem as follows

min
z+ ,z*ÀZh

$

ÇJ
�,�

(z+, z*) = 1
2 (u(z

+ * z
*) * ud)ÒM (u(z+ * z

*) * ud) + �(z+)Òz*
%

subject to
ns
…

i=1
(z+

i
+ z

*
i
) * ↵ f 0, *z+

i
f 0 ≈ i, and * z

*
i
f 0 ≈ i.

(P
↵,�,�

)

Here � > 0 is a penalty parameter, which in practice is updated using path following (cf. [25, Ch. 8]). It can be proven that (P
↵,�,�

)
is an equivalent reformulation of (P

↵,�
), if the penalty parameter � is large enough, see [42, Th. 4.17].

Next, we set up the Lagrangian functional with multipliers �1 À R and �2,�3 À Rns

L (z+, z*,�1,�2,�3) :=
1
2 (u(z

+ * z
*) * ud)ÒM (u(z+ * z

*) * ud) + �(z+)Òz*

+ �1

⇠

ns
…

i=1
(z+

i
+ z

*
i
) * ↵

⇡

*
ns
…

i=1
�2,iz

+
i
*

ns
…

i=1
�3,iz

*
i
.

Now, following [40, Sect. 4], we form the KKT system and reformulate the complementarity conditions equivalently into equations
with some  > 0. This yields the optimality system

F (z+, z*,�1,�2,�3) =

`

r

r

r

r

r

p

)z+L (z+, z*,�1,�2,�3)
)z*L (z+, z*,�1,�2,�3)

max
�

0,�1 + 
�

≥ns

i=1(z
+
i
+ z

*
i
) * ↵

��

* �1
max{0,�2 * z

+} * �2
max{0,�3 * z

*} * �3

a

s

s

s

s

s

q

= 0, (5.5)

where

)z+L (z+, z*,�1,�2,�3) = *p(z+ * z
*)

t=0 + �z
* +

�

�1 … �1
�Ò * �2,

)z*L (z+, z*,�1,�2,�3) = p(z+ * z
*)

t=0 + �z
+ +

�

�1 … �1
�Ò * �3.

Let us define the following sets

A1 :=
T

�1 + 

H

ns
…

i=1
(z+

i
+ z

*
i
) * ↵

I

g 0
U

, I1 := R ‰A1,

A2 :=
�

�2 * z
+
g 0

�

, I2 := ⌦ ‰A2,

A3 :=
�

�3 * z
*
g 0

�

, I3 := ⌦ ‰A3.

For the generalized Jacobian of F , we select )
x
(max{0, g(x)}) = )

x
g(x) if g(x) = 0, so that

DF =

`

r

r

r

r

r

p

*)z+p(z+ * z
*)

t=0 *)z*p(z+ * z
*)

t=0 + �I 1
ns

*I 0
)z+p(z+ * z

*)
t=0 + �I )z*p(z+ * z

*)
t=0 1

ns
0 *I

�

 … 
�

A1

�

 … 
�

A1
*1I1 0 0

*IA2 0 0 *II2 0
0 *IA3 0 0 *II3

a

s

s

s

s

s

q

,

where all identity matrices I are of size n
s
ù n

s
and matrices indexed with sets are only non-zero on those sets, e.g., 1I1=1 if A1 = Á.

We solve the generalized Newton system using GMRES without preconditioning. We use the backtracking linesearch: tk = 0.5j
where j is the smallest nonnegative integer for which

ÒF (zk + t
k
s
k)Ò2 f (1 * 10*4tk)ÒF (zk)Ò2 (5.6)

holds. To avoid numerical issues, we enforce that j f 10. As we will see below, the performance of sketched methods is almost the
same as without sketching. We set the maximum number of iterations to 300. The relative stopping tolerance for GMRES is 10*6.
We terminate our semismooth Newton method if ÒF (xk)Ò

Y
f 10*8.
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Fig. 1. Generation of the desired state ud. From left to right: True solution ztrue = �0.5,0.5, the associated state u(ztrue) computed using Fourier modes evaluated
at t = 0.1 and t = T = 2. Last panel shows ud at t = 0.1, which is generated by adding normally distributed random noise to u(ztrue).

Fig. 2. The two panels display the ‘sketch error’ Òu* õuÒ2, the error indicator Òc(õu, z)Ò2, and the tail energy ⌧
r+1(u) for random input (z,�1 ,�2 ,�3) (left) and the

optimal solution (Ñz, Ñ�1 , Ñ�2 , Ñ�3) (right) with respect to rank r. These results corroborate the error bound (2.6). To account for randomness, the average over 10
realizations is displayed. Recall that k = 2r + 1 is the rank of the sketch õu, therefore the sketch error curve is below the tail energy.

5.1. Nonnegative measures

An interesting special case arises, if only nonnegative measures are considered in problem (P
↵
), i.e., z À Z

+
↵

:= {z À
M

+(⌦)  ÒzÒ
M(⌦) f ↵}. Here, M

+(⌦) is the subspace of M(⌦) that contains all nonnegative measures. This problem has
been analyzed in [38, Sect. 3] and its variational discretization can be found in [40]. We therefore briefly discuss how the
variational discrete problem (P

↵,�,�
) simplifies when nonnegative measure controls are considered. For more details, we refer to

the aforementioned references. First of all, we do not need to decompose the control z into positive and negative parts since z = z
+.

Hence, no penalization is needed, i.e., � = 0. Furthermore, it holds that z
i
 = z

+
i
for all i = 1,… , n

s
, and we only have one

nonnegativity constraint, i.e. *z+
i
f 0 for all i. Consequently, the optimality system reduces to the first, third and fourth equations

in F , cf. (5.5). That is, A3 is not needed.

5.2. Numerical results

Consider the domain ⌦ = (0, 1)2 and the final time T = 2.

Nonnegative measures
We let n

s
= 642 (spatial nodes) and n

t
= 501 (time steps), so that n

s
n
t
= 2, 052, 096. Furthermore, we fix ↵ = 0.1. We generate

a desired state ud by solving the state equation with the initial measure control ztrue = �(0.5,0.5) and adding normally distributed
random noise (mean 0 and standard deviation 0.1). This data is depicted in Fig. 1.

Fig. 2 shows the sketch error Òu * õuÒ2, the error indicator Òc(õu, z)Ò2 and the tail energy of the full state u as functions of the
sketching target rank r for random inputs (z,�1,�2) (left) and the optimal solution (Ñz, Ñ�1, Ñ�2) (right). These results corroborate the
error bound (2.6). We note that the residual-based error indicator is smaller than the sketching error because we did not scale it by
the constant 1_� as in Lemma 4.2. The left panel shows an exponential decay, which is an indication that sketching will work well,
as shown on the right panel. Indeed, it is possible to obtain machine precision accuracy with relatively small r.

Fig. 3 shows the optimal solution. The support of Ñz coincides with the support of ztrue (see Fig. 1), and it holds that Ò ÑzÒM(⌦) =
↵ = 0.1. Furthermore, the optimal solution clearly fulfills the support subset condition (5.3a). Similar plots are obtained whether
we consider the full problem without sketching or with sketching using adaptive rank or fixed rank with r > 2. Consequently, we
only display one of these cases.
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Fig. 3. Solution for ↵ = 0.1. From left to right: The optimal control Ñz, the optimal state Ñu = u(Ñz) evaluated at t = 0.1, and the optimal adjoint state Ñp = p(Ñz)
evaluated at t = 0. The optimality condition, (5.3a) is visibly satisfied.

Table 1
The performance of semismooth Newton’s method for nonnegative initial measure control. Three
cases are considered: Without sketching, sketching with fixed rank, and sketching with adaptive
rank. The columns of the table correspond to the rank, the number of iterations, the final objective
function value, the final residual ÒFÒ2 and the compression factor. The sketched methods perform
comparably to the unsketched method, but require significantly less memory.
Rank Iterations Objective Residual Compression

1* 300 791.4969 4.0e*01 148
2* 300 13.5375 6.4e*02 89
3 56 23.7671 1.4e*09 63
4 48 23.7671 4.0e*09 49
5 42 23.7671 5.5e*09 40
10 47 23.7671 3.0e*10 21

Adaptive 49 23.7671 5.1e*09 49
Full 47 23.7671 3.0e*10 –

Fig. 4. Left: Residual ÒFÒ2 as a function of the iteration number, comparing semismooth Newton with and without adaptive sketching. The methods terminated
after 49 and 47 iterations, respectively. Right: Sketching target rank r as a function of the iteration number for the adaptive case (Algorithm 2).

Table 1 summarizes the performance of Algorithm 2 using several fixed rank sketches, adaptive rank sketching and the full-
storage method (without sketching). The adaptive algorithm was initialized with rank r = 1 and updated the rank as r } r+ 1. The
notation < indicates that the semismooth Newton’s method did not converge in 300 iterations. Here, the compression factor is

n
s
n
t

k(n
s
+ n

t
) + s2

.

Fig. 4 shows the algorithmic behavior without sketching and with adaptive sketching. The left panel shows a comparison between
the residuals ÒFÒ2 for these two cases. We observe that for a fixed rank it is possible to obtain a compression factor Ì60 (for r = 3).
With adaptive approach, we obtain a compression factor of Ì50 with a final rank r = 4. The adaptive approach is more practical as
it can be challenging to guess the rank upfront.

General measures
We consider n

s
= 322 (spatial nodes) and n

t
= 501 (time steps), so that n

s
� n

t
= 513, 024, We fix ↵ = 1 and in this experiment, we

observed that it was sufficient to take a fixed � = 900. The coarser spatial grid is motivated by the fact that now the control consists
of both positive and negative parts, which are treated separately, so that we have twice as many control unknowns.
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Fig. 5. Generation of the desired state ud. From left to right: True solution ztrue = �(0.25,0.75) * �(0.75,0.25), the associated state u(ztrue) computed using Fourier modes
and evaluated at t = 0.1 and t = T = 2. Last panel shows ud at t = 0.1, which is generated by adding normally distributed random noise to u(ztrue).

Fig. 6. The two panels display the ‘sketch error’ Òu* õuÒ2, the error indicator Òc(õu, z)Ò2, and the tail energy ⌧
r+1(u) for random input (z,�1 ,�2 ,�3) (left) and the

optimal solution (Ñz, Ñ�1 , Ñ�2 , Ñ�3) (right) with respect to rank r. These results corroborate the error bound (2.6). To account for randomness, the average over 10
realizations is displayed. Recall that k = 2r + 1 is the rank of the sketch õu, therefore the sketch error curve is sometimes below the tail energy.

Fig. 7. Solution for ↵ = 1. From left to right: The optimal control Ñz, the optimal state Ñu = u( Ñz) evaluated at t = 0.1, and the optimal adjoint state Ñp = p( Ñz)
evaluated at t = 0. The optimality conditions, (5.3a) and (5.3b) are visibly satisfied.

As before, we generate the desired state ud from an initial measure control. In this case, we choose ztrue = �(0.25,0.75) * �(0.75,0.25),
cf. Fig. 5.

Fig. 6 shows the sketch error Òu * õuÒ2, the error indicator Òc(õu, z)Ò2 and the tail energy of the full state u as functions of the
sketching target rank r for random inputs (z,�1,�2,�3) (left) and the optimal solution (Ñz, Ñ�1, Ñ�2, Ñ�3) (right). These results corroborate
the error bound (2.6). Again, the error indicator plotted in Fig. 6 is not scaled by the constant 1_� as in Lemma 4.2. An exponential
decay is again observed (left), which indicates that sketching will be beneficial. In fact, machine precision is achieved with relatively
small r.

Fig. 7 depicts the optimal solution. The support of Ñz coincides with the support of ztrue (see Fig. 5), and Ò ÑzÒ
M(⌦) = ↵ = 1 holds.

Furthermore, the optimal solution clearly fulfills the support subset conditions (5.3a) and (5.3b). Similar plots are obtained whether
we employ Algorithm 2 with or with sketching. Consequently, we only display one of these cases.

Table 2 summarizes the performance of Algorithm 2 for several choices of fixed ranks, the adaptive sketching method with
different initial ranks r0 À {1, 2, 3}, and the full-storage method (without sketching). The notation < indicates that the semismooth
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Table 2
The performance of semismooth Newton’s method for general initial measure control. Three cases are
considered: Without sketching, sketching with fixed rank, and sketching with adaptive rank. The columns
of the table correspond to the rank, the number of iterations, the final objective function value, the final
residual ÒFÒ2 and the compression factor. The sketched methods perform comparably to the unsketched
method, but require significantly less memory.
Rank Iterations Objective Residual Compression

1* 300 3.6e+11 2.5e+07 111
2* 300 1.6e+13 7.3e+07 66
3* 300 179.2508 2.3e*01 47
4* 300 180.3544 2.9e*05 36
5 42 180.3544 1.7e*10 30
6 30 180.3544 1.1e*09 25
7 30 180.3544 8.4e*10 22
8 29 180.3544 1.0e*11 19
9 30 180.3544 1.1e*13 17
10 30 180.3544 1.2e*14 15

Adaptive (r0 = 1) 53 180.3544 1.2e*09 22
Adaptive (r0 = 2) 47 180.3544 1.2e*09 22
Adaptive (r0 = 3) 34 180.3544 1.2e*09 22
Full 31 180.3544 5.4e*10 –

Fig. 8. Left: Residual ÒFÒ2 as a function of the iteration, comparing semismooth Newton with and without adaptive sketching for different choices of initial
target rank r

0. The methods terminated after 31 (full), 53 (r0 = 1), 47 (r0 = 2), and 34 (r0 = 3) Newton steps, respectively. Right: Sketching target rank r as a
function of the iteration for the adaptive cases (Algorithm 2). Notice that the norm of the residual goes slightly up in the first iteration in the left panel. This
is because, the line search failed in the first iteration (after 10 reductions), but after this iteration, we observe a monotonic behavior in all cases.

Newton’s method did not converge in 300 iterations. Fig. 8 demonstrates the algorithmic performance with and without sketching.
The left panel shows a comparison between the residuals ÒFÒ2 for the four portrayed cases. The adaptive algorithm produced a
final rank of r = 7 for each initial rank r

0 À {1, 2, 3}, yielding a compression factor of Ì 22. Initialization with a slightly larger target
rank led to a significant reduction of generalized Newton iterations.
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Appendix A. Proof of Theorem 4.7

Proof. The definition of w(z; v) from (4.4) yields e
u
(u(z), z)w(z; v) + e

z
(u(z), z)v = 0 and therefore we have for any z À Z0, v À Z,

and w À U that

⇣ (u(z), z) := e
u
(u(z), z)w + e

z
(u(z), z)v = e

u
(u(z), z)(w *w(z; v)). (A.1)

From (A.1) and invoking Assumption 4.1(b), we immediately obtain that

�Òw *w(z; v)Ò
U
f Ò⇣ (u(z), z)Ò

W
f �Òw *w(z; v)Ò

U
. (A.2)

Furthermore, we can estimate

Ò⇣ (u(z), z)Ò
W

f Ò⇣ (u, z)Ò
W

+ Ò⇣ (u(z), z) * ⇣ (u, z)Ò
W
.

Employing the Lipschitz-continuity of e
u
and e

z
from Assumption 4.1(c), we further estimate the second summand on the right-hand

side

Ò⇣ (u(z), z) * ⇣ (u, z)Ò
W

f Òe
u
(u(z), z) * e

u
(u, z)ÒL (U ,W )ÒwÒ

U
+ Òe

z
(u(z), z) * e

z
(u, z)ÒL (Z,W )ÒvÒZ

ø (1 + ÒvÒ
Z
) Òu * u(z)Ò

U

(4.2a)
ø

(1 + ÒvÒ
Z
)

�
Òe(u, z)Ò

W

where the hidden constant incorporates the Lipschitz constants for e
u
and e

z
and norm bound on ÒwÒ

U
. Inserting the above

inequalities into (A.2), we arrive at

Òw *w(z; v)Ò
U
ø

1
�
Òe

u
(u, z)w + e

z
(u, z)vÒ

W
+

(1 + ÒvÒ
Z
)

��
Òe(u, z)Ò

W
,

which proves (4.5a). The estimator for q works in a similar manner. By definition of q(z; v) from (4.4) we have that e
u
(u(z), z)<q(z; v)*

L
uu
(u(z), z, p(z))w(z; v) * L

uz
(u(z), z, p(z))v = 0. Consequently, we obtain that

⇣2(u(z), z) := e
u
(u(z), z)<q * L

uu
(u(z), z, p(z))w(z; v) * L

uz
(u(z), z, p(z))v

= e
u
(u(z), z)<(q * q(z; v)).

By Assumption 4.1(b), we deduce that

�Òq * q(z; v)Ò
W < f Ò⇣2(u(z), z)ÒU< f �Òq * q(z; v)Ò

W < . (A.3)

Next, we estimate

Ò⇣2(u(z), z)ÒU< f Ò⇣2(u, z)ÒU< + Òe
u
(u(z), z)<q * e

u
(u, z)<qÒ

U<

+ ÒL
uu
(u(z), z, p(z))w(z; v) * L

uu
(u, z, p)wÒ

U< + ÒL
uz
(u(z), z, p(z))v * L

uz
(u, z, p)vÒ

U<

= (I) + (II) + (III) + (IV). (A.4)

By Lipschitz continuity of e
u
, we have

(II) = Òe
u
(u(z), z)<q * e

u
(u, z)<qÒ

U< ø Òu * u(z)Ò
U
.

Also, it holds

(III) f ÒL
uu
(u(z), z, p(z))ÒL (U ,U<)Òw(z; v) *wÒ

U
+ ÒL

uu
(u(z), z, p(z)) * L

uu
(u, z, p)ÒL (U ,U<)ÒwÒ

U

ø Òw(z; v) *wÒ

U
+ ÒL

uu
(u(z), z, p(z)) * L

uu
(u, z, p(z)) + L

uu
(u, z, p(z)) * L

uu
(u, z, p)ÒL (U ,U<)

ø Òw(z; v) *wÒ

U
+ Òu * u(z)Ò

U
+ Òp * p(z)Ò

W < ,

where we used the boundedness of ÒL
uu
(u(z), z, p(z))ÒL (U ,U<) and ÒwÒ

U
in the second inequality and the Lipschitz continuity of

L
uu
in its first and third argument in the third inequality. Similarly, we exploit the Lipschitz continuity of L

uz
in its first and third

argument to deduce

(IV) = ÒL
uz
(u(z), z, p(z))v * L

uz
(u, z, p)vÒ

U< ø ÒvÒ
Z

�

Òu * u(z)Ò
U
+ Òp * p(z)Ò

W <
�

Collecting the estimates for (II), (III), and (IV), and substituting in (A.4), we obtain

Ò⇣2(u(z), z)ÒU< ø Òe
u
(u, z)<q * L

uu
(u, z, p)w * L

uz
(u, z, p)vÒ

U<

+ (1 + ÒvÒ
Z
)Òu * u(z)Ò

U
+ (1 + ÒvÒ

Z
)Òp * p(z)Ò

W < + Òw *w(z; v)Ò
U
.

Combining this inequality with (A.3) and then using the available estimates for the state u (4.2a), the adjoint p (4.2b), and w (4.5a)
we deduce the inequality (4.5b).
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Finally, we will prove the estimate related to the Hessian-vector product (4.5c). From (4.4), we recall that öJ
®®(z)v =

*e
z
(u(z), z)<q(z; v) + L

zu
(u(z), z, p(z))w(z; v) + L

zz
(u(z), z, p(z))v. This allows us to estimate

Ò * e
z
(u, z)<q + L

zu
(u, z, p)w + L

zz
(u, z, p)v * ÇJ

®®(z)vÒ
Z<

f Òe
z
(u, z)<q * e

z
(u(z), z)<q(z; v)Ò

Z< + ÒL
zu
(u, z, p)w * L

zu
(u(z), z, p(z))w(z; v)Ò

Z<

+ ÒL
zz
(u, z, p)v * L

zz
(u(z), z, p(z))vÒ

Z<

= (i) + (ii) + (iii). (A.5)

Next, we estimate (i), (ii), and (iii). It follows that

(i) f Òe
z
(u, z)<q * e

z
(u, z)<q(z; v)Ò

Z< + Òe
z
(u, z)<q(z; v) * e

z
(u(z), z)<q(z; v)Ò

Z<

ø Òq * q(z; v)Ò
W < + Òu * u(z)Ò

U
,

where we used the boundedness of Òe
z
(u, z)<ÒL (W < ,Z<) and Òq(z; v)Ò

W < , and the Lipschitz-continuity of ez in its first argument. We
proceed and estimate

(ii) f ÒL
zu
(u, z, p)w * L

zu
(u, z, p)w(z; v)Ò

Z<

+ ÒL
zu
(u, z, p)w(z; v) * L

zu
(u(z), z, p)w(z; v)Ò

Z<

+ ÒL
zu
(u(z), z, p)w(z; v) * L

zu
(u(z), z, p(z))w(z; v)Ò

Z<

ø Òw *w(z; v)Ò
U
+ Òu * u(z)Ò

U
+ Òp * p(z)Ò

W < ,

where we used the boundedness of ÒL
zu
(u, z, p)ÒL (U ,Z<) and Òw(z; v)Ò

U
, and the Lipschitz continuity of L

zu
in its first and third

argument. Similarly, we can use Lipschitz continuity of L
zz
in its first and third argument to see

(iii) ø ÒvÒ
Z

�

Òu * u(z)Ò
U
+ Òp * p(z)Ò

W <
�

.

Substituting the estimates of (i), (ii), and (iii) in (A.5), we obtain that

Ò * e
z
(u, z)<q + L

zu
(u, z, p)w + L

zz
(u, z, p)v * öJ

®®(z)vÒ
Z<

ø (1 + ÒvÒ
Z
)Òu * u(z)Ò

U
+ (1 + ÒvÒ

Z
)Òp * p(z)Ò

W < + Òw *w(z; v)Ò
U
+ Òq * q(z; v)Ò

W < .

We can now insert the known estimates (4.2a), (4.2b), (4.5a), and (4.5b) to assemble (4.5c). This concludes the proof. ∏

Appendix B. Proof of Theorem 3.1

Proof. We proceed in two steps. In the first step we show that the complementarity conditions (3.3c) imply (3.4). In the second
step, we establish the reverse implication.

Step I: From the optimality of the projection, we have

0 f
�

proj
K* (� + g(z)) * (� + g(z)) , k * proj

K* (� + g(z))
�

G
≈ k À K

*
. (B.1)

Since � À K
* from (3.3c), we can replace k by � in (B.1) to arrive at

0 f
�

proj
K* (� + g(z)) * (� + g(z)) , � * proj

K* (� + g(z))
�

G

= *Ò� * proj
K* (� + g(z))Ò2

G
* 

�

g(z) , � * proj
K* (� + g(z))

�

G

= *Ò� * proj
K* (� + g(z))Ò2

G
+ 

�

g(z) , proj
K* (� + g(z))

�

G
= I + II

(B.2)

where in the last equation we used the fact that (g(z),�)
G
= 0. Combining the facts that proj

K* (� + g(z)) À K
* and g(z) À K with

the definition of polar cone K
*, we obtain that the second term in the final equation of (B.2) fulfills II f 0. Thus from (B.2), we

arrive at (3.4).

Step II: Since � = proj
K* (� + g(z)), we have that � À K

*. Next, we show that g(z) À K. Using Moreau’s decomposition, we have
that

� + g(z) = proj
K* (� + g(z)) + proj

K
(� + g(z))

= � + proj
K
(� + g(z)).

Combining this with the fact that K is a cone yields

g(z) = 
*1proj

K
(� + g(z)) À K .

It remains to show that (g(z),�)G = 0. As in Step I: , we use (B.1). Since � satisfies (3.4), we can substitute it into (B.1)to obtain
we obtain

0 f (� * (� + g(z)) , k * �)G = * (g(z) , k * �)G ≈ k À K
*
,
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which leads to

(g(z), k * �)
G
f 0 ≈ k À K

*
.

Since � À K
* and K

* is a cone, we can select k = b� À K
* for any b > 0 to obtain

(b * 1)(g(z),�)G f 0. (B.3)

The left-hand side in (B.3) is negative if b > 1 and positive if b À (0, 1), allowing use to conclude that (g(z),�)G = 0. ∏

Appendix C. Algorithms

The following algorithms describe how to compute state sketching and error in the state equation due to sketching. Here by c
i

we indicate the ith row of the linear state equation, cf. (1.1).
Algorithm 3 Sketching of the state with initial control
Require: The control iterate z À Rns and the target rank r.
1: Set k = 2r + 1, s = 2k + 1.
2: Initialize random matrices ⌥ À Rkùns ,⌦ À Rkùnt ,� À Rsùns , À Rsùnt .
3: Determine ucurr from initial control z.
4: for i = 1 : n

t
do

5: Solve c
i
(ucurr ,unext ) = 0 for unext .

6: Update sketching matrices X, Y, and Z with the i-th column of the state unext .
7: Set ucurr = unext .
8: end for
9: Form skinny matrices Q and W.

Algorithm 4 Calculation of the sketching error in the state equation
Require: The control iterate z À Rns and the skinny matrices Q À Rnsùk,W À Rkùnt .
1: Determine õucurr from initial control z.
2: for i = 1 : n

t
do

3: Reconstruct õunext = (QW)(:, i).
4: Compute the error err

i
= c

i
(õucurr ,õunext ) .

5: Set õucurr = õunext .
6: end for
7: Compute Òc(õU, z)Ò = ≥nt

i=1 erri .
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